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Modern radars generally incorporate pulse 
compression waveforms to obtain the desired range 
resolution while avoiding pulses having large peak 
powers. Pulse compression waveforms are exemplified 
by the Barker, pseudorandom shift register, chirp, 
and the polyphase codes [l-31. New waveforms are 
described here which have been recently investigated 
for use in radar systems. Of particular interest 
are multiple dissimilar waveforms having very low 
sidelobes after processing. Low sidelobes are desired 
to prevent the masking of weak targets in the sidelobes 
of strong targets or clutter returns. The multiple 
waveforms (whose number we set equal to M) are 
processed by individually matched filtering, time 
aligning, and summing the results. 

The multiple waveforms considered here 
are derived from either complementary or 
noncomplementary waveforms. Complementary 
waveforms [4-91 are coded sequences (complex 
numbers in general) having autocorrelation functions 
(ACFs) (or equivalently the outputs of pulse 
compressors consisting of filters matched to the 
coded sequences) which when time aligned and added 
together, sum to zero everywhere except at the match 
point. This is illustrated in Fig. 1 for M 
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Fig. 1. Complementary code example. 

In [2 and 31, new multiple waveforms were 
discussed which when filtered by filters matched 
to a different waveform of the set, have zero 
cross-correlation response after combination of the 
individual responses. These waveforms have potential 
applications in cancelling stationary clutter from 
ambiguous ranges in a medium or high pulse-repetition 
filter (PRF) radar, and/or in reducing mutual 
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interference between radars in proximity to each other 
that are operating in the same frequency band. 

This paper is an extension of that work presented 
in [2, 31. Here we give general forms for both 
the complementary and noncomplementary zero 
cross-correlation waveform sets. In addition, various 
properties of these codes and their relationship to 
zero sidelobe periodic codes are stated and proved. 
Also, a radar application of using these codes is 
presented. 

It. DEFINITIONS 

In this section we define our nomenclature and 
review the concept of periodic coded waveforms. A 
code word a is defined as a vector of length N and 

a = (aO,al,---,aN-l) 

where a,, n = 0,1,. . . ,N  - 1 are the elements of 
the code word. This code word modulates a carrier 
frequency and is match filtered at baseband upon 
reception. The aperiodic ACF of a is given by the 
expressions 

N-1-k 

r,(k) = UfUi+k,  k = 0,1, ..., N - 1 
i=O 

N-1-k 

ra(-k) = af+kai, k = 1,2, ..., N -  1 
i = O  

where * in the superscript denotes complex 
conjugation. The k = 0 ialue of r,(k) corresponds to 
the match point and the k # 0 values correspond to 
the right and left sidelobes of the compressed pulse. 

A periodic code is one that repeats the code 
word a indefinitely. Hence, if aPc is the periodic code 
associated with a then 

aPc = a o a o a  ... 
where the symbol “0” denotes concatenation. On 
reception, a periodic code is match filtered with its 
code word. The output of the correlation process is 
also periodic with a period N .  Hence, the matched 
peak response repeats every N unit time delays as 
does the sidelobe response. We define the N point 
periodic ACF as 

N- 1 

rp (k )  = xa;a(j+k)mdN, k =O,I , . . . ,N-I .  
i =O 

Note that the i + k subscript is taken modulo N .  Thus 
we are computing the residue of i + k with respect to 
the number of subpulses contained in the code word. 
For our, development, we always compute the subscript 

with respect to the code order and drop the mod N 
notation from the subscript, thus U N + ~  = U i .  

Define the vectors, hk,  k = O , . .  . , N  - 1 as 

ho = (ao,%...,Q-i) 

hi = ( ~ 1 , ~ 2 , . . . , a ~ - i , a o )  

h2 = (a2,ao,. . . ,a~-i ,a0,ai)  (5) 

hN-1 = (aN-l,aO,al,...,aN-2) 

where these vectors are the circular rotations of a. 
Equation (4) can be rewritten as 

r,(k)=lq;hz, k=0 ,1 ,  ..., N - 1  (6) 

where T denotes the vector transpose operation. 

property that 
A zero sidelobe periodic code (ZSPC) has the 

r p ( k )  = h;hT = 0, for k # 0. 

If all the code elements of a ZSPC have unit 
amplitude, then the code is called a perfect periodic 
code [l, 21. 

We now consider multiple waveforms. Define the 
code matrix C as an M x N matrix of code words: 

1 coo CO1 . ”  c0,N-1 

c10 c11 ... C1.N-1 

(7) 

Let there be M code words of length N where the 
mth code word (rn = O , l ,  ..., M -  1) is defined by the 
m + lth row of C or 

c m  = (~rnO,~ml,~..,~m,N-l). (9) 

We define the aperiodic cross-correlation vector (CCV) 
between c, and c, as 

( m n )  ( m n )  ( m n )  ch 2, = (r-(N-i), r-(N-q, , r ~ m n ) , r ~ n ) , * * * ,  rN-1) 

(10) 

where the bold asterisk * denotes the linear 
convolution operation, - denotes the time reversal 
of the sequence c, and 
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m =O 

We note that if 

Nth position 
1 M-1 

C: e m  = (0~0,. . .,I, 40,. ,o> (14) 
m =O 

then the code words of C form a complementary code 
set. If Iqifil = lqf)l, then the summed CCV is called 
"magnitude symmetric" Furthermore, if 

M-1 

C c : L e m + l  =o, 1 # O  (15) 
m=O 

where 0 is a vector of 2N - 1 zeros, then we call the 
code words of C a zero cross-correlation code (ZCC). 

In the following sections we consider codes which 
are formed by concatenating the M rows of C. Thus a 
code word a is formed as 

111. PROPERTIES O F  ZCC COMPLEMENTARY 
WAVEFORMS 

There is a relationship between ZCC 
complementary codes and their associated periodic 
code which is stated in the following theorem. 

THEOREM 1. Ifthe rows of C form a ZSPC, are 
a complementary code, and the summed CCV is 
magnitude symmetric, then the rows of C form a ZCC 
Code. 

PROOF. Let us form the periodic code associated 
with C 

Cl,N-I,C20,. . . ,CM-l,N-l) .  (17) 

The circular rotations of h~ are defined by (5). 

for all m,n. It is straightforward to show that for a 
Let 1 = 11N +l* where 05 12 < N and set ri?) = 0 

ZSPC, 1 # 0 

M-1 M-1 
(m m + l l + l )  qhT = rl(zm~m+zl) + r-(k- j2)  = 0 (18) 

m =O m =O 

where m + 11 and m + 11 + 1 are taken modulo M. 

Using (13) we know that 

m -0 

Note that qi,, = 0 because riy) = 0 for all m,n. It 
is instructive to write (18) out for successive values of 1 
using (19) 

(0) (1) 

* T - (0) (1) 

GhT = 4 1  + 4-(N-1) = 0 

h o h 2  - 4 2  + L ( N - 2 )  = 0 

We note that every Nth equation of (20) is of the 
form, hihTN = 4 C - l )  + q t )  = 0, n = 1,2, ..., N - 1. 
since q 2 - l )  = o it follows that 4:) = o for n = 
1,2,. . . , N - 1. It is Seen that if the code words of C 
are complementary then qy) = 0 for j # 0. Thus using 
the first N - 1 equations of (20) imply that q$ = 0 for 
j = 1,2,. . . , N - 1. If the summed CCV is magnitude 
symmetric then 47) = 0 for j = 1,2,. . ., N - 1. Hence 
using the (N + 1)th through (2N - 1)th equation of 
(20), it follows that qi? = 0. This argument can be 
repeated to show that 47) = 0 for all i, j except for 
when i = j = 0. Hence the theorem follows. 

The following two theorems can be shown using 
the same arguments: 

THEOREM 2. If C is a ZCC code and complementary 
then C is also a ZSPC. 

THEOREM 3. If C is a ZCC code and a ZSPC then C 
is complementary. 
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Next, consider the following matrix 

K zems 

cm CO1 cm ... C0,N-l oo... 0 

c10 c11 c12 * * .  C1,N-l oo... 0 

. ... caug = 

(21) 
where K is an arbitrary positive integer. This Caug 
matrix is merely the original C matrix augmented 
with an M x K block of zeros. We show the following 
theorem. 

THEOREM 4. If C is a ZCC code and complementary 
then Caug is a ZSPC. 

PROOF. It is elementary to show that if C is a ZCC 
code and complementary then Caug is a ZCC code and 
complementary. Hence using Theorem 2 the theorem 
follows 

IV. GENERAL FORM OF ZCC COMPLEMENTARY 
WAVEFORMS 

Consider the following N x N code matrix C where 

(22) 

an element of C is defined by 

cm; = Xmd;+lWf'mi,  m,  i = 0,1, ..., N - 1 

dl ,  d2,. . . , d ~ - l  are arbitrary complex numbers, and 
M' is an integer relatively prime to N .  We show the 
following theorem. 

THEOREM 5. 
ZCC complementary code. 

The matrix C as defined by (22) is a 

Thus if we set n = m + I ,  then 
N - l - k  

M'l i  
dT+ldi+k+lWN 

(26) i = O  

N - l - k  
r (m,m+l )  - AlW-M'mk 

- k  - N d i+ ld7+k+lWf '1 i*  (27) 
i =O 

From these equations, it can be shown that 

N - 1 - C  

N - l - k  

X d;+ld;+k+1Wf'". (29) 
i=O 

Since 
N - 1  

m =O 

for M' relatively prime to N and k # 0, it follows that 
q t )  = q1f)k = 0 for k , l  # 0. For k = 0 and 1 # 0, the 
second summation in both (28) and (29) is of the same 
form as (30). Thus q f )  = qi-') = 0 for k = 0 and 1 # 0. 
Hence the theorem is proven. 

We note that for X = dl = d 2 . .  . = d N  = M' = 1 
that the general form reduces to the Frank matrix 
which was shown in [2] to be a ZCC complementary 
waveform. In addition, if the Lewis-Kretschmer P4 
code [l] has a length that is a square integer N2,  and 
the elements of this code are put into square matrix 
form where the concatenation of the rows generate the 
P4 code, then it is straightforward to show that this 
code also fits the general form given by (22) and hence 
is a ZCC complementary code. 

V. ZCC NONCOMPLEMENTARY WAVEFORMS 

In this section the following theorem is proved. 

THEOREM 6. If C has the form 

1 aobo aobl ... aObN-1 
alba albl ... albN-1 I 
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Fig. 2 ’hnsmitted multiple codel. 

and a = (ao,al,. . . , a ~ - l )  is a ZSPC, then the rows of C 
form a ZCC code. 

We call the code given by (31) an inner-outer code, 
because a given inner code of subpulses represented by 
bo, bl,. . . , b N - 1  is modulated on a pulse-to-pulse basis 
by an outer code given by aO,al,. . ., a M - 1 .  

PROOF. The individual code elements are given by 

cmi=ambi,  m, i = O , l ,  ..., N - 1 .  (32) 

Using (11) and (12), it follows that 
N - 1 - k  

i = O  

N - 1 - k  

k > 0. 

(33) 

i = O  

Thus setting n = m + I  

k 2 0, (35) 

Since a is a ZSPC, 
M - 1  

for I f0. 
m =O 

Hence q t )  and q(1i are equal to zero and the theorem 
follows 

We note that the advantage that the 
noncomplementary ZCC waveforms have over the 
complementary ZCC waveforms is that the code 
matrix does not necessarily have to be square, i.e. 
M f N .  Hence, there is inherently more flexibility in 
transmitting and receiving these waveforms. 

VI. RADAR APPLICATION EXAMPLE 

In this section a radar application using the 
complementary or inner-outer waveforms described 
with elements in the previous sections is briefly 

discussed. Only codes that are unit amplitude or zero 
(if the code element is turned off) are considered. 
These codes have the practical advantage that they 
are energy efficient on transmit. Thus for the general 
form of the ZCC complementary code given by (22), 
we stipulate that dl ,  d2,. . . , d ~ - l  must be on the unit 
circle. 

Most radar waveforms do not have 100 percent 
duty cycles but have off-times which are used to listen 
for or receive the waveform. Hence the actual pulse 
train associated with the matrix C may look as shown 
in Fig. 2. Here each row of C forms a pulse (or group 
of subpulses). We define the code of the mth subpulse 
associated with the m + 1 row or pulse as 

c m  = (cmO,Cml,...,~m,N-l)~ (37) 
Each pulse is separated by a given pulse-repetition 

interval (PRI,) where there are Os transmitted 
between the end of one pulse and the next. Normally 
this “off” time is greater than the pulse “on?’ time. All 
of the code words are transmitted in PRI, seconds. 
Thereafter, they may be repeated with a period PRI, 
for multiple burst processing. 

One application of the ZCC complementary 
codes, which was first presented in [2 and 31 and 
is also applicable to ZCC inner-outer codes, is in 
removing ambiguous range radar returns for medium 
or high PRF radars. An example of this for a single 
burst is shown in Fig. 3 for N = 4. The waveforms 
are transmitted as shown in Fig. 3 according to the 
rows in C, but the return signals are processed only 
during the indicated processing interval in multiple 
channels having filters matched to the indicated codes 
in each PRI. That is, after transmitting CO in the 
processing interval, all received signals are processed 
by filters matched to CO, c3, c2, and c1 in channels 0 
to 3 respectively, and so on. The result is that channel 
0 is matched to the first unambiguous range interval 
and rejects stationary returns (those that have almost 
zero Doppler shift) from the 2nd, 3rd, and 4th time 
around range intervals. Likewise, channels 1, 2, and 
3 are matched to the 2nd, 3rd, and 4th time around 
returns and reject stationary clutter from the other 
range intervals. If the waveforms are complementary, 
stationary targets in the matched intervals have no 
sidelobes. Note that the fill pulses c1, c2, and c3 are 
necessary for this processing scheme (as they would 
be for any ambiguous range radar). However, if 
multiple bursts were used in a particular look direction 
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Fig. 3. Example of orthogonal waveform processing for N = 4. 
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Fig. 4. ACF for ZCC complementary waveforms 
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Fig. 5 .  ACF for noncomplementary ZCC waveforms. 

then these fill pulses would be unnecessary for the 
succeeding bursts, because the preceding single burst 
would provide the fill pulses for the current burst. 

For example, the matched filter response for a 
single burst of ZCC complementary waveforms is 
shown in Fig. 4 and for noncomplementary ZCC 
waveforms, in Fig. 5. From Fig. 4, we see that there 
are no sidelobes for the ZCC complementary 
waveforms. From Fig. 5, we observe that the sidelobes 
are non-zero only in the first N - 1 near-in right 
and left sidelobes about the match point for the 
noncomplementary ZCC waveforms. In fact, these 
sidelobes correspond to the sidelobes of the ACF of 
the codeword b times M where the sidelobes level 
is measured relative to the match point gain M N .  
Finally, we note that for clutter having a small spectral 
spread about zero Doppler, the nonambiguous range 
clutter can be reduced using multiple target indicator 
(MTI) processing. The PRI of the MTI canceler would 
equal PRI,. 

VII. SUMMARY 

In this paper we have described the properties 
of zero cross-correlation waveform codes, i.e., the 
cross-correlation responses sum to zero everywhere. 
These codes, in turn, are related to periodic codes 

having zero sidelobe ACFs. These ideal periodic codes 
are important in themselves because the underlying 
aperiodic codes usually have useful attributes such as 
low sidelobes and/or good Doppler tolerance. This is 
exemplified by the Frank, P4, and shift register codes. 

Two general forms of the ZCCs were described. 
The first form consists of a sequence of dissimilar 
waveforms that have the additional property of being 
complementary. The second form consists of a 
sequence of identically coded waveforms except for 
an outer code that results in a different phase being 
associated with each repetitive waveform. 

A processing scheme using multiple waveforms 
was described that utilizes the ZCCs to eliminate zero 
Doppler ambiguous range clutter that might occur in a 
medium or high PRF radar. For clutter having a small 
spectral spread about zero Doppler, the nonambiguous 
range clutter is reduced in a manner similar to MTI 
processing. A detailed assessment of the tradeoffs, and 
the ability to resolve the true range of a target is the 
subject of future work. 
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