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Near-Field Antenna Measurements Using
Nonideal Measurement Locations
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Abstract—We introduce a near-field to far-field transformation  w(r) of a probe located at may be modeled as
algorithm that relaxes the usual restriction that data points be
located on a plane rectangular grid. Computational complexity w(r) = ZS”” eXP(ikuu -T) @
is O(Nlog N) where N is the number of data points. This al-
gorithm allows efficient processing of near-field data with known

probe position errors. Also, the algorithm is applicable to other where¢,,, is the (normalized) coupling product and
measurement approaches such as plane-polar scanning, where
data are collected intentionally on a nonrectangular grid. k et THS

v = I I3 y+ YopZ
Index Terms—Antenna measurements. * Y

\/ A i \2
e
I. INTRODUCTION g Ly Ly

E introduce a near-field to far-field transformatioWe assume that the probe response is negligible outside the
method that relaxes the usual restriction that data pointgerval |z| < L., |y| £ Ly for z values of interest. (That
be located on a plane-rectangular grid. It is not always practiés) w(r) is a periodic extension.) To improve conditioning,
or desirable to make uniformly spaced measurements; f@e include only propagating plane wavés,,, real) in the
example, the maintenance of positioning tolerances beconsesnmation in (1). Evanescent waves,( imaginary) are
more difficult as frequency is increased. Our algorithm allowexponentially attenuated and are negligible in the far-field
efficient processing of data with probe position errors. Thigegion. We must also ensure that evanescent waves are not
method can extend the frequency ranges of existing scann@rgortant contributors to the measured probe response; this is
make practical the use of portable scanners for on-site megually accomplished by maintaining a probe-to-test-antenna
surements, and support schemes such as plane-polar scansiggaration of several wavelengths.
where data are intentionally collected on a nonrectangular grid.In matrix form (1) becomes
Although “ideal” locations are not required, we assume that
probe positions are known. (In practice, laser interferometry w=Q¢ (2)
is often used for this purpose.) Our approach is based Merew =
a I|r_1ear model_of the formA_.f =b (see_Sectlon“II). The ment point.¢ = {£,,}, andQ = {Qn.op = exp(ikyy - ) ).
conjugate gradient method is used to find the "UnknowRrne gpiective of near-field to far-field transformation is to
£ in terms Of_ the “data’b (Se‘?“on ). Thg op_erato_rA determine the coupling produgtfrom measurement& made
mgst_ be applled_ once per conjugate gradient iteration a a restricted region near the test antenna. The transmitting
this is done efficiently using the recently developed urlfar-field) pattern can be found from the coupling products of

equally spaced fast Fourier transform (FFT) [2], [3] and 10Cg}¢ test antenna with each of two independent known probes.
interpolation (Section IV). As implemented, each iteration

requiresO(N log N) operations, whereV is the number of :
. . : B, Normal Equations
measurements. The required number of iterations depends . o
on desired computational accuracy and on conditioning. InIn practical situations, where the number of measurements
Section V, we present several simulations that are based @ign exceeds the number of unknowns, the system (2) is

vy

{w(rn)}, ry, is the location of thenth measure-

actual near-field antenna data. overdetermined and will generally not have a solution. We
will actually solve the normal equations
II. THE MODEL
Af=Db 3)
A. Discrete Theory
. - . where

Consider a transmitting test antenna and a receiving probe.
According to Kerns’s theory (see Appendix A), the response A=QHQ
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estimate. Most methods for processing planar near-field da¢@asonable restrictions. For example, arbitrarily large condition
[based on the model (1)] solve (3), either directly or indinumbers can arise when evanescent plane waves are included
rectly. In the standard plane-rectangular grid algoritnis in the model (1). In the examples of Section V, the exclusion
diagonal andQ” and Q can be applied with FFT’s, giving a of evanescent fields results in acceptable condition numbers.
computational complexity oO(N log V). On the other hand, When all evanescent modes are excluded and data are
a direct solution using Gaussian elimination requi€¥sV®) measured on the regular (ideal) grid (18), the condition number
operations. For typical problem sizés0* < N < 10°), the is ¢ = 1. On the other hand, substantial values cotan
importance of computational efficiency is readily apparent. result when data density is significantly nonuniform. In some
simulations involving large position errors, projection of the
1. CONJUGATE GRADIENT SOLUTION measurement locations onto thg plane defined a region
with scalloped edges. IL, and L, were large enough to
A. Algorithm define a rectangle containing all the data points, the gaps

. . . . - . ue to the scallops led to poor conditioning. Our solution
Since A is Hermitian and positive definite (assuming th P P 9

. . ) ) . as to choose slightly smaller values fdr, and L, and
Q is full rank), the conjugate gradient method is appllcablt% discard data points lying outside this boundary. Similarly,

(see, for example, [4]). The algorithm is an iterative SChemvﬁwen there are regions with high data densities (as in plane-

given by polar scanning), condition numbers can often be markedly
d©@ =@ —p_ A¢©® improved by thinning or otherwise weighting data points
)] 2 consistent with a uniform “information density.” To find a
X;=————— weighted least-squares estimate, replace (4) with
J [d(])]HAd(J)
§(j+1) _ 5(1’) + de(j) (5) A= QH%Q
4G+ — g+ 4 B2 e
|lx) |2 where is a diagonal matrix. In particulak,, is a positive

h 2 — yHy |nitial estimat t critical and weight to be associated with the measurement pgjnt
where||y||* = y™y. Initial estimates are not critical and we %< 4ooing to consider the possibility of choositg,

0) — implici ' .
use £ = 0 for simplicity. Somewhat earlier CONVergence, g L, to encompass a region much larger than the actual

ma;(; b? otéttal_ne(é, fforrre];;ample,tbé/ sc;atrtlngE)Wlt_:jhthe COUSL''Wleasurement area. This would mitigate truncation effects
product obtained fromk-corrected data [5]. € quan Iy(since the probe response is not implicitly assumed to be

rd) =b - A‘S(J) Is the jth residual. zero immediately beyond the measurement region) and would
seem to allow determination of the sidelobes from measure-
ments made near the main-beam zone. In practice, such a
The rate of convergence can be estimated with [6, p. 52Bhodel quickly becomes useless because of poor conditioning.

1N Schemes which produce wide-angle pattern coverage from
||§(j) —&|la < 2<c_ ) ||§(0) —&||a (6) limited measurement data must invariably rely arpriori

B. Conditioning and Convergence

c+1 information about the antenna under test [7]-[9].

where |ly||3 = y”Ay and the condition number? is
the ratio of the largest to smallest eigenvalue Af (The
condition number ofQ is ¢, ¢ > 1.) Thus, the conjugate IV. EFFICIENCY
gradient algorithm willalways converge. For each it mini- In the conjugate gradient procedure of (5), it is necessary
mizes||€V) — €| 4 for £€9) — ¢ in the Krylov space span to apply the matrixA = Q¥Q to a vector once each
{r@ Ar® ... Ai=1p©}, iteration. This can be done by a straightforward summation,

Relative error is bounded by the residual but only in O(/N?) operations. In order to reduce complexity

€D —g| £ to O(N log N) operatiqns per iteration, we have developeq
< . (7) a scheme that combines the unequally spaced FFT with
€]l o] interpolation inz. For example, to applyQ to ¢) we use
If we suppose that “perfect” measuremewtgand “imperfect” the unequally spaced FFT to evaluate (2) @V logV)
measurementsy correspond to the solutions [of (3§}, and operations) at the points,x + 4,y + 2z for several fixed
&, then values ofz. We then use local interpolation into reach the
actual measurement locations. Since we are dealing with
< . (8) bandlimited functions, the numerical precision of the algorithm
[1€ol] [Iwoll can be controlled and is specified as an input parameter. Com-
For large condition numbers (poor conditioning), (6)—(8putational time depends on the desired numerical accuracy
indicate potential problems with convergence rate, computaand on the spatial distribution of data points. Our technique
tional accuracy, and/or experimental design. Fortunately, itiss most efficient when measurement locations lie close to a
often possible to improve conditioning by adding physicallplane. Details are given in Appendix B.

€~ &ll _ flw—wol
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Fig. 1. H-plane far-field pattern of the radiometer. Probe position errors afég. 2. H-plane far-field pattern of the radiometer. Probe position errors are
given by (10). The solid line corresponds to the corrected pattern and to tfieen by (11). The solid line corresponds to the corrected pattern and to the
actual pattern. The dashed line shows the result of ignoring the position errarstual pattern. The dashed line shows the result of ignoring the position errors.

V. SIMULATIONS The second case was a more severe test
A. Probe Position Errors b 0.3 ¢0s(0.35n) cos(0.65m)
Sy | = | 0.3c0s(0.25n) cos(0.15m) | A. (11)

We began with planar near-field data for a radiometer
antenna with an aperture diameter of 25 cm and an operating

frequency of 31.65 GHz. These data consist of 161 points | . . . .
z by 161 points iny on an ideal grid spaced by 0.38 cmﬁ]]e peak magnitude of this position errorlid A and the rms

(0.4)). The model (1) was specified with, — L, — 161 x magnitude i90.52\. Fig. 2 shows the result of probe position

e peci ¥y 8orrection in this example. The pattern computed ignoring
0.38/2 = 30.59 cm and the coupling product was calculate robe position errors bears little resemblance to the correct
using standard near-field to far-field transformation softwar@.tt mp ven the main beam is no lonaer recodnizable. Adain
Position errors were then simulated by using (1) to calcula‘g‘ em—e s. € iol d';a (;)(iwg € (:g | ade. gt' '
the probe response at nonideal measurement locations. Inf € IS no discernible ditierence between actual and position
setup, there are about 26000 simulated measurements %r&ecteq p2atterns. For the 4d|splacements (811)' the condition
about 20000 unknowns (evanescent modes excluded). {inber isc® & 21, 79 < 107%, andg < 107°.

8z c0s(0.15n) cos(0.11m)

present five cases. In the third case we used position errors
For the first case, we used a moderate position error of the
form ox 0.3 cos(0.35n + 4.55) cos(0.65m + 4.2)
Sy | = | 0.3c0s(0.25n — 4.25) cos(0.15m + 2.85) | A
bz 0.14 cos(0.35n) cos(0.65m) 8z cos(0.15n — 3.3) cos(0.11m — 1.43)
6y | = | 0.14cos(0.25n) cos(0.15m) | A (10) (12)
bz 0.20 cos(0.15n) cos(0.11m) which are similar to the second case but with phase offsets.

This seems to be a minor change; nevertheless, the condition

wheren is the z index andm is they index. Both indexes ,mper increased te? ~ 490 ands9 iterations were required
run from —80 to +80. Peak magnitude of this position erroky achieve a tolerance of 10 (150 < 107%)

is 0.28) and the rms magnitude ®.14). Fig. 1 shows the The reason for poor conditioning in the third case is the

resu!t of p_robe .position correction in this examp!e' There | earance of gaps (scallops) at the edges of the measurement
no discernible difference between actual and position correcglea. In the fourth case we decreadedand L, slightly to

patterns, as expected from (7). The pattern compu_ted 'gnory %ﬁinate these gaps. Data falling outside the reduced bound-
probe position errors, however, has a broader main beam an

: i . ., arles were discarded. Also, it was advantageous to exclude
also has a gain that is about 2 dB low. The relative re5|du(§\l ) : o
o Lo . ata points lying withir0.1\ of the boundary. (Because of the
at the jth iteration is defined as . . . .
periodic continuation of measurement space, data points too
T = 1£91/1b]- close to the boundary can result in excessive density there.)
These changes reduced the condition number fedny 490
We terminate our program afteif,., iterations or after the to ¢® ~ 42 with 737 < 1075, (The total number of discarded
relative residual becomes less thar(say, jma.x = 100 and data points was about 120 out of 26 000.)
7 = 1078). For the displacements (10), the condition number The fifth case used the position errors of the second case [see
is 2 &~ 13, 75 < 1074, and 9 < 10~8. Condition numbers (11)], but a phase gradient was introduced into the near-field
are estimated using a procedure due to Lanczos [6, p. 528ta to steer the main beam©®3ffom boresight. As shown
Calculations were done on a 200-MHz personal computer aimdFig. 3 the pattern, ignoring probe position errors, bears

required approximately 75 s per iteration. little resemblance to the correct pattern. If we correct only
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Fig. 3. H-plane far-field pattern of the radiometer with a steered bearkig. 5. H-plane far-field pattern of the dish (see Section V-B). The solid line
Probe position errors are given by (11). The solid line corresponds to tberresponds to the pattern without position errors. The dashed line shows the
corrected pattern and to the actual pattern. The dashed line shows the rgmfliern computed from data on the plane-\/4, also without position errors.

of ignoring the position errors. The dash-dotted line is the result of correctiiigne dash-dotted line illustrates conjugate-gradient position-error correction.
only the z-position errors.

0 ' ‘ ' C. Plane-Polar Grid

Beginning with the coupling product data of Section V-A,
we simulated probe response on a plane-polar grid: maximum
radius r,,.x = 43 cm; radial stepAr = 0.4X; angular step
Lo " /\ “ b A¢p = 7/356 (S0 thatrma.xA¢ = 0.4)). Data were retained

’ ‘ . within the rectangldz|, |y| < 30.59 cm. In this setup, there
are about 65 000 simulated measurements. A direct application
of our algorithm resulted in a poor condition numhgr 2,

400, and 1199 & 5 X 1077,

I
—
h

T

\
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45 The condition number can be dramatically reduced by
finding a weighted least-squares solution of (2). For example,
, ‘ ‘ when data points were weighted by their measurement radii,

—60 —40 20 0 20 40 60

A the condition number wag? ~ 46 and o9 < 10~%. This
zimuth (deg) i . i . . . .
weighting scheme is consistent with an “information content”
Fig. 4. H-plane far-field pattern of the dish (see Section V-B). The solighat is constant per unit area. Alternatively, when we simply
line corresponds to the pattern without position errors. The dashed line shc%\ﬁs d the d h . |
the result of ignoring the position errors. inned the data so that measurement spacing was never less
than 0.15 cm, the condition number was reduced?cx 6
-~ ) and 717 < 1078, (In this setup, the number of simulated
for z position errors, much of the true pattern is recoveregheasurements is about 44000.)
However, the gain is still about 1 dB low, and there are There are noniterative schemes for processing plane-polar
anomalous sidelobes. The condition number and the numbeggts in O(N log N) operations [11]-[15]. Our approach is

iterations were the same as in the second case. This exampife flexible, however, since data locations can be perturbed
demonstrates the importance of three-dimensional positignthree dimensions.

error correction for steered-beam antennas.

B. Laboratory Tests VI. SUMMARY

We want to verify that our method is effective in the A number of papers treat nonideal measurement locations
presence of measurement errors. Three sets of near-field miégl—[23]. We think that our approach compares favorably in
surements were taken of a 1.2 m dish at 4 GHz. Two sets wégems of efficiency, accuracy, and simplicity. Major features
made without position errors on planes separatech\ 4. In  are:

the third set, we deliberately introduceeposition errors (as « the algorithm is iterative, with a fixed cost per iteration
a function ofz). The errors included periodic and random that is O(N log N). The memory requirement i©(N)
components, and had a maximum magnitud®.6f. and is independent of the number of iterations;

Results are shown in Figs. 4 and 5. From Fig. 4, we ¢ convergence is guaranteed; bounds [see (6)] on the con-
see that the position-error corrupted pattern is considerably vergence rate for the conjugate gradient procedure are
distorted. Fig. 5 shows all three far-field patterns. Due to tighter than for many alternative iterative techniques;
measurement errors (primarily multiple reflections), there ares computation error (not measurement error) is bounded by
discrepancies. The patterns are consistent, however, within the residual [see (7)];
normal measurement uncertainties [10]. e our current implementation is fully three dimensional,
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« the recipe given in this paper is also applicable to cylindri- The infinite summation ranges in (14) must be truncated.
cal and spherical scanning geometries; the basic ingredi-natural way to do this is to eliminate evanescent modes
ent is an efficient procedure for predicting probe responée imaginary). These usually contribute little to(r) since
at the measurement locations, based on an estimatkedy are exponentially attenuated away from the transmitting
modal spectrum. antenna. For example, in standard planar near-field scanning

Software implementing this method is available; interest@pplications, modal indices are limited by
readers should contact the authors.
—N, <v< N, -N,<p<N, (16)

APPENDIX A

where N, and N, are usually chosen just large enough to
PLANAR NEAR-FIELD SCANNING

include all propagating modes

Following Kerns [24], the response(r) of a receiving I

L

probe antenna (located a&) to a transmitting test antenna N,>—=-, N, >-—*L. 17
(located at the origin) may be written as the Fourier transform A2 Af2
w(r) :/ / D(K) explik - 1) iy dk, (13) With dataw(r,,,) measured on the grid
Teo T L.n L,m
Tpm = “-% + v 5’ +dz (18)
where N, N,
k=Fk,x+k,y+z
_2m (14) becomes a discrete Fourier transform. The FFT algorithm
A may be used to calculate tifg,, in O(N log V) operations

and v is chosen positive real or positive imaginary (théN = 4N,Ny).

exp(—iwt) factor is suppressed). This model assumes that

the probe is translated from place to place without rotation. APPENDIX B
The physical structures of the transmitting and receiving IMPLEMENTATION

antennas must be entirely in the half spaces< 0 and . .
z > 0, respectively. Multiple interactions between antennasAccord'.ng to the model (1) the coupling prodl{_ct: {&v
determined from the probe responsér) at a given set of

. . . . |
re ignored. Typically, w k rmin ling pr : :
are ignored. Typically, we seek to dete € coupling p Odur(%teasurement locations, - - -, ry. As discussed above, there

D(k) from measured values af(r). -
i o . . are fewer coefficientg,,, than measurements (the problem
Equation (13) is discretized by assuming, on some pla|nseoverdetermined) so the coefficients are found in a least-
z = d, thatw(r) = 0 when|z| > L, or |y| > L,. This ’

approximation must be physically reasonable in the contextEquaiﬁ)snsszr;:esg\?gj E’?eerart}\?(rarlnatljseirc\luamgnior(a. ;26 rr;%rizritl
the measurement. The data then may be expressed as a Fo ﬂe% y 9 Jug 9

u
. method.
series(—Ly <@ < Lo, —Ly <y < Ly) This approach requires the repeated multiplication of the

B ad ad ik 14 matricesQ andQ?* by vectors. The present method computes
w(r) = _Z _Z Svu exp(tKyy - 1) (14)  each matrix-vector product i@ (N log N) operations (forV’
_ rETeRETe measurements), in contrast@{ N2) operations for evaluation
with by a direct method.
k, = W_V)A( + W—S’ T We first consider application of the matiy. The measure-
T L, L, a ment locationsr, - -+, ry, With v, = z,X 4+ yu¥ + 2.2, lie
2 2 approximately on the plane= d and we assume that they are
TV T . :
You =4 K2 - <L—) - <—) not more than a few wavelengths away from it. In particular,
z v |z —d| < aXforn=1,---,N with a <4, whereX = 27 /k.
Now This assumption allows the determinatioregb(sk, - r, ) by
1 Le pLy polynomial interpolation from a small set of values at fixed
bop = w(r) exp(—ik,,, - r)dz dy. locations in z
4L$Ly _La: _Ly

L
On the other hand, the Fourier transform (13) may be inverted . .
o give (13) may exp(iky, Th) = lz:; Ci(zn) exp(ikuy - Thi) + €opn (19)

1 e b .
D(k) = 4—7r2/_L‘/_L w(r) exp(—ik - r) dz dy. where

A comparison of the last two equations gives

2

o = L:LyD(kw). (15) Cylzn) =

Ipl = TpX + yny + iz

L ~
Zn — Zm

5=z
m=1,mz#l ! m
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and the interpolation points are Chebyshev nodes defined lage a number of ways to reduce this constant, but it has been
entirely adequate for our purposes.

2141 — 2 21-1 , X _ _
Z1 =20+ % 1—cos % , I=1,---,L The iterative solution of the normal equations (3) by the
S .- 20 conjugate gradient method follows the procedure given in (5).
20 = MERZn, - ALtl = IMAX Zn. (20) addition, we estimate the conditief of the matrixA using

The numbelL of interpolation nodes is chosen so the interp he Lanczos methpd. This method exploits the connechon
etween the condition @A and that of the Krylov matrices

lation errore, ., satisfiesle, .| < e, wheree is specified by
the user. The polynomial interpolation error (see, for exampl (A, r¥, ) = @, Ar(®, ... AI=1pO)], j=1,2,.-
[25, p. 49)) is

L

Evun = H(zn -

=1

(see, for example, [6]). The method generates a sequence
of symmetric tridiagonal matriced';, T, -+, with T, of
dimensiony x j, such that the extremal eigenvalues 'Bf
approximate those A increasingly well. On thgth iteration
of the conjugate gradient method, the estimaﬁeof the
condition of A is obtained by diagonalizind'; and defining

FE (Coan)

2l) ) Tv CV/ML € [507§L+1]
where f(z,) = exp(iky, -1,,). Forz, - -, 71, defined by (20)

and|y,,.| < k, this reduces to the bound

2(ra)t
L
The smallest integel. such that2(ra)l/L! < e therefore

|5uun| S

2
c; =
T; in descending order.

The matrixT; is defined by the formula

Aji/Aji, where);i, Ajo, -+, A;; are the eigenvalues of

suffices. @ fo 0

Substituting (19) into (1) and changing the order of sum- T, — fo K : j=1,2,-
mation yields ’ S e Y
w'(rn) =Y Cilzn) > & exp(iKuy T + Y &€ 0 -+ Bi—2 aj

7 vp v where

where w' = {w/(r,)} is the probe response due to the [ d@)2 | [dYYfe@))2
coupling productt’ = {;,,}. The parametee is chosen so T e @2 [|leG—D)||4
that the sum involving, ., can be neglected. The inner sum ||d(j—1)||2||r(j)||
over vy is a discrete Fourier transform in two dimensions Bi-1 = _W

for eachl, except that the points,x + ¥,y are unequally

spaced. The unequally spaced FFT of Dutt and Rokhlin [&r j = 0,1,-- and we defing|r(~V|| = 1, [|[dY|| = 0.

and, subsequently, Beylkin [3] can be used to evaluate this sunThe estimate5c]2» of the condition of A are necessarily
for all N locations inO(N log V) operations. This evaluationimperfect; they cannot account for aspects Af that are

is obtained for each of the planes= 7,---,7; and the absent fromK(A,r(® j). These estimates, however, are the
resulting values are weighted by the interpolation coefficienb@st available givel (A, r(°>,j). The Kaniel-Paige conver-

CI(Zn).

gence theory (see [6]) establishes the connection between the

The multiplication of matrixQ” by a vector is nearly the estimates and the choice &f%.

same as forQ. The computation o’ = {,,,} from w’,
whereb’ = QY w’ is given by the equation

by = Z Ci(zn) Zw’(rn) exp(—iky,, - Tn).
{ n

(1]

(Here, we have discarded the interpolation error term.) Agaiﬁ
the inner sum is an unequally spaced Fourier transform in two
dimensions for each except that the unequal spacing is over3l
the summation index variable, rather than the free variablgy)
Nevertheless, this case also requif@&N log N) operations

for eachl.

Implementation of the unequally spaced FFT is rather elahs)
orate; we use Beylkin’'s version which, for double-precision
accuracy in two dimensions, requires roughly 25 times as
much computation as a standard FFT of the same size. Thg
overall cost of applyingQ and Q depends on the deviation
of the measurement locations from a plane and on the requir
accuracy. If, for exampleg = 0.5 and ¢ = 1078, then
L = 15 and each application of the matrix = Q¥ Q to
a vector requires approximateBy/- 15 - 25 = 750 times as (8]
much computation as a standard two-dimensional FFT. There
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