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A multiple model adaptive predictor is applied to a 
virtual environment flight simulator to remove the effect 
of computational and scene-rendering delay time. Angular 
orientation of the user’s head is predicted a period of time into 
the future, so that the scene can be rendered appropriately by the 
time the user actually looks in that direction. Single nonadaptive 
predictors cannot adequately cover the dynamic range of head 
motion. By using three dissimilar models of head motion upon 
which to base the individual elemental filters within the multiple 
model adaptive estimator (MMAE) algorithm, an MMAE is 
designed which outperforms the nonadaptive Kalman predictor 
proposed by Liang [9]. 
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Virtual environments have great potential as 
training aids. They allow training at low cost and 
low risk. The effectiveness of this training is, in part, 
dependent on the realism of the system. One of the 
major problems that decreases realism is lag [l]. Lag 
is the time delay between the human input to a virtual 
environment and the response of the environment [2]. 
When lag is present, the human operator will adapt 
his responses to try to compensate for the lag. If the 
virtual environment is used for teaching skills, the 
student will learn based on the presence of artificial 
lag. When the student moves to an actual system, with 
different lag characteristics, some of the techniques 
and strategies developed in the virtual environment 
may not successfully transfer, making the virtual 
environment training less useful [3]. There have been 
many efforts to understand and overcome lag [l]. 
Still, the problem persists. 

One approach to solving the problem of lag in 
visual displays is to predict where the human subject 
will be looking (look-angle) some short time in the 
future, typically 100 ms to 200 ms for our research 
computational resources and for those envisioned 
for virtual environment simulators which will be 
fielded in the near future. This information would 
allow the computer that generates images to complete 
all necessary operations and store the appropriate 
graphics in a buffer before it is actually needed to 
render the scene at the predicted look-angle, and to 
finish that process by the time the subject’s head 
actually points in that direction. To make an accurate 
prediction, a designer needs a model of human head 
motion. A single model cannot describe head motion 
characteristics because they cover such a broad range, 
from staring to rapid tracking movements to chaotic 
motion when a subject is attempting to acquire a new 
target or threat [6]. This research uses multiple models 
to characterize head motion. Specifically, multiple 
model adaptive estimation (MMAE) is used to predict 
look-angle, adapting to the changing characteristics of 
head motion (angular velocity or angular acceleration) 
in a real-world flight control environment. This is 
intended to address the shortcomings of nonadaptive 
predictors that have been developed in the past [7, 91. 

Compared with earlier MMAE investigations, 
this research is unique in a number of ways. First, 
it concentrates on adaptive prediction rather than 
adaptive filtering, so that there is even more criticality 
associated with correct model selection and weighting 
to accomplish performance goals. Secondly, the 
elemental filters within the MMAE are based on 
different model types instead of merely different 
parameter values within a single given model type, 
as is more typical. Finally, the best performance is 
achieved by incorporating one elemental filter that 
provides very agile responsiveness to the onset of 
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a head “maneuver”, but which by itself could not 
be used for this application because of instabilities 
it could cause-the MMAE’s ability to “restart” a 
divergent elemental filter makes this a viable design 
strategy. 

II. ASSUMPTIONS/RESTRICTlONS 

A 

The following is a list of assumptions made for 

1) The specific aim of this research is to predict 
pilot head orientation 100 ms to 200 ms into the 
future during flight simulation. The prediction time 
is driven by two factors. First, research [9] shows lag 
varies from 85 ms to 160 ms depending on factors 
such as sample rate and communications schemes 
with the head-position tracker. Second, the system 
developed by previous researchers [ 12, 131 runs at 
10 Hz, making integer multiples of 100 ms intervals 
a natural choice. All tuning is accomplished for a 
100 ms prediction. 

2) Only head angular orientation is considered. 
Translational motion is not measured or predicted. 
In flight the dominant motion of a pilot’s head is 
angular. 

3) There is no reliable “truth model” [4, 61 of 
head motion. That is, no mathematical model exists 
that can accurately predict look-angles. Instead, 
models are tested against a cross-section of empirical 
data. 

4) This research does not deal with eye motion, 
but only with head-pointing motion. 

Perhaps the most obvious way to reduce lag 
is to increase the speed of required computations. 
Hardware improvements alone cannot solve the 
problem [6] .  Sensor response time, transmission 
time, and computational overhead involved in image 
management all contribute to lag. As computer speed 
increases, so will the demand for more realistic 
graphics and other tasks. Faster computers may reduce 
lag, but they will not eliminate the problem. 

this research. 

Ill. MULTIPLE MODEL ADAPTIVE ESTIMATION 

The ability of the Kalman filter to produce 
accurate estimates of the true stares of a physical 
system is limited by the extent that its internal 
dynamics model adequately describes true system 
dynamics. This implies that the correct values of the 
parameters which describe the dynamic system (for 
example, the coefficients of the system differential 
equations) must be embedded in the filter model. 
Often, however, some of these parameters are 
unknown to the designer and/or changing in time. 
One method of dealing with this situation is through 
MMAE [IO, 111. 

. .... . .... . .._. .__, . . . 

Computation 

Fig. 1. MMAE algorithm. 

As in the development presented in [I 11, consider 
the vector a containing all the uncertain and/or 
dynamic parameters in a given system model. Let this 
system model be described by the first-order, linear, 
stochastic differential equation of the form: 

x(t) = F(a)x(t) + B(a)u(t) + G(a)w(t) (1) 

with physically realizable, noise corrupted, sampled- 
data measurements described by 

z(tJ = H(a)x(t,) + v(tJ (2) 

where 

x(t) = n-dimensional system state vector, 
u(t) = deterministic control vector, 
w(t) = white Gaussian vector dynamics driving 

z(t,) = m-dimensional measurement vector, 
~ ( t , )  = discrete-time white Gaussian measurement 

F(a) = system plant matrix, 
B(a) = control input matrix, 
G(a) = noise distribution matrix, 
H(a) = measurement matrix. 

noise of strength Q(t),  

noise of covariance R(t,), 

Since a may assume a continuous range of values over 
the space of allowable parameters, it is necessary, 
for tractability, to discretize a into a set of J vector 
values: a,, a2,. , . a,, A multiple model adaptive 
estimator consists of J independent Kalman filters, 
in which the jth filter is based on, and tuned to, the 
specific parameter set a,. Fig. 1 shows an MMAE. 
These J filters form a bank of elemental filters 
which are processed in parallel. Each elemental 
filter produces its own estimate of the true state, 
denoted GJ( t l ) ,  for the jth hypothesized value of a. 
The residuals of all J elemental filters are then used to 
calculate the probability that a assumes the value aJ at 
time t,, for j = 1,2,. . . J .  This probability is called the 
“hypothesis conditional probability” and is denoted 
as p,(t,). In essence, p,(t,) represents the apparent 
validity of the jth filter’s system model at time t,. Its 
computation is shown subsequently. 

The overall state estimation of MMAE, immae(tl), 
is the probability-weighted average of the estimates of 
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the elemental filters; that is [ 111: 

J 

(3) 
j =  I 

This type of multiple model filtering algorithm is 
referred to as Bayesian MMAE, as opposed to the 
maximum a posteriori form which would produce 
the single f i j ( t i )  corresponding to the highest p i ,  as 
the algorithm output. Fig. 1 illustrates the structure 
of the Bayesian MMAE. The hypothesis conditional 
probabilities p j ( t i ) ,  j = 1,2,. . . , J ,  are calculated at 
each sample time t i ,  by the recursive equation [ 1 I]: 

(4) 

where Z(t i - l )  is the measurement history from the first 
sample time until sample time ti-l, and 

rk(ti) = z(ti) - Hk(ti)i,(tz:) 

= kth filter residual vector 

?,(tt:) = kth filter’s state estimation before the 
measurement update at time ti is incorporated 

= kth filter-computed residual covariance matrix 

Pk(tl:) = kth filter’s computed state error covariance 
before the measurement update at time ti 
is incorporated. 

Note that the denominator of (4) is the sum of the 
numerator terms for j = 1,2,. . . , J .  This ensures that 
the sum of p j ( t i )  values, for j = 1,2,. . . , J ,  equals one. 

Note that the hypothesis conditional probabilities 
at time ti are functions of the hypothesis conditional 
probabilities at time ti-1. Due to the recursive nature 
of the calculations in (4), it is essential that an 
artificial lower bound be established for p j ( t i )  [ 111. 
Without this lower bound, the hypothesis conditional 
probability of a filter with a totally invalid parameter 
set for some period of time, as, may go to zero and 
remain zero for all time: once pq( t ip1)  reaches zero, 
p,( t i )  and all subsequent p4 would be zero. Thus the 
qth filter is essentially removed from the bank. Should 
the actual system change its characteristics so that 
the true parameter set a matches a4 at some future 
time, p,( t i )  would remain at zero and the MMAE 
would produce undesirable results. The residual of 

the jth filter plays a major role in determining p j ( t i ) .  
As evident from (4), the filter with the smallest ratio 
of rT(ti)A; (ti)r .(t.) assumes the largest conditional 
hypothesis prodaiility. Thus the hypothesis probability 
algorithm is consistent with the heuristic intuition 
that the residuals of a well-matched filter should be 
smaller (relative to the filter’s internally computed 
residual covariance, Aj) than the residuals of a 
mismatched filter. 

Finally, it should be noted that MMAE 
performance is generally degraded when too much 
pseudonoise is added to the elemental filters for 
tuning purposes. This is due to the fact that “correct” 
p j ( t i )  values are assigned when the residuals of 
filters based on correct models look small relative 
to the filter-computed residual covariance, while the 
residuals of filters based on “incorrect” models look 
large. The addition of pseudonoise tends to blur the 
defining characteristics of the filter residuals, and 
distinguishing well-matched filters from mismatched 
filters becomes increasingly difficult. If substantial 
dynamics pseudonoise is not added during the filter 
tuning process, a given filter may diverge when its 
hypothesis is incorrect. Should such a condition 
be detected via real-time residual monitoring, the 
divergent filter can be “restarted” using the weighted 
average of the nondivergent filters’ state estimate at 
the time. More is said about this in Section VIII. 

IV. MODELS 

Several models of head motion were investigated. 
This section summarizes the models. 

1) First-Order Gauss-Markov Acceleration 
(FOGMA) Model: This model assumes that head 
motion angular acceleration is well modeled as a 
first-order Gauss-Markov process (the output of a 
first-order lag driven by white Gaussian noise), Le., 
that the rate of change in acceleration is a function of 
the current acceleration and white noise. The FOGMA 
model is motivated by its successful use in describing 
airborne targets [SI and the fact that tracking airborne 
targets is a common task for pilots. This model has 
the form: 

i , = v  

v = a  
. 1  a = - - a +  w 

7 

where 

p = angular position, 
v = angular velocity, 
a = angular acceleration, 
w = zero-mean white Gaussian noise of strength Q, 
T = time constant of the first-order lag. 

Notice that as T goes to infinity, the FOGMA model 
becomes a constant acceleration model (plus white 
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Fig. 2.  Heading position (deg), velocity (deg/s), acceleration (deg/s2). 

noise for tuning and indicating that the model is 
imperfect). Changing the values of T and Q results 
in very different descriptions of motion. 

2) First-Order Gauss-Markov Velocity (FOGMV) 
Model: This model assumes that angular velocity is 
well modeled as a first-order Gauss-Markov process, 
i.e., that the rate of change in velocity is a function of 
the current velocity and white noise: 

p = v  
. 1  (6) 
v = - - v + w .  

7 

Notice here that as r goes to infinity, this becomes a 
constant velocity model (plus white noise for tuning 
and indicating the model is imperfect). This model 
describes less aggressive head motion than does the 
FOGMA model. A drawback to this model is that it 
yields a zero-mean velocity, which may not be very 
descriptive of head motion. 

This model assumes 
that angular position is essentially constant (with 
white noise added to indicate that a constant position 
is not a totally adequate description): 

3 )  Constant Position Model: 

p = w. (7) 

This model proved useful when there was no motion 
for a period of time; an elemental filter based on this 
dynamics model effectively rejected the impact of 
sensor noise on estimates of essentially fixed head 
orientation. 

V. FILTER DESIGN 

The MMAE consisted of 3 Kalman filter 
predictors. Each elemental filter was tuned by 

adjusting time constants (7) and Q values for a 
specific type of motion: benign, moderate, and 
reacquisition. Once the elemental filters were tuned, 
they were combined into an M A E .  Each MMAE 
was then tested against all categories of motion and 
concatenated segments to display onsets of changing 
characteristics of head motion. 

The initial MMAE algorithm was first developed 
by O’Connor [12]. The virtual display was developed 
by Russell [ 131 on Silicon Graphics Incorporated 
(SGI) 4D and Reality Engine workstations using 
C + -t and Performer [8] library graphics support. The 
virtual display allows researchers to see how different 
models and filter tunings affect estimation lag and 
overshoot. This simplifies the task of identifying 
potentially useful filters and getting approximate 
tunings, as well as allowing the assessment of the 
visual impact of ringing and other phenomena (that 
might not be obvious simply from time histories of 
errors, or of error statistics). 

The visual display is generated in a PT-01 
head-mounted display (HMD). Look-angle is 
measured by a Polhemus Fastrack magnetic tracker. 
The Polhemus tracker consists of a magnetic field 
transmitter and receiver. The receiver is attached to the 
HMD and senses relative changes in the transmitted 
magnetic field whenever the HMD moves. This 
change is translated into a unit vector, in Cartesian 
coordinates, which points in the direction of HMD 
orientation. This unit vector is the only measurement 
available to the MMAE. 

Liang [9] proposed a single nonadaptive Kalman 
filter, using a FOGMV model, to predict motion 
for HMDs. Although he empirically determined the 
measurement noise of his system to have variance 
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Fig. 3. Nearly-constant-acceleration FOGMA. 

R = 0.001 deg2, in this research predictors performed 
better with R = 0.0001 deg2. This small value for R 
brought the updated look-angle estimate very close 
to the measured value. This is notabre because the 
measurements were thus declared to be far more 
accurate than any sensor actually tested. Such a 
small value of R raises the risk of introducing jitter 
from noisy measurements. The empirically observed 
variance of the measurement noise varied greatly, 
depending on the position of the transmitter and 
receiver relative to each other and other electronic 
and metal objects in the laboratory. In the final 
configuration, jitter was negligible, even with R = 
0.0001 deg2. A different electromagnetic environment, 
or different look-angle measuring device, may demand 
a different value for R .  

The initial transient on all the filters is a result 
of the initial conditions, 2, and Po. The algorithm 
requires initial conditions, but quickly adjusts the state 

estimate and covariance in response to measurements. 
The initial conditions were arbitrarily set, resulting 
in a transient as the algorithm converged to the 
correct values. Since this initial transient was not of 
substantial practical interest, all of the performance 
plots in this paper start at 0.5 s into the simulation, 
after the initial transient effects have died out. 

VI. PERFORMANCE EVALUATION METHODOLOGY 

Since Liang’s filter is the best replicatable 
predictor available, it serves as a benchmark. The 
MMAE must outperform Liang’s filter to justify 
its greater complexity and computational demand. 
A second benchmark of performance is the case 
of no predictor in the loop at all, representative of 
many current implementations of virtual environment 
simulators. Thus, MMAE predictor performance can 
be bracketted by perfect (and unobtainable) prediction 
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Fig. 4. Nearly-constant-velocity FOGMA. 

and no prediction, with a direct comparison to the best 
results of a nonadaptive predictor (i.e., Liang's). These 
four plots are seen subsequently in Figs. 3-6. 

Since no truth model exists for head motion, 
empirical data was used to test the accuracy of each 
design. Researchers at Armstrong Laboratories [6] 
collected head motion data, sampled at 60 Hz, from 

data. The vertical scale is in deg* 10 for position, 
deg/s for velocity and deg/s2 for acceleration. Further, 
note the difference in the vertical scales from the top 
graph to the bottom graph. The first 8 s are benign 
motion. Moderate motion is 8-14 s and 19 to 25 s is 
reacquisition (or aggressive) motion. 

VII. DESIGN A N D  EVALUATION OF ELEMENTAL 
FILTERS 

simulator missions flown by an experienced fighter 
pilot. The head movements were categorized into 
seven groups (circular, hourglass, chaos, vertical, 
horizontal, staring, and figure-eight), each group 
containing five sets of data. To form a single, 
representative data set, displaying benign, moderate, 
and aggressive motion, data sets from the hourglass 
and chaos categories, sampled at 10 Hz, were 
concatenated. The heading position, velocity and 
acceleration for this original path are shown in Fig. 2. 
Note that position is scaled by a factor of 10 to allow 
it to be put on the same graph with velocity and 

Individual FOGMA filters were tested over a 
range of time constants T ,  mean-squared accelerations 
u2, and measurement noise variances R. Fig. 3 
shows a single FOGMA filter with a 7 = 10 s (the 
other parameter values are listed in the figure). 
Recall that, for large values of T (such as T = 
10 s), the FOGMA model approaches a constant 
acceleration model. Fig. 4 shows a single FOGMA 
filter with T = 0.01 s. This filter approximates a 
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constant velocity model, since a in ( 5 )  is essentially 
white noise. Comparing the two FOGMA filters 
shows that the nearly-constant-acceleration model 
displays less lag (see especially t = 2.0-2.5 s, 
t = 8.3-9.0 s) and generally larger overshoots 
(particularly at t = 9.1, 13.2, 24.7 s) when compared 
with the nearly-constant-velocity model. Since the 
nearly-constant-acceleration model expects any 
acceleration to persist, it tends to yield position 
predictions that oscillate (or ring) about the true 
measurement (t = 3.5-6.5 s, and t = 10.3-1 1.3 
seconds) during benign and moderate motion when 
acceleration actually decays rapidly. 

Both FOGMA and FOGMV elemental filters 
consistently display the same predictable behavior. As 
the time constant increases, predictions become more 
aggressive (i.e., assuming that current acceleration or 
velocity will persist longer into the future), resulting 
in less lag and more overshoot. 

In an attempt to reduce the lag further, without 
increasing overshoot, the filter propagation equation 
for a single sample period was changed from the 
standard equation: 

r;(t,,) = @r;(ti') (8) 

= &(ti'). (9) 
to 

Simply put, what would normally be the prediction 
for 2 sample periods into the future becomes the 
prediction for a single sample period. A "G2" model 
will predict larger changes in position between sample 
periods than a standard FOGMA model with the 
same time constant. This approach is not physically 
motivated and could result in filter instability if only 
a single filter were to be used. Squaring 
somewhat arbitrary and easy to compute; a final 
design may use Q appropriate for predicting over an 

is also 
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interval of time other than two sample periods (e.g., 
1.5 or 1.6 sample periods), whatever period of time 
that yielded the best performance. Using CP2 is simply 
a convenient first attempt at further reducing lag. 
Fig. 5 shows the result of using a single ‘‘+2 filter” 
with a state transition matrix CP evaluated for a time 
constant of T = 5 s. The performance is especially 
striking during moderate levels of head motion (t = 
8-14 s). Lag is almost completely eliminated, and 
the overshoots are no greater than in Liang’s filter. 
However, ringing remains a significant problem (as 
seen during t = 13.0-13.6 s, t = 21.0-22.0 s, and 
t = 24.0-25.0 s). 

VIII. EVALUATION OF MMAE 

Initial MMAE designs were composed of 
three FOGMA or three FOGMV elemental filters, 

each tuned (through the parameters T and either 
Q or a2) for specific types of motion (benign, 
moderate, and strenuous/reacquisition). Of all 
configurations investigated, the MMAE that 
yielded the best performance was composed of 1) a 
constant-position elemental filter for benign head 
motion, 2) a FOGMV elemental filter for moderate 
head motion, and 3) a FOGMA “@” elemental 
filter for strenuous/reacquisition head motion. Fig. 6 
shows the final tuning of the MMAE and the best 
results obtained in this research. Along with the noise 
values (a and R )  and time constant (T),  consider the 
divergence thresholds. When a filter’s rT(ti)A-’ (ti)r(ti) 
value exceeds its divergence threshold, the filter 
is declared divergent. Its prediction is given zero 
weighting by the MMAE and the position states of 
the divergent filter are replaced with the MMAE 
position states computed without the divergent filter 
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Fig. 6(b). Probability weighting of final MMAE design. 

Lag 
Number of lag 

points 
Averagelag 

61 9 33 39 2 5 27 

0.1 0.058 0.058 0.059 0.05 0.030 0.053 

I Predictor I 
I Benign Moderate Reacquisition 1 Benign Moderate Reacquisition 

(seconds) 
% 

improvement 
Overshoot 

42 42 41 50 70 47 

Number of 
overshoots 
Average 

overshoot 
(degrees) 

Numberof 
predictions 

within 0.5 deg. 
(out of a 

possible 61) 

0 0 2 10 1 12 18 

0 0 1.37 2.98 0.65 1.25 4.00 

47bign) 52 26 12 59 44 16 
15(-imte) 
l&mcquisi 

-tion) 

(this is called an elemental filter “restart”). Since 
the constant-position filter has a relatively large lag 
(comparable to the lag with no predictor at all), 
it is only effective when there is very little head 
motion. To ensure the MMAE quickly discounts the 
constant-position filter’s prediction when motion 
begins, its divergence threshold is set very low. 
The result is that the constant-position filter is 
being declared divergent and being restarted almost 
continuously, except when head movements are very 
slow. 

Notice that, during benign motion, lag is almost 
completely eliminated (note t = 0.5-6.5 s on Fig. 6 ,  
the dotted line representing the MMAE prediction is 
obscured by the solid line of the true path). During 
moderate motion, the performance is almost as good 
(t = 8.0-14.0 s). The MMAE prediction oscillates 
about the true path with errors much smaller than 
those of Liang’s filter, and with overshoots much 
less than 5 deg. In fact, the MMAE gives a smaller 
error than Liang’s filter throughout the period of 
moderate motion except for individual sample periods 
when Liang’s filter overshoots the true path later 
than the MMAE (t = 9.0, 13.4 s). During very rapid 
head motion (reacquisition: t = 19.0-24.5 s), after an 
initial overshoot (t = 20.2 s), the MMAE performs 

very much like Liang’s filter. It is important to 
note that the MMAE could be tuned to reduce lag 
during the reacquisition phase further by forcing 
more probability to the “@2 filter”, but that would 
increase overshoots. Instead, the MMAE was tuned 
to demonstrate that lag could be significantly reduced 
during benign and moderate head motion (Le., during 
tracking tasks by the pilot, when fidelity of simulation 
is most important, rather than during aggressive and 
short-term head motions representative of acquiring 
a new target), without a significant increase in 
the overshoots (compared to Liang’s nonadaptive 
Kalman filter) or degradation in performance during 
reacquisition motions. 

Table I compares the overshoot and lag 
performance of the MMAE, Liang’s nonadaptive 
filter, and no predictor (one sample period lag). 
Each of the three types of motion (benign, moderate 
and reacquisition) lasts 6 s, yielding 61 data points 
each. The “% improvement” row is a measure of the 
improvement relative to no predictor. This table was 
generated by dividing each estimate into one of three 
categories: accurate (the estimate was within 0.5 deg 
of the true heading, as particularly between t = 3.7 s 
and t = 6.5 s), lag (the estimated heading trailed the 
true heading in time), and overshoot (the estimate did 
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TABLE I1 
Comparison of Temporally Averaged and Maximum Errors of Three Designs 

Average magnitude of error for each No Predictor Liang MMAE 
type of motion 
(degrees) 
benign 0.34 0.23 0.18 

1.68 0.99 0.58 
5.90 4.05 3.37 

average 2.64 1.76 1.38 
‘YO improvement 
(compared to no predictor) 
benign 33.5 47.1 
moderate 40.9 65.0 
reacquisition 31.3 42.9 

Maximum error (degrees) 
benign 1.47 1 .oo 0.65 
moderate 6.48 5.06 2.77 

average over ail 3 types of motion 33.4 47.7 

reacquisition 24.93 21.22 20.07 
‘YO ImDrovement 
(compared to no predictor) 
benign 31.6 55.8 
moderate 21.9 57.3 
reacquisition 14.9 19.5 

not have a close or lagging connection with a specific 
true heading, such as at t = 23.0 s). Overshoot was 
calculated as the magnitude of the difference between 
the predicted and true headings. Lag was calculated as 
the time between the true position reaching a heading 
and the predicted position reaching that same heading 
(using linear interpolation between sample times to 
compute the exact time when the estimate reached the 
same value as the actual heading at a given earlier 
sample time). Notice that the MMAE outperforms 
Liang’s filter in every category except overshoot in 
the reacquisition phase. Also, note that the lag in the 
MMAE varies much more than in Liang’s design. The 
most dramatic improvement is in the predictions of 
moderate motion. The MMAE gives 65% more points 
within the 0.5 deg “accurate” tolerance and a 75% 
reduction in lag points. To achieve this, the number of 
overshoot points increased, but the average overshoot 
is very small. 

Table I1 compares the temporally averaged and 
maximum error magnitudes (i.e., error absolute 
values) of the three designs. The MMAE gives the 
best improvements during benign and moderate 
motion (substantially better than those of Liang’s 
filter), but even during reacquisiton motion the 
MMAE gives substantial error reduction. The largest 
errors occur during periods of lag, not during 
overshoot. 

IX. CONCLUSIONS 

Multiple model adaptive estimation has been 
shown to reduce lag significantly in virtual displays. 
It results in less lag than the single nonadaptive 

Kalman filter designed by Liang [9] and its overshoot 
characteristics show a slightly larger magnitude, but 
equal duration (usually one sample period). The 
improved performance is most dramatic during benign 
and moderate head motion, i.e., for the tracking 
most common in virtual environment simulations. 
During abrupt reacquisition motions, the MMAE 
still significantly reduces lag, but at the expense of 
overshoot and some ringing. Various design schemes 
showed different amounts of lag and overshoot, 
but all displayed some lag and only the constant 
position filter did not display overshoot. Lag cannot 
be eliminated without prior information about future 
head motion. Overshoot is inherent in any predictive 
scheme, especially when position is being predicted 
based only upon position measurements (velocity and 
acceleration are not currently measurable). Measuring 
angular acceleration as well as angular position could 
enhance prediction accuracy substantially. 

Motion estimations in each axis (pitch and 
heading) interfered with each other. The residuals 
for heading and pitch contribute to decisions about 
the type of motion present (benign, tracking, or 
reacquisition). This implies that both heading and 
pitch are experiencing the same type of motion. In 
reality, heading and pitch change independently. The 
MMAE will form a single estimation of look-angle 
dynamics which will be a compromise between what 
is needed for pitch and heading predictions. It may be 
useful to consider separate filters for the two axes in 
future work. 

MMAE can be very helpful if a single sample 
period overshoot is acceptable. It seems overshoot 
is unavoidable in a predictive algorithm based 
only on position measurements. A single filter 
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cannot model all the look-angle trajectories typical 
of a single simulator mission. Adaptive schemes 
(such as MMAE) cannot change models until 
after elemental filter residuals reveal the need for 
an altered hypothesis (i.e., a different elemental 
filter appropriately gaining the highest probability 
weighting). The MMAE in this research responded 
to changing dynamics in a single sample period 
(as quickly as possible) and drove the prediction 
error to nearly zero. Higher sampling rates have two 
advantages during times of changing dynamics. First, 
overshoot errors have smaller magnitude. Second, the 
overshoot error is displayed for a shorter period. If the 
sampling rate is high enough to make a single sample 
period overshoot imperceptible, or at least acceptable 
to the user, MMAE can greatly enhance head-mounted 
visual displays by reducing lag. 
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