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GPU accelerated image processing in life sciences

… to study embryo development

0 35µm

https://clij.github.io/

Average centroid distance 
of neighbors

Tribolium castaneum
nuclei-GFP,

Background subtracted

Theoretical membranes
(pseudo Voronoi map)

Neighbor meshSpot detection (3D)
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GPU accelerated image processing in life sciences

Raytracing enables differentiating surface and sub-surface mesh nodes 

Neighbor mesh
Surface neighbor 

mesh
Sub-surface 

neighbor mesh3D stack input Merge

https://clij.github.io/
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Image processing in life-sciences

• State-of-the-art software for more than 20 years: ImageJ / Fiji
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https://imagej.nih.gov/ij/ https://fiji.sc
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OpenCL-based GPU-acceleration

GPU-acceleration? Learn the Open Computing Language (OpenCL)!

6

Maximum 
intensity 

projection 
along Z

OpenCL: https://www.khronos.org/opencl/

Kernel collection: https://github.com/clEsperanto/clij-opencl-kernels

https://www.khronos.org/opencl/
https://github.com/clEsperanto/clij-opencl-kernels
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User-friendly GPU-acceleration
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https://clij.github.io/

Im
a

g
e

 d
a

ta
 s

o
u

rc
e
: 
D

a
n

ie
la

 V
o

rk
e
l,
 M

y
e

rs
 l
a
b

, 
M

P
I-

C
B

G
/C

S
B

D

https://clij.github.io/


Slide 8

Robert Haase
@haesleinhuepf
BIDS Lecture 7/14
May 14th 2024

GPU-accelerated image processing

Performance depends on operation, image size, parameters, hardware, ….

8

Intel Core i7-8650U

2x Intel Xeon Silver 
4110

Intel UHD 620 GPU

Nvidia Quadro 
P6000

vs.

Haase et al. Nat Methods (2020), 
https://www.nature.com/articles/s41592-019-0650-1

https://www.nature.com/articles/s41592-019-0650-1
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GPU-accelerated image processing

Performance depends on operation, image size, parameters, hardware, ….

9
Haase et al. Nat Methods (2020), 
https://www.nature.com/articles/s41592-019-0650-1

https://www.nature.com/articles/s41592-019-0650-1
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GPU-accelerated image processing

• 8 MB (2D)

• 64 MB (3D)

1
0

Speedup compared to Laptop CPU

Laptop 
GPU

Workstatio
n GPU

Haase et al. Nat Methods (2020), 
https://www.nature.com/articles/s41592-019-0650-1

https://www.nature.com/articles/s41592-019-0650-1
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Checklist: When does GPU-accelerated image 
processing make sense?

In order to accelerate your image analysis workflow

• The pre-existing workflow should be slow; ideally: 
(processing time / loading time) > 10,

• a single processing step 
(rule of thumb: image size in GB x4)
should fit in your graphics card memory,

If you really want to get the most out of it, you should 
own a graphics card with GDDR6 memory (memory 
bandwidth > 400 Gb/s).

Comparison: common DDR4 memory has a 
bandwidth of about 40 GB/s

1
1

Disclosure: I don’t receive any money or 
anything from any GPU vendor.
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GPUs allow real-time image processing

GPUs are specialised in processing, very fast thanks to many cores and fast 
memory access

1
2

Core Core

Core Core

CPU GPU

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

Core Core Core Core Core

CPU
Memory

GPU
Memory

Hard drive
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Data transfer takes time

Data transfer is the bottle neck

1
3

Push 
data

Pull 
data

https://clij.github.io/clij-benchmarking/benchmarking_operations_jmh

https://clij.github.io/clij-benchmarking/benchmarking_operations_jmh
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Build workflows consisting of many operations

1
4

Gaussian blur filter
Gaussian blur filter

Gaussian blurGaussian blur

T
im

e

Central Processing Unit (CPU) Graphics Processing Unit (GPU)

GPU acceleration may suffer from data transfer between CPU and GPU

https://clij.github.io/clij-benchmarking/benchmarking_workflow_spot_count

https://clij.github.io/clij-benchmarking/benchmarking_workflow_spot_count
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Optimal performance through smart memory 
management
Example workflow processing a Drosophila melanogaster embryo, histone-
GFP

Load data Save dataPreprocessing Transformation Segmentation

Haase et al Nat Methods (2020)
https://clij.github.io/

https://clij.github.io/
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Build workflows consisting of many operations

1
6

T
im

e

Gaussian blur filter

Subtract

Reslice

Maximum projection

Spot detection

Gaussian blur filter

Gaussian blur filter

Subtract

Reslice

Maximum projection

Spot detection

Gaussian blur filter

Gaussian blurGaussian blur

Difference of 
Gaussian filter

Graphics Processing Unit (GPU)Central Processing Unit (CPU)

https://clij.github.io/clij-benchmarking/benchmarking_workflow_spot_count

GPU acceleration may suffer from data transfer between CPU and GPU

https://clij.github.io/clij-benchmarking/benchmarking_workflow_spot_count
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GPU-accelerated Image Processing in 
Python: OpenCL / clesperanto

Robert Haase
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@haesleinhuepf
1
8

Python Jupyter Notebooks

• Image processing using pyclesperanto

https://github.com/clEsperanto/pyclesperanto_prototype

https://github.com/clEsperanto/pyclesperanto_prototype


@haesleinhuepf
1
9

Python Jupyter Notebooks

• When working on the 
cluster / Jupyter Hub, 
consider using 
stackview instead of 
napari for inspecting 
images in 3D.

https://github.com/haesleinhuepf/stackview

https://github.com/haesleinhuepf/stackview
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GPU-accelerated Image Processing 
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cupy

CUDA-based GPU-accelerated [image] data processing in Python
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drop-in replacement for numpy and scipy

The API of some cupy packages is close to the scipy/numpy API.

This allows easy switching from scipy to cupy.

• However, image data still needs to be 
pushed to GPU memory.



Slide 23

Robert Haase
@haesleinhuepf
BIDS Lecture 7/14
May 14th 2024

Common patterns

To make code independent from cupy availablity, while minimizing if-else 
blocks, some common design patterns emerged:

If this fails 
because cupy is 

not installed, 

This will execute 
and xp will be 

available.

We can still use 
np anyway.

The same pattern works with scipy.ndimage
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Common patterns

You can then call magic code like this, which will do different things 
depending on cupy-availability.

• If cupy is available: • If cupy is not available:
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Common patterns

Some if-else blocks are hard to avoid • Stackview aims to be cupy/numpy agnostic

https://github.com/haesleinhuepf/stac
kview

https://github.com/haesleinhuepf/stackview
https://github.com/haesleinhuepf/stackview
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Custom kernels

CUDA is also just C. You can write custom cupy kernels using simple 
syntax.

T represents the image typeInput, 
output 

parameters

Math / CUDA 
code

Function call 
using cupy-

arrays as 
parameters

Read more: 
https://docs.cupy.dev/en/stable/user_guide/kernel.html

https://docs.cupy.dev/en/stable/user_guide/kernel.html
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Image Processing CPU vs. GPU
Performance versus compatibility

Scikit-
image

Simple 
ITK

cle2cupy1

Requires 
Nvidia 
GPU

Requires 
OpenCL

GPU
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Device compatibility

Required for 
3D processing

Logos may be subject to 

copyright of the respective 

open source communities
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Tiled image processing

Robert Haase
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Optimal performance through smart memory management

The classical way of dealing with large image stacks…

Load data Preprocessing

Load data

Load data

Load data

Load data

Load data
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Optimal performance through smart memory 
management
The classical way of dealing with large image stacks… is suboptimal

Load data Preprocessing

Load data

Load data

Load data

Load data

Load data

Preprocessing

Preprocessing

Preprocessing

Preprocessing

Preprocessing

This strategy does not 
just take long; it also 

costs a lot of memory!
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Optimal performance through smart memory management

Processing time-point by time-point is more efficient!

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation

This strategy also 
works tile-by-tile on 

large 3D stacks!

Load data Save dataPreprocessing Transformation Segmentation



Slide 32

Robert Haase
@haesleinhuepf
BIDS Lecture 7/14
May 14th 2024

Optimal performance through smart memory management

Even better: Distribute tasks between parallelized computation systems

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation

Load data Save dataPreprocessing Transformation Segmentation
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Optimal performance through smart memory 
management
Even better: Distribute tasks between parallelized computation systems

Save data

Save data

Save data

Save dataSegmentation

Save dataTransformation Segmentation

Save dataPreprocessing Transformation Segmentation

For this strategy, 
advanced 

programming skills are 
necessary.

… yet.

https://www.python.org/ https://www.dask.org/ https://cupy.dev

https://clesperanto.net

pyopencl / 

clesperanto

https://www.python.org/
https://www.dask.org/
https://cupy.dev/
https://clesperanto.net/
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Tiling

The last perimeter against big data

If the image is too large for the computer 
memory, image processing as a whole is not 
possible.

Processing tile-by-tile poses new 
challenges
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Tiling

Example: Gaussian blur (sigma = 20)

Solution: Process with overlapping tiles (size + margin)

Margin: 0 pixels Margin: 10 pixels Margin: 20 pixels

Optimal margin size 
depends on algorithm 

and its parameters
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72x72 pixels

52x52 pixels

Tiling

Example: Gaussian blur (sigma = 20 pixels)

Solution: Process with overlapping tiles (size + margin)

Tile 
32x32 pixels

Margin: 10 pixels
Size: 2.7x original

Margin: 20 pixels
Size: 5x original

Computation time 
depends on tile size and 

margin width
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Tiling

Some algorithms are hard to solve by processing tiles

Example: Connected component analysis

Checking which labels 
touch and combine 

them is feasible.
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Tiling

Some algorithms are hard to solve by processing tiles

Example: Connected component analysis

There are algorithms for 
that, but hardly available 

tools.
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Tiled image processing in Python

Key: tiled file formats, for parallel, distributed, lazy loading

3
9

After executing 
this, no pixel has 

been read yet.
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Tiled image processing in Python

Key: tiled file formats, for parallel, distributed, lazy loading

Figure taken from Moore et al, licensed CC-BY 4..0
https://www.biorxiv.org/content/10.1101/2023.02.17.528
834v4.full.pdf

https://creativecommons.org/licenses/by/4.0/deed.en
https://www.biorxiv.org/content/10.1101/2023.02.17.528834v4.full.pdf
https://www.biorxiv.org/content/10.1101/2023.02.17.528834v4.full.pdf
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Tiled image processing in Python

Lazy processing
After executing 

this, no pixel has 
been read yet.

After that, 
results are 
avaialble
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Tiling with/out overlap

Processing of images in tiles: artifacts ad tile borders
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Tiling with/out overlap

Processing of images in tiles: artifacts ad tile borders
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Methods for comparing 
measurement methods
Robert Haase
Using materials Reusing materials from Daniela Vorkel, 

Douglas G. Altman and J. Martin Bland
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Method comparison studies

Scenario
• You work in a lab and try to improve procedures

• Chemical protocols

• Sample preparation

• Analysis protocols

• Physical measurements

• Image analysis

Paired data
• The same dataset analyzed twice with different methods
• The same dataset analyzed twice with the same method

Direct method comparison –descriptive statistics

Unpaired data
• Analyze independent sample sets
• Conclude about their similarity or relationship

Inferential statistics
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Method comparison studies

Martin Bland and Douglas Altman work on Method Comparison (excerpt)

Copyright J. Martin Bland and Douglas G. Altman.

https://www-users.york.ac.uk/~mb55/meas/ab83.pdf (Open Access)
https://doi.org/10.1016/S0140-6736(86)90837-8

https://www-users.york.ac.uk/~mb55/meas/ab83.pdf
https://doi.org/10.1016/S0140-6736(86)90837-8
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Comparison of means

Comparing mean measurements appears reasonable on the first view.

Cell volume V

700 
µm³

600 
µm³

500 
µm³

Method A

Method B

ΔV = 100 µm³

Difference of 
means

F
re

q
u

e
n

cy
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Comparison of means

Are two methods doing the same if their mean measurement is similar?

What if mean values were 
“very” different?

Method B  cannot 
replace method A Similar means is a 

necessary condition, 
but is it sufficient?
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Comparison of means

Are two methods doing the same if their mean measurement is similar?

The scientific method: Show that a method 
doesn’t work with just one example. And you 
have proven that the method doesn’t work 
in general.

Measurement A Measurement B

C
o

u
n

t

C
o

u
n

t
• Draw histograms! How can two methods do the same if histograms from their 

measurements are different?

Similar means is a 
necessary condition, 

but it is NOT sufficient!
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Correlation

Are two methods doing the same if they correlate?
• Correlation: Any kind of relationship.

• Measurable; e.g. using Pearson's Correlation Coefficient r enumerated linear correlation.

x

y

1 Altman & Bland, The Statistician 32, 1983

Comparison of two methods of measuring 
systolic blood pressure (Data taken from 1)

𝑟(𝑋, 𝑌) =
𝐸(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑦)

𝜎𝑋𝜎𝑌

𝑟(𝑋, 𝑌) =
σ𝑥∈𝑋,𝑦∈𝑌

𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑌
𝑛

𝜎𝑋𝜎𝑌

Expectation E Mean average µ

Standard 
deviation σ

In practice E is the weighted sum:
Number of 

measurements 
n
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Correlation

Comparison of two methods of measuring 
systolic blood pressure (Data taken from 1)

𝑟(𝑋, 𝑌) =
σ𝑥∈𝑋,𝑦∈𝑌

𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑌
𝑛

𝜎𝑋𝜎𝑌
= 0.94

Are two methods doing the same if they correlate?
• Correlation: Any kind of relationship.

• Measurable; e.g. using Pearson's Correlation Coefficient r enumerated linear correlation.

Measurement 1

M
e

a
su

re
m

e
n

t 
2

1 Altman & Bland, The Statistician 32, 1983
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Correlation: Pearson’s r

Pearson’s r lies between -1 and 1
• 1: Positive linear correlation

• 0: No linear correlation

• -1: Negative linear correlation

h
tt

p
s:

//
e

n
.w

ik
ip

e
d

ia
.o

rg
/w

ik
i/

P
e

a
rs

o
n

_c
o

rr
e

la
ti

o
n

_c
o

e
ff

ic
ie

n
t#

/m
e

d
ia

/F
il
e

:C
o

rr
e

la
ti

o
n

_e
x

a
m

p
le

s2
.s

vg

2-dimensional normal 
distribution

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg
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Correlation

Comparison of two methods of measuring 
systolic blood pressure (Data taken from 1)

𝑟(𝑋, 𝑌) =
σ𝑥∈𝑋,𝑦∈𝑌

𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑌
𝑛

𝜎𝑋𝜎𝑌
= 0.94

Are two methods doing the same if they correlate?
• Correlation: Any kind of relationship.

• Measurable; e.g. using Pearson's Correlation Coefficient r enumerated linear correlation.

Measurement 1

M
e

a
su

re
m

e
n

t 
2

“Positive linear correlation”

Measurement 1 is 
almost always larger 
than measurement 2

The scientific method: Show that a 
method doesn’t work with just one
example. And you have proven that 
the method doesn’t work in general.

1 Altman & Bland, The Statistician 32, 1983
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Correlation

In order to evaluate the difference between two methods, you should visualize them first.

“The purpose of computing is insight, not numbers.”, Richard Hamming

Measurement 1

M
e

a
su

re
m

e
n

t 
2

1 Altman & Bland, The Statistician 32, 1983

Average measurement

D
if

fe
re

n
ce

 o
f 

m
e

a
su

re
m

e
n

t

Bland-Altman plotScatter plot
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D
if

fe
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n
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 o
f 
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The confidence interval

“The British Standards Institution (1979) define a coefficient of 
repeatability as ‘the value below which the difference between two single 
test results ... may be expected to lie with a specified probability; in the 
absence of other indications, the probability is 95 per cent’.”1

The mean difference between 
the methods (“offset”)

𝐶𝐼 = (𝜇 − 2𝜎, 𝜇 + 2𝜎)

Mean 
difference

Standard deviation 
of  differences

The confidence interval CI of agreement

1 Altman & Bland, The Statistician 32, 1983

Average measurement
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Bland-Altman plots in practice

Depending on the shape of the point-cloud, different systematic bias 
might be present.

5
6

Agreement with a given 

random error 
Absolute error or “offset” Relative error

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/41_descriptive_stati
stics/bland_altman_simulated_data.html

https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/41_descriptive_statistics/bland_altman_simulated_data.html
https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/41_descriptive_statistics/bland_altman_simulated_data.html
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Bland-Altman plots in practice

Comparison: ImageJ versus GPU-accelerated script
to measure intensity in the nuclear envelope of a 
nucleus

5
7

Dani Vorkel
(Myers lab)

@happifocus

Source: Vorkel and Haase (2022), licensed CC-BY 4.0
https://link.springer.com/chapter/10.1007/978-3-030-76394-7_5

Scatter plot Bland-Altman plot

https://creativecommons.org/licenses/by/4.0/
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Exercises

Robert Haase

Funded by
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Exercise: GPU-accelerated image processing

Compare CPU processing speed with a GPU
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Exercise: Tiled image processing

Apply background-
removal to an image 
in tiles. Determine 
the overlap width 
that‘s necessary to 
have artifact-free 
results.
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Exercise: Bland-Altman plots

Compare two measurement libraries: scikit-image versus SimpleITK
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