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Abstract-An efficient and reliable method has been developed for 
computing and exhibiting Fresnel-region fields radiated by microwave 
antennas using plane-wave scattering matrix analysis. That is, we 
calculate near fields by numerically integrating the complex far-field 
antenna pattern. The predicted near fields are exhibited as relative power- 
density contours lying in a longitudinal plane bisecting the antenna’s 
aperture. With spatial coordinate scaling, each set of contours becomes a 
function of the relative aperture distribution and the electrical size of the 
antenna. If the electrical diameter is much larger than any normalized 
transverse coordinate of interest, the contour set becomes invariant with 
respect to antenna size. Thus coordinate normalization can produce 
contours applicable to any antenna with the same relative aperture 
distribution, regardless of antenna size. The crux of the analysis consists 
of handling a numerical instability which arises from integrating discrete 
data. A criterion is developed for excluding highly oscillatory regions of 
the integrand. In turn, this leads to restricting the output domain where 
the near field computations are valid. With the numerical instability 
problem resolved, the fast Fourier transform is used for efficient 
numerical integration. The predicted near fields have been compared 
against both measured and theoretical data, confirming that our near- 
field computation algorithm is capable of extremely high accuracy. 

I. INTRODUCTION 

N A NUMBER of situations related to safety and I interference, it is desirable to have a reliable and concise 
method of estimating the power density levels radiated by 
microwave antennas. We present a new technique for predict- 
ing near-field intensities using plane-wave scattering matrix 
theory [ 13 to produce accurate calculations along with a highly 
efficient method of graphically representing the results. Using 
this technique, comparisons of predicted and measured near 
fields were carried out for selected antennas and found to be in 
excellent agreement. 

The algorithm for calculating near-zone and Fresnel-region 
fields radiated by a microwave antenna proceeds by numeri- 
cally integrating the plane-wave spectrum integral representa- 
tion for the field. Efficient numerical computation is assured 
by use of the fast Fourier transform (FFT) and by limiting the 
computation space to the antenna’s two principal planes. An 
earlier algorithm was developed by Yaghjian [2] for carrying 
out such a numerical integration. However, computational 
stability can play a critical role in numerical integration. In 
particular, with discrete data the integral becomes unstable at 
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the extremities of the integration range if the longitudinal or 
electrical-boresight distance is large. This problem is allevi- 
ated by limiting the integration domain and by truncating the 
lateral-coordinate range. 

We determine an optimum integration-domain size as a 
function of the longitudinal distance and the spatial frequency 
data-point spacing interval. The latter is inversely proportional 
to the maximum lateral-coordinate range. Now the FFT 
computes near-field values throughout this range; however, 
the useful output range is designated the effective lateral- 
coordinate range and is empirically set at half this maximum- 
range size to avoid numerically unstable regions. Moreover, 
for consistent results, we find that limiting the integration 
domain requires that we set an upper bound on the longitudinal 
distance. Thus the effective lateral-coordinate range and the 
upper bound on the longitudinal distance together define a 
truncated cylindrical region that bounds the near-field compu- 
tation range. 

The far-field pattern is a function [3], [4] of the normalized 
variable U = KD, where D is the antenna diameter and K = k 
sin 8, k = 2aIh is the propagation constant, h is the 
wavelength, and 8 is the angular position of the observation 
point with respect to antenna boresight. Consequently, upon 
normalizing boresight distance z with respect to D 2 / h  and the 
transverse or lateral coordinates x and y with respect to D, it is 
readily shown that the near field is a function of just these 
normalized coordinates, the D/X ratio, and the aperture 
distribution function. Moreover, if small structure effects 
contribute negligibly to the aperture distribution and the 
largest transverse coordinate of interest is small compared to 
D2/h,  say for instance if D 2 30h and the greatest effective 
lateral coordinate is 4 0 ,  then the computed near fields become 
nearly independent of the D/h  ratio. Under these conditions 
our graphical results would apply to any size antenna with the 
same relative aperture distribution function. The most efficient 
method for exhibiting such results is a relative power-density 
contours in a plane formed by one lateral coordinate and the 
longitudinal coordinate. The power-density normalization is 
with respect to peak field intensity and may be converted to 
absolute power density by scaling. 

In the general case our coordinate normalization scheme 
produces consistent contour plots for exhibiting and compar- 
ing results from different antennas. Usually, power-density 
contours for individual antennas would be normalized with 
respect to input power. 
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Fig. 1 .  Antenna measurement setup showing near-zone y-z plane cut on which field intensity contours are plotted. 

We have generated near-zone predictions at distances 
corresponding to measured results and overlaid the plotted 
curves. The predictions have closely followed the measured 
results even when the field structure has varied rapidly. 
Moreover, our predictions agree closely with computations 
from an analytical expression for the on-axis field of a 
uniformly excited circular aperture. Having built confidence 
in our procedure, we go on to produce selected nomographs 
for obtaining absolute power densities in the near field of 
circular apertures with tapered aperture illuminations. 

11. THE NEAR-FIELD COMPUTATION ALGORITHM 

Considerable attention has been given to the problem of 
calculating an antenna’s far-field pattern from measured near- 
field data [5]-[14]. Of these techniques, planar near-field 
scanning (plane-wave spectrum deconvolution) has seen the 
most development [ 151-[ 191. Here, we consider the inverse 
problem, determining near-zone and Fresnel-region fields 
from numerical values of the complex vector far-field pattern. 
That is, we are interested in numerically evaluating the plane- 
wave spectrum integral representing the radiated electric field. 
The plane-wave spectrum input to the calculations can be 
obtained either from measured near-field data or theoretical 
analysis based upon antenna design specifications. 

In Yaghjian’s analysis of this problem [ 2 ] ,  the integration 
domain was restricted to achieve computational efficiency; 
this also constrained the oscillatory nature of the integrand and 
so eliminated a catastrophic numerical instability which 
otherwise occurs at moderate z-axis distances. Extending this 
earlier work to discrete data with z-axis distances greater than 
0.5D2/X, we found numerical instabilities appearing at the 
extremities of the integration range. Attempts to reduce these 
instabilities by uniformly decreasing the already restricted 
integration domain drove the calculated field to zero at the 
extremities, an effect that had also been found by Yaghjian [ 2 ] .  
Uniformly enlarging the domain resulted in catastrophic 
disruption of the numerical integration. To compensate for 
these computational difficulties, a new limiting criterion was 
developed. 

Yaghjian used a geometrical “sheaf of angles” criterion to 
limit the integration domain. In this work, we develop an 
improved formula for limiting the integration domain, using a 
sampling-theorem [20] criterion, producing a numerically 

stable result over a greater transverse output range. Also, we 
establish upper bounds on the z axis distance from the antenna 
and on the plane-wave spectrum’s data-point spacing interval 
A to ensure reliable computations. 

Evaluating the plane-wave spectrum integral, we compute 
near-zone and Fresnel-region fields at a sequence of fixed z- 
axis distances as a function of the lateral coordinates x and y. 
We reduce computational effort by alternately setting one 
lateral coordinate and then the other equal to zero. Thus, by 
computing along just the x and y axes, we obtain sufficient 
output to generate near-field intensity contours in the x-z and 
y-z planes. 

To introduce notation, we digress to describe obtaining 
plane-wave spectrum data from planar near-field measure- 
ments. The measurement setup is depicted in Fig. 1, showing 
the antenna under test, the near-field measurement plane with 
the probe in front of the test antenna, and a hypothetical y-z 
plane cut through the cylindrical near-zone region of interest. 
The computed output is represented in the figure by field- 
strength contours in the y-z plane. At equally spaced intervals, 
vertical dashed lines represent fixed z-axis distances where the 
field is computed. Of course, for smooth contours more z-axis 
distances would be required than the figure indicates. 

Measured data are taken at a series of equally spaced points 
over a planar surface in front of the test antenna. It is assumed 
that multiple reflections between the transmitting antenna and 
the probe are negligible, that both antennas are polarization 
matched in the same ( y )  direction, that input reflections at the 
antennas’ waveguide feeds are negligible, and that the 
transmitting antenna is so far away that the probe’s receiving 
pattern is essentially independent of spatial frequency varia- 
tions, i.e., the incident radiation at the probe has a relatively 
narrow angle of arrival. Let Bo(P) be the signal received by 
the probe at position P on the planar scan surface normalized 
to unity at position P ’  (here, P = xa, + yay, where a,, a,, a, 
are unit Cartesian vectors), and let A. be the insertion loss 
between the transmitting antenna and the probe when it is 
located at position P ’ . Then the dominant plane-wave spec- 
trum’s y component can be expressed [ 11, [ 151 as 
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where Po is the input power to the antenna, YO is the 
characteristic admittance of free space, G,(O) is the gain of the 
probe, d is the z-axis distance from the planar scan surface to 
the transmitting antenna, dP = dxdy, K = kxa, + k,a,, and 
y = d m  where k = 2nIX and K 2  = K . K .  

The function Bo(P) is virtually representable (i.e., b ( K )  
approaches zero for K sufficiently greater than k ,  depending 
upon d )  as the Fourier transform of a band-limited function, so 
a two-dimensional spatial sampling theorem can be used to 
determine b(K) .  If f k,, and f kym are the respective band 
limits on k, and k,, then b(K) can be represented [l] as a 
double Fourier series with sample points 

ra sa 
P,=-  a,+- a, 

kxm kym 

where r, s = 0, f 1, f 2 ,  . In practice, Bo(P,) is sampled 
over a finite aperture, which limits the number of sample 
points. Now if the FFT is used to evaluate (l), then the number 
of output data points will equal the number of input sample 
points. It will become apparent that a large output spectral 
density (number of data points) is required for near-field 
computations, Accordingly, we increase the output spectral 
density by zero filling around the scan area boundary. Setting 
Bo(P,) = 0 for data points outside the scan area boundary and 
letting N, and Ny designate the number of sample points along 
the x and y axes, we obtain 

( N x / Z ) -  1 ( N y / 2 ) -  1 

* Bo(Prs)e-iKmn.Prs ( 2 )  
r =  - ( N x / 2 )  s =  - ( N y / 2 )  

where -Nx /2  5 rn 5 N,/2 - 1, - N y / 2  5 n 5 Ny/2 - 1 .  
Here, K,, = m a g x  + nAyay and ymn = d k 2  - K;,, where 
A, = 2kxm/N,, A, = 2kym/Ny. Normally, the sample point 
spacings S, = a/kx,  z X12, S y  = a/kym G XI2 apply. 

We now return to the development of the near-field 
computation algorithm. The electric field is obtained from the 
plane-wave spectrum integration 

1 "  
E(r)=G b(K)e ik" dK (3) 

- m  

at any point r = R + za,, where R = xa, + yay ,  k = K + 
ya, and dK = dkxdk,. Here we assume that the vector 
spectral-density function b(K) is known. If both the x and y 
components of b(K) have been determined, then the z 
component is obtained from b,(K) = - ( l / y ) K . b ( K ) .  In the 
far field of the antenna (3) becomes 

E(r) z - ikcosO b - R  -, (: 
where cos 8 = z / r  and r = &. 

In the Fresnel region evanescent modes will not be 

significant, so the integration limits in (3) change from f 03 to 
f k .  The minimum applicable z distance is at least a few 
wavelengths to ensure attenuation of evanescent modes. Each 
integration is carried out by the FFT for one fixed value of z at 
a time. However, stability problems can become critical in 
carrying out a numerical integration. In particular, when z is 
moderately large, the factor eiyz in the integrand can oscillate 
rapidly between f 1 while the rest of the integrand changes 
very little. As a result, these terms cancel out analytically, but 
with discrete data on a computer they can add numerically to 
produce a significant integration error. This can occur when 
z / D  is as small as 2 or 3, where D is the antenna diameter. 
One can compensate for this by limiting the domain of 
integration even further, say to - kx0 5 k, 5 kxo, - kyo 5 ky 
5 kyo, where kxo < k,  kyo < k .  That is, we have to evaluate 
the near-field expression 

We obtain integration-domain limits for (4) by using the 
sampling theorem criterion, namely, that the maximum 
change in yz between two adjacent sample points shall be less 
than a. This leads to the result 

( 5 )  
kxo+k,o - RO ~- - 

k 

where Ro = a/A, G a/Ax is the maximum lateral coordinate 
range. Here, p = 1 + sin 240, where do = tan-' kyo/kx0. 
The dominant feature of this result is a bowed diamond-shaped 
integration domain. Equation (5) is derived in the Appendix, 
where we establish that the maximum z distance is limited to z 
< Ri/X. 

Using the FFT to evaluate (4) ,  it is expedient to integrate 
over the extended domain 1 k, I 5 kxm, I ky 1 5 kym, where kxm 
G kym 2 k ,  and use a window function to limit the effective 
integration domain to kxo < k,,, kyo < kym. Thus, for a fixed 
value of z ,  we can approximate (4) by 

- exp [ i2a (E+")] Nx Ny . (6) 

Here, E,,, is the Fresnel-region electric field in the x-y plane 
corresponding to a fixed value of z with x = jS,, y = IS,. 
Also, F(k,, k,) = b(K)u(K)eiyz, where u(K)  is a window 
function for limiting the oscillatory behavior of eiYz. The 
extended integration domain limits are given by kxm = 112 
NJx,  kym = l / rnYAy.  In (6), -Nx /2  s j < Nx/2 ,  - N y / 2  
5 1 < N y / 2 ,  so the limits on Ro are 1x1 s 1/2NX6, = TIAX, 
lyl s 1/2NY6, = n/Ay. However, good numerical stability 
of (6)  at moderately large z values limits the effective lateral 
coordinate range to about 1x1 < 1/4NX6,, Jyl < 1/4NY6,. 
That is, the effective lateral range is x,,, G ymax = Ro/2.  
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Fig. 2.  Comparison of results, along z axis, as produced by planar program (solid line) and calculated using exact theoretical 
expression (dashed line) for 20-X diameter uniformly excited circular aperture at 4 GHz showing power density in dB below one 1 
mW/cm*, assuming I-W input power to aperture. 

Note that this specification and the sample-point spacing 
increment together determine N, and Ny. 

interested in the field along the y axis when x = 0 we obtain 

N y -  I 

c The window function U (K) is set to zero for I k,l + 1 ky I > 
kx0 + kyo. However, checking for this condition requires the 

A x 4  Eo, I -  ( N y  ,2) = - e ~ 

n = O  2 a  
calculation of a square root and an arc tangent at each point. 
Accordingly, for ease of computation we ignore bowing of the 
diamond-shaped integration domain, applying instead a com- 

side of ( 5 )  with the criterion developed using the "sheaf of 

lateral range limit 1/2& was imposed. Thus u(K) is set equal 

e'"* [%' F [(m-:) A,, 
pensating domain expansion. In particular, replacing the right m = O  

angles" analysis [2] yielded good results when the effective ( - :) Ay]  1 e i 2 m / / N y .  (7) 

to zero when 

l k x l +  l k y l  Ro+D 
k q s  

>-. 

The integration cutoff imposed by u(K) can lead to ringing at 
the extremities of the computed near field when the amplitude 
of b(K) at the cutoff point is large. This, in fact, is the reason 
for limiting the effective range on x and y to about half the 
normal FFT output range. This range limitation quadruples the 
number of data points needed for the plane-wave-spectrum 
integration. 

We now write (6)  in a form more suitable for FFT 
processing. We assume N,/2 and Ny/2 are even integers and 
that we can redefine j and I such that the ranges 0 j 5 N, - 
1, 0 I Ny - 1 apply. For the case where we are 

With this formulation, we simply sum along the k, coordinate 
followed by a one-dimensional FFT on the ky coordinate. A 
similar ' 'one-dimensional collapse' ' formulation is used to 
compute the near field along the x axis. 

111. COMPARISON OF COMPUTATIONS VERSUS THEORETICAL AND 

MEASURED DATA 
Near-field computations using this algorithm were tested 

against both theoretical calculations and measured data. In 
Fig. 2 we compare results produced by the planar near-field 
program against an exact theoretical expression obtained by 
Rudduck and Chen [21] for the field along the z axis of a 
uniform circular aperture. The absolute power densities 
obtained by each method are compared for a 20 h diameter 
circular aperture at an operating frequency of 4 GHz. 
Computed results are plotted as solid lines while theoretical 
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Y - A x i s  Distance divided by D 

Comparison of measured (dashed line) and computed (solid line) relative E-plane-cut field intensity curves for antenna 1 at z Fig. 3. 
= 65.3 cm. 

calculations are plotted as dashed lines. The on-axis electric 
field strength for a uniformly excited circular aperture is given 
by 

where a = 0 / 2  is the aperture radius. 
In Figs. 3-8 we compare computed results with measured 

data at corresponding z-axis distances. Dashed lines denote 
comparison measurements while solid lines denote computed 
results. Antenna 1 (Figs. 3-5) has a D/h ratio of 16.2, while 
antenna 2 (Figs. 6-8) has a D/X ratio of 77.6. For each 
antenna, measurements and computations for the field's 
dominant y component are compared at the measurement 
plane and at z-axis distances of 100 and 300 cm beyond that. 
The dB normalization of any graph is with respect to peak 
power in that antenna's measurement plane. Now the sides of 
the measurement plane's scan area are shorter than the length 
of the comparison scan. As a consequence, there are fewer 
recomputed near-field points than measured comparison points 
at the shortest distance. 

The agreement shown between the near-field computations 
and both measured and theoretical results is remarkable in 
view of the very complex pattern structure of these near-zone 
fields. A typical set of computed near-zone y-z plane power- 
density contours is shown in Fig. 9 for antenna 1. These 
contours give absolute power density in dB(l mW)/cm2 
corresponding to 1 W of input power at the antenna aperture. 

With planar near-field measurements the computed far-field 
is valid throughout an angular region limited by an angle 
subtended by the distance from the edge of the scan plane to 
the projected edge of the test antenna [15]. Applying this 
determining criterion throughout the near-field, the results in 
Fig. 9 are valid up through an angle of about 35" measured 
from the edge of the aperture. However, due to foreshortening 
of the longitudinal axis the region of validity extends up 
through the farthest depicted contour. That is, all of the results 
presented in Fig. 9 are valid except for the small area at the 
extreme left where no contours are plotted. Also regarding 
Fig. 9, the FFT algorithm produced results for y-axis distances 
up to f 4 0 ,  but the presentation is limited to f 2 0 .  

Computed near-zone power-density contours for antenna 2 
are shown in Fig. 10. Here, results are valid up through an 
angle of about 45", so once again all of the results shown are 
valid except at the extreme left in the figure where no contours 
are plotted. 

IV. PREDICTION OF NEAR FIELDS RADIATED BY CIRCULAR 
APERTURES 

Having a successful computation algorithm enables us to 
characterize near-field intensity levels for specific classes of 
antennas. There are many instances where such an estimate 
can be useful, such as electromagnetic compatability studies. 
The near fields are predicted by numerically integrating 
predetermined plane-wave spectrum data, obtained from 
analytical far-field expressions that are in turn generated by 
integrable aperture distribution functions. Here, we wish to 
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Comparison of measured (dashed line) and computed (solid line) relative E-plane-cut field intensity curves for antenna 2 at z 
= 4 2 c m .  
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Fig. 8.  Comparison of measured (dashed line) and computed (solid line) relative E-plane-cut field intensity curves for antenna 2 at z 
= 342cm.  
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Fig. 9. Near-zone power density contour for antenna 1 in dB below 1 rnW/cm* for 1-W input power to antenna (2.5 dB separation 
between adjacent contours). 
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Fig. 10. Near-zone power density contour for antenna 2 in dB below 1 mW/cm2 for 1-W input power to antenna (2.5 dB separation 
between adjacent contours), 

model parabolic-dish antennas as a circular aperture with 
rotationally symmetric tapered illuminations. 

The aperture distribution function chosen for study has the 
form (Y + [ l  - ( ~ / a ) ~ ] ~ ,  where (Y is a small constant, p is the 
radial-distance variable in the aperture, 0 5 p I a, and a = 

D/2 .  We wish to plot relative power-density contours in the y- 
z plane, where the graph’s abscissa extends from just in front 
of the antenna out to D2/X in units of D2/X and the ordinate 
covers the range 0 to 4 0  in units of D. As discussed earlier, 
with this choice of scaling and D 2 30 X one graph suffices to 
describe all antennas with the same relative aperture distribu- 
tion function. For D/X ratios less than 30, our graphical 
results apply only at proportionately smaller ordinates. A few 
such results are presented in [22]. 

In Fig. 11 we present power-density contours for the case (Y 

= 0. The step between adjacent contours corresponds to 2.5 
dB; also light and dark contours alternate. We obtain the 
absolute power density at any point in dB(l mW)/cm2 relative 
to 1 W of input power at the antenna aperture by adding the 
(negative) dB reading from this figure to the quantity, 38.57 
- 20 x log D ,  where D is in centimeters. 

In Fig. 12 we present results corresponding to (Y = 0.1 ( a 
pedestal 20 dB down). Here, the absolute power density in dB/ 
cm2 for 1 W of input power is obtained by adding the relative 
dB reading from Fig. 12 to the quantity, 38.17 - 20 x log D. 

In applying the results of this section, note that aperture 
blockage, struts, and edge diffraction from the rim of the 
reflector may produce additional effects that have not been 

accounted for here. For instance, endfire (i.e., along the y 
axis) fields can be produced by edge diffraction resulting from 
feed spillover. However, except along the y axis a theoretical 
model of such effects (such as a torus function modeling the 
edge diffracted field radiated onto a hypothetical measurement 
plane) could be used to advantage with our technique. 

To illustrate the use of these graphs, assume that the antenna 
is a 11.3-m (37-ft) diameter parabolic reflector operating at 
6.5 GHz with 56 kW of input power and that we wish to 
estimate the power density 823 m (2700 ft) out from the 
antenna and 15.2 m (50 ft) off axis. Thus the transverse 
distance is 1.35 D and the longitudinal distance is 0.3 D2/X.  
From Fig. 11 the power density is about -45 dB relative to 
the peak field intensity, corresponding to - 67.5 dB (1 mW)/ 
cm2 for each watt of input power or to an absolute power 
density of 0.01 mW/cm2. According to Fig. 12, the effect of a 
pedestal at this location is destructive interference, so this 
estimate may be considered as worst case. 

V. CONCLUSION 
We have presented an improved algorithm for calculating 

near fields in the vicinity of radiating aperture or dish 
antennas, and we have demonstrated that our algorithm is 
capable of extremely high accuracy. We obtain numerical 
stability for our near-field integral expression by utilizing a 
diamond-shaped integration domain. Relative power-density 
contours are found to be a convenient and informative method 
for exhibiting results, and we have shown that a single set of 
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contours can be used to characterize near fields for a class of 
antennas that have similar aperture distribution functions. We 
presented typical power-density contours for two specific 
antennas along with nomographs and associated formulas for 
obtaining the absolute power density in the near field of a 
circular aperture of arbitrary size for two particular relative 
aperture distribution functions. 

APPENDIX 

Here, we wish to obtain integration limits kxo, kyo to bound 
the oscillatory behaviour of e i rz  in the integrand of (4) .  We do 
this by making use of the sampling theorem, which requires 
that there be at least two sample points per cycle at the greatest 
resolvable “z” spatial frequency. That is, kxo and kyo are 
determined so that the integrand will contain only those z- 
component spatial frequencies that satisfy this criterion; thus 
the maximum incremental change allowed in y will be alz.  
Since y = d m i ,  where K 2  = k2 + k f ,  the applicable 
criterion for determining the integration domain limits is 

a 
(8) 

Here U = Ko/k = Jk:,  + k f o / k  and b represents the small 
incremental change in U’ corresponding to a change from the 
sample point kxo, kyo to the point kxo - Ax, kyo - A,. For 
consistency we require that kxo + kyo > A, + A,. 

The assumption that evanescent modes are negligible in ( 3 )  
implies that U < 1 .  Accordingly, we can apply the binomial 
expansion, - * to (8). 
After cancelling terms and rearranging series expansions, we 
obtain 

-_  -J1 -(U’-b)--. 
kz 

= 1 - (U2 /2 )  - (U4/8) - 

a 1 2 

Neglecting terms of order b’ or smaller, we can express b as 
the ratio of a fourth-order polynomial to a power series in U‘. 
Carrying out the indicated power-series division, we obtain 

Now let A = Ax = A,. Then 

k 2 b = K t  - ( kxo - A)’ - ( kyo - A)’ 

= 2A(kx0 + kyo - A )  

or 

where 

kY 0 a = c o s  +O+sin +o=tan-’ - 
kxo 

We have A = a /Ro  (see expressions following ( 2 ) ) ,  where Ro 
= ;lVy6, is the maximum lateral-coordinate range. Conse- 
quently, b’ in (9) is negligible compared to b provided that RO 
% A. Now we can express (10) as 

a2 xz 
U ’ + 2 -  U - - = 2 - u  

Ro R ;  

where U = (U4/4)  + (U6/8)  + (5Us/64) + . . . . We solve 
( 1  1 )  as a simple quadratic equation in U. Then, for z > Ro and 
neglecting terms smaller than (X/Ro)’, we expand the result- 
ing radical as a power series in Ro/az  including the small 
correction term U in the expansion. Iteratively substituting 
successive terms of the Ro/az  power series into the expression 
for U we obtain a corrected series expansion for U ,  which to an 
accuracy of (Ro/az)I3 is equivalent to the power series 
expansion of 

1 x 
U =  +-. (12) JF: 2aRo 

Equation (12)’s greatest source of discrepancy comes from 
neglecting the b2 terms in (9), so for z large the discrepancy in 
U is on the order of ARo/4azZ. Thus, for z/Ro > (Ro/h) ”’, 
the discrepancy is less than (h/Ro)’. From (12) we readily see 
that our consistency condition kxo + kyo > 2A is satisfied 
provided z < 2Ri/A. Finally, neglecting terms of order h/Ro, 
(12) becomes 

1 
U =  Jm* 
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