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The wavelet filters of the conventional 3D multiresolution

analysis possess homogeneous spatial and temporal frequency

characteristics which limits one’s ability to match filter frequency

characteristics to signal frequency behavior. Also, the conventional

3D multiresolution analysis employs an oct-tree decomposition

structure which restricts the analysis of signal details to identical

resolutions in space and time. This paper presents a 3D wavelet

multiresolution analysis constructed from nonhomogeneous spatial

and temporal filters, and an orthogonal sub-band coding scheme

that decouples the spatial and temporal decomposition processes.
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I. INTRODUCTON

Three-dimensional (i.e., spatio-temporal) signal
compression research has seen a steady increase over
the last decade in support of the next generation
of video communication systems such as video
telephones, high definition television, and video
teleconferencing systems. Additionally, pattern
recognition strategies, which have traditionally focused
on spatial information contained in single, static image
frames, are now expanding their scope to include
temporal information contained in multiple frames
of time-sequential imagery [14, 15, 22]. Hierarchical, or
“multiresolution,” signal processing techniques, which
have been used successfully in 2D image compression
and feature generation algorithms, are now being
extended to 3D signals for these same purposes [3, 4,
21, 26—28]. In particular, wavelet-based multiresolution
analyses are gaining popularity because they yield
orthonormal building blocks for finite energy functions
that are considerably more diverse than the complex
exponentials found in conventional Fourier analysis
[20]. Additionally, the subband transforms used in
discrete multiresolution wavelet decomposition and
reconstruction algorithms provide a “fast” method for
analyzing and synthesizing signals [17, 25].
Wavelet multiresolution analysis techniques found

in the literature have been applied primarily to 1D
and 2D signals. These techniques project the signal
onto a chain of embedded approximation and detail
spaces designed to represent the signal and its details
at various levels of resolution [7]. For practical
purposes, the projection coefficients are obtained
using a discrete subband transform that employs a
quadrature mirror filter pair related to the type of
wavelet used in the analysis. In Mallat’s conventional
2D wavelet multiresolution analysis, the separable
2D approximation spaces are formed from the tensor
product of identical 1D approximation spaces [16].
This restriction generates analyzing filters with
homogeneous spectral characteristics in 2D frequency
space.
When extended to three dimensions, the

approximation spaces of the conventional 3D wavelet
multiresolution analyses are constructed from the
tensor product of three identical 1D approximation
spaces [2]. The frequency spectrum of the 3D analyzing
filter is therefore identical in space and time, which
in turn limits the ability of the filter designer to match
the frequency characteristics of the filter with those
of the signal. Furthermore, extending the “quad-tree”
subband transform of the conventional 2D wavelet
multiresolution analysis to three dimensions, produces
an “oct-tree” decomposition structure that precludes
the possibility of analyzing the signal at different
resolutions in space and time [2].
A method is described here for constructing a

wavelet multiresolution analysis for 3D signals that
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overcomes these problems. First, a general background
is provided regarding the wavelet multiresolution
analysis in order to familiarize the reader with the
notation used here. Next, a 3D wavelet multiresolution
analysis is constructed from a separable 3D analyzing,
or “scaling,” function formed from the product of
three nonidentical 1D scaling functions. This yields
a much richer set of orthonormal basis vectors with
which to represent 3D signals, and it produces filters
that can be easily tailored to more closely match the
spatial and temporal frequency characteristics of the
3D signal. An unconventional subband transform
is then presented which essentially “decouples” the
spatial and temporal decomposition processes to
yield a wavelet multiresolution tool with independent
zoom-in and zoom-out capabilities in space and time.
The utility of these properties are demonstrated
by applying the nonhomogeneous 3D wavelet
multiresolution analysis to various synthetic and real
IR image sequences. The final section discusses a
method for increasing the orientational selectivity of
the decoupled decomposition process.

II. BACKGROUND

An L2(R) multiresolution analysis consists of a
chain of closed, linear “approximation” spaces Vj
and a scaling function Á which satisfy the following
properties for any f 2 L2(R) [5].
1)

¢ ¢ ¢V¡2 ½ V¡1 ½ V0 ½ V1 ½ V2 ½ ¢¢ ¢ :
2) [

j2Z
Vj = L2(R);

\
j2Z
Vj = f0g:

3)

f(x) 2 Vj , f(2x) 2 Vj+1; j 2 Z

f(x) 2 Vj ) f
³
x+

n

2j

´
2 Vj; n 2 Z:

4) The set of functions f2j=2Á(2jx¡ n) j n 2 Zg
forms an orthonormal basis for the approximation
space Vj .

As presented by Mallat, the purpose of the
multiresolution analysis is to create a mathematical
framework that facilitates the construction of a wavelet
orthonormal basis for the space of all finite energy
signals L2(R). To this end, denote the orthogonal
complement of Vj in Vj+1 by Wj where

Vj+1 = Vj ©Wj (1)

and the symbol © indicates the direct sum [16]. Wj is
typically referred to as the jth detail space, because it
captures the difference in signal information between
the approximation spaces Vj+1 and Vj .

Mallat has shown one can create a mother wavelet
Ã(x) such that the set of functions f2j=2Ã(2jx¡n) j
n 2 Zg forms an orthonormal basis for Wj . The spaces
Wj , where j 2 Z, are mutually orthogonal; thus, by the
denseness property of the multiresolution analysis, the
set of scaled and dilated wavelets f2j=2Ã(2jx¡n) j
j 2 Z, n 2 Zg forms an orthonormal basis for L2(R).
The scaling functions and the mother wavelet are
related by the “two-scale” recursion relations

Á(x) =
1X

n=¡1
hn
p
2Á(2x¡n)

Ã(x) =
1X

n=¡1
gn
p
2Á(2x¡ n)

(2)

where the coefficients hn and gn are discussed below.
Approximation and detail signals are created by

orthogonally projecting the input signal f onto the
appropriate approximation or detail space. Since each
space is spanned by an orthonormal basis set, the
signal projection onto a given approximation or detail
space at, say, the jth resolution, is equivalent to the
sequence of projection coefficients obtained by the
inner product operations

aj,n =
Z 1

¡1
f(x)2j=2Á(2j ¡ n)dx

dj,n =
Z 1

¡1
f(x)2j=2Ã(2j ¡n)dx

(3)

where aj,n and dj,n represent the jth approximation and
detail coefficients, respectively.
In practice, the approximation and detail projection

coefficients associated with Vj and Wj are computed
from the approximation coefficients at the next higher
scale, Vj+1, using a quadrature mirror filter (QMF)
pair and a pyramidal subband coding scheme [17].
The impulse responses of the QMF pair are typically
denoted by hn and gn, where hn is formed from the
inner product between Á(u=2) and Á(u¡ n) and, for
this research, gn = (¡1)1¡nh1¡n.
A binary tree structure for implementing Mallat’s

1D wavelet multiresolution analysis is shown in
Fig. 1(a). The binary tree serves as a “canonical”
structure for extending the conventional algorithm to
multiple dimensions. Here, the coefficients of the j+
1st approximation level are simultaneously decomposed
into the jth detail and approximation coefficients
using the low-pass and high-pass impulse responses
h(n) and g(n). The regions of support in frequency
space of the resulting approximation and detail signals
are shown in Fig. 1(b). By repeatedly convolving
each approximation signal with h(n) and g(n) and
decimating the outputs by a factor of two, the signal
is decomposed into frequency bands whose bandwidths
and center frequencies vary by octaves. In the signal
processing literature, the set of filters generated by
multiple stages of the the pyramidal decomposition
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Fig. 1. (a) 1D subband transform for decomposing coefficients of
j+1st approximation level into coefficients of jth detail and

approximation levels. (b) Regions of support along frequency axis
of approximation and detail signals.

algorithm is referred to as a two-channel paraunitary
QMF filter bank [25].
One can also construct a separable orthonormal

wavelet basis set for L2(R
2) (the space containing

all finite energy 2D signals) from the chain of 2D
multiresolution approximation spaces, fVj j j 2 Zg,
where Vj is defined by [7, 18]

Vj= V
x
j −Vyj

= SpanfF(x,y) = f(x)g(y) j f 2 Vxj , g 2 Vyj g
(4)

F(x,y) 2Vj , F(2x,2y) 2Vj+1 (5)

and where Vxj and V
y
j are identical 1D approximation

spaces (i.e., they are spanned by the same scaling
function). Here, the 2D scaling function for Vj is
formed from the product of both identical 1D scaling
functions, and the wavelet orthonormal basis for the
orthogonal complement Wj is given by three wavelets

ª1
j (x,y) = 2

jÁ(2jx)Ã(2jy)

ª2
j (x,y) = 2

jÃ(2jx)Á(2jy)

ª3
j (x,y) = 2

jÃ(2jx)Ã(2jy):

(6)

The family of wavelets

fªp
j (x¡m,y¡ n) j j 2 Z; (m,n) 2 Z2; p= 1,2,3g

(7)

then forms an orthonormal basis set for L2(R
2).

Through a straightforward extension of the 1D

binary tree structure, one obtains the 2D quad-tree
wavelet multiresolution decomposition algorithm
shown in Fig. 2(a). Here Ajf and D

n
j f, n= 1,2,3

denote the projection of the L2(R
2) image f onto the

approximation space Vj and detail spaces W
1
j , W

2
j ,

and W3
j spanned, respectively, by the wavelets fªp

j j
p= 1,2,3g in (6) [17]. Fig. 2(b) shows the idealized
frequency supports of the separable approximation
and detail filters used to decompose the 2D image
approximation Aj+1f into the approximation Ajf and
the details D1j , D

2
j , and D

3
j . Here, the wavelet filters

ª1
j , ª

2
j , and ª

3
j , respectively, capture the horizontal,

vertical, and diagonal details in the image at the jth
resolution.
Because the homogeneous 2D approximation

spaces Vj are constructed from the tensor product
of two identical 1D approximation spaces, the same
discrete filters, h(n) and g(n), are convolved with
both the rows and columns of the input image
approximation in Fig. 2(b). When extended to three
dimensions, the identical filter pairs are now convolved
with the rows, columns, and frames of the input image
approximation sequence [2]. However, spatio-temporal
image sequences clearly do not possess homogeneous
spatial and temporal frequency characteristics. For
example, a small object moving slowly across an image
plane will have a broad spatial frequency spectrum and
a narrow temporal frequency spectrum. Therefore,
the following section shows one can construct a
nonhomogeneous 3D multiresolution wavelet analysis
that allows the filter designer to independently control
the spatial and temporal frequency characteristics
of the filter while maintaining the orthogonality of
the resulting wavelet representation. Proofs of the
Propositions put forth in this section are contained
in Appendix A.

III. A NONHOMOGENEOUS 3D MULTIRESOLUTION
ANALYSIS AND OCT-TREE DECOMPOSITION
ALGORITHM

The previous section discussed how one
constructs an orthonormal wavelet basis for L2(R)
and L2(R

2) signals through the mathematical
framework of a homogeneous wavelet multiresolution
analysis. This section describes how to construct
an orthonormal wavelet basis for L2(R

3) signals
using a nonhomogeneous multiresolution analysis.
The nonhomogeneous multiresolution analysis
produces wavelets with spatial and temporal frequency
characteristics that can be independently varied to
more closely match the frequency behavior of the
signal under analysis. An oct-tree decomposition
algorithm is then described for computing the discrete
coefficients associated with the orthonormal wavelet
series representation of an L2(R

3) signal.
In order to construct a nonhomogeneous 3D

multiresolution analysis, one must construct a chain
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Fig. 2. (a) Mallat’s 2D discrete multiresolution decomposition algorithm. (b) Idealized frequency representation of the 2D decomposition
of the approximation image Aj+1f into Ajf and the detail images D

p
j
f; p= 1,2,3 [17].

of approximation spaces and a scaling function that
meet the properties outlined in the previous section.
To this end, begin by selecting a scaling function Á
such that the set of functions f2j=2Á(2j ¢ ¡n) j n 2 Zg
forms an orthonormal basis for the multiresolution
approximation Vj of L2(R). Next, let Á̃ be a different
scaling function such that f2j=2Á̃(2j ¢ ¡n) j n 2 Zg
forms an orthonormal basis for the multiresolution
approximation Ṽj of L2(R). Now define the separable,
closed, linear subspaces of L2(R

3) by

Vj= V
x
j −Vyj − Ṽtj

= SpanfF(x,y, t) = f(x)g(y)h(t) j f 2 Vxj , g 2 V
y
j and h 2 Ṽtj g:

(8)

Given the pair of 1D scaling functions, Á and Á̃, and
the above definition of the approximation space Vj ,
Proposition 1 shows one can construct a separable 3D
scaling function such that the set comprised of all its
integer translations forms an orthonormal basis for the
nonhomogeneous approximation space Vj .

PROPOSITION 1 For each j 2 Z, the set of functions
f23j=2Á(2jx¡ l)Á(2jy¡m)Á̃(2j t¡ n) j (l,m,n) 2 Z3g
forms an orthonormal basis for Vj .

Proposition 1 shows that the nonhomogeneous
approximation space Vj is spanned by integer
translations of a separable scaling function formed
from the product of three nonidentical scaling
functions. Proposition 2 proves that the scaling
function and approximation space generate a
multiresolution analysis.

PROPOSITION 2 The family of closed, linear spaces,
fVj j j 2 Zg, forms a multiresolution analysis in L2(R3).
In the 3D multiresolution analysis, approximations

of the 3D signal at the jth and (j+1)st resolutions
in space and time are obtained by orthogonally
projecting the signal, respectively, onto the spaces
Vj and Vj+1. The spatial and temporal details that
comprise the difference in information between
these two approximations are then contained in the
orthogonal complement of Vj in Vj+1. Denoting this
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complementary space by the symbol Wj , Proposition
3 shows one can create an orthonormal basis for
Wj (and for L2(R

3)) from seven sets of scaled and
translated “wavelets.”

PROPOSITION 3 Let Ã and Ã̃ be the one-dimensional
wavelets, respectively, generated by the scaling functions
Á and Á̃. Then the seven “wavelets”

ª1
j (x,y, t) = 2

3j=2Á(2jx)Á(2jy)Ã̃(2jt)

ª2
j (x,y, t) = 2

3j=2Á(2jx)Ã(2jy)Á̃(2jt)

ª3
j (x,y, t) = 2

3j=2Á(2jx)Ã(2jy)Ã̃(2j t)

ª4
j (x,y, t) = 2

3j=2Ã(2jx)Á(2jy)Á̃(2jt)

ª5
j (x,y, t) = 2

3j=2Ã(2jx)Á(2jy)Ã̃(2j t)

ª6
j (x,y, t) = 2

3j=2Ã(2jx)Ã(2jy)Á̃(2j t)

ª7
j (x,y, t) = 2

3j=2Ã(2jx)Ã(2jy)Ã̃(2j t)

(9)

are such that for each j 2 Z, fªp
j (x¡ l,y¡m, t¡ n) j

(l,m,n) 2 Z3; p= 1,2, : : : ,7g forms an orthonormal basis
for Wj and fªp

j (x¡ l,y¡m, t¡ n) j j 2 Z; (l,m,n) 2 Z3;
p= 1,2, : : : ,7g forms an orthonormal basis for L2(R3):
The spatial and temporal details between Vj+1

and Vj contained in Wj are obtained by orthogonally
projecting the 3D signal onto the orthonormal basis set
described in Proposition 3. Since this process is carried
out on a digital computer, the projection operation
is typically represented in discrete form by the
coefficients generated by computing the inner product
of the signal with all possible integer translations of
the functions in (9). Following Mallat, it can be shown
that the approximation and detail coefficients at the
jth resolution can be computed using the following
discrete convolution operations [2, 17]

aj; l,m,n= [aj+1;p,q,r¤h(p)¤h(q)¤ h̃(r)](2l,2m,2n)

d1j; l,m,n= [aj+1;p,q,r¤h(p)¤h(q)¤ g̃(r)](2l,2m,2n)

d2j; l,m,n= [aj+1;p,q,r¤h(p)¤g(q)¤ h̃(r)](2l,2m,2n)

d3j; l,m,n= [aj+1;p,q,r¤h(p)¤g(q)¤ g̃(r)](2l,2m,2n)

d4j; l,m,n= [aj+1;p,q,r¤g(p)¤h(q)¤ h̃(r)](2l,2m,2n)

d5j; l,m,n= [aj+1;p,q,r¤g(p)¤h(q)¤ g̃(r)](2l,2m,2n)

d6j; l,m,n= [aj+1;p,q,r¤g(p)¤g(q)¤ h̃(r)](2l,2m,2n)

d7j; l,m,n= [aj+1;p,q,r¤g(p)¤g(q)¤ g̃(r)](2l,2m,2n)

(10)

where ¤ indicates the discrete convolution operator,
aj; l,m,n is a 3D approximation coefficient at the location

(l,m,n) in a cubic sampling lattice, fdpj; l,m,n j p=
1, : : : ,7g are the 3D detail coefficients associated with
the seven wavelets in Proposition 3, h(n) = h(¡n),
h̃(n) = h̃(¡n), and the two QMF pairs (h(n),g(n)),
(h̃(n), g̃(n)) are obtained from the relationships

h(n) ´
Z 1

¡1
Á
³x
2

´
Á(x¡ n)dx (11)

h̃(n) ´
Z 1

¡1
Á̃
³ t
2

´
Á̃(t¡n)dt (12)

and
g(n) = (¡1)1¡nh(1¡n)

g̃(n) = (¡1)1¡nh̃(1¡n):
(13)

Equation (10) indicates the approximation and
detail coefficients at the jth resolution are computed
by discretely convolving the coefficients at the
next higher resolution level with the separable,
nonhomogeneous 3D impulse responses formed
from eight different combinations of the spatial and
temporal QMF pairs and decimating by a factor of
two in each dimension. These convolution operations
then form the eight branches of the nonhomogeneous
oct-tree decomposition structure shown in Fig. 3. The
oct-tree decomposition structure is referred to here as
“conventional” because it is constructed by appending
the canonical branch structure of the conventional 1D
multiresolution analysis on each of the four branches
of the 2D quad-tree structure.
To help visualize the signal processing properties

of the 3D wavelet multiresolution analysis, consider
the idealized frequency supports shown in Fig. 4 of
the filters generated by Fourier transforming the
scaling function and the seven “wavelets” described
in Propositions 1 and 3. The frequency supports
now form a volume in spatio-temporal frequency
space, where the inner core of the volume represents
the frequency support of the scaling function for
the approximation space Vj . The surrounding layers
represent the frequency support of the functions
ª1
j ¡ª7

j that span each of the seven detail spaces.
Taken together, the entire volume comprises the
frequency support of the scaling function associated
with the approximation space Vj+1. Therefore, viewed
from a filtering perspective, the nonhomogeneous 3D
wavelet decomposition decomposes the signal into an
independent set of spatio-temporally oriented frequency
channels, where the spatial and temporal frequency
characteristics of the 3D wavelet filters (e.g., size of
passband, transition region roll-off, etc.) can be
easily varied by mixing and matching a variety of
wavelet QMF pairs provided in the literature
[5, 7, 17].
The nonhomogeneous 3D wavelet multiresolution

analysis provides a way to independently control the
spatial and temporal frequency characteristics of the
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Fig. 3. Oct-tree sub-band transform used to decompose the j+1st approximation coefficients into the jth approximation and detail
coefficients in a conventional, non-homogeneous L2(R

3) wavelet multiresolution analysis.

Fig. 4. (a) Idealized frequency support of the approximation signal Ajf generated by a 3D multiresolution decomposition. (b) Idealized

frequency supports of the seven surrounding detail signals. Dp
j
f, p= 1,2, : : : ,7 represents the projection of the signal onto the detail space

spanned by integer translations of the pth wavelet in (9).

wavelet filter while maintaining the orthogonality of
the wavelet basis functions. However, the oct-tree
decomposition structure used to compute the detail
coefficients of the multiresolution analysis is quite
restrictive in that it limits the analysis of signal details
to the same resolution in space in time. That is, at
each stage of the decomposition process the rows,
columns, and frames of the next higher approximation
sequence are each filtered and downsampled by a
factor of two. The following section discusses why this

restriction poses a problem for spatio-temporal signal
analysis.

IV. A DRAWBACK TO USING THE OCT-TREE
DECOMPOSITION ALGORITHM FOR
SPATIO-TEMPORAL ANALYSIS

Consider the spatio-temporal cosine function

f(x,y, t) = cos(ax+ by+ ct): (14)
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Fig. 5. Lines of constant phase associated with the traveling
cosf(x,y, t) = cos(ax+ by+ ct).

If the time-dependent cosine is evaluated at t= 0, then,
following Goodman, it can be represented by a family
of parallel lines of constant phase as shown in Fig. 5
[11]. Here, each line represents a locus of points along
which cos(ax+ by) = 1 or, equivalently, ax+ by = 2k¼,
k = 0,1,2, : : : . The velocity of the traveling wave is
depicted by the vector V drawn perpendicular to the
lines of constant phase in Fig. 5(b). Assuming the x
and y velocity components of V are given by vx and vy,
the traveling sinusoid can be expressed as

f(x,y, t) = cos(a(x¡ vxt) +b(y¡ vyt)) (15)

where c=¡avx¡ bvy. Combining the ratio vy=vx =
b=a obtained from like triangles in Fig. 5 with
(14) and (15), yields the following relationship
between the velocity components of the wave and the
spatio-temporal frequencies (a,b,c)

vx =¡
ac

a2 + b2

vy =¡
bc

a2 + b2
:

(16)

Thus, the spatial frequency pair (a,b) define the pitch,
orientation, and direction of the traveling wave, while
its speed is directly proportional to the temporal
frequency c [10].
Now consider a simple image sequence constructed

from the superposition of several sinusoids with
identical spatial frequency components, say, a0 and
b0, traveling with different velocities (i.e., different
temporal frequency components). In order to
determine the spatio-temporal frequency content of
the signal, a filter bank is required that partitions
the temporal frequency axis into multiple temporal
frequency bands (or resolutions) for a band of spatial
frequencies surrounding a0,b0. Unfortunately, as shown
previously in Fig. 4, the filter bank generated by the
oct-tree decomposition structure only produces two
temporal frequency bands (low-pass and band-pass)
for each spatial frequency band at each resolution.
Furthermore, the spatial and temporal bandwidths
of the analysis filters both decrease equally by a

factor of two from one stage of the decomposition
to the next, yielding a filter bank that precludes
analysis of the image sequence at different spatial
and temporal resolutions. Thus, it is not possible
with the conventional structure to construct a filter
that discriminates moving objects with dissimilar
spatial and temporal frequency characteristics such
as large, fast objects (i.e., objects with high temporal
frequency and low spatial frequency content), and
small, slow objects (low temporal frequency and high
spatial frequency content). In order to correct this
problem, the next section presents an unconventional
subband transform that decouples the spatial and
temporal decomposition processes of the conventional
multiresolution analysis. The transform is based on
a special case of Coifman’s wavelet packet theory as
described by Daubechies [6, 7].

V. DECOUPLING THE CONVENTIONAL
NONHOMOGENEOUS WAVELET
MULTIRESOLUTION ANALYSIS

The nonhomogeneous 3D wavelet multiresolution
analysis described in the previous section yields a
rich set of orthonormal bases for L2(R

3) signals that
are constructed by combining different spatial and
temporal scaling functions. However, the conventional
algorithm used to compute the coefficients of the
projection onto a spatio-temporal detail space restricts
the analysis of the signal to the same resolution in
space and time. In order to correct this problem, this
section describes an unconventional multiresolution
analysis that allows one to analyze a spatio-temporal
signal across multiple temporal resolutions for a
fixed spatial resolution. Additionally, the wavelet
basis set for each of the detail spaces produced by
this multiresolution analysis remains orthogonal over
all resolutions in space and time, so that, as before,
any L2(R

3) signal can be uniquely represented by
the coefficients obtained under the multiresolution
analysis.
The unconventional multiresolution analysis is

based on the construction of an orthonormal basis for
the decoupled spatio-temporal approximation space
Vj,k, where

Vj,k= V
x
j −Vyj − Ṽtk

= SpanfF(x,y, t) = f(x)g(y)h(t) j f 2 Vxj , g 2 V
y
j and h 2 Ṽt

k
g
(17)

Here, j represents spatial resolution and k represents
temporal resolution where j is not necessarily equal
to k. The corresponding orthonormal basis for Vj,k
is then given by the set of functions f2j+k=2Á(2jx¡ l)
¢Á(2jy¡m)Á̃(2kt¡ n) j (l,m,n) 2 Z3g where, as before,
Á and Á̃ are different scaling functions.
A straightforward consequence of the definition

of the decoupled approximation space is that Vj,k is
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Fig. 6. Lattice of approximation spaces formed by further decomposing conventional multiresolution approximation spaces (represented
by diagonal j = k) along spatial (vertical) and temporal (horizontal) lines.

contained in Vj 0,k0 if and only if j · j0 and k · k0.
This fact is illustrated by the lattice of spaces shown
in Fig. 6. Here, the chain of spaces comprising the
conventional nonhomogeneous 3D multiresolution
analysis lies along the diagonal j = k. The remaining
approximation spaces are created by independently
decomposing the conventional spaces Vj,j along spatial
(vertical) and temporal (horizontal) lines.
The key elements of the approximation lattice

are the “spatial” detail spaces highlighted in gray.
These detail spaces, which represent the orthogonal
complement of Vj,k in Vj+1,k such that

Vj+1,k =Vj,k©Wj,k (18)

contain the horizontal, vertical, and diagonal spatial
details between the approximation spaces Vj+1,k and
Vj,k for a fixed temporal resolution k. Each of the
highlighted “spatial” detail spaces are orthogonal and
each is spanned by the set of orthogonal functions
fªp

j,k(x¡ l,y¡m, t¡ n) j (l,m,n) 2 Z3; p= 1,2,3g where

ª1
j,k(x,y, t) = 2

j+k=2Á(2jx)Ã(2jy)Á̃(2kt)

ª2
j,k(x,y, t) = 2

j+k=2Ã(2jx)Á(2jy)Á̃(2kt)

ª3
j,k(x,y, t) = 2

j+k=2Ã(2jx)Ã(2jy)Á̃(2kt):

(19)

Thus, the spatial detail space Wj,k is comprised of
three orthogonal spaces W1

j,k, W
2
j,k, and W

3
j,k spanned,

respectively by integer translations in space and
time of the three wavelets in (19). Fig. 7 shows the
idealized regions of support in the positive temporal
half of 3D frequency space of these spatio-temporal
wavelets, where the frequency spectrum of the
approximation signal Vj+1,k has been subdivided by

the spatial decomposition stage into the approximation
spectrum associated with Vj,k and the three spatial
detail spectrums captured by the filtering properties
of the wavelets. In essence, the three filters extract
the horizontal, vertical, and diagonal spatial details
in the signal at the jth spatial resolution for the kth
approximation level in time. In the next stage of the
unconventional multiresolution analysis, each spatial
detail/temporal approximation space Wj,k is now
recursively decomposed in time to yield a sequence of
orthogonal spatio-temporal detail spaces that capture
the temporal details in an image sequence at multiple
resolutions in time for a fixed spatial resolution j.

PROPOSITION 4 Let Wp
j,k (p= 1,2,3) represent the

space spanned by integer translations in space and time
of the function ªp

j,k(x,y, t) =ª
p
j (x,y)2

k=2Á̃(2kt) where,

ª1
j (x,y) = 2

jÁ(2jx)Ã(2jy)

ª2
j (x,y) = 2

jÃ(2jx)Á(2jy)

ª3
j (x,y) = 2

jÃ(2jx)Ã(2jy):

(20)

Define the functions,

ªp1
j,k(x,y, t) =ª

p
j (x,y)

X
n

2k=2h̃nÁ̃(2
kt¡ n)

ªp2
j,k(x,y, t) =ª

p
j (x,y)

X
n

2k=2g̃nÁ̃(2
kt¡ n)

(21)

then the set of functions fªp1
j,k(x¡ l,y¡m, t¡ 2n),

ªp2
j,k(x¡ l,y¡m, t¡ 2n) j (l,m,n) 2 Z3g forms an

orthonormal basis for

Wp
j,k = Spanfªp

j,k(x¡ l,y¡m, t¡ n) j (l,m,n) 2 Z3g:
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Fig. 7. Idealized supporting regions in frequency space of the three spatio-temporal wavelets in (19) for three resolution levels in space
and a constant resolution in time. W1

j,k, W
2
j,k, and W

3
j,k correspond to the spatial detail/temporal approximation spaces spanned respectively

by integer translations in space and time of the three wavelets.

Proposition 4 constructs an orthonormal basis
for a given spatial detail space Wp

j,k by decomposing
the basis set for Wp

j,k independently in time using

the temporal QMF pair h̃, g̃. Applying “Daubechies
Lemma” (see Appendix A), it is not difficult to show
that the set of functions fªp1

j,k(x¡ l,y¡m, t¡ 2n) j
(l,m,n) 2 Z3g then forms an orthonormal basis for the
spaceWp

j,k¡1, and the set of functions fªp2
j,k(x¡ l,y¡m,

t¡2n) j (l,m,n) 2 Z3g forms an orthonormal basis
for the spatio-temporal detail space contained between
Wp
j,k and W

p
j,k¡1. By recursively applying the series

operations in Proposition 4 to each approximation
space Wp

j,k, W
p
j,k¡1, etc., one can now construct a

sequence of spatio-temporal detail spaces that are
orthogonal across all temporal resolutions for a
fixed spatial resolution j. Fig. 8 shows the idealized
regions of support in 3D frequency space of the
wavelets created by the decoupled spatio-temporal
decomposition process. Unlike the conventional
3D wavelet multiresolution analysis, this procedure
subdivides 3D frequency space into multiple temporal
frequency bands for each of the horizontal, vertical
and diagonal spatial frequency bands at the jth spatial
resolution.

Because each spatial detail space Wj,k is orthogonal
across all spatial resolutions, Proposition 4 ensures
that the resulting array of spatio-temporal details
obtained by decomposing Wp

j,k for all j and k remains
orthogonal across all resolutions in space and time.
Thus, the unconventional multiresolution analysis
generates a nonuniform filter bank in 3D frequency
space that provides the ability to analyze horizontal,
vertical, and spatial details independently at any dyadic
resolution in space and time, while maintaining the
orthogonality of the wavelet representation. The
following section describes a fast wavelet transform
for computing the coefficients obtained by projecting
a 3D image sequence onto the spatio-temporal detail
and approximation spaces produced by this process.

VI. A FAST WAVELET TRANSFORM FOR
THE UNCONVENTIONAL WAVELET
MULTIRESOLUTION ANALYSIS

The previous section ensures that the spatial and
temporal decomposition processes in the conventional
multiresolution analysis can be decoupled to generate
multiple temporal resolutions of a 3D signal for a fixed
spatial resolution. Furthermore, the spaces containing
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Fig. 8. Idealized supporting regions in 3D frequency space of the wavelets that span the spatio-temporal detail spaces produced by the
decoupled wavelet multiresolution analysis for three resolution levels in space.

Fig. 9. A visualization of the fast wavelet transform for the unconventional 3D wavelet multiresolution analysis.

the temporal detail signals are orthogonal across all
spatial and temporal resolution levels. This section
describes an O(N3) subband decomposition algorithm
that generates the coefficients obtained by orthogonally
projecting a 3D signal onto each of these orthogonal
detail spaces.
Following Mallat, begin by assuming A0,0f (i.e.,

the discrete projection of the original signal onto

the space V0,0) represents a sampled 3D image
sequence [17]. Additionally, let Dp¡1,0f represent
the discrete projection of the signal onto the spatial
detail spaces Wp

¡1,0 where it is understood that p=
1,2,3. Now consider the visualization of the discrete
decomposition algorithm shown in Fig. 9.
In the first stage of the decomposition algorithm,

A0,0f is decomposed spatially into the approximation
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Fig. 10. Spatial, and temporal decomposition algorithms for the unconventional 3D multiresolution wavelet analysis. The decomposition
is shown for arbitrary spatial and temporal resolutions levels j and k, respectively.

and detail sequences A¡1,0f and D
p
¡1,0f by convolving

the rows and columns of each frame in A0,0f with
flipped versions of the spatial filters h and g and
decimating the spatial dimensions by a factor of two.
This process is illustrated in Fig. 10 for arbitrary
spatial and temporal resolution levels j and k. The
spatial algorithm is then applied recursively to each
subsequent spatial approximation sequence, A¡j,0;
j = 1,2,3 : : : , to generate a multiresolution ladder of
sequences which captures the spatial details between
successively smaller spatial resolutions for the temporal
resolution k = 0. The spatial approximation signals,
A¡j,0; j = 1,2,3 : : : , produced by this process are
represented by the lightly shaded planes in Fig. 9.
The darker planes represent the spatial detail signals
Dp¡j,0f; p= 1,2,3; j = 1,2,3 : : : .
Assuming the number of coefficients in the

wavelet filter is small compared with the number of
samples N in each dimension of the image sequence,
the computational complexity of this stage of the
algorithm is found by determining the total number
of values computed by the spatial decomposition
process. To this end, first note that the number of
samples at each spatial decomposition level are
half the number at the next higher level. Thus, if
the spatial dimensions of a frame in the originally
sampled signal are N £N, then the dimensions of a
frame at the next lower spatial decomposition level

are N=2£N=2. Furthermore, since four signals are
produced by the spatial decomposition process (1
approximation and 3 detail), the total number of
values computed by the first spatial decomposition is
N2=4+N2=4+N2=4+N2=4 =N2. Continuing the
process, the next spatial decomposition produces a
total of N2=4 values per frame, and so on. Letting
the number of spatial decompositions go to infinity
then gives an upper bound on the number of spatial
values computed per frame of 4N2=3. Finally,
assuming their are N frames in the image sequence,
the total number of spatial values computed in the
spatial decomposition stage of the algorithm is then
N ¢ (4N2=3) = 4N3=3.
In the next stage of the algorithm, the first level

spatial detail signals Dp¡1,0f; p= 1,2,3 are decomposed
in time by convolving flipped versions of the temporal
filters h̃ and g̃ across all frames at each spatial
location and decimating the temporal dimension by a
factor of two (Fig. 10). The temporal decomposition
algorithm is then applied in a cascade fashion to
each of the temporal approximation signals to yield
a set of temporal detail signals, Dp¡1,kf; p= 1,2,3;
k = 1,2,3, : : : , for each spatial detail signal in the
first spatial decomposition level. This process is then
repeated for each spatial detail signal D1¡j,0f, D

2
¡j,0f,

and D3¡j,0f; j = 2,3,4, : : : at each stage of the spatial
decomposition process. The temporal detail signals
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Fig. 11. Several frames of an animated scene consisting of a stationary rectangle and a moving rectangle of equal size and intensity.
Each frame contains 64£ 64 pixels.

produced by this process are represented by the
unshaded planes in Fig. 9.
In order to determine the computational

complexity of the temporal decomposition stage
of the algorithm, note that the upper bound on
the number of temporal values computed over all
temporal decomposition levels at one spatial location
is 2N. Consequently, given that the number of spatial
coefficients produced in the spatial decomposition
process is bounded by 4N2=3, the total number of
coefficients computed in the temporal stage of the
algorithm is then 2N ¢ (4N2=3) = 8N3=3. Finally,
adding the upper bounds on the spatial and temporal
decomposition processes yields an upper bound of
8N3=3+4N3=3 = 4N3 for the total number of values
computed in the spatio-temporal decomposition
process. Therefore, the computational complexity of
the decoupled wavelet subband transform is O(N3).
The next section provides several results obtained
by applying the decoupled fast wavelet transform to
various synthetic and real IR image sequences.

VII. RESULTS

The decoupled fast wavelet transform used in these
examples was written in C and implemented on a
SUN SPARCstation 2. The discrete convolutions in
Fig. 10 were carried out with a three-dimensional
shift-and-multiply routine. Border problems, which
are a common problem in convolution schemes, were
reduced by making the borders of each test image
sequence symmetric about the spatial and temporal
axes.
The first synthetic image sequence consists of a

simple animated scene containing a stationary and
a moving rectangle of equal size and intensity as
shown in Fig. 11. The moving rectangle starts in
the upper left corner of the scene and moves to the
lower right corner in a parabolic fashion, while the

stationary rectangle remains fixed in the lower left
hand corner. Assuming the discretely sampled image
sequence represents the approximation coefficients
at the resolution level j = 0, Fig. 12 shows several
frames containing the detail coefficients d2¡1, d

3
¡1, d

6
¡1,

and d7¡1 in equation (10), all of which were produced
using a truncated cubic spline (23 coefficients) in space
and a Daubechies order 4 wavelet in time [7, 17]. A
symmetric cubic spline was selected for the spatial
decomposition stage because of its linear phase
properties, while the compactly supported Daubechies
wavelet was chosen for computational efficiency. Recall
that under a homogeneous 3D wavelet multiresolution
analysis, the more computationally expensive, truncated
infinite-duration impulse response (IIR) cubic spline
filter must be used in both space and time.
It is instructive to compare the results in Fig. 12

with those obtained by applying a 2D quad-tree
wavelet subband transform to a simple rectangle as
demonstrated by Mallat (Fig. 13). As described earlier,
under the 2D multiresolution analysis, a rectangle is
decomposed into a set of spatially oriented frequency
channels that capture vertical, horizontal and diagonal
features of the image. Fig. 12 shows that under a
3D multiresolution analysis, an image sequence is
decomposed into orthogonal spatio-temporally oriented
frequency channels which now provide the ability to
extract these same spatial details for either stationary
or moving rectangles.
The next image sequence demonstrates the ability

of the unconventional wavelet multiresolution analysis
to extract details in an image sequence at different
resolutions in time for a fixed spatial resolution. Here,
the decoupled fast wavelet transform is applied to an
image sequence containing two identical rectangles
traveling horizontally with different speeds as shown in
Fig. 14.
If the intensity distribution i(x,y) of a single

rectangle does not change as it moves across the
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Fig. 12. Four level j =¡1 detail coefficients obtained by decomposing the scene in Fig. 11 using a Daubechies 4 QMF pair in space and
time. In (a) and (b) d2¡1 and d

3
¡1, respectively extract horizontal features of moving and/or stationary objects. In (c) and (d) d

6
¡1 and d

7
¡1,

respectively extract diagonal features of stationary and/or moving objects.

Fig. 13. The magnitude of the coefficients generated by applying Mallat’s 2D multiresolution analysis to a simple rectangle [17]. Note
that the algorithm extracts horizontal, vertical and diagonal features at each of the three different spatial resolutions. The square in the

upper left hand corner is the final approximation signal produced by the decomposition process.
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Fig. 14. Several frames of 64£ 64 synthetic, grayscale imagery containing two equally sized rectangles traveling at different speeds. The
speed of the upper rectangle is twice that of the lower rectangle. n represents a frame in the image sequence.

Fig. 15. (a) An idealization of the planes containing the Fourier transforms of the rectangles in Fig. 14. The darker plane corresponds to
the faster rectangle. (b) Digital frequency supports of the wavelet filters generated by several decompositions in time for a plane taken
through the frequency volume in (a) at the digital spatial frequency !y = 0. The dark lines represent the 2D projections of the Fourier

transforms of the moving objects. The digital spatial frequency axis !y points out of the paper.

image plane (i.e., i(x¡ x0,y¡ y0) = i(x,y)), and if the
rectangle moves at a constant velocity, then the 2D
Fourier transform of the intensity distribution I(fx,fy)
is shifted onto a plane in 3D frequency space given by
ft =¡(vxfx+ vyfy) where fx,fy are spatial frequencies
and vx,vy are the velocity components of the moving
rectangle [12]. In the case of the moving rectangles in
Fig. 14, both y velocity components are zero; therefore,
their spatio-temporal Fourier transforms lie on the
idealized planes shown in Fig. 15(a).
Slicing the frequency volume along the fy =

0 plane yields the two lines shown in Fig. 15(b).
The lines contain the spatio-temporal frequency
components of the moving rectangles that intersect
the spatio-temporal filters in the fy = 0 plane. In
order to segment the two horizontally moving objects,
Fig. 15(b) suggests choosing the wavelet coefficients
at the first spatial decomposition level, and either
the second or third temporal decomposition levels.
Following this approach, Fig. 16 shows the resulting
coefficients for the vertical and diagonal spatial details
at the second and third temporal decomposition
levels. In this example, a Daubechies 12 QMF pair
was used for the temporal decomposition stage of
the algorithm because its wide passband and narrow
transition region enhances the ability to separate
the temporal frequency information in both moving
objects. Additionally, spatial frequency resolution is
not as critical (i.e., the objects are identical); thus, a
Daubechies 4 spatial QMF pair is used to increase the
computational efficiency of the spatial decomposition.

The outputs were thresholded to eliminate the small
amount of energy captured in overlapping frequency
bands of neighboring filters.
The final image sequence, shown in Fig. 17, was

chosen to demonstrate the zoom-in and zoom-out
capability of the decoupled subband transform. The
image sequence contains a large, slow moving tank
executing a 180± turn. The imagery is corrupted by
background noise, and an exhaust plume is evident
behind the tank in frame 100 after it executes the
turn. In addition, movements in the camera platform
cause the image to jitter slightly from frame to
frame.
Since the tank is fairly large and its movement

is slow compared with other objects in the scene
(notably, the rapidly changing pixels associated with
background noise and camera jitter), a large amount
of the tank’s energy should be contained in the
coefficients corresponding to wavelets with longer
dilations (i.e., lower resolutions) in space and time.
This behavior is clearly evident in Fig. 18 which
contains a single frame from each of several different
spatial and temporal decomposition levels. By moving
horizontally from left to right across the top of the
figure (i.e., decreasing the spatial resolution for a
fixed temporal resolution), its clear the energy in
the spatial wavelet coefficients increases. However,
since the temporal resolution is held constant at
the highest level, the scintillating background pixels
with their correspondingly high temporal frequency
energy are still present in the scene. If one now moves
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Fig. 16. (a) Segmenting the diagonal and vertical features of the
faster object by decomposing the input signal one level in space
and one level in time. Slower object completely attenuated by
motion-oriented filter bank. The dimensions of the resulting

coefficient sequence are 64£ 64£ 64. (b) Segmenting the slower
object by decomposing one level in space and two levels in time.
The coefficient sequence dimensions are 64£ 64£ 32 (row,
column, frame). Here n represents a frame in a coefficient

sequence. In this case, the faster object is completely eliminated by
the filter bank.

Fig. 17. Several frames of a sequence of IR images in which a large, slow moving tank executes a 180± turn.

vertically down the right side of the figure, so that
the temporal resolution decreases for a fixed spatial
resolution, the coefficients associated with the large,
slow tank become more and more evident, until, at the
spatio-temporal resolution level j =¡3, k =¡2, only
the blurred tank remains in the image. Thus, a wavelet
filter tuned to match the frequency spectrum of large,
moderately slow moving objects successfully extracts
the tank from the noisy image sequence.
A second test conducted on the tank image

sequence was performed to compare the motion
segmentation properties of the decoupled
multiresolution analysis with a more traditional
segmentation technique known as frame differencing.
In this technique, pixel values in an image frame at
time t+1 are subtracted from the image at time t in
order to remove stationary objects from the scene. Two
common problems with frame differencing techniques,
however, are 1) they require pixel registration between
image frames in order to “subtract out” stationary
information, and 2) frame-to-frame pixel scintillations
caused by noise are not removed by the differencing
process. The major advantage of the technique is that
it can be implemented in real time at a moderate
cost [3].
Fig. 19 compares several unprocessed frames

of wavelet detail coefficients to similar poses of
the tank produced by a simple frame-differencing
operation. Part b shows the wavelet coefficients at
the spatio-temporal resolution level j = 1, k = 3. In
each frame, the spatial and temporal detail signals
of the vertical, horizontal, and diagonal features are
combined to yield a complete outline of the tank. Note
that the frame differencing technique shown in part a
is quite susceptible to noise sources in the “stationary”
background. Conversely, time-averaging properties
of the decoupled wavelet decomposition capture the

642 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 2 APRIL 1996



Fig. 18. Single, unprocessed frame of detail coefficients from each of several different motion decompositions in space and time. Moving
left to right across the figure increases the spatial dilation of the wavelet which in turn extracts lower spatial frequencies from the

sequence. Moving from top to bottom increases the wavelet’s temporal dilation, thereby extracting lower temporal frequencies from the
sequence. The lower right image corresponds to a spatio-temporal resolution of j =¡3, k =¡2.

edges of the tank while virtually eliminating extraneous
motion related information in the background.

VIII. DISCUSSION

The spatial decomposition stage of the decoupled
subband transform yields three detail sequences at
each spatial resolution level that capture horizontal,
vertical, and diagonal details in the image sequence
for a fixed resolution in time. Many image processing
applications, however, require spatial filters that are
tunable to a wider range of orientations. Indeed, a
considerable amount of evidence indicates biological
“image processing” systems perform scale and
orientation analyses over localized regions in a visual
scene [1, 8, 13]. The purpose of this section, therefore,
is to briefly present a simple modification of the
separable, decoupled subband transform that enhances
the orientation selectivity of the spatio-temporal
filters.
The orientation filtering properties of the

separable wavelet filters produced by a 2D quad-tree
decomposition structure are limited, as shown
previously in Fig. 2, to horizontal, vertical, and
diagonal spatial frequency bands at each spatial

resolution level. In order to achieve a higher degree
of orientation selectivity, one can construct a
nonseparable QMF pair on a hexogonal sampling
lattice which, when used in a four-band perfect
reconstruction filter bank, produces the orientation
specific filters shown in Fig. 20 [23]. These filters
can also be extended to three-dimensions to yield
garnet shaped filters tuned to different scales, spatial
orientations and, to a limited degree, direction of
motion [23].
Although the hexogonal nonseparable 3D filters

provide a higher degree of orientation selectivity
than the separable filters constructed under the
decoupled subband transform, they still have several
limitations for spatio-temporal signal representation
and analysis. First, the impulse responses of the
analysis filters are not orthonormal; therefore, one
loses the economy of representation provided under
an orthonormal series expansion of the signal. Second,
like the “conventional” 3D subband transform
described earlier, the nonseparable, hexogonal 3D
filter bank also restricts the analysis of an image
sequence to identical resolutions in space and time.
And third, from a practical perspective, nonseparable,
multidimensional filter banks are generally more
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Fig. 19. (a) Several frames of moving tank image sequence processed with a traditional frame-differencing motion extraction technique.
(b) Detail coefficients generated by a motion-oriented wavelet decomposition at the spatial and temporal resolution levels j = 1,
k = 3. The temporal details of the horizontal, vertical and corner spatial details have been combined to form an outline of the

moving object.

difficult to construct and implement than their
separable counterparts [9].
It is possible, however, to overcome these

limitations while retaining the “nice” construction
and implementation properties of the separable 3D
orthogonal filter bank. Recall that the under the
decoupled subband transform the ability to look
across multiple resolutions in time for a fixed spatial
resolution was achieved by applying Daubechies
Lemma to the temporal components of the 3D

separable basis functions of the spatial detail space
Wj,k. Similarly, it is also possible to apply Daubechies’
Lemma to the spatial components of these basis
functions before decomposing the resulting spatial
detail signals in time. Furthermore, the Lemma ensures
that the basis functions for these new detail spaces
remain orthogonal over all resolutions in space and
time. As shown by the idealized filters in Fig. 21,
recursively applying Daubechies Lemma in space
and time produces an orthogonal filter bank with
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Fig. 20. Idealized supporting regions in 2D frequency space of a
“hexogonal” orientation selective filter for a single spatial

resolution level [23].

a higher degree of orientation selectivity (but less
spatial resolution!) than the filters constructed with
the previous decoupled subband transform.
The subband transform used to construct the

filter bank in Fig. 21 is difficult to illustrate in a
standard tree diagram. The strategy, however, is
quite straightforward assuming one understands

Fig. 21. Idealized supporting regions in the positive temporal half of 3D frequency space of the orthogonal filter bank obtained by
applying Daubechies Lemma in space and time.

the subband transform used earlier to generate the
decoupled filter bank in Fig. 9. Using the new strategy,
an image sequence is first decomposed spatially into
the horizontal, vertical and diagonal detail sequence
described earlier. The horizontal spatial detail
sequence is then further decomposed as many times as
desired by recursively convolving the spatial QMF pair,
h,g, with the columns of each spatial approximation
sequence and decimating by a factor of two. Similarly,
the spatial filter pair is recursively convolved with
the rows of the approximation sequences formed by
decomposing the vertical detail sequence. Each of the
resulting orientation specific spatial detail sequences
are then individually decomposed in time using the
temporal decomposition algorithm shown earlier in
Fig. 8. The process is then repeated at each successive
spatial approximation level.

IX. CONCLUSION

This paper presented an unconventional
L2(R

3) multiresolution wavelet analysis designed
for the purpose of representing and analyzing
time-sequential imagery. A theoretical framework
was first developed that allows for the construction
of an L2(R

3) multiresolution wavelet analysis
from three nonidentical L2(R) spatial and
temporal multiresolution wavelet analyses. This
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nonhomogeneous framework provides greater
flexibility for tailoring the spatio-temporal frequency
characteristics of the three dimensional wavelet filter
to match the frequency behavior of the analyzed signal.
A decoupled, wavelet subband transform was then
described which yields a rich set of spatio-temporally
oriented frequency channels which, unlike the
conventional oct-tree decomposition algorithm,
provides independent zoom-in and zoom-out capability
in space and time.
The nonhomogeneous decoupled subband

transform was applied to a simple image sequence to
demonstrate its ability to extract vertical, horizontal,
and diagonal features from moving or stationary
objects. It was also shown that decoupling the
conventional spatial and temporal decomposition
processes provides the ability to segment identical
objects traveling at different speeds. The algorithm
was then applied to a natural IR image sequence
to demonstrate its ability to independently zoom-in
and zoom-out in space and time to locate objects at
different spatial scales in the presence of extraneous
motion related phenomena such as camera jitter,
background noise, and sensor noise.
Finally, the orientational selectivity of the

decoupled subband transform was improved by
applying Daubechies’ Lemma in space and time.
Unlike previously constructed nonseparable perfect
reconstruction filter banks, the separable, orientation
selective filter bank presented here ensures the
corresponding basis functions (i.e., filter impulse
responses) remain orthogonal, provides a tool for
independently analyzing spatial and temporal details
in an image sequence at different orientations and
scales, and maintains the efficiency and ease of
implementation of a separable multidimensional filter
bank.

APPENDIX

This appendix contains key elements of the proofs
of Propositions 1—4.

PROOF OF PROPOSITION 1 Let ©j;(l,m,n)(x,y, t) =

23j=2Á(2jx¡ l)Á(2jy¡m)Á̃(2j t¡n). Then
h©j;(l,m,n),©j;(l0,m0,n0)i

=
½
1, if l = l0 and m=m0 and n= n0

0, otherwise
(22)

where h¢, ¢i denotes the inner product on L2(R3).
Equation (22) implies the set of vectors f©j;(l,m,n) j
(l,m,n) 2 Z3g forms an orthonormal set in L2(R3).
Now, let F be a vector in Vj . By definition of

Vj , F(x,y, t) = f(x)g(y)h(t) for some f 2 Vxj , g 2 Vyj
and h 2 Ṽtj . Expressing f, g, and h in terms of their
respective orthonormal bases and rearranging terms

yields

F =
X
l

2jhf,Áj; liÁj; l
X
m

2jhg,Áj;miÁj;m
X
n

2jhh, Á̃j;niÁ̃j;n

=
X
l

X
m

X
n

23j=2hfgh,Áj; lÁj;mÁ̃j;niÁj; lÁj;mÁ̃j;n

=
X
l

X
m

X
n

23j=2hF,©j;(l,m,n)i©j;(l,m,n) (23)

where Áj;q = Á(2
j ¢ ¡q) and Á̃j;q = Á̃(2j ¢ ¡q). Equation

(23) shows F can be expressed as a Fourier series
expansion of the orthonormal set f©j;(l,m,n) j (l,m,n)
2 Z3g. Thus, by the Fourier Series Theorem [19],
f©j;(l,m,n) j (l,m,n) 2 Z3g forms an orthonormal basis
for Vj .

PROOF OF PROPOSITION 2 Recall that a
multiresolution analysis of L2(R

3) consists of a chain
of closed, linear approximation spaces Vj and a scaling
function Á which satisfy the following properties [5].

1)
¢ ¢ ¢V¡2 ½ V¡1 ½ V0 ½ V1 ½ V2 ½ ¢¢ ¢ : (24)

2) [
j2Z
Vj = L2(R);

\
j2Z
Vj = f0g: (25)

3)

f(x) 2 Vj , f(2x) 2 Vj+1; j 2 Z

f(x) 2 Vj ) f
³
x+

n

2j

´
2 Vj ; n 2 Z:

(26)

4) The set of functions f2j=2Á(2jx¡ n) j n 2 Zg
forms an orthonormal basis for the approximation
space Vj .

Proposition 1 ensures Property 4 is met. The
intersection condition of Property 2 and Property 3
follow straightforwardly from the fact that the 3D
approximation space Vj is separable. Now show that
the denseness condition in Property 2 holds.
Let

M=
[
j2Z
Vj (27)

and assume M is not equal to L2(R
3). M is therefore

a proper subspace of L2(R
3) and, by Hahn-Banach

[19], there exists a linear functional ` on L2(R
3)

such that `(M) = 0 8M 2M and `(G) 6= 0 for some
G 2 L2(R3)¡M. Then, by the Riesz Representation
Theorem [24], there exists a unique H 2 L2(R3) such
that

`(F) =
Z 1

¡1

Z 1

¡1

Z 1

¡1
F(x,y, t)H(x,y, t)dxdydt

(28)
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8F 2 L2(R3). Furthermore, if ` does not equal the zero
functional, then H 6= 0. Additionally, l(M) = 0 8M 2
M implies H ? M . Consequently, the orthogonal
projection of H onto Vj 2M, PjH, must equal zero.
Now, since H 2 L2(R3), there exists a compactly
supported C1 function, H0, such that kH0¡Hk< ².
And, by the Orthogonal Projection Theorem, kPjH0k=
kPj(H0¡H)k · kH0¡Hk< ². Thus, by Parseval’s
Identity,

kPjH0k2 = 23j=2
X
l

X
m

X
n

jhÁ(2jx¡ l)Á(2jy¡m)

£ Á̃(2j t¡ n),H0(x,y, t)ij2

· ²2: (29)

Using standard mathematical manipulations, it can be
shown thatX

l

X
m

X
n

jhÁ(2jx¡ l)Á(2jy¡m)Á̃(2j t¡ n),H0(x,y, t)ij2

(30)

=

Z 1

¡1

Z 1

¡1

Z 1

¡1
jĤ0(»,´,¿ )j2

£ jÁ̂(2¡j»)Á̂(2¡j´)ˆ̃Á(2¡j¿ )j2d» d´d¿ +Rj (31)

where Ĥ0 denotes the Fourier Transform of H0 and

jRj j ·
X
l 6=0

X
m 6=0

X
n 6=0
jĤ0(»+2¼2j l,´+2¼2jm,¿ +2¼2jn)j

£ jf̂(»,´,¿ )j: (32)

Now consider the sequence of functions

Hj(»,´,¿) =
X
l 6=0

X
m 6=0

X
n 6=0

£ jĤ0(£+2¼2j l,´+2¼2jm,¿ +2¼2jn)j:
(33)

Since H0 is a compact C
1 function, Ĥ0 is uniformly

bounded and Hj ! 0 as j!1. Additionally, Ĥ0 2
L1(R

3) implies Rj ! 0 as j!1 [5]. Moreover, Á̂ and
ˆ̃Á are continuous and uniformly bounded and Á̂(0) =
ˆ̃Á(0) = 1. Hence, Lebesgue’s Dominated Convergence
Theorem can be applied in conjunction with (29) to
obtain

lim
j!1

Z 1

¡1

Z 1

¡1

Z 1

¡1
jĤ0(»,´,¿)j2

£ jÁ̂(2¡j»)Á̂(2¡j´)ˆ̃Á(2¡j¿ )j2d» d´,d¿
= kH0k2 · ²2: (34)

Finally, kH0k · ² and kH0¡Hk< ² implies kHk · 2².
But ² arbitrarily small implies H = 0, which contradicts
the opening assumption. Thus, M is dense in L2(R

3).

PROOF OF PROPOSITION 3 Let Vj , j 2 Z, be a
multiresolution approximation of L2(R

3) formed by
the tensor product

Vj= V
x
j −Vyj − Ṽtj

= SpanfF(x,y, t) = f(x)g(y)h(t) j f 2 Vxj , g 2 Vyj and h 2 Ṽtj g
(35)

where Vxj , V
y
j and Ṽ

t
j are multiresolution

approximations of L2(R). Let W
x
j , W

y
j , and W̃

t
j be the

orthogonal complements of the closed, linear spaces
Vxj ½ Vxj+1, Vyj ½ Vyj+1 and Ṽtj ½ Ṽtj+1. Then

Vj+1= V
x
j+1−Vyj+1−Vtj+1

= (Wx
j ©Vxj )− (Wy

j ©Vyj )− (Wt
j ©Vtj ): (36)

The right-hand side of (36) can be rewritten as follows

RHS = [Wx
j −Wy

j −Wt
j ]© [Wx

j −Wy
j −Vtj ]

© [Wx
j −Vyj −Wt

j ]© [Wx
j −Vyj −Vtj ]

© [Vxj −Wy
j −Wt

j ]© [Vxj −Wy
j −Vtj ]

© [Vxj −Vyj −Wt
j ]© [Vxj −Vyj −Vtj ]: (37)

Since Vj = V
x
j −Vyj −Vtj , the orthogonal complement,

Wj , of Vj in Vjp can be expressed as

Wj=Vjp¡Vj
= [Wx

j −Wy
j −Wt

j ]© [Wx
j −Wy

j −Vtj ]
© [Wx

j −Vyj −Wt
j ]© [Wx

j −Vyj −Vtj ]
© [Vxj −Wy

j −Wt
j ]© [Vxj −Wy

j −Vtj ]
© [Vxj −Vyj −Wt

j ]: (38)

The sets of functions f2j=2Á(2jx¡ l) j l 2 Zg,
f2j=2Á(2jy¡m) jm 2 Zg, and f2j=2Á̃(2jt¡ n) j
n 2 Zg, form orthonormal bases, respectively, for
the L2(R) approximation spaces V

x
j , V

y
j , and Ṽ

t
j .

Additionally, the sets of functions f2j=2Ã(2jx¡ l) j
l 2 Zg, f2j=2Ã(2jy¡m) jm 2 Zg, and f2j=2Ã̃(2j t¡ n) j
n 2 Zg, form orthonormal bases, respectively, for the
complementary spaces Wx

j , W
y
j , and W̃

t
j . Thus, the

set of functions fªp
j (x¡ l,y¡m, t¡ n) j (l,m,n) 2 Z3;

p= 1,2, : : : ,7g forms an orthonormal bases for Wj .
Furthermore, the fact that L2(R

3) can be formed by
the direct sum decompositionM

j2Z
Wj= L2(R

3) (39)

implies the family of functions fªp
j (x¡ l,y¡m, t¡ n) j

j 2 Z; (l,m,n) 2 Z3; p= 1,2, : : : ,7g constitutes an
orthonormal basis for L2(R

3).

PROOF OF PROPOSITION 4 Consider the following
Lemma which describes a special case of Coifman
and Meyer’s wavelet packet theory as proved by I.
Daubechies [6, 7].
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LEMMA 1 Let f be any function such that the f(t¡ n),
n 2 Z, are orthonormal. Define the functions

F1(t) =
X
n

hnf(t¡ n)

F2(t) =
X
n

gnf(t¡ n):
(40)

Then fF1(t¡2m),F2(t¡ 2m) jm 2 Zg forms an
orthonormal basis for Spanff(t¡ n) j n 2 Zg.
Since the functions 2k=2Á̃(2kt¡ n), n 2 Z, are

orthonormal, Lemma 1 implies fF1k (t¡2m),
F2k (t¡ 2m) jm 2 Zg forms an orthonormal basis
for SpanfÁ̃(2kt¡ n) j n 2 Zg where

F1k (t) =
X
n

hnÁ̃(2
kt¡ n)

F2k (t) =
X
n

gnÁ̃(2
kt¡ n):

(41)

Now, let ªp
j,k(x¡ l0,y¡m0, t) =ªp

j (x¡ l0,y¡m0)
¢ 2k=2Á̃(2kt) where the integer pair (l0,m0) 2 Z2 is
chosen arbitrarily. Next, define the functions ªp1

j,k and

ªp2
j,k as follows:

ªp1
j,k(x¡ l0,y¡m0, t) =ªp

j (x¡ l0,y¡m0)F1k (t)
ªp2
j,k(x¡ l0,y¡m0, t) =ªp

j (x¡ l0,y¡m0)F2k (t):
(42)

Then, the set of functions fªp1
j,k(x¡ l0,y¡m0,

t¡2n),ªp2
j,k(x¡ l0,y¡m0, t¡ 2n) j n 2 Zg

forms an orthonormal basis for

Spanfªp
j,k(x¡ l0,y¡m0, t¡ n) j n 2 Zg. But

(l0,m0) chosen arbitrarily implies fªp1
j,k(x¡ l,

y¡m, t¡ 2n),ªp2
j,k(x¡ l,y¡m, t¡ 2n) j

(l,m,n) 2 Z3g form an orthonormal basis for

Spanfªp
j,k(x¡ l,y¡m, t¡ n) j (l,m,n) 2 Z3g.

REFERENCES

[1] Anderson, C., and Van Essen, D. (1991)
Processing of visual information in primate brains.
NASA Tech Brief , 15 (Mar. 1991).

[2] Burns, T. J. (1993)
A non-homogeneous wavelet multiresolution analysis and
its application to the analysis of motion.
Ph.D. dissertation, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
Dec. 1993.

[3] Burt, P. J. (1988)
Smart sensing within a pyramid vision machine.
Proceedings of the IEEE, 76 (Aug. 1988), 1006—1015.

[4] Chen, T., and Vaidyanathan, P. P. (1993)
Recent developments in multidimensional multirate
systems.
IEEE Transactions on Circuits and Systems for Video
Technology, 3 (Apr. 1993), 116—137.

[5] Chui, C. K. (1992)
Wavelets: A Tutorial in Theory and Application.
San Diego: Academic Press, 1992.

[6] Coifman, R. R., and Meyer, Y. (1992)
Size properties of wavelet-packets.
In Ruskai, et al., Wavelets and Their Applications.
San Diego: Academic Press, 1992.

[7] Daubechies, I. (1992)
Ten Lectures on Wavelets.
Society for Industrial and Applied Mathematics,
Philadelphia, 1992.

[8] De Valois, R. L., and Albrecht, D. G. (1985)
Spatial frequency selectivity of cells in macaque visual
cortex.
Vision Research, 22 (1985), 545—559.

[9] Dudgeon, C. E., and Mersereau, R. M. (1984)
Multidimensional Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[10] Gafni, H., and Zeevi, Y. Y. (1979)
A model for processing of movement in the visual system.
Biological Cybernetics, 32 (1979), 165—173.

[11] Goodman, J. (1968)
Introduction to Fourier Optics.
New York: McGraw-Hill, 1968.

[12] Heeger, D. (1988)
Optical flow using spatiotemporal filters.
International Journal of Computer Vision, (1988), 279—302.

[13] Hubel, D. H., and Wiesel, T. N. (1962)
Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex.
Journal of Physiology, (1962), 106—154.

[14] Le Chevalier, F., Bobillot, G., and Fugier-Garrel, C. (1978)
Radar target and aspect angle identification.
In Proceedings of the IEEE 1978 International Conference
on Pattern Recognition, (1978), 398—400.

[15] Libby, E. W. (1993)
Application of sequence comparison methods to
multisensor data fusion and target recognition.
Master’s thesis, School of Engineering, Air Force Institute
of Technology (AU),Wright-Patterson AFB, OH, July 1993.

[16] Mallat, S. G. (1989)
Multiresolution approximation and wavelets.
Transactions on American Mathematical Society, (Sept.
1989), 69—88.

[17] Mallat, S. G. (1989)
A theory for multi-frequency signal decomposition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11 (July 1989), 674—693.

[18] Meyer, Y. (1986)
Principe d’incertitude, bases hilbertiennes et albebres
d’operateurs.
Seminaire Bourbaki, 662 (Oct. 1986), 209—223.

[19] Naylor, A. W., and Sell, G. R. (1982)
Linear Operator Theory in Engineering and Science.
New York: Springer-Verlag, 1982.

[20] Rioul, O., and Vetterli, M. (1991)
Wavelets and signal processing.
IEEE Signal Processing Magazine, (Oct. 1991), 14—38.

[21] Rosenfeld, A. (Ed.) (1984)
Multiresolution Image Processing and Analysis.
New York: Springer-Verlag, 1984.

[22] Seibert, M., and Waxman, A. M. (1992)
Adaptive 3D object recognition from multiple views.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14, 2 (1992), 107—124.

[23] Simoncelli, E. P., and Adelson, E. H. (1990)
Non-separable extensions of quadrature mirror filters to
multiple dimensions.
Proceedings of the IEEE, 78, 4 (1990), 652—663.

648 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 2 APRIL 1996



[24] Taylor, A., and Lay, D. (1982)
Introduction to Functional Analysis.
New York: Wiley, 1982.

[25] Vaidyanathan, P. P. (1993)
Multirate Systems and Filter Banks.
Englewood Cliffs, NJ: Prentice-Hall, 1993.

[26] Vetterli, M. (1984)
Multidimensional subband coding: Some theory and
algorithms.
Signal Processing, 6 (Feb. 1984), 97—112.

Thomas J. Burns received the Bachelor of Arts degree in philosophy in 1980
and the Bachelor of Science degree in electrical engineering in 1986, both
from The Ohio State University, Columbus. During 1989—1993 he earned the
Master of Science and Ph.D. degrees in electrical engineering, with emphasis
in electro-optics and signal processing, both from the Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH.
Major Burns is currently assigned to the Wright Laboratory Automatic Target

Recognition Branch. His interests include model-based vision, spatio-temporal
signal processing, and motion analysis.

Steven K. Rogers is a Professor in the Department of Electrical and Computer
Engineering at the Air Force Institute of Technology, Wright-Patterson Air Force
Base, Dayton, OH.
He is presently conducting an extensive research program on optical

information processing and neural networks. The research program addresses the
problems inherent in making smart weapons.
Dr. Rogers has published over one hundred papers in the areas of neural

networks, pattern recognition and optical information processing, and a textbook
titled Introduction to Biological and Artificial Neural Networks for Pattern
Recognition. He is an SPIE Fellow.

Dennis W. Ruck received his M.S.E.E and Ph.D. degrees from the Air Force
Institute of Technology, Wright-Patterson Air Force Base, OH, in 1987 and 1990,
respectively, and his B.S.E.E. from Northwestern University, Evanston, IL, in 1983
all in electrical engineering.
He has been on the faculty at the Air Force Institute of Technology since 1990

as an Assistant Professor. His prior assignment was at the Aeronautical Systems
Division in the visual systems for flight simulators branch. His research interests
include pattern recognition, speech and image processing and recognition, and
neural networks.
Dr. Ruck has published several articles in the areas of neural networks and

target recognition.

Mark E. Oxley received the B.S. degree in mathematics in 1978 from Cumberland
College, Williamsburg, KY, the M.S. degree in applied mathematics in 1980 from
Purdue University, West Lafayette, IN, and the Ph.D. degree in mathematics in
1987 from North Carolina State University, Raleigh, NC.
Since 1987, he has been with the Graduate School of Engineering at the Air

Force Institute of Technology, Wright-Patterson Air Force Base, OH, where is
an Associate Professor of Mathematics in the Department of Mathematics and
Statistics. His current research interests include neural networks, wavelet analysis,
functional analysis, and nonlinear partial differential equations.
Dr. Oxley is a member of Pi Mu Epsilon, the American Mathematical Society

(AMS), the Society for Industrial and Applied Mathematics (SIAM), the American
Geophysical Union (AGU), and SPIE the International Society for Optical
Engineering.

[27] Vetterli, M., Kovacevic, J., and Ugall, D. J. (1990)
Perfect reconstruction filter banks for hdtv representation
and coding.
Signal Processing: Image Communication, 2 (Oct. 1990),
349—363.

[28] Vetterli, M., et al. (1992)
Multiresolution coding techniques for digital television. A
review.
Multidimensional Systems and Signal Processing, 3 (May
1992), 161—187.

BURNS ET AL.: A WAVELET MULTIRESOLUTION ANALYSIS FOR SPATIO-TEMPORAL SIGNALS 649


