ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Bio-Image Data Science Robert Haase

GEFÖRDERT VOM

*

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

Bioimage Analysis

• Kota Miura & Sebastien Tosi 2015:

In the light of this definition, image analysis, which is also called "computer vision," aims at mimicking the way we see the world and how we identify its visible structures. Image analysis in biology does undeniably also hold this element, but more importantly, its main goal is to *measure* biological structures and phenomena in order to study and understand biological systems in a quantitative way.

To achieve this task, we in fact do not have to be bothered with similarity to the human recognition – we have more emphasis on the objectivity of quantitative measurement, rather than how that computer-based recognition becomes in agreement with human recognition. Therefore, in biology, image analysis is a process of identifying spatial distribution of biological components in images and measuring their characteristics to study their underlying mechanisms in an unbiased way. To underline this difference in the goals of image analysis in the two fields and to distinguish them from each other, we will now on refer to image analysis in biology as *bioimage analysis*.

Source: Bioimage Data Analysis, First Edition. Edited by Kota Miura. 2016 Wiley-VCH Verlag @haesleinhuepf BIDS Lecture 14/14 https://analyticalscience.wiley.com/do/10.1002/was.00050003/full/bioimagedataanalysis.pdf

UNIVERSITÄT

LEIPZIG

Pixel size versus resolution

- Pixel size is a property of a digital image.
- You configure it during the imaging session at the microscope.

Pixel size: 3.3 μm

Pixel size: 0.8 µm

Pixel size: 0.05 µm

• We are not talking about resolution!

Pixel size versus resolution

• Resolution is a property of your imaging system.

DRESDEN LEIPZIG

• How small can objects be, to be still differentiable?

• Enabling others to do your experiment is about ...

Repeatability

Reproducibility

Replicability

Reliability

Reproducibility can be achieved by

Writing code

Providing example data

Recording Video tutorials

Bio-image analysis is supposed to be

- Quantitative
 - We derive numbers from images which describe physical properties of the observed sample.
- Objective
 - The derived measurement does not depend on who did the measurement. The measurement is free of interpretation.
- Reliable (trustworthy / validated)
 - We are confident that the measurement is describing what it is supposed to describe.
- Reproducible
 - Enabling others to re-do the experiment. For this, documentation is crucial!
- Replicability
 - Others *do* execute the same analysis, potentially on other data, and see consistent results.
- Repeatable
 - We can do the same experiment twice under the *same conditions* and get the same measurements.

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Research Data Management Robert Haase

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

RDM Life Cycle

• Processes are ideally cyclic

 Scaps.ai
 Robert Haase
@haesleinhuepf
BIDS Lecture 14/14
 Adaptiert von:
https://forschungsdaten.info/themen/informieren-und-
planen/datenlebenszyklus/

9

Data Management Plans (DMPs)

- Describes the IS-state of a data environment
 - Which data is acquired / processed? (content, format, amount)
 - What meta-data is collected?
 - Which quality standards are targeted?
 - How is data saved, archived, backed-up, shared, published...?
 - Who is responsible for what?
 - Roles, job-profiles
 - What does this all cost? (IT infrastructure + human resources)

Think about the FAIR principles for data sharing, which one is wrong?

Standard for sharing: The FAIR-principles

- Findable
- Accessible
- Interoperable
- Reusable

Licensing: Creative Commons (CC)

• Public domain (CC0)

9

- Attribution International (CC-BY)
- Attribution ShareAlike Int. (CC-BY-SA)
- Attribution Non-Commercial Int. (CC-BY-NC)
- Attribution NoDerivatives Int. (CC-BY-ND)
- + Combinations, e.g. CC-BY-NC-ND

Quiz (recap)

• If I combine two works licensed CC-BY and CC-BY-SA, what license do I have to use?

Licensing: Permissive versus restrictive

- Restrictive
 - You can reuse our stuff, but only if you ...
 - License your work with the same license we do
 - Make your stuff openly available
 - Make no money with derivatives of our work
 - Examples: GPL, CC-BY-SA, CC-BY-NC, CC-BY-ND
- Permissive licensing:
 - Do whatever you like with our stuff, just make sure to mention / cite us ...
 - Examples: BSD, MIT, Apache, CC-BY

I conclude, these are less *open* in a sense

Which open-source license might be the least popular in companies?

ScaDS.All **DRESDEN LEIPZIG**

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Research Software Management **Robert Haase**

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

@haesleinhuepf BIDS Lecture 14/14 lune 27th 2024

23

Documenting dependencies

• Maintain a document with the dependencies (and versions) you need in your project

<u>https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-</u> <u>environments.html#creating-an-environment-from-an-environment-yml-file</u> https://pip.pypa.io/en/stable/cli/pip install/#examples

24

@haesleinhuepf BIDS Lecture 14/14 June 27th 2024

DRESDEN LEIPZIG

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Image Processing

Robert Haase

Reusing materials from Mauricio Rocha Martins (Norden lab, MPI CBG); Dominic Waithe (Oxford University); Alex Bird, Dan White (MPI CBG)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

26

Lecture overview: Bio-image Analysi

- Image Data Analysis workflows
- Goal: Quantify observations, substantiate conclusions with numbers

LEIPZIG

@haesleinhuepf BIDS Lecture 14/14 June 27th 2024

DRESDEN LEIPZIG

Image stacks and voxels

- 3-dimensional images consisting of voxels
- "Image stack"
- Often *anisotropic* (not equally large in all directions)

28

Image filtering

• Attempt to invert / "undo" processes disturbing image quality

29

UNIVERSITÄT

LEIPZIG

Which is a non-linear filter?

30

Which is a noise-removal filter?

31

Which is a edge-detection filter?

32

UNIVERSITÄT

LEIPZIG

Which is a background-removal filter?

ScaDS.All DRESDEN LEIPZIG

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Image segmentation **Robert Haase**

Using materials from Marcelo Leomil Zoccoler and Johannes

DRESDEN LEIPZIG

BIDS Lecture 14/14 lune 27th 2024

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

34

Terminology

 Annotations are typically drawn by humans (e.g. to train machine learning models)

Instance segmentation

Semantic segmentation

Sparse instance annotation

Sparse semantic annotation

DRESDEN LEIPZIG

https://www.napari-hub.org/plugins/napari-segment-blobs-and-things-with-membranes#seeded-watershed

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Surface reconstruction Robert Haase

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

UNIVERSITÄT

LEIPZIG

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Marching cubes algorithm

- Starting point: 3D binary image
- Cuts the image in small cubes and iterates over them

ScaDS.AI

Robert Haase Lo @haesleinhuepf BIDS Lecture 14/14 Gr June 27th 2024

Lorensen, William E.; Cline, Harvey E. (1 August 1987). "Marching cubes: A high resolution 3D surface construction algorithm". *ACM SIGGRAPH Computer Graphics.* **21** (4): 163-169. <u>CiteSeerX 10.1.1.545.613</u>. <u>doi:10.1145/37402.37422</u>.

THIN LULD

UNIVERSITÄT

LEIPZIG

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Segmentation quality estimation

Robert Haase

DRESDEN LEIPZIG

Reusing materials from Lena Maier-Hein, Annika Reinke (DKFZ) et al. and Martin Schätz (Charles Uni Prague)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

39

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/29_algorithm validation/jaccard_index_versus_accuracy.html

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Robert Haase @haesleinhuepf

DRESDEN LEIPZIG

BIDS Lecture 14/14 June 27th 2024

Feature extraction Robert Haase

Using materials from Johannes Soltwedel, PoL, TU Dresden

GEFÖRDERT VOM

*

Bundesministerium für Bildung und Forschung

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Feature extraction

- * A *feature* is a countable or measurable property of an image or object.
- Goal of feature extraction is finding a minimal set of features to describe an object well enough to differentiate it from other objects.
- Intensity based
 - Mean intensity
 - Standard deviation
 - Total intensity
 - Textures

- Shape based /spatial
 - Area / Volume
 - Roundness
 - Solidity
 - Circularity / Sphericity
 - Elongation
 - Centroid
 - Bounding box

- Spatio-temporal
 - Displacement,
 - Speed,
 - Acceleration

- Topological
 - Number of neighbors

UNIVERSITÄT

LEIPZIG

- Others
 - Overlap
 - Colocalization

- Mixed features
 - Center of mass
 - Local minima / maxima
 - Distance to neighbors
 - Average intensity in neighborhood

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Distributed & GPU-accelerated Image Processing Robert Haase

Bundesministerium für Bildung und Forschung

SACHSEN

Diese Maßr aufgrund ei Diese Maßr der Grundla Landtags be

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024 These slides and the related training materials can be reused under the terms of the <u>CC-BY 4.0</u> license.

GPUs allow real-time image processing

 GPUs are specialised in processing, very fast thanks to many cores and fast memory access

• The last perimeter against big data

ScaDS.All

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Methods for comparing measurement methods

Robert Haase

Using materials Reusing materials from Daniela Vorkel,

Douglas G. Altman and J. Martin Bland

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

für Bildung und Forschung

Bundesministerium

UNIVERSITÄT LEIPZIG

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

The confidence interval

 "The British Standards Institution (1979) define a coefficient of repeatability as 'the value below which the difference between two single test results ... may be expected to lie with a specified probability; in the absence of other indications, the probability is 95 per cent'."¹

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Supervised and Unsupervised Machine Learning for Bio-image Analysis Robert Haase

Reusing materials from Johannes Soltwedel, Till Korten, Johannes Müller, Laura Žigutyue (TU Dresden), Ryan Savill (MPI-CBG), Matthias Täschner (ScaDS.Al/Uni Leipzig) and the Scikit-learn community.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

Funded by

achsen

Bundesministerium

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen

für Bilduna

Landtags beschlossenen Haushaltes

und Forschung

Machine learning Automatic construction of predictive models from given data

UNIVERSITÄT

LEIPZIG

49

Robert Haase Sca DRESDEN LEIPZIG

@haesleinhuepf BIDS Lecture 14/14 lune 27th 2024

Hypothesis-driven quantitative biology

- Hypothesis: Cell shape can be influenced by modifying X.
- Null-Hypothesis: Circularity of modified cells is similar to cells in the control group.

Hypothesis generating quantitative biology

- Hypothesis: Cell shape can be influenced by modifying X.
- Question: Which image-derived parameter is influenced when modifying X?
 - Sample preparation

Imaging

Which segmentation algorithms allow measurements that show a relationship with X?

Cell segmentation algorithm A, algorithm B, algorithm C

• Measurement of circularity, solidity, elongation, extend, texture, intensity, top

• Statistics

Which parameter shows any relationship with X?

Why?

Correlation statistics

[16]: def colorize(styler):

•

styler.background_gradient(axis=None, cmap="PiYG") return styler

df = measurements.corr().T df.style.pipe(colorize)

[16]:		label	area	bbox_area	equivalent_diameter	convex_area	max_intensity	mean_intensity	min_intensity	extent	local_centroid- 0	local_centroid- 1	solidity	feret_diameter_max	major_axis_length	minor_axis_length	orientation	eccentricity
	label	1.000000	0.261682	0.223070	0.249249	0.250594	0.110791	0.235692	nan	0.031673	0.177363	0.227746	0.090163	0.208067	0.198908	0.237521	0.319053	0.059804
	area	0.261682	1.000000	0.973718	0.978723	0.997560	0.511730	0.530250	nan	-0.362472	0.847281	0.935689	-0.243908	0.930981	0.911069	0.859240	0.280673	0.348585
	bbox_area	0.223070	0.973718	1.000000	0.948328	0.985584	0.481524	0.476951	nan		0.902854	0.904551	-0.416707	0.973189	0.967337	0.752580	0.213080	0.479196
	equivalent_diameter	0.249249	0.978723	0.948328	1.000000	0.974614			nan	-0.395696	0.858779	0.947036	-0.266587	0.931696	0.904412	0.904698	0.197456	0.363799
	convex_area	0.250594	0.997560	0.985584	0.974614	1.000000	0.506730	0.517356	nan	-0.413323	0.862417	0.934090	-0.305706	0.948048	0.932682	0.832264	0.263176	0.389269
	max_intensity	0.110791	0.511730	0.481524		0.506730	1.000000	0.825115	nan	-0.324093	0.504879	0.603305	-0.253635	0.536089	0.502524	0.645600	-0.139025	0.246172
	mean_intensity	0.235692	0.530250	0.476951	0.618553	0.517356	0.825115	1.000000	nan	-0.160940	0.412859	0.609264	-0.077797	0.458515	0.422638	0.707711	0.132754	0.017030
	min_intensity	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan	nan
	extent	0.031673	-0.362472	-0.546728	-0.395696	-0.413323	-0.324093	-0.160940	nan	1.000000	-0.631158	-0.375580	0.853431	-0.631776	-0.664733	-0.062873	0.252915	-0.756019
	local_centroid-0	0.177363	0.847281	0.902854	0.858779	0.862417	0.504879	0.412859	nan	-0.631158	1.000000	0.706437	-0.439244	0.937673	0.932889	0.623186	0.003490	0.560853
	local_centroid-1	0.227746	0.935689	0.904551	0.947036	0.934090	0.603305	0.609264	nan	-0.375580	0.706437	1.000000	-0.290177	0.863585	0.840724	0.875044	0.271191	0.318154
	solidity	0.090163	-0.243908	-0.416707	-0.266587	-0.305706	-0.253635	-0.077797	nan	0.853431	-0.439244	-0.290177	1.000000	-0.512903	-0.556555	0.049965	0.279509	-0.723572
	feret_diameter_max	0.208067	0.930981	0.973189	0.931696	0.948048	0.536089	0.458515	nan	-0.631776	0.937673	0.863585		1.000000	0.996744	0.690639	0.077145	0.614849
	major_axis_length	0.198908	0.911069	0.967337	0.904412	0.932682	0.502524	0.422638	nan	-0.664733	0.932889	0.840724	-0.556555	0.996744	1.000000	0.639308	0.076773	0.647021
	minor_axis_length	0.237521	0.859240	0.752580	0.904698	0.832264	0.645600	0.707711	nan	-0.062873	0.623186	0.875044	0.049965	0.690639	0.639308	1.000000	0.278107	-0.012148
	orientation	0.319053	0.280673	0.213080	0.197456	0.263176	-0.139025	0.132754	nan	0.252915	0.003490	0.271191	0.279509	0.077145	0.076773	0.278107	1.000000	-0.305652
	eccentricity	0.059804	0.348585	0.479196	0.363799	0.389269	0.246172	0.017030	nan	-0.756019	0.560853	0.318154	-0.723572	0.614849	0.647021	-0.012148	-0.305652	1.000000
	standard_deviation_intensity	0.189165	0.288670	0.267528	0.402328	0.285105	0.867057	0.902001	nan	-0.216260	0.284331	0.379400	-0.169801	0.306228	0.280378	0.455324	-0.089349	0.107307
	aspect_ratio	0.036433	0.411794	0.581132	0.386884	0.462720	0.121313	-0.044872	nan	-0.848271	0.678234	0.321805	-0.787587	0.690082	0.736200	-0.030443	-0.181927	0.853302
	roundness	-0.055815	-0.415592	-0.569335	-0.406856	-0.464090	-0.191680	0.009002	nan	0.834550	-0.638667	-0.359961	0.801971	-0.690444	-0.732103	0.003699	0.224205	-0.955978
	circularity	-0.054152	-0.626241	-0.718764	-0.701230	-0.659125	-0.636372	-0.411166	nan	0.808533	-0.785693	-0.644979	0.773934	-0.832660	-0.839196	-0.435236	0.242901	-0.779895
	UMAP0	-0.065835	-0.442711	-0.413779	-0.509190	-0.435101	-0.324496	-0.387465	nan	0.168523	-0.391875		0.068021	-0.457079	-0.437340	-0.479807	0.025473	-0.204662
	UMAP1	0.139702	0.819263	0.813951	0.793707	0.821940	0.391350	0.365621	nan	-0.375632	0.720004	0.753502	-0.260000	0.753713	0.736954	0.702828	0.277117	0.251959
	MANUAL_CLUSTER_ID	0.080739	0.677335	0.719434	0.590973	0.700457	0.156570	0.074372	nan	-0.371454	0.582543	0.616873	-0.418390	0.671673	0.686248	0.387847	0.163152	0.424045
		Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024		◄ My	My annotation				My annotation <i>seems</i> not related to						TEOUNI	COULE		
Scal				seen	seems related to								52	6 A	UNIVER			
															DRESDE		SMR S	
DRESDEN LEIPZIG		June 27th 2024			1	area				intensity						BREUDEN		102.00

⊡ 个

UNIVERSITÄT LEIPZIG

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Deep Learning for Bio-image Analysis Robert Haase

Funded by

SACHSEN

Diese Maß aufgrund Diese Maß der Grund Landtags

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

These slides and the related training materials can be reused under the terms of the <u>CC-BY 4.0</u> license.

Noise2void

Image denoising without image pairs

Source: A.Krull et al. https://arxiv.org/pdf/1811.10980

CellPose

- Cell/Nuclei segmentation based on flow-fields
- Technically similar to Watershed, but with a deep-learning based altitude-image

Robert Haase @h**Jmage**source: Modified from Stringer et al (2020) licensed <u>CC-BY-NC 4.0</u> BIDS Lecture 14/14 June 2741505://www.biorxiv.org/content/10.1101/2020.02.02.931238v2.full

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Prompt Engineering & ChatBots Robert Haase

Bundesministerium für Bildung und Forschung

SACHSEN

Diese Maßnahme wird gefördert durch die Bundesregierung aufgrund eines Beschlusses des Deutschen Bundestages. Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024 These slides and the related training materials can be reused under the terms of the <u>CC-BY 4.0</u> license.

Contact langth

Goal: Test GPT-4 Ability To Retrieve Information From Large Context Windows

A fact was placed within a document. GPT-4 (106-preview) was then asked to retrieve it. The output was evaluated for accuracy. This test was run at 15 different document depths (top > bottom) and 15 different context lengths (1K >128K tokens). 2x tests were run for larger contexts for a larger sample size.

Robert Haase @haesleinhuepf BIDS Lecture 14/14 lune 27th 2024

Visualization by Greg Kamradt, Licensed MIT (modified), Source: https://github.com/gkamradt/LLMTest NeedleInAHavstack

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Large Language Models for **Function Calling**

Robert Haase

Generative Artificial Intelligence

- Definition: "Generative artificial intelligence [...] is a type of artificial intelligence (AI) system capable of generating text, images, or other media in response to prompts."¹
- Commonly based on Neural Networks
- Bridges fields:
 - Natural Language Processing (NLP)
 - Computer Vision (CV)
- Use-cases
 - Translating text
 - Writing emails, text, grant proposals

¹ source:

- Summarizing articles
- Writing code
- General question answering
- Image generation
- Image interpretation / analysis

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

https://en.wikipedia.org/wiki/Generative_artificial_intelligence

59

Quiz: Recap

• The V in attention mechanisms stand for...? MatMul SoftMax Mask (opt.) Scale MatMul Q K V

Scaled Dot-Product Attention

The word we are
determining
attention fromThe word we
are determining
attention to

The relevance between the two words The variance of attention between the two words

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

• (choosing a tool)

Given a list of tools...

- get_current_time
- order_food
- book_room
- ... and a task:

Please book meeting room 3 for Robert at 3pm. Which is the right tool to use?

61

Some kind of

next-word

• (parameterizing)

Given a function signature... book_room(room, time, person) ... and a task: Please book meeting room 3 for Robert at 3pm. How could I use the tool?

book_room("Meeting Room 3", "3pm", "Robert")

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Prompt Engineering, Retrieval Augmented Generation and Fine-Tuning **Robert Haase**

@haesleinhuepf BIDS Lecture 14/14 lune 27th 2024

Self-consistency prompting Prompting multiple times and keep the least conflicting result

Robert Haase **ScaDS** DRESDEN LEIPZIG

Cropped from Zhang et al 2022, licensed CC-BY 4.0 @haesleinhuepf BIDS Lecture 14/14 https://arxiv.org/abs/2203.11171

64

Retrieval Augmented Generation Enriching a prompt with relevant context

Maximum inner product search (MIPS) $x = \operatorname{argmax}_{x_i \in D} x_i^T q$

UNIVERSITÄT

LEIPZIG

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024 Read more: Lewis et al 2020 https://arxiv.org/abs/2005.11401

65

Fine-tuning

- Long prompts due to prompt-engineering)
 - Response time \uparrow
 - Costs ↑
- Fine-tuning a custom, Domain-specific model

Pretrained

LLM

[Domain]-specific training data
n,
Fine-tuning
[Domain]-specific LLM

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

Image Generation and Vision Language Models Robert Haase

Stable diffusion

• Reminder:

Contrastive Language-Image Pre-Training

• "CLIP" Transformers

(1) Contrastive pre-training

(2) Create dataset classifier from label text

Source: Radford et al 2021, License MT https://arxiv.org/abs/2103.00020 https://github.com/OpenAI/CLIP

 T_1

 I_1

 T_2

 $I_1 \cdot T_1 \mid I_1 \cdot T_2$

T₃

 $I_1 \cdot T_3$

A photo of

a dog.

 T_N

 $I_1 \cdot T_N$

...

CENTER FOR SCALABLE DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE

NATIONAL RESEARCH DATA MANAGEMENT INFRASTRUCTURE FOR MICROSCOPY AND BIOIMAGE ANALYSIS GLOBAL BIOIMAGE ANALYST'S SOCIETY

Benchmarking LLMs Robert Haase

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

These slides can be reused under the terms of the $_{70}$ <u>CC-BY 4.0</u> license unless mentioned otherwise.

Benchmarking vision models

 Prompt: "Analyse the following image by counting the bright blobs. Respond with the number only. " (n=25) Vision models counting blobs

@haesleinhuepf BIDS Lecture 14/14 June 27th 2024

DRESDEN LEIPZIG

oks/20c vision models/vision models.html

• Example: Prompt optimization

UNIVERSITÄT

LEIPZIG

Testing functional correctness: HumanEval

Abstract

We introduce Codex, a GPT language model finetuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%

Publishing a new model + a new benchmark

73

ScaDS.AI

Robert Haase @haesleinhuepf BIDS Lecture 14/14 June 27th 2024

Source: Chen et al 2021 https://arxiv.org/abs/2107.03374

UNIVERSITÄT

leipzig

- 45 min
- 30 points
- (< 30 questions)
- Exam will cover the semester content accordingly
 - Bio-image Analysis / Microscopy
 - Machine/Deep Learning
 - Generative Artificial Intelligence
 - "closed book exam"

