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When Machine Learning Meets 2D Materials: A Review

Bin Lu, Yuze Xia, Yuqian Ren, Miaomiao Xie, Liguo Zhou, Giovanni Vinai,
Simon A. Morton, Andrew T. S. Wee, Wilfred G. van der Wiel, Wen Zhang,*
and Ping Kwan Johnny Wong*

The availability of an ever-expanding portfolio of 2D materials with rich
internal degrees of freedom (spin, excitonic, valley, sublattice, and layer
pseudospin) together with the unique ability to tailor heterostructures made
layer by layer in a precisely chosen stacking sequence and relative
crystallographic alignments, offers an unprecedented platform for realizing
materials by design. However, the breadth of multi-dimensional parameter
space and massive data sets involved is emblematic of complex,
resource-intensive experimentation, which not only challenges the current
state of the art but also renders exhaustive sampling untenable. To this end,
machine learning, a very powerful data-driven approach and subset of
artificial intelligence, is a potential game-changer, enabling a cheaper – yet
more efficient – alternative to traditional computational strategies. It is also a
new paradigm for autonomous experimentation for accelerated discovery and
machine-assisted design of functional 2D materials and heterostructures.
Here, the study reviews the recent progress and challenges of such endeavors,
and highlight various emerging opportunities in this frontier research area.

1. Introduction

Since the discovery of graphene, 2D materials have attracted
much attention from researchers across the globe, with sig-
nificant achievements in their preparation, characterization,

B. Lu, Y. Xia, Y. Ren, M. Xie, L. Zhou, W. Zhang, P. K. J. Wong
ARTIST Lab for Artificial Electronic Materials and Technologies, School of
Microelectronics
Northwestern Polytechnical University
Xi’an 710072, P. R. China
E-mail: zhang.wen@nwpu.edu.cn; pingkwanj.wong@nwpu.edu.cn
B. Lu, Y. Xia, Y. Ren, M. Xie, L. Zhou, W. Zhang, P. K. J. Wong
Yangtze River Delta Research Institute of Northwestern Polytechnical
University
Taicang 215400, P. R. China
G. Vinai
Instituto Officina dei Materiali (IOM)-CNR
Laboratorio TASC
Trieste I-34149, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202305277

© 2024 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202305277

theoretical analysis, and application. As
with other fields, materials science has
gone through a shift from the traditional
paradigm of experimental science to the
modern paradigm of data exploration.[1]

Against this backdrop, theoretical ap-
proaches, such as density functional theory
(DFT) and molecular dynamics (MD), have
been developed to analyze microstructures
of materials and guide future research.
However, due to the growing amount of
data and limited computational resources,
these methods are becoming increasingly
time-consuming. To overcome this chal-
lenge, a paradigm shift from ab initio calcu-
lations to extensive data exploration has oc-
curred in materials science, with machine
learning (ML) being an effective means
of realizing this shift. ML encompasses
a wide array of mathematical algorithms
and model systems, such as deep learning
(DL), deep neural network (DNN), and
support vector machine (SVM) algorithms,

etc. The goal of ML is to enable computers to learn from data, im-
prove their performance on tasks, and make accurate predictions
or decisions without explicit programming. There exists a large
body of literature on ML algorithms, and more in-depth discus-
sions can be found elsewhere.[2,3] ML has been widely adopted
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across multiple disciplines. Especially, the successful application
in high-energy physics,[4] drug design,[5] medical diagnosis,[6]

chip design,[7] and text recognition[8] also accelerates the inte-
gration of different knowledge and domains. The advantages of
ML over traditional methods in terms of recognition, search, and
prediction tasks have provided novel solutions to various conun-
drums in a broad spectrum of disciplines, including the frontiers
of 2D material sciences.

Figure 1 presents a comprehensive analysis of 187 relevant
publications by providing an overview of four types of informa-
tion, including the major breakthroughs enabled by ML-based
approaches, the annual number of publications, the number of
publications in specific research directions and the number of
citations. Figure 1a displays several major breakthroughs with
the involvement of ML. Since 2018, there has been a surge of
ML-based studies on 2D materials. In January 2018, Miyazato
et al. employed a gaussian naive bayes classification algorithm
to search for novel magnetic 2D materials.[9] In May of the
same year, Rajan et al. presented an ML model for bandgap pre-
dictions of functionalized MXenes.[10] Subsequently, in August
2018, Lin et al. proposed a SVM algorithm for the characteriza-
tion of graphene, MoS2 and their heterostructures, including the
identification of the thickness and even the stacking order.[11] In
September 2019, for the first time, Ding et al. developed a mul-
tiscale data-driven model to explore the application of ML in the
preparation of 2D materials.[12] ML has opened up more interest-
ing applications in the field of 2D materials since 2020. In June
2020, Siriwardane et al. explored the correlation between the exfo-
liation energy, formation energy, and structural factors of layered
ternary compounds with hexagonal and orthorhombic crystal
symmetries using ML and DFT.[13] Moreover, Chen et al.’s work,
published in October 2021, illustrated the feasibility of using ML
in device-processing optimization for 2D materials.[14] In Novem-
ber 2022, Vahdat et al. developed a ML approach to evaluate the
exfoliation potential of 3D compounds into 2D layers.[15] Most
recently, in January 2023, Song et al. established a framework
that enables the identification of 2D van der Waals (vdW) mag-
nets with high probability for experimental verification, based on
a large body of literature in materials science.[16] As shown in
Figure 1b, the number of published articles per year related to
ML in 2D materials research is increasing steadily, and this trend
is likely to continue. To provide further insight in ML-enabled ad-
vances, Figure 1c categorizes the publications based on the pre-
diction, discovery, preparation, characterization, and fundamen-
tal research of 2D materials. Figure 1d presents the statistics of
the article citations according to these five research directions,
with a total amount of citations in excess of 3700. These findings
suggest that the intersection of ML and 2D materials is rapidly
gaining recognition as a prominent field, with the active imple-
mentation of ML techniques anticipated to expedite the develop-
ment of 2D materials.

At present, ML has seen increasing popularity in 2D mate-
rials, with research directions expanding from merely discover-
ing and predicting properties to preparing, characterizing, and
exploring new physical phenomena. In studies related to ma-
terial properties, ML has been combined with DFT and MD
to explore the thermal properties,[17,33–38,46] bandgaps,[47–55] and
mechanical properties[56–59] of various materials, thereby accel-
erating the pace of research in this field. Furthermore, ML
has also been utilized for the discovery of novel 2D materi-
als, including catalytic,[60–68] photoelectric,[69–77] and magnetic
materials.[78–85,90–92] In terms of preparing 2D materials, ML
methods have been applied to deposition and exfoliation to en-
able easier and more controllable preparation of 2D materi-
als such as WTe2,[93] MoS2,[94–96] and WS2.[97,98] When it comes
to characterizing 2D materials, ML has been combined with
characterization techniques, like Raman spectroscopy, transmis-
sion electron microscopy, optical microscopy, and imaging, to
acquire accurate information such as the thickness[99–113] and
defects[114–117] of materials. The utilization of ML in 2D materials
research, along with the algorithmic processing of experimental
data, has the potential to support data analysis, leading to more
conclusive results on the reliability and reproducibility of given
datasets. Moreover, ML can facilitate the systematic correlation of
material structure and properties, potentially guiding the discov-
ery of new 2D materials.

To our knowledge, there have been seven published reviews
related to the current topic,[1,2,118–122] each covering some specific
aspects of it. However, a systematic overview with updated refer-
ences is highly desirable. This review aims to explore ML-enabled
studies on the preparation and characterization of 2D materials
and theoretical analysis, providing a detailed summary of exist-
ing publications in this regard. We focus on the advances of ML-
based research in terms of predicting the properties of 2D mate-
rials as well as guiding to the discovery, preparation, and charac-
terization of new 2D material systems; popular ML algorithms,
descriptors, and workflows are also introduced. In Section 2, we
introduce the general computing process of ML and some popu-
lar ML algorithms adopted for result optimization. In Section 3,
we review the advances in the ML-enabled prediction of the prop-
erties of 2D materials, including energy characteristics and ther-
mal, electronic, and mechanical properties. Section 4 covers the
role of ML in the discovery of new materials such as catalytic,
photoelectric, and magnetic materials. Section 5 focuses on the
ML-enabled optimization of preparation techniques of 2D mate-
rials. In Section 6, we present the advantages of using ML algo-
rithms in the characterization of 2D materials, examples of which
include identifying layers of materials, and locating and classify-
ing defects. Section 7 provides a summary of ML-based funda-
mental research on 2D materials and other emerging directions.
Finally, in Section 8, we outline the current challenges and future
prospects of ML-based studies on 2D materials.

Figure 1. Advances in ML-based research on 2D materials (as of July 2023). a) Major breakthroughs in 2D materials enabled by ML-based approaches.[9]

Reproduced with permission.[10–16] Copyright 2018, American Chemical Society; 2018, Springer Nature; 2019, Elsevier; 2020, American Chemical So-
ciety; 2021, Springer Nature; 2022, IOP Publishing; 2023, John Wiley and Sons. b) Number of publications of ML-enabled studies on 2D materials. c)
Number of publications of ML-based research categorized based on five research directions. d) Number of citations in the five research directions (total
citations > 3700).
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Figure 2. ML algorithms applied to 2D materials research.[124]

2. Machine-Learning Algorithms

ML algorithms applied to 2D materials research can either be
supervised or unsupervised, as illustrated in Figure 2. Supervised
learning algorithms can be categorized into either classifica-

tion or regression ones, depending on whether the measured
value is discrete or continuous.[123] Unsupervised learning
algorithms, depending on their purpose, can be divided into
clustering and dimensionality reduction algorithms. As elabo-
rated in Figure 3, the construction of an ML model generally

Figure 3. ML model construction workflow: a) turn real-world problems into mathematical tasks, identify the type of available data and the target task
(classification, regression, clustering); b) collect and preprocess data, the quantity and quality of the data will determine the model’s performance; c)
preprocess and select features, visualize data analysis results, find potential correlations between variables, assess whether the data are balanced, and
partition data into a training set and a test set; d) select and train the ML model; e) assess the parameters, analyze modeling errors, and fine-tune
parameters for optimization; f) output the prediction results.
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involves six steps and will be discussed in detail in the following
sections.

2.1. Target Identification

There is no “one-size-fits-all” solution for solving problems re-
lated to 2D materials. The choice of ML algorithm will vary de-
pending on the specific research target. Therefore, identifying the
target and selecting a proper algorithm are essential. Supervised
learning algorithms deduce function from labeled training data,
where the function connects the known input-unknown out-
put pairs. Among them, regression algorithms can output spe-
cific numerical values and are effective for predicting the prop-
erties of 2D materials, such as bandgap[47] and Curie tempera-
ture (TC),[140] etc. On the other hand, classification algorithms
have significant advantages in solving discrete tasks and answer-
ing yes/no questions, such as the prediction of thermodynamic
stability[17] or magnetic properties[137], etc.

Contrary to supervised learning algorithms, unsupervised
learning algorithms, which encompass clustering and dimen-
sion reduction, deal with unlabeled data and aim to seek and
deduce potential connections among samples. K-means cluster-
ing (KMC), the most commonly used clustering algorithm in
2D materials research, swiftly and automatically groups numer-
ous 2D materials into clusters with similar features, thereby un-
veiling the characteristics of these unlabeled clusters. For exam-
ple, in studies involving identification of the number of layers
in 2D materials, distinct RGB values are linked to various layer
numbers, allowing materials with similar or identical layer num-
bers to be grouped into the same cluster.[106] Dimension reduc-
tion algorithms, such as least absolute shrinkage and selection
operator (LASSO), are primarily utilized to map data from the
original high-dimensional space to the low-dimensional space,
thereby reducing model complexity and improving generaliza-
tion performance. In addition, two ML algorithms that are not
commonly employed in 2D material studies are semi-supervised
learning and reinforcement learning. Semi-supervised learning,
which combines with characteristics from both supervised and
unsupervised learning, is utilized in scenarios of incomplete data
labeling, effectively reducing the high costs associated with the
process. For example, in study of discovering new vdW magnets,
semi-supervised learning is applied to cope with the challenges
of sparsely labeled materials data, thereby enhancing the perfor-
mance of ML models.[90] Reinforcement learning (RL), unlike
the algorithms mentioned above, does not rely on a pre-existing
dataset to train models. Instead, it relies on the interaction be-
tween an agent and an environment to learn the optimal strategy
through trial and error. Such algorithms are covered in the fun-
damental research on 2D materials summarized in Section 7,
including tasks like finding the optimal design of the MoS2’s
Kirigami structure.[201]

It is essential to acknowledge that, in many instances, directly
determining the most appropriate ML algorithm for a specific
task in 2D materials research can be challenging. In practice, it
is common to utilize a range of ML algorithms to train multi-
ple models tailored to a specific task. Subsequently, these models
undergo thorough comparison, and the one demonstrating the
lowest error and uncertainty is selected.

2.2. Data Collection and Preprocessing

Building a database is the next step after selecting the algo-
rithm. The quality and quantity of the data, which serve as in-
put, are crucial factors that will determine the model’s reliabil-
ity and performance. The desired data can be collected from sev-
eral sources, mainly including published articles, experiments,
as well as computations. Collecting data from publications allows
access to large amounts of data, but ensuring the quality and re-
liability of the data may pose particular challenges in terms of
data uncertainty assessment and intricate data preprocessing.[18]

Furthermore, acquiring significant volumes of research data un-
der limited experimental conditions is by itself time-consuming,
and the measured results typically come from a small sample set.
On the other hand, first-principles calculations have mitigated
the limitations of experiments, enabling a substantial amount
of available data to be generated in a relatively shorter time and
with a lower cost. Nevertheless, only with unified first-principles
calculation parameter standards can this method become one of
the preferred strategies for constructing material databases.[19] In
this regard, Torelli et al. utilized first-principles calculations with
the PBE+U functional to screen for magnetic insulators based on
the C2DB, which accurately handles strongly correlated systems,
in contrast to all computations in C2DB that are performed us-
ing PBE functions. In addition to the known compounds within
the database, they also constructed and discovered 17 novel in-
sulating magnetic materials with a crystal structure based on Cr-
BrS. Finally, they identified and predicted 10 candidates with crit-
ical temperatures surpassing that of CrI3. It is noteworthy that
the calculated exchange constants for ferromagnetic materials in
this study have been integrated into the C2DB.[20] The another
method is to obtain substantial volumes of data from open-source
databases available on repository websites. One of the earliest
open-source databases, the Inorganic Crystal Structure Database
(ICSD), was created in 2002 and comprehensively covers crystal
structure information for non-organic compounds obtained from
previous calculations and experiments.[21] The Materials Project
database, founded in 2013 and built upon the ICSD,[22] stands
as the core program of the Materials Genome Initiative,[23] em-
ploying high-throughput calculations to unveil the properties of
all known inorganic materials. The Computational 2D Materi-
als Database (C2DB), established in 2018 and constructed us-
ing high-throughput calculations, is one of the most widely uti-
lized open-source databases, encompassing ≈4000 types of 2D
materials.[24] It is essential to acknowledge that the continuous
emergence of these extensive open-source databases has sup-
plied an ample amount of high-quality and easily accessible data
for the training of ML models. For instance, publications that pre-
dict the properties of 2D materials and develop new 2D materi-
als frequently employ open-source databases. Table 1 lists several
other popular open-source databases used for research on 2D ma-
terials.

In certain cases, it is necessary to extract effective data from
multiple material databases and consolidate the data into another
database to fulfill the data volume required for ML model train-
ing. For instance, to identify non-magnetic 2D semiconducting
materials with hole-induced ferromagnetism, Meng et al. col-
lected 2D crystal structures from three databases: 2D Materials
Encyclopedia (2DmatPedia), C2DB, and Materials Cloud. In the
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Table 1. Popular open-source databases of 2D materials.

Database URL

Computational 2D
Materials Database
(C2DB)

https://www.cmr.fysik.dtu.dk/c2db/c2db.html

aNANt https://www.anant.mrc.iisc.ac.in

Materials Project https://www.materialsproject.org

JARVIS-DFT https://www.jarvis.nist.gov/jarvisdft

Materials Cloud https://www.materialscloud.org/discover

2D Materials
Encyclopedia
(2DMatPedia)

https://www.2dmatpedia.org

2D Materials https://www.materialsweb.org/twodmaterials

Inorganic Crystal
Structure Database
(ICSD)

https://www.2fiz-karlsruhe.de/icsd_home.html

Crystallography Open
Database (COD)

https://www.crystallography.net

Cambridge Structural
Database (CSD)

https://www.ccdc.cam.ac.uk/structures

Aflow https://www.aflowlib.org

Open Quantum Materials
Database (OQMD)

https://www.oqmd.org

data extraction process, they employed a high-throughput screen-
ing method to exclude magnetic metals, along with filtering out
repeated structures and those with low thermodynamic stability,
resulting in the selection of 3000 materials for subsequent hole
doping simulations.[92] When left unprocessed, this extracted
data, especially data not sourced from open-source databases,
may pose challenges in analysis and even become unusable due
to missing values, noise, and inconsistencies. Therefore, it is
essential to address these issues by manually filling in miss-
ing values, employing regression or clustering algorithms to re-
duce noise, utilizing clustering algorithms to identify and reduce
outliers, and transforming the data into a uniform format.[25]

In the study utilizing ML algorithms to identify the number of
graphene layers from optical microscope (OM) images, exper-
imental uncertainties like non-uniform illumination and cam-
era sensor degradation over time can render the microscope-
captured images unsuitable for direct identification. Therefore,
Yang et al. applied a median filter algorithm to reduce noise,
and then modeled the background’s color profile using a polyno-
mial function, following by subtracting it from the original im-
age. Their approach resulted in an improved image quality and
uniformity.[110] Subsequently, the preprocessed data is typically
partitioned into three subsets: a training set, a validation set, and
a test set, to prepare for the subsequent training of ML models.
The training set is used to train and fit the model during the learn-
ing process. Following the training of ML models on this set, val-
idation sets are utilized for cross-validation to assess the accuracy
of the model and adjust the hyperparameters. The testing set is
employed to assess the model’s accuracy, with the labels of the
testing set concealed during the evaluation process. The model’s
predictions are then compared to the actual values to evaluate its
generalization capacity.

2.3. Feature Engineering

Another crucial factor influencing the performance of ML mod-
els is feature engineering, which aims to remove redundant fea-
tures and establish proper structure-property relationships. Fea-
tures (also known as descriptors) describe the properties of mate-
rials, obtained by extracting object attributes from prepared data
and converting them into numerical or categorical formats. In
feature selection, different parameters can be used as features for
chemical and material structures, such as stoichiometric proper-
ties (fraction and number of elements presented, etc.), elemen-
tal properties (range of atomic radii and average atomic number,
etc.), electronic properties (bandgap, dielectric constant, work
function, electron density, and electron affinity, etc.), and crys-
tal features (translation vectors, fractional coordinates of atoms,
radial distribution functions, and Voronoi tessellations of atomic
positions, etc.).

When selecting features to describe a material, it is impor-
tant to consider its physical properties, particularly, the period-
icity and invariance.[26] Initial attempts to create material de-
scriptors relied solely on chemical composition, such as bond
lengths, bond angles, etc. The functional forms employed for
constructing interatomic potentials and fitting potential energy
surfaces depend on the components of a meticulously selected
representation of atomic neighborhoods.[27] Hansen et al. em-
ployed the pairwise interatomic force fields method to estimate
atomization and total energies of molecules, ensuring both sym-
metry and invariance in describing materials, while also prov-
ing its effectiveness in conducting preliminary stability assess-
ments of equilibrium geometries.[28] While the performance of
pairwise potentials is already quite good, their performance for
out-of-equilibrium molecular geometries is strongly degraded.
Therefore, simple metrics were subsequently incorporated to en-
code crystal structures, with the goal of maximizing the predic-
tive capabilities of the ML models. At the core of this method is
the ability to encode diverse material structures into computer-
interpretable descriptors while satisfying the periodic condi-
tions of materials. This encompasses four representative struc-
tural features: the structure graph, Coulomb matrix, topologi-
cal descriptor, and diffraction fingerprint.[29] Hansen et al. also
introduced the Bag of Bonds model, a distinctive variant of
the Coulomb matrix, which employs a vectorized representa-
tion of molecules to efficiently capture substantial non-locality
within chemical space and proficiently describe collective in-
teractions among numerous atoms or bonds. This representa-
tion maintains natural invariance under molecular rotations and
translations.[28] This study only can map from structure to prop-
erties but lacks the capability for reverse map from target proper-
ties to atomic structure, thereby hindering the realization of the
reverse material design paradigm.[30] Xie et al. employed a crys-
tal graph to represent periodic crystal structures, capturing both
atomic details and bonding interactions between atoms. They
proceed to build a convolutional neural network model, called a
crystal diffusion variational autoencoder, on this graph. This ap-
proach enables the direct learning of material properties from the
atomic connections within the crystal and avoiding the need for
an invertible representation.[31]

Another important consideration concerns the quantity and
quality of features. Generally, a higher ratio of sample size to

Adv. Sci. 2024, 11, 2305277 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305277 (6 of 40)

 21983844, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202305277 by C

ochrane E
stonia, W

iley O
nline L

ibrary on [02/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://www.cmr.fysik.dtu.dk/c2db/c2db.html
https://www.anant.mrc.iisc.ac.in
https://www.materialsproject.org
https://www.jarvis.nist.gov/jarvisdft
https://www.materialscloud.org/discover
https://www.2dmatpedia.org
https://www.materialsweb.org/twodmaterials
https://www.2fiz-karlsruhe.de/icsd_home.html
https://www.crystallography.net
https://www.ccdc.cam.ac.uk/structures
https://www.aflowlib.org
https://www.oqmd.org


www.advancedsciencenews.com www.advancedscience.com

feature dimension tends to result in better model performance,
while a lower ratio can result in longer model training times, in-
creased computational overhead, and even potential overfitting.
The most popular algorithm for feature selection in studies on
2D materials is the least absolute shrinkage and selection opera-
tor (LASSO) method. By establishing a penalty function, LASSO
compresses the coefficient of some features and sets the regres-
sion coefficient of some features to zero in order to identify the
features that have the strongest influence on the target material’s
properties.[26] Additionally, Principal Component Analysis (PCA)
and the Decision Tree (DT) method can also be employed for
feature selection. In the study of identifying metallic transition-
metal dichalcogenides for hydrogen evolution, the feature selec-
tion methods, such as PCA and gradient boosting, are used to
filter out the most significant features influencing hydrogen ad-
sorption strength.[64] In another study, the DT model, adept at
capturing intricate data relationships while mitigating variance,
is also employed to screen the important features for magnetic
materials.[139] When the existing features lack sufficient valid in-
formation to achieve satisfactory model performance, new fea-
tures can be constructed based on domain knowledge or gen-
erated using algorithms like the Sure Independence Screening
Sparsifying Operator (SISSO). The SISSO algorithm is designed
to construct models by continuously integrating essential exist-
ing features, from which it identifies the optimal mathemati-
cal expressions for describing the relationships within the data.
This approach also enhances the feasibility of achieving more
interpretable materials design.[17] Conversely, using numerous
correlated features will increase feature dimensionality, which
can prolong model training times and potentially lead to over-
fitting issues. In this case, we need to further either remove
features with low correlation Coefficients with the target prop-
erty or consider reconstructing features using the algorithms
mentioned above.

2.4. Model Training

After selecting databases and features, the ML model is then
trained, and its parameters are fine-tuned so that it will reach
more accurate predictions. Meanwhile, the hyperparameters of a
ML model should be pre-set and continually adjusted through
various available methods, such as grid or random search,
evolution strategies, Bayesian optimization, Hyperband, and
racing.[32] Following the model training, model validation and
evaluation are usually performed to evaluate whether the trained
model can accurately predict the target properties. Model valida-
tion involves sensitivity analysis and fitting degree analysis. Over-
learning of a model can reduce its generalization capacity and
lead to overfitting, where excessive consideration of details, in-
cluding noise and normal errors, occurs. In contrast, if a model
lacks an ability to map the relationship between data and show
the complexity of feature, underfitting can occur. For these rea-
sons, model validation is an important step. Cross-validation is a
popular method of validation when it comes to research on 2D
materials. During cross-validation, datasets are partitioned into
several mutually exclusive subsets (also called “folds”), where (k-
1) subsets are used as the training set and the remaining subset
as the validation set. The model is trained for k times, and the

average value of the k results is returned. This process is called
k-fold cross-validation.[3]

Model evaluation refers to the evaluation of a model’s gener-
alization capacity. Common evaluation indicators for regression
models include mean squared error (MSE), mean absolute er-
ror (MAE), root mean square error (RMSE), and R-Square (R2).
MAE indicates the average difference of the predicted value from
the actual value; MSE is the ratio of the squared errors between
the actual values and estimated values to the times of estimation,
which is a measure of changes in the data. The accuracy of the
prediction model in describing the sample data increases as the
MSE decreases. RMSE, the square root of MSE, is preferred in
nonlinear fitting. R2, also known as the coefficient of determi-
nation, reflects the ability of a regression model to fit data, with
a range from 0 to 1. A value closer to 1 indicates a better fit of
the model to the data. It is important to note that R2 is a rela-
tive measure and can vary greatly among different models built
on different datasets, with larger datasets having narrower dis-
tribution ranges generally resulting in higher R2 values. There-
fore, R2 alone is not sufficient for model evaluation and should
be considered along with other parameters. As for classification
models, commonly used evaluation indicators include accuracy,
precision (P), recall (R), F1 score, receiver operating characteris-
tic curve (ROC), and area under the curve (AUC). Accuracy is the
most basic evaluation indicator, calculated as the ratio of correctly
classified samples to total number of samples. In many cases, ac-
curacy alone cannot reflect the true performance of a model, so P
and R are introduced to complement its limitations. P represents
the probability of true positive predictions among all predicted
positives, while R represents the probability of true positive pre-
dictions among all actual positives. P and R provide subjective
and objective evaluations of a model’s predictive ability, but they
alone cannot comprehensively assess a model. Therefore, there
is a need for an evaluation metric that takes both P and R into
account, with the most common approach being the use of the
F-score. The F-score is the weighted harmonic mean of P and R,
and when their weights are equal, it becomes the commonly used
F1 score, where a higher value indicates superior model perfor-
mance. In addition, ROC is a curve that reflects the predictive
performance of a model, while AUC represents the area under
the ROC curve, ranging from 0.5 to 1. When evaluating a model’s
performance across different thresholds or dealing with sample
imbalance, AUC and ROC serve as more meaningful evaluation
metrics. A steeper ROC curve and a larger AUC are generally con-
sidered as indicators of better predictive capability of a model.

3. Predicting the Properties of 2D Materials

2D materials typically have more unique properties than their
3D parent materials and offer many possibilities for application.
However, predicting their properties using conventional theo-
retical and computational methods is resource-intensive. In this
regard, ML offers an effective solution for studying 2D mate-
rials and accelerating their discovery. Popular ML models for
property prediction include artificial neural networks (ANN)[47],
machine-learning interatomic potentials (MLIPs)[34,125] and
other regression models. For MLIPs algorithm, the interatomic
potential generated by training an ML model on a large training
database, which often involves thousands of DFT calculations,
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can predict target properties or attributes with better accuracy
and speed than standard DFT calculations. In addition, Algo-
rithms such as SISSO[17] and LASSO[33,50–53] are usually used
to find the descriptor with the largest contribution to the target
property, thereby optimizing the model’s performance.

The fundamental concept of using ML for property prediction
is to analyze and discover the nonlinear relationships between
properties and related factors based on existing information,
which can enhance our understanding of the underlying physical
or chemical mechanisms. For instance, the ML model proposed
by Garg et al. unveiled the explicit mathematical relationship be-
tween the shear modulus of graphene sheets and parameters
such as aspect ratio, temperature, number of atomic planes, and
the presence of defects.[56] The generation of extensive theoreti-
cal results covering various properties can also contribute to en-
riching open-source databases, thereby facilitating the discovery
of materials with desired properties. In Thygesen et al.’s study,
the ML model predicted 700 band structures of 2D semiconduc-
tors, which have been published on the C2DB web page.[127] In
addition, most ML algorithms used to predict various properties
are now open-source. A highly promising strategy involves inte-
grating existing ML models and subsequently screening a wide
range of materials tailored to specific applications, such as ther-
mally stable magnetic semiconductor materials. This process is
then followed by the evaluation of the most promising candidates
through DFT calculations or experiments. Based on databases,
such as C2DB and Materials Cloud, Dutta et al. trained ML mod-
els to classify materials as magnetic or non-magnetic, and pre-
dict magnetic moment and anisotropy energy per metal atom
for the members in the magnetic class. Using these predicted
results, they proceeded to design 278 new mixed 3d-5d transition
metal compounds that could potentially exhibit both high mag-
netic moments and anisotropy energies through element replace-
ments within the unit cell. After filtering through the ML model
and verifying with DFT calculations, they identified 7 new mate-
rials with stability, significant magnetic moments, and substan-
tial anisotropy energy.[91] However, given the excessively complex
and unique relationship between target properties and features,
it is essential to conduct a detailed analysis of each property of
2D materials individually. The following sections introduce some
of the advances made by ML-based predictions of a wide range
of 2D material properties (Table 2), such as thermal stability,[17]

thermal conductivity,[33–43] thermal expansion,[44–46] energy band
structure,[127–129] bandgap,[10,47–55] shear modulus,[56] fracture
toughness,[57–59] exfoliation energy,[130] binding energy,[131–132] ad-
sorption energy,[133–136] magnetic properties,[137–139] TC

[140,141] and
electrical breakdown limits,[142] etc.

3.1. Thermal Properties

3.1.1. Thermodynamic Stability

Thermal stability is a fundamental factor to consider in high-
throughput screening of 2D materials. In the study conducted by
Schleder et al, the thermodynamic stability of non-magnetic ma-
terials was analyzed based on the C2DB database.[17] Specifically,
they used the structural and atomic properties of the materials
as the feature set and applied the SISSO method to construct a

feature space and obtain the descriptors. These descriptors were
derived from nonlinear combinations of different features and
used to classify materials with a given structure into stable and
unstable materials based on their energy above the convex hull
(ΔHhull) and formation energy (ΔHf), as shown in Figure 4a. They
also employed a stochastic gradient boosting decision-tree classi-
fier to evaluate the contribution of each descriptor to the output
predictions. Finally, they selected the six best descriptors and in-
corporated them into the classifier. The study demonstrated the
importance of periodic group and the electron affinity in describ-
ing thermal stability. Although the researchers did not explore
the thermal stability of more complex magnetic materials, their
method successfully predicted thermal stability by relying solely
on the prototype structure in the absence of exact information
about the atom site.

3.1.2. Thermal Conductivity

Thermal conductivity describes the ability of a material to trans-
fer heat, which is the sum of phononic and electronic contri-
butions. Hence, for predicting thermal conductivity through a
ML model, it is crucial to incorporate phonons as features in
the model training process, even though phonon calculations by
themselves are computationally costly. Furthermore, when cal-
culating thermal conductivity using classical MD simulations,
interatomic potential also plays a crucial role. Therefore, many
research works have focused on using ML algorithms for inter-
atomic potentials.[33] The 2D semiconductor, WSe2, has an ex-
tremely low thermal conductivity that is comparable to that of
electric-insulation glass. Chan et al. developed ML-BOP, a bond-
order-potential model of the W-Se system based on supervised
ML that combines global and local optimization.[33] The model
uses their self-designed Tersoff-Brenner function to describe the
interatomic potential of WSe2, and the captured phonon disper-
sion relation and density of state are consistent with the results of
DFT calculations. This means that their model has the capability
to make precise predictions for the thermal conductivity of mono-
layer, multi-layer, disordered, and other low-dimensional nanos-
tructures of WSe2. The research uses the least-squares method
and linear regression (LR) to minimize the feature data, which
includes lattice parameters, elastic properties, equations of state,
cohesive energies, and phonon dispersion, obtained by DFT cal-
culations. The GA and Nelder-Mead Simplex algorithm are then
employed to generate or select candidate features. Among them,
the GA is for the global optimization of layered objects, while
Nelder-Mead Simplex is for searching the local optimum. Com-
bining the two can generate a set of optimal BOP parameters
of WSe2 (Figure 4b). Mortazavi et al. used the momentum ten-
sor potential (MTP) as an accurate and efficient model for de-
scribing interatomic forces.[36] Based on the interatomic poten-
tials of some 2D materials, MLIPs trained over short ab-initio
molecular dynamics (AIMD) trajectories could replace DFT cal-
culations to obtain the anharmonic atomic force constant. The
researchers used popular non-equilibrium MD simulations with
a fitted MLIPs to estimate the thermal conductivity of polyani-
line C3N monolayer. Compared with the first-principles calcula-
tion based on DFT plus the Boltzmann transport equation, their
method not only successfully reproduced the phonon group ve-
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Figure 4. a) The process of thermal stability classification: the ML model descriptor is comprised of basic information such as the element and atomic
structure, and the 2D materials to be predicted are partitioned into stable and unstable materials according to their ΔHf and ΔHhull . Reproduced with
permission.[17] Copyright 2020, American Chemical Society. b) The ML training workflow for WSe2 interatomic potentials. The training data comes from
DFT simulations, and a hierarchical objective function is used to assign weights to the features in a non-random way. Global and local optimization
are used to find the best parameters. Reproduced with permission.[33] Copyright 2019, Royal Society of Chemistry. c) A trained MTP model can closely
reproduce the phonon group velocity of monolayer phagraphene, graphene, and haeckelite, which can displace DFT calculations to obtain the anharmonic
atomic force constant. Reproduced with permission.[36] Copyright 2021, Elsevier. d) The phonon dispersion relations of graphene and h-BN obtained by
the MLIPs model (dashed line) and by DFT calculations (solid line) are consistent, and the MLIPs model can accurately predict the thermal expansion
coefficient. Reproduced with permission.[44] Copyright 2019, American Physical Society.
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Figure 5. a) An ML model used for predicting energy band structures of 2D semiconductors, that consists of an ANN with two hidden layers (left) and
a perceptron (right).[129] b) The CVN architecture for predicting the bandgap of 2D hybridized graphene, consisting of 12 convolution layers, one global
max-pooling layer, three fully-connected layers, and an output layer. Reproduced with permission.[47] Copyright 2019, Springer Nature. c) The fitness of
predicted bandgap to actual value was evaluated by comparing ML predicted value with C2DB calculated value. RF and GBDT results showed strong
linear correlations with the calculated values, while SVR and MLP results had weaker correlations. Reproduced with permission.[48] Copyright 2021,
Public Library of Science.

locities and phonon dispersions but also improved the accuracy
of classical MD simulations (Figure 4c).

3.1.3. Thermal Expansion

Materials are known to expand as their temperature increases,
but predicting the thermal expansion of 2D nanomaterials re-
mains a challenge. While AIMD simulations can provide very
precise estimates, their computing costs are high. Conversely,
classic MD simulations come with more affordable computing
costs, but cannot achieve the required level of accuracy. To ad-
dress this, Mortazavi et al. employed MD simulations to calcu-
late the linear thermal expansion coefficient (TEC) of carbon-
based nanosheets, in which the difference in TEC between struc-
tures can be attributed to the atom type, atomic configuration,
wrinkle amplitude, bond strength, and density.[44] Not only could
their trained MLIPs enable the investigation of thermal expan-
sion in complex nanomembranes across a broad temperature
range, but it could also exhibit excellent accuracy in reproducing
the phonon dispersion relations and TEC predicted by DFT cal-
culations (Figure 4d). In addition, based on the MLIPs algorithm,
Ali Rajabpour et al. also investigated the effect of a substrate on
the TEC of various 2D materials, including C3B, C3N, graphene,
and phagraphene monolayers.[45]

3.2. Electrical Properties

3.2.1. Electronic Band Structure

The electronic band structure is a fundamental feature of solid
crystals. Thygesen et al. have constructed the features based on

radially decomposed projected density of states and energy de-
composed operator matrix elements, and have used the output
of DFT calculations on the dataset of non-magnetic 2D semicon-
ductors as inputs to a gradient boosting (GB) model to predict the
complete energy band structure of G0W0.[127] In addition, by ap-
plying the resulting ML model, they predicted G0W0 band struc-
tures for ≈700 2D semiconductors from the C2DB. Ferreira et
al. constructed multilayer perceptron and ANN (Figure 5a) based
on 2D and 3D photonic crystals made of different lattices, ge-
ometries, and materials, which could quickly compute the pho-
tonic bandgaps and energy band structure of 3D and 2D photonic
crystals.[129]

3.2.2. Bandgaps

There have been many publications on the bandgap proper-
ties of 2D materials. Dong et al. proposed a material descriptor
for hybridized boron-nitrogen graphene with various supercell
configurations.[47] This descriptor enables the identification of
correlations between the structure and bandgap, where localized
atomic clusters collectively determine the bandgap of the entire
structure through the interactions between neighboring atoms.
They further trained CNN models, including residual convolu-
tional networks (RCN), VGG16 convolutional networks (VCN),
and concatenate convolutional networks (CCN) using this de-
scriptor. This model successfully predicted the bandgaps of hy-
bridized graphene and boron nitride pairs with arbitrary config-
urations, achieving an accuracy above 90%. Figure 5b shows this
VCN architecture. Zhang et al. predicted the bandgap values of
2D materials based on C2DB by four algorithms, namely, sup-
port vector regression (SVR), multilayer perceptron (MLP), gra-
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Figure 6. a) The ML model, trained on MD simulations, utilizes the GEP algorithm to predict the shear modulus of graphene. The GEP algorithm, similar
to the GA, employs tree structures of different lengths to search for the optimal structure. Reproduced with permission.[56] Copyright 2015, American
Physical Society. b) An ML model for predicting fracture toughness of graphene, which consists of two convolution layers that learn geometric features
of crack slices, a long short-term memory (LSTM) layer that learns sequential relations between them, and a dense layer that classifies the results.
Reproduced with permission.[57] Copyright 2021, Springer Nature.

dient boosting decision tree (GBDT), and random forest (RF).[48]

Through various experiments, they discovered that GBDT and
RF performed better in predicting bandgap values of 2D mate-
rials than did the other two algorithms (Figure 5c), where three
features, namely, density of states at the Fermi energy, heat of for-
mation, and gap without spin-orbit coupling, had a great impact
on the model performance. Rajan et al. constructed a database of
the structural and electrical properties of 7200 MXenes and then
reduced the number of features to eight by using LASSO.[10] The
Gaussian process regression (GPR) model trained on these fea-
tures could accurately estimate the bandgaps of the entire MX-
enes database in just a few minutes. Wang et al. studied the elec-
trical properties of vdW heterostructures of layered 2D transi-
tional metal dichalcogenides (TMDs) using five ML models, and
found that the electrical properties were greatly influenced by the
layer number of 2D material.[54] They also discovered that the
GPR model performed better in predicting bandgaps than the
other four models.

3.3. Mechanical Properties

3.3.1. Shear Modulus

Graphene, because of its unique mechanical properties, has been
an ideal candidate for the application of fluid separation, nanofil-
tration and nanoelectromechanical systems. Garg et al. proposed
an ML model (Figure 6a) trained on MD simulations that could
establish an explicit relationship between the shear modulus of
graphene nanostructures and various system parameters, such as
temperature, vacancy defects, number of atomic planes, and as-
pect ratio.[56] The shear modulus predicted by their MD-based ML

model was consistent with the results of existing experiments,
and they found that the shear modulus of graphene nanostruc-
tures is primarily affected by the quantity of defects.

3.3.2. Fracture Toughness

Understanding fracture toughness is crucial when it comes to
the design of elastic nanomaterials. Lew et al. utilized a convo-
lutional long short-term memory model (CLSTM) (Figure 6b) to
predict the fracture mechanism of graphene by extracting spa-
tiotemporal relationships underlying fracture propagation from
MD simulations datasets.[57] Their ML approach enabled rapid
prediction of crack instabilities and branching behaviors, thereby
enhancing the capacity to design and optimize fracture behaviors
according to specific requirements. In another study, Wang et al.
evaluated the mechanical properties, including Young’s modu-
lus, fracture strength, and fracture strain, of 1T-WS2 and 2H-WS2
monolayers by MD simulations and an ML technique based on
five features: the WS2 phase, temperature, strain rate, chirality,
and defect ratio.[58] They found that the RMSE were significantly
smaller than the actual values of each property, indicating a well-
trained ML model with good prediction accuracy for the mechan-
ical properties.

3.4. Energy

3.4.1. Exfoliation Energy

The exfoliation energy is a direct indicator of the ease with
which monolayers can be mechanically exfoliated from bulk com-
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Figure 7. a) Scatter diagrams of exfoliation energy predictions obtained by different ML models. The fitting degree shows that ET achieves the highest
prediction accuracy, followed by RT. Reproduced with permission.[130] Copyright 2021, American Chemical Society. b) The top 20 most important features
that affect the bond energy of porous graphene-based monatomic metal catalysts. Reproduced with permission.[131] Copyright 2020, John Wiley and
Sons.

pounds. Wan et al. manually selected 12 descriptors for predict-
ing exfoliation energy from the 2DMatPedia database (including
six related to vdW interactions, five related to electrical proper-
ties, and one decomposition energy that describes the stability of
bulk materials) to train four ML models—SVM, multilinear re-
gression (MLR), ensemble trees (ET), and regression tree (RT)
models.[130] The performance of these models was assessed by
MAE, RMSE and coefficient of determination. Extensive valida-
tions and stability analysis show that ET and RT algorithms can
process features better and hence perform better at making pre-
dictions (Figure 7a).

3.4.2. Binding Energy

The binding energy of small molecules is a key factor in dictating
the reaction efficiency and application range of single-atom cat-
alysts. To predict the binding energy of single metal atoms to N-
doped graphene defects, Fischer et al. employed a random forest
regression (RFR) model trained on ≈1700 catalytic reaction sim-
ulations generated by DFT calculations.[131] Their study involved
constructing three distinct structural feature groups, including
hundreds of chemical features, statistical features, and molecu-
lar features, as well as employing a correlation matrix to identify
and remove strongly correlated features to improve model per-
formance. Figure 7b illustrates the logarithmic scale of the 20
essential bond energy features, with half of them being related
to bond angles. The RFR approach proved to be suitable for han-
dling small datasets with a vast feature space, achieving an accu-
racy of 0.865 in predicting bond energy.

3.4.3. Adsorption Energy

Lithium (Li) adsorption is a crucial electrochemical process
in material applications. Gong et al. compiled data from five

databases (C2DB, Materials Cloud, Jarvis, 2DMatPedia, and Jain)
into a comprehensive database with 7736 2D materials, and
used a graph convolution network (GCN) to predict the min-
imum Li adsorption energy of 2D metallic materials.[134] The
GCN was trained using DFT-calculated Li site energies of var-
ious adsorption sites for each material, and was able to iden-
tify a strong correlation between the minimum Li adsorption
energies and the coupling energy between Li+ and the sub-
strate, the work function of the 2D metal, and the sum of ion-
ization potential. Notably, for zero-gap 2D materials, the mini-
mum Li adsorption energy was found to strongly correlate with
the position of the lowest unoccupied band or work function.
In addition, Dou et al. found that simple regression algorithms
can effectively predict the adsorption energy of alkali metal
atoms on different monolayer 2D TMDs using several groups
of descriptors—the ionization energy of adsorbates, the cohesive
energy of adsorbate crystals, and the lowest unoccupied states of
2D TMDs.[135]

3.5. Other Properties

3.5.1. Magnetic Properties

Magnetic 2D materials have been recognized as fundamental
building blocks for spintronic applications, which are crucial in
extending data storage and quantum device technologies.[150–152]

However, the efficient search of such 2D materials and corre-
sponding experimental realization remain quite challenging,
due to various complications that can occur in practice.[153–156]

To this end, based on magnetic and non-magnetic compounds
in the C2DB database, Acosta et al. utilized the RF algorithm
and the Shapley additive explanations method to predict the
magnetic ordering of 2D materials (Figure 8a).[137] They first
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Figure 8. a) The RF model used to identify and predict the existence of magnetism in the given 2D compounds (Step I) and their specific magnetic
orders (Step II). Reproduced with permission.[137] Copyright 2022, American Chemical Society. b) The ML model for predicting TC of 2D materials,
which classifies the materials into ferromagnetic and antiferromagnetic based on symmetry, and then the TC of the FM materials is estimated by using
Heisenberg model-based Monte Carlo simulations. Reproduced with permission.[140] Copyright 2020, Springer Nature.

constructed a feature space by SISSO and then employed a RF
model to identify features for the classification of materials.
According to their study, the presence of halides, 3D transition
metals, and structural clusters with regular transition-metal sub-
lattices positively contributes to the total weight that determines
magnetism in 2D compounds. This behavior is attributed to
the competition between crystal field and exchange splitting.
The study also found that atomic spin-orbit coupling is a key
feature for distinguishing between ferro- and antiferromagnetic
orders. In Rhone et al.’s work, they explored the magnetic
order and magnetic moment of monolayer A2B2X6 by DFT
calculations and ML based on the known ferromagnetic semi-
conductor Cr2Ge2Te6.[138] More specifically, the atomic attributes
from python mendeleev package 0.4.1 were used as descriptors
for their ML model, an extra tree regression (ETR) algorithm
was used to predict magnetic moments, and then the SVM
classifier was employed for predicting low-energy magnetic

orders. Their experiments demonstrated that the magnetic
coupling near A sites is strongly influenced by the X site and
can trigger magnetic ordering. As a result, the magnetism of
monolayer A2B2X6 can be regulated by atomic exchange between
the A, B and X sites.

3.5.2. Curie Temperature

The TC is a critical parameter for 2D ferromagnetic materials.
Based on the C2DB database and on first-principles calculations,
Kabiraj et al. developed a computer code that could perform
Heisenberg model-based Monte Carlo simulations to predict the
TC from crystal structures, as shown in Figure 8b.[140] Their
method successfully computed the TC of 157 materials, of which
26 had a TC above 400 K. The ML model they constructed was
trained on the data of these 157 materials to successfully identify
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2D ferromagnetic materials with a higher TC than those in other
databases.

3.5.3. Electrical Breakdown Limits

Identifying the limits of electrical breakdown for materials is
a crucial step in the development of electronic devices. Using
the electric current measured with the low-voltage area as in-
puts, Huan et al. trained a two-step DL model to investigate
the breakdown voltage of single-layer MoS2 devices with dif-
ferent resistances and channel lengths.[142] In their two-step
model, a DNN first classifies between avalanche and joule break-
down mechanisms by analyzing partial current traces ranging
from 0 to 20 V. After that, a CLSTM, which combines the com-
plementary methods of CNN and LSTM, estimates breakdown
voltages of the devices. Experiments show that DNN classi-
fier achieved a high accuracy of 79% in classifying the break-
down mechanisms, while the CLSTM model had a low error
rate of only 12% in predicting the breakdown voltages. This
method is expected to facilitate prompt and non-destructive
material characterization for the development of 2D electronic
devices.

4. Discovering New 2D Materials

The introduction of ML to research on 2D materials has consid-
erably increased the efficiency of discovering new 2D materials.
As shown in Table 3, most of these new materials are catalytic
materials,[60–68] photoelectric materials,[69–77] and ferromagnetic
materials.[78–85,90–92] In most cases, we search for 2D materials
with specific desired properties in existing open-source databases
or in new material sets generated through methods such as ele-
ment replacement within the original cell. In the study by Lyn-
gby et al., the collection of 2D materials from the C2DB was
served as seed structures for the lattice decoration protocol and
employed as the training dataset for the crystal diffusion vari-
ational autoencoder.[30] The former generates new materials by
substituting the atoms in the seed structures with atoms of sim-
ilar chemical nature, while the latter combines a variational au-
toencoder and a diffusion model to generate new periodic ma-
terials, capable of producing more complex materials without
compromising stability. After performing DFT relaxation on the
structures generated by these two methods, any duplicate struc-
tures and materials that relaxed into non-2D structures were sub-
sequently discarded, resulting in a total of 11630 predicted new
2D materials. In the development of new 2D materials, classifi-
cation algorithms such as k-nearest neighbor (KNN), SVM, RF,
ANN, and GB are commonly employed to screen materials with
specific desired properties, with GB being the most extensively
utilized.

4.1. Boosting Algorithm

Boosting is an ensemble learning technique that combines mul-
tiple learners to finish a learning task.[174] Based on the genera-
tion method of individual learners, the ensemble learning meth-
ods can be broadly divided into two categories.[175] the first cat-

egory includes methods represented by boosting, which have a
strong correlation between individual learners and a serializa-
tion method that must be generated sequentially, while the sec-
ond category includes methods in which there is no dependency
between individual learners and a parallelization method, which
can be generated at the same time, such as the RF algorithm.[176]

In the case of boosting, a base learner is first trained using the
initial training set. Then, the distribution of the training samples
is adjusted based on the performance of the base learner, and a
new base learner is trained using the adjusted sample distribu-
tion. This process is repeated to train the specified number of
learners, and a strong learner is formed by combining all base
learners using their trained weights.[177]

Classical boosting algorithms include GBDT, extreme gradi-
ent boosting (XGBoost), adaptive boosting (Adaboost), light gra-
dient boosting (LGB), and categorical boosting.[178] GBDT is an
iterative decision tree algorithm, which constructs multiple deci-
sion trees and summarizes the outputs of all the trees to generate
the final result for classification.[179] GBDT can flexibly process
data of different types, boasts a strong level of robustness in deal-
ing with anomalies, and achieves higher levels of accuracy than
SVM under the same fine-tuning of parameters.[180] For instance,
Choudhary et al. used ML to identify promising solar cell materi-
als from the publicly available JARVIS-DFT database.[70] The ML
models are trained using decision-trees (DT), RF, KNN, MLP,
and GB models implemented in the scikit-learn package, and
also GBDT implemented in the XGBoost and LightGBM pack-
ages. The accuracies of the classification models were evaluated
based on the area under the curve (AUC) of the receiver operat-
ing characteristics (ROCs) curves, illustrating the model’s ability
to identify potential solar absorber materials.[70] The higher the
value of the AUC, the higher the accuracy of the corresponding
model. Among the above several algorithms, the LGB algorithm
achieved the highest AUC value of 0.87 and was therefore con-
sidered the best model.

The XGBoost has achieved a higher level of optimization in
engineering practice than GBDT.[181] XGBoost supports vari-
ous types of base classifiers and can automatically learn strate-
gies to handle missing values. Additionally, it incorporates reg-
ularization terms when using base classifiers to control model
complexity, which helps prevent overfitting and improves the
model’s generalization ability.[2] Indeed, topological insulators
(TIs) have been one of the significant topics in quantum ma-
terials research.[170] Schleder et al. discovered novel 2D topo-
logical materials by XGBoost from the databases of C2DB and
2DmatPedia.[170] As shown in Figure 9a, they started by gather-
ing the materials, and then used atomic properties as primary fea-
tures to create an initial dataset. Next, they used SISSO to trans-
late the atomic features into topological classes. Finally, the XG-
Boost algorithm was used to train a classification model, which
was then applied to predict the band topology of 2D materials in
more 2D databases. During the training of the RT classifier using
the XGBoost algorithm, a penalty is introduced for mispredicted
labels train the subsequent tree and correct the errors made by
the previous tree. The extreme part of XGBoost has achieved pa-
rameter regularization and pruning of the trees, which reduced
overfitting and increased the accuracy and scalability of the ML
model.
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Figure 9. a) Discovery workflow of 2D topological materials: first, an initial dataset is built. Next, SISSO is employed to convert atomic features into
topological classes; the XGBoost method is employed to train the ML model. Finally, the ML model searches for novel topological materials. Reproduced
with permission.[170] Copyright 2021, American Institute of Physics. b) The screening process of 2DPE materials. Reproduced with permission.[71]

Copyright 2021, American Chemical Society. c) Following (b), a comparison of the performance of different algorithms by four measures—accuracy,
AUC, recall and precision, with the GB algorithm being proven to have the best performance. Reproduced with permission.[71] Copyright 2021, American
Chemical Society. d) The multi-step workflow for the selection of ferromagnetic materials: first, compounds are selected from the C2DB database to
construct a training set and test set; next, feature engineering is performed on the datasets, while the GB algorithm is employed to select feature layers
and classify materials. Finally, predictions are verified by DFT calculations. Reproduced with permission.[81] Copyright 2020, John Wiley and Sons. e)
Screening of materials by the GB algorithm. First, 1424 materials with high thermal stabilities are selected from the prediction set; next, ferromagnetic
materials are sorted out; finally, the materials are classified as ferromagnetic semiconductors, semimetals, and metals. Reproduced with permission.[81]

Copyright 2020, John Wiley and Sons.
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4.2. Novel 2D Materials

4.2.1. Catalytic Materials

2D materials, which have a large surface to volume ratio, pro-
vide densely distributed sites of surface activities; their excellent
mechanical properties can enable durability and thermal conduc-
tivity of catalysts, and their feature of electron transfer can di-
rectly affect the rate of catalytic reactions.[182] As a result, 2D ma-
terials have been seeing wider adoption in the development of
catalysts. To find efficient 2D water-splitting photocatalysts, Ku-
mar et al. developed a database of octahedral 2D materials that
consists of metals combined with six ligands in an octahedral
geometry.[65] To increase the speed of the ML model and prevent
overfitting, they had to select only the most prominent features,
and hence explored the correlations between each feature and
each target variable by several ML models (RF, LR, LASSO, recur-
sive feature elimination, XGBoost) to identify the most promi-
nent features. From the aNANt database, they then selected 21
water-splitting photocatalysts for which the efficiency of HfSe2
and ZrSe2 reached the theoretical limit. New 2D materials have
also been explored in recent years as nitrogen reduction reaction
electrocatalysts. Zafari et al. utilized the LGB to predict the ad-
sorption energy of N2 and the free energy involved in the inter-
mediate step of the nitrogen reduction reaction.[60] By combining
DFT and ML, they increased the activity of the catalyst by analyz-
ing the interaction between the active site and the substrate, and
found TaB, NbTe2, NbB, HfTe2, MoB, MnB, HfSe2, TaSe2, and
Nb@SAC to perform the best.

4.2.2. Photoelectric Materials

Exploring new high-performance 2D photoelectric (2DPE) ma-
terials is of great significance in the development of solar cells.
Jin et al. devised an efficient method based on ML combined
with high-throughput screening, which employs the latter to dis-
cover layered structures from the predicted PE candidates; then,
after the removal of the equivalent structures and the validation
by DFT calculations, their model identified 26 efficient and ac-
curate 2DPE candidates from the ICSD database, as shown in
Figure 9b.[71] Moreover, different ML algorithms were employed
in the task of prediction, including GB, SVM, RF, Adaboost,
stochastic gradient descent classifier, DT, and LR, and their per-
formance was evaluated by four measures—accuracy, recall, pre-
cision, and AUC. The result of their study showed that GB out-
performed other models (Figure 9c).

4.2.3. Ferromagnetic Materials

There are two main challenges in the development of ferromag-
netic 2D materials: small databases and a lack of proper descrip-
tors. To overcome these challenges, Lu et al. constructed a self-
adaptive framework, which generated an iterative feedback loop
by combining high-throughput DFT calculations to enable con-
tinuous learning of the ML model; meanwhile, a crystal graph
multilayer descriptor was developed based on the crystal graph
and elemental properties.[81] The multi-step workflow is shown

in Figure 9d. As per the prediction target, they constructed a
thermal stability dataset, a magnetic ground state dataset, and
a bandgap dataset, and divided the materials in the datasets
into three categories: ferromagnetic, antiferromagnetic and non-
magnetic, where 80% of the data was used as a training set, and
the remaining 20% as a test set. After identifying the 2D materials
data and descriptors, they combined previous research findings
and concluded that the GB algorithm exhibited higher perfor-
mance than other ML algorithms on small-scale datasets. There-
fore, they chose the GB classification algorithm for feature layer
selection. By employing this approach, they identified 20 ferro-
magnetic semiconductors, 21 semimetals, and 51 metals from
three databases—C2DB, Materials cloud, and 2D material ency-
clopedia, with an accuracy rate exceeding 90%, as illustrated in
Figure 9e.

In addition, 2D topological magnetic material MnBi2Te4, char-
acterized by alternating magnetic ordering and a wealth of topo-
logical properties, has been extensively investigated for both
fundamental and practical purposes. Bhattarai et al. studied
magnetic monolayers of the AiAiiB4X8 form, building upon
MnBi2Te4, and generated a set of 12360 candidate materials
through chemical substitutions at the A, B, and X sites. They
subsequently chose an initial subset of 240 structures and de-
termined their formation energy, bandgap, magnetic moment,
and magnetic order through DFT calculations. Based on the cal-
culated data, they gained further insight into the microscopic ori-
gins of the materials’ properties and successfully trained ETR and
RFR models to screen 13 promising materials from the candidate
materials.[85]

4.2.4. Other Materials

Tellurene possesses unique properties and advantages over other
currently available 2D materials, including a tunable bandgap,
high carrier mobilities, and resistance to oxidation.[88] Chen et
al. designed 385 doped tellurenes by considering 11 types of non-
metal atoms doped on different sites of single-layer tellurene. By
combining first-principles calculations with an XGBoost model,
they investigated the charge transport properties of these mate-
rials for potential use in high-performance electronic and pho-
tonic devices, ultimately identifying 23 candidate systems.[89] In
addition, Zhao et al. employed ML approaches (Pymatgen, Fact-
Sage, Aflow and first-principles calculations) to find 2D TMDs
from the Aflow database as Hg0 sensing materials to detect and
reduce pollutants.[161] Fronzi et al. then constructed a dataset of
structural properties of 18 million layered vdW structures using
the BNN technique based on the 2DMatPedia database, which is
designed to facilitate the discovery of novel solid lubricant and
super-lubricant materials.[166] There are also publications that
probe into the discovery of 2D thermoelectric materials. By com-
paring different ML models (DT, RF, KNN, MLP and GBDT),
Choudhary et al. found that GBDT had the best performance
in screening high-efficiency thermoelectric materials, identifying
128 potential thermoelectric materials from 900 2D materials.[169]

Kabiraj et al. employed an unsupervised clustering algorithm to
find 30 2D materials with potential charge density wave materials
from a material database containing >200 “easily-exfoliable” 2D
materials.[163]
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5. Preparing 2D Materials

Currently, there is great demand for 2D wafer-scale films that
are compatible with silicon micro-fabrication techniques in the
development of highly integrated devices. By patterning large-
area 2D films into arrays, a series of functional devices can be
directly fabricated on a single wafer, ensuring the continuity
of highly integrated device structures needed for commercial
applications.[183,184] Although most 2D layered materials can be
obtained by mechanical exfoliation, such method has several lim-
itations, such as low yield, small lateral dimensions of samples,
and difficulties in thickness control.[185] Other methods, such as
liquid phase exfoliation and chemical vapor deposition (CVD),
can be applied to the preparation of graphene and some TMDs,
but remain challenging to control the layer number, edge shapes,
defect densities, and doping densities of the obtained samples.[96]

Accordingly, ML can be used as an active tool for the preparation
of 2D materials, in order to realize the mass production of quality-
controlled 2D devices.

In general, there are two types of preparation methods of 2D
materials: one is the bottom-up method, which is represented
by CVD, arc discharge, flash evaporation, exfoliation and depo-
sition/growth, such as molecular-beam epitaxy and pulsed laser
deposition, atomic layer deposition; and the other is the top-down
method, which includes mechanical exfoliation, liquid phase ex-
foliation and oxidation reduction.[2,184] Currently, ML methods
for preparing 2D materials are mainly applied in CVD, mechan-
ical exfoliation, and liquid phase exfoliation methods.

5.1. Bottom-Up Preparation

CVD is a process in which the materials in the gas state or the
vapor state react on gas-phase or gas-solid interfaces to generate
solid deposits.[183] It performs well in the preparation of 2D thin
films, with the size, shape, and thickness all well-controlled.[94]

Since the materials that are to be prepared can differ, the exper-
iment conditions for CVD can vary as well, and hence the ML
databases in this case are often small databases.[93] CVD can be
applied to the preparation of high-quality 2D materials,[186] and
ML-enabled CVD preparation of 2D materials includes WTe2,[93]

MoS2,[94,96] WS2
[97,98] and h-BN.[187] For instance, the trained

model proposed by Xu et al. can optimize the CVD synthesis pa-
rameters (reaction temperature, rising time, deposition time, air-
flow rate) to enable controllable growth of multilayer 1D WTe2.[93]

According to ML recommendations, they studied the effect of
source ratio (RTe/W) on the sample morphology particularly and
found the RTe/W dominates the length−width ratio of WTe2 NRs
in Figure 10a.

Similarly, Xu et al built artificial model functions with three dif-
ferent process windows to mimic actual 2D and 3D thin-film syn-
thesis and use bayesian optimization to obtain suitable synthetic
parameters, such as temperature, oxygen partial pressure, and
the sputtering power for thin-film deposition.[188] Li et al. com-
bined self-organizing maps with means clustering techniques
for optical imaging analysis of CVD-prepared MoS2, which ef-
fectively assessed the quality of the CVD-grown materials.[94]

Xia et al. developed a DL-based framework for the analysis of
data from kinetic Monte Carlo simulations, and employed KNN,

SVM, and RF classifiers to predict the anisotropic growth of WS2
monolayers.[97]

As pointed out in Zhang et al.’s work, the major challenge fac-
ing controllable CVD synthesis of 2D materials involves complex
correlations between variables in CVD growth, which means that
the proper control of these variables is a must to regulate the
inherent thermal and dynamic properties of crystal growth.[95]

To address this problem, they started the Materials Genome Ini-
tiative (MGI) to establish morphological diagrams of 2D crystals
based on crystal growth experiments, modeling, and databases,
as shown in Figure 10b. Meanwhile, to explore the evolution of
crystals at different states of growth, they employed ML models
(such as SVM, ANN, and decision trees) to unveil the correlations
between CVD growth parameters and physical parameters that
contribute to crystal growth evolution, thereby predicting crystal
growth.

5.2. Top-Down Preparation

Mechanical exfoliation refers to the physical removal of sample
layers from layered crystals by applying mechanical forces, such
as frictions, to the bulk crystals. This preparation method is both
simple and cost efficient, and the obtained samples are often of
high crystal quality, with few defects.[184] Nonetheless, the size,
layers and morphology of the prepared samples are hard to con-
trol, and the manual preparation of samples is time-consuming
and inefficient. In this regard, ML-assisted mechanical exfolia-
tion can achieve automatic identification and classification of ex-
foliated samples, ultimately leading to large-scale production.[1]

Shin et al. designed a fully automated robotic detection sys-
tem, which combined a graphene trained deep neural network
(GT-DNN) with an optical microscope to classify graphene by
size, shape, and thickness.[189] Graphene flakes of different lay-
ers can be used as target materials of vdW heterostructures, and
their findings will also help advance the fabrication of these het-
erostructures.

In liquid phase exfoliation, graphene is exfoliated from
graphite in solvents by using ultrasonic agitation, microwaves,
and electrochemical techniques, and the eventual samples are
then obtained through centrifugation.[190] As with mechanical
exfoliation, samples prepared by liquid phase exfoliation are of-
ten of high crystal quality and with few defects, but also of a
small size and with low yield.[184] Moreover, due to the random
fragmentation of precursor layered materials during exfoliation,
it is difficult to predict and control the lateral size of the exfo-
liated nanosheets.[191] A possible solution to this is sparse ML
modeling,[191–193] which can transform the uncontrolled process
of fragmentation into a controlled one.

In sparse modeling, there can be many unknown parame-
ters, but only a few are important and can capture the major
features of the regression function, providing an effective solu-
tion for modeling high-dimensional datasets.[192] With good ex-
plainability, sparse models offer a useful tool for visualizing data,
reducing computing overheads and facilitating data storage.[193]

Haraguchi et al. designed a size-distribution predictor assisted
by sparse modeling (Figure 10d).[192] The sparse modeling pro-
cess they used involved the following steps: first, the precursor
layered composites of the host transition-metal oxides and in-
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Figure 10. a) Design framework for the realization of geometry-controlled CVD synthesis of WTe2 based on machine learning and experiments. It
consists of collecting experimental data, training machine learning models, analyzing experimental parameters, and guiding WTe2 synthesis. Reproduced
with permission.[93] Copyright 2020, Elsevier. b) The relationship between experimentation, modeling, and databases, which is mutually supportive,
continuously improves the quality of samples prepared through the CVD method. Reproduced with permission.[95] Copyright 2020, John Wiley and
Sons. c) DLS charts and TEM images of the monodispersed (DEA)-Nb2O5 nanosheets in 2-propanol and polydispersed (CN-BA)-Nb2O5 nanosheets
in water. Reproduced with permission.[192] Copyright 2021, American Chemical Society. d) Sparse modeling for size prediction: First, precursor soft
layered composites are exfoliated in organic dispersion media; then calculating the size distribution (LCV) from the DLS chart and constructing the
LCV-prediction model; finally, AI-assisted exfoliation experiments. Reproduced with permission.[192] Copyright 2021, John Wiley and Sons.

terlayer organic guests were exfoliated into the surface-modified
nanosheets in organic dispersion media; next, dynamic light scat-
tering (DLS) was used to estimate the lateral size (LCV) of the
transition-metal oxide nanosheets; finally, potential factors re-
lated to LCV were set as explanatory variables (x) and the value
of LCV was set as the objective variable (y), which were then in-
put to the ML model to obtain the model parameters. Based
on the host-guest-medium combinations with single or multi-
ple controlled lateral sizes recommended by the model, they ob-
tained the monodispersed nanosheets by the exfoliation of the
layered niobate with intercalation of diethanolamine (DEA) in 2-
propanol and the polydispersed nanosheets by the layered nio-
bate with intercalation of 4-(aminomethyl)benzonitrile (CN-BA)
in Figure 10c.

6. Characterizing 2D Materials

6.1. Number of Layers and Thickness

As mentioned above, CVD and mechanical exfoliation are the
two currently dominant methods for preparing 2D materials.
2D sheets of different thicknesses that are obtained by these
methods often distribute randomly on a substrate, such as
SiO2/Si or polydimethylsiloxane.[109] To study the attributes of
different layers of the prepared 2D material, it is crucial to know
its exact number of layers. However, the analysis of data obtained
by conventional instruments (optical microscopes, Raman mi-
croscopes, and atomic force microscopes) relies so heavily on
the “intuition” of experienced researchers, making such process
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Table 4. Summary of the ML-assisted characterization of 2D materials. (Full names of the ML algorithms are listed in Appendix).

Research area 2D materials Preparation method Source of descriptors ML algorithms Assessment mertics Ref.

Number of layers or
thickness

Graphene, h-BN,
TMDs, etc.

Chemical vapor
deposition (CVD)

OM images CNN Accuracy = 91.0% [99]

Graphene Mechanical exfoliation OM images CNN Accuracy = 99.0%
P = 93.5% R = 90.2%
F1 score = 0.998

[100]

MoS2 CVD OM and hyperspectral reflection
microscope images

CNN Accuracy = 97.8% [101]

MoS2, graphene Mechanical exfoliation OM images CNN Accuracy = 90.0% [102]

MoS2 CVD OM images CNN P = 98.6%
R = 99.0% F1

score = 0.973

[103]

Wse2, MoS2, h-BN Mechanical exfoliation OM images CNN Accuracy = 99.9% [104]

MoS2 CVD OM images RCNN Accuracy >80.0% [105]

MoS2, graphene Mechanical exfoliation OM images KMC and KNN [106]

WS2, MoS2, graphene,
h-BN

Mechanical exfoliation OM images KMC [107]

Graphene Liquid phase Exfoliation
(LPE)

Quantitative polarized optical
microscope (qPOM) images

KMC [108]

MoS2, MoSe2 Mechanical exfoliation OM images MDC Accuracy = 95.0% [109]

MoS2, graphene Mechanical exfoliation OM images SVM [11]

Graphene Mechanical exfoliation OM images SVM P = 98.2% R = 98.8% [110]

MoS2 CVD Raman spectroscopy images RF P = 99.1% AUC = 0.990 [111]

Graphene, h-BN, MoS2,
WTe2

Mechanical exfoliation OM images ANN P≈95.0%
R≈97.0%

[112]

WS2, MoS2, MoTe2,
WSe2, MoSe2, h-BN,
graphene,
Bi2Sr2CaCu2O8

CVD OM images ANN Accuracy = 96.3% [113]

Dopants or defects WSe2, MoS2, V-doped
WSe2, V-doped MoS2

Calculation of QSTEM
package simulation

Scanning transmission electron
microscopy (STEM) images

CNN Accuracy≈98.0% [114]

2H-WSe2−2xTe2x CVD STEM images FCN [115]

Mo1-xWxTe2, WSe2-xTex CVD STEM images CNN [116]

Graphene Calculation of MD
simulations

Thermal vibrational morphologies
of 2D materials at room
temperature

KRR Accuracy≈95.0% [117]

both time-consuming and unreliable. Therefore, several ML
models, such as CNN,[99–104] K-means clustering (KMC),[106,108]

SVM,[11,110] and RF,[111] have been developed to address this
issue. Of these models, CNN has unrivalled advantages in terms
of image segmentation and object classification, and hence is
favored by researchers for identifying the number of layers of
atom-scale sheets on microscopic images.

Trained ML models can extract deep image features, such as
optical contrast, RGB, and spectra, to accurately identify the num-
ber of layers of 2D sheets. However, challenges still exist in mak-
ing ML models compatible with microscopic images of different
optical settings, while also increasing the model’s generalization
capacity. Additionally, most databases used for ML model train-
ing are small-scale databases made up of data collected by re-
searchers for specific projects. The following paragraphs discuss
the advancements in the ML-enabled recognition of the number
of layers of 2D materials (Table 4).

In Han et al.’s work, a CNN was utilized to study the optical
microscopic (OM) images of 13 materials, which extracted fea-
tures, such as RGB, edge, shape, and size to identify the types
and thicknesses of the 2D materials.[99] In addition, six types of
OM images were collected to increase the CNN model’s gener-
alization capacity. They used the random-rotation augmentation
method to augment the data, which produced random position-
ing and orientation of images. The trained CNN model could
identify individual flakes and distinguish both the material iden-
tities and thicknesses of the 13 2D materials with a high success
rate (Figure 11a). It was also found to be robust against vari-
ations in features, such as brightness, contrast, white balance,
and non-uniformity of the light field. However, identifying the
number of atomic layers remains challenging, since the RGB
images of atomic-layer flakes are often similar in appearance.
In response, Dong et al. merged hyperspectral reflection images
and RGB images to identify and split MoS2 flakes prepared by
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Figure 11. a) The trained CNN model recognized 13 samples and output prediction labels containing the type and thickness of materials. Reproduced
with permission.[99] Copyright 2020, John Wiley and Sons. b) Atomic layer mapping of 2D materials by 3D-CNN involves four steps: preparing 2D ma-
terials, collecting bimodal data (OM images and hyperspectral images), running DNN training, and predicting layers. Reproduced with permission.[101]

Copyright 2021, American Chemical Society. c) Diagram of ML-assisted recognition. In model training, the pixel data, RGB values, and coordinates
extracted from the OM image of the 2D material serve as input for the KMC algorithm, enabling the reconstruction of the layer thickness image. In the
testing process, the OM images of 2D materials are input to generate the layer thickness detection diagram. Reproduced with permission.[106] Copyright
2019, Elsevier. d) Quality detection of LPE-prepared graphene based on ML, where the uGtO flakes, the pGtO nanoplatelets, and 2D GO sheets repre-
sent unexfoliated, partially exfoliated, and well-exfoliated species, respectively. Reproduced with permission.[108] Copyright 2020, John Wiley and Sons
e) SVM-enabled detection of layers of MoS2 samples (different colors indicate different layers), as well as graphene and MoS2 vertical heterostructures
(graphene and MoS2 are indicated by blue and red dashed lines, respectively). Reproduced with permission.[11] Copyright 2019, American Chemical So-
ciety. f) Raman spectra of monolayer, cracks, and bilayer areas of MoS2 samples, where the spectral information is used as input features to distinguish
different areas. Reproduced with permission.[111] Copyright 2020, Multidisciplinary Digital Publishing Institute.
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CVD, and augmented the dataset by random rotation and flip.[101]

They employed a 3D convolutional neural network (3D-CNN) to
segment and recognize mono-, bi-, tri-, and multilayered MoS2
flakes. Figure 11b shows how the atomic-layer mapping of 2D
materials is enabled by the ML model. Their approach substan-
tially reduced the time needed for data collection and pretreat-
ment, and predicted layer distributions and segments individual
layers with a significantly higher level of accuracy (>80%) than
conventional RGB methods (∼60%). Moreover, their method was
experimentally proven to have a strong robustness against illumi-
nating and contrasting variations.

KMC has also been popular in imaging and spectral analysis.
Li et al. combined Fresnel law and ML for OM imaging analysis,
using optical contrast, total color difference, and RGB to find the
optimal substrate and recognize the layers of 2D materials.[106]

In their work, the KMC algorithm was employed to study subtle
color differences between images of different layers, and thereby
to construct a database of 2D materials layers (Figure 11c); the
KNN algorithm was then used for testing to achieve automatic
recognition of the layers of samples. They found that the opti-
mum Si/SiO2 substrate thicknesses for mechanically exfoliated
graphene and MoS2 were 90, 100, 270, and 300 nm for the oxide
layer, and their model could reach a certain accuracy in detecting
these four layers. On the contrary, conventional OM has difficulty
in identifying the size and thickness of few-layer graphene, due
to its low photon absorption capacity. To address this challenge,
Abedin et al. put forth a quantitative polarized optical microscope
for capturing birefringence images of graphene dispersions.[108]

By using contrasts in the bright-field and cross-polarized optical
features, they applied the KMC algorithm to study the thickness
of the graphene prepared by LPE. This technique was best suited
for samples containing nanoplatelets and flakes with a total con-
centration between ≈0.02 and 2 wt.% solids. This method iden-
tified effectively three different data clusters representing flakes
(unexfoliated), nanoplatelets (partially exfoliated), and 2D sheets
(well-exfoliated) species in various dispersions of graphene and
graphene oxide (Figure 11d).

SVM is particularly suitable for analyzing small samples. Lin
et al. extracted RGB information in OM images of exfoliated
graphene and MoS2 to characterize the thicknesses and stack-
ing orders of their 2D heterostructures (Figure 11e).[11] In their
work, the images were pretreated to improve the model’s general-
ization capacity, and the treatment included de-noising and color
calibration. In addition, the RF algorithm is capable of analyzing
multiple Raman features to identify samples, addressing the lim-
itation of identifying samples using only a single variable. Mao et
al. utilized the RF algorithm to extract two features, peak inten-
sity and frequency information, from spatial mapping of Raman
spectra.[111] These two features were used as inputs, and the sam-
ple thickness and type as outputs to generate decision trees for
the classification of monolayer MoS2 continuous film, random
cracks, and bilayer areas (Figure 11f).

6.2. Defects

Structural defects and foreign atoms can substantially impact
the performance of 2D materials. However, accurately deter-
mining the distribution and local concentration of these de-

fects and atoms with picometer-level precision remains a chal-
lenge. While scanning transmission electron microscopy (STEM)
provides an imaging solution for single atoms, its accuracy is
limited to the signal-to-noise ratio. High-dose radiation enables
the precise measurement of individual atom positions, but this
will incur changes in defective 2D structures because of ioniza-
tion effect. Low-dose irradiation, however, obtains images with
high noise levels, thus failing to enable the quantitative eval-
uation of atomic defects.[115] Here, an ML-enabled solution is
to rapidly collect a series of images from the same area under
low-dose irradiation and employ the CNN algorithm to augment
and de-noise the images in order to reach a higher signal-to-
noise ratio.[114–116] Table 4 highlights relevant publications in this
regard.

Yang et al. have put forth a DL-assisted model for classify-
ing and locating atomic dopants and defects in 2D TMDs, such
as WSe2, MoS2, V-doped WSe2 and V-doped MoS2.[114] The an-
nular dark-field (ADF) STEM images in their study were gen-
erated through multi-layer computational simulations by us-
ing the QSTEM software package. CNN-based image restora-
tion techniques were employed to reduce noises and enhance
the contrasts of the STEM images (Figure 12a). Also, a fully
convolutional network (FCN), which shows an excellent perfor-
mance in the segmentation of image features, was designed to
achieve reliable quantification of dopants and defects in TMDs
with single-atom precision. Based on experimental observations,
they classified the possible atomic sites into five different types:
W, V substituting for W, Se with no vacancy, mono-vacancy of
Se, and di-vacancy of Se. Moreover, their ML approach demon-
strated that atomic dopants and defects were precisely mapped
with a detection limit of ≈1 × 1012 cm−2, and with a mea-
surement accuracy of ≈98% for most atomic sites. Lee et al.
synthesized 2H-WSe2-2xTe2x samples via cooling-mediated CVD
on SiO2/Si substrates, which suffered from defects, including
Te substitutions and Se vacancies.[115] In their work, a dataset
of aberration-corrected ADF-STEM images was created, where
STEM images were acquired as ten sequential frames with short
dwell times (2 μs pixel−1) in the same region and then frame-
averaged to minimize image distortions from sample drift and
reach an accuracy of 0.2 pm in measuring 2D interatomic dis-
tances. They used a FCN-based DL model to locate and classify
the point defects and generate a 2D map for defects, including
the four primary types of chalcogen-site defects, as shown in
Figure 12b.

Other approaches have also been developed to characterize
point defects of 2D materials other than from STEM. Zheng et
al. employed the kernel ridge regression (KRR) algorithm to ex-
plore the hidden correlations between the defect points and ther-
mal vibration.[117] The KRR model, which was trained by thou-
sands of thermal vibration morphologies computed by MD sim-
ulations, could accurately detect uniformly dispersed defects of
graphene (Figure 12c). They proposed two prediction strategies:
one based on atomistic approach that constructs data by atom in-
dexing, and the other based on domain approach that constructs
data by domain discretization. The results indicate that the atom-
istic approach can predict single atomic vacancies, while the do-
main approach can accurately predict multiple vacancies of un-
known quantity. Both methods can achieve a prediction accuracy
of about 90% on the retained test data.
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Figure 12. a) A DNN model built to de-noise ADF STEM images of V-WSe2: statistical noise backgrounds are extracted from ADF images as independent
signal features, which are then removed from the input images to restore the actual atomic contrast of images. Reproduced with permission.[114]

Copyright 2021, John Wiley and Sons. b) DL-enabled recognition and classification of defects in ADF-STEM images, including ADF-STEM images of
WSe2−2xTe2x and maps of defects of FCN-detected chalcogen-site defects. Reproduced with permission.[115] Copyright 2020, American Chemical Society.
c) ML-enabled prediction of graphene defect positions. The KRR model extracts energy distribution features of graphene under thermal vibrations to
predict the sites of defects. Reproduced with permission.[117] Copyright 2020, Springer Nature.

7. Guiding Fundamental Research on 2D Materials

In addition to the advances mentioned above, ML has also con-
tributed greatly to fundamental research on 2D materials, as
summarized in Table 5.

In recent years, there have been several ML-based studies ex-
ploring the impact of atom-scale defects,[194–196] doping,[197] and
adsorption[198] on the performance of 2D materials. Based on
C2DB database and DFT calculations, Frey et al. utilized the ML
technique to identify the top 100 deep center defects suitable for
quantum emission and the ten best defects for nonvolatile re-
sistive switching in atomically thin memristor devices.[194] Their
ML approach consists of two models: a DL classifier that predicts
center defects, and a RFR model that predicts energy differences
between the defective structure and the pristine host structure
(Figure 13a). The ML model uses easily accessible descriptors
and dispenses with electron structure calculations to code local
relaxation and capture electronegativity. Wan et al. employed a
CNN model to unveil the impact of hole distribution on the ther-
mal conductivity of monolayer graphene.[197] Through the MD
simulations, they generated 103 different structures to identify
the most effective distribution of holes for reducing the thermal
conductivity of porous graphene (Figure 13b). The most effec-
tive pore distribution for achieving the lowest thermal conductiv-
ity in porous graphene, as revealed in their work, involves trans-
verse pores exhibiting periodicity along the direction of heat flow.
This spatial distribution led to the localization of phonon modes,
resulting in a decrease in thermal conductivity. Based on DFT
calculations and big data mining, Shayeganfar et al. combined

the neural network and maximum likelihood analysis to explore
the electrical properties of 1D and 2D coordination polymers ad-
sorbed on graphene and SiO2.[198] Their work found that states
mixing and small charge transfer between the graphene and ad-
sorbate, provoked a slight bandgap opening by breaking the local
symmetry of graphene band states, which led to the changes in
their structural and electronic properties. Their discovery opened
up a new category of materials with unique electronic surface
states and provided a foundation for developing various inorganic
heterostructures.

The tensile properties of 2D materials[201,202] can be regu-
lated by using cutting or inserting techniques like the kirigami
craft. Rajak et al. generated a diverse set of MoS2 kirigami struc-
tures with high stretchability by using a RL model (Figure 13c),
where the stretchability is defined as the maximum strain the
material can withstand without failure.[201] By training the RL
model on data from MD simulations based on three variables—
the total number of cuts, the cut locations and lengths—they
showed that a system consisting with up to 6 cuts could achieve a
maximum stretchability exceeding 45%. Additionally, vibrational
properties of twisted bilayer graphene are characterized by com-
plex features that arise from its intricate energy landscape in low-
symmetry configurations. By using dimensionality reduction and
a decision-tree based regression, and with the computational Ra-
man spectra of numerous twisted bilayer graphene structures
as input features, Sheremetyeva et al. established the relation-
ship between the twist angle of a graphene bilayer structure and
the Raman intensities, with the intensity profile near the calcu-
lated G-band identified as the most significant feature.[203] MAB
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Table 5. Summary of ML-guided fundamental research on 2D materials. (Full names of the ML algorithms are listed in Appendix).

Research area Materials ML algorithms Assessment mertics Ref.

Uncovering the effect of atomic-scale defects on the properties of 2D
materials

TMDs, h-BN DNN MSE = 0.010 MAE = 0.060
R2 = 0.980

[194]

Exploring the role of point defect distribution in inducing phase
transitions in monolayer 2D materials

MoS2 GA [195]

Searching for the best defect configuration with the lowest energy MoS2 RL [196]

Investigating the impact of the distribution of holes on the thermal
conductivity of graphene

Graphene CNN RMSE = 1.090 R2 = 0.970 [197]

Investigating the electronic properties of 2D coordination polymer
(CPs) adsorption on germanium and silica

2D CPs ANN [198]

Unfolding the structure-property relationships of Li2S anchoring on 2D
materials

2D AxBy (B in the
VIA/VIIA group)

GBR RMSE = 0.935 R2 = 0.998 [199]

Discovering and designing novel 2D horizontal interfaces Blue phosphorene GNN MAE = 1.010 [200]

Finding the optimal design of the Kirigami structure MoS2 RL [201]

Graphene CNN RMSE = 0.053 R2 = 0.920 [202]

Identifying the twist angle of bilayer graphene using Raman
spectroscopy

Twisted bilayer
graphene (tBLG)

KRR, RFR and MLP MLP
MAE≈0.270 RMSE≈0.690
R2≈0.980

[203]

tBLG RF Accuracy≈99.0% [204]

Revealing the correlation between the formation and exfoliation
energies of the MAB phase and structure

2D transition-metal
borides (MBenes)

SVM, DNN, and
RFR

RFR
MAE = 0.040 R2 = 1.000

[13]

Predicting low-temperature exciton valley polarization WSe2 RF [205]

Detecting the nanopores in 2D materials by TEM images 1T-CrTe2 DL [206]

MoS2, WS2 GB Accuracy = 96.0% [207]

Employing automated scanning probe microscopy driven by
hypothesis learning to investigate bias-induced switching in
ferroelectric materials

Ferroelectric
materials

BO [208]

Predicting thermally and mechanically induced ripples Graphene, h-BN GAP RMSE = 0.003 [209]

Exploring the electronic properties of arbitrary layered materials MoS2, graphene NN R2 = 0.630 [210]

Exploring the optimal thickness of 2D materials as diffusion barriers
for copper

Graphene, h-BN CNN MSE = 0.008 MAE = 0.070
RMSE = 0.090
R2 = 0.999

[211]

Finding descriptors affecting frictional properties of 2D materials Graphene, TMDs TL [212]

Optimizing Process Conditions for Top-Gate Field Effect Transistor
(FET)

MoS2 EL and RFR [14]

Exploring some information about FET devices through the LF noise
spectrum

MoS2 CNN Accuracy = 95.5%
F1 score = 0.930

AUC = 0.830

[213]

Finding the Optimal Conductive Sensing Materials for Manufacturing
Pressure Sensors

Hybridization of 2D
Ti3C2Tx MXenes

with 1D
nitrogen-doped

graphene
nanoribbon

ANN Accuracy = 97.2% [214]

Investigating the variation of the two-phase characteristic in
nanoribbons of different widths

Graphene MLIPs RMSE = 0.004 [215]

Exploring parameters affecting graphene mechanical properties Graphene ML [216]

Unraveling the correlation between Raman and photoluminescence MoS2 DenseNet,
XGBoost, and

SVM

[217]

Unveiling the dependence of laser power and temperature on Raman
shifts of 2D TMDs

MoS2 LR, DTR, and RFR MSE = 1.97 × 10−9

RMSE = 4.44 × 10−5

R2 = 0.990

[218]

Addressing the challenge of incomplete annotation for instance
segmentation in the identification of 2D quantum materials

2D materials DL [219]

(Continued)
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Table 5. (Continued)

Research area Materials ML algorithms Assessment mertics Ref.

Detecting the existence of crystal line defects in samples by analyzing
raw 2D coherent diffraction data.

FCC materials CNN Accuracy = 95.4% [220]

Exploring the configurational space of amorphous graphene Amorphous graphene GAP [221]

Exploring the best structure of hydrogenated graphene Hydrogenated
graphene

XGBoost RMSE = 0.033 R2 = 0.980 [222]

Assessing the feasibility of exfoliating any 3D compound into 2D layers 2D materials RF P = 88.0% R = 98.0% F1
score = 0.930

[15]

Investigating the flexoelectric energy conversion in bilayer vdW
structures

2D vdW bilayers MLIPs [223]

Simulating Raman spectra of titanium carbide MXenes using ML
algorithms

Titanium carbide
MXenes

ML [224]

Investigating the ferroic phase transformation in monolayer GeSe
nanoribbons

GeSe MLIPs [225]

Detecting the strain in TMDs by Raman Spectroscopy WS2 KMC [226]

Predicting the interlayer sliding energy barrier of MoS2 layers MoS2 LR MSE = 0.002 R2≈1.000 [227]

Capturing 2D vdW magnets with with a high likelihood of experimental
realization from materials science literature

2D materials ANN [16]

Reconstructing the exit wave of 2D materials in high-resolution
transmission electron microscopy

2D materials CNN RMSE = 0.006 [228]

Generating extreme quantum scattering in graphene Graphene ANN [229]

phases have been applied for the exfoliation of 2D transition
metal borides (Mbenes), which possess great potential in the de-
velopment of advanced nanodevices. Using three ML models—
RFR, DNN, and SVM—Siriwardane et al. explored the relation-
ship between the structural factors, exfoliation energy and for-
mation energy of MAB phases with hexagonal and orthorhombic
crystal symmetries.[13] They utilized the pymatgen python mod-
ule to obtain the formation energies of 7000 materials from the
Materials Project database, and screened the ten most important
features (Figure 13d) to train and test the ML models. They found
that the formation energy of MAB phases could be turned by ad-
justing the A element, with a higher atomic number of A corre-
sponding to less stability in the MAB phase and easier exfoliation
of 2D MBenes. Recent attention has been drawn to the poten-
tial applications of TMDs in future optoelectronics, but predict-
ing the low-temperature heterogeneity of exciton valley polariza-
tion solely from room temperature measurements is challeng-
ing. Tanaka et al. used a RF model (Figure 13e) to extract infor-
mation from the room-temperature photoluminescence spectra
of monolayer WSe2 to successfully predict the low-temperature
exciton valley polarization landscape.[205] They found that vari-
ables related to the exciton intensity and carrier density were the
key factors that determined the local exciton valley polarization.

While ML has facilitated the transition of 2D materials re-
search from theoretical exploration to practical application, chal-
lenges remain in achieving high-quality growth and circuit-level
integration. To overcome these challenges, Chen et al. utilized
ML models to analyze the experimental data of wafer-scale fabri-
cation of 2D MoS2 top-gated field-effect transistors (FETs) and as-
sess the crucial process parameters that affect the electrical prop-
erties, and therefore optimize the fabrication technique and im-
prove the electrical performance of FETs.[14] In their work, the
ML models they used included a decision tree-based ensemble

learning model and a RFR model; the analyzed data was corre-
lated to the device performance, including current on-off ratio,
threshold voltage, carrier mobility, and sub-threshold swing. Af-
ter optimizing wafer-scale material and device-fabrication pro-
cesses, they moved on to device characterization, SPICE mod-
eling, and circuit design. To accomplish this, they used industry-
standard design flows to create wafer-scale test FET arrays and
a 4-bit full adder (Figure 13f). Their findings revealed the huge
potential that ML has in assisting and optimizing the fabrica-
tion of electronic materials beyond silicon. Low-frequency (LF)
1/f noise spectroscopy is a nondestructive defect diagnosis tool
which identifies dominant scattering origins that are caused by
phonon vibration, the Schottky barrier inhomogeneity, interlayer
resistance, imperfect crystallinity, and traps inside the materi-
als and dielectrics. Lee et al. developed an efficient and accurate
method for characterizing and classifying layered 2D FETs by
combining LF noise spectroscopy with a neural network based
on hidden Markov models.[214] Their ML model could classify im-
portant information of devices based on >100 LF noise data sets
under 32 conditions, such as gate dielectrics, type of channel ma-
terials, and contact metals (Figure 13g).

8. Conclusion and Prospects

As this review shows, ML has significant potential in accelerating
the development of 2D materials. Traditional techniques, such
as DFT calculations and classical MD simulations alone, cannot
handle massive amounts of data. They also require high levels of
performance in hardware. In contrast, ML not only reduces these
computing overheads, but also surpasses traditional calculation
methods in accuracy. ML models trained by databases consisting
of DFT calculation results and experiment statistics have been
widely used in research on 2D materials: characterizing the lay-
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ers and defects of materials, identifying preparation conditions,
predicting properties, and developing new 2D materials, while
much research primarily focus on these four areas. ML has also
played an exceptional role in the fundamental research on 2D
materials, such as the correlation between thermal conductivity
and hole distribution of monolayer graphene,[197] optimal design
of kirigami structures,[201,202] and analysis of technical parame-
ters that affect electrical properties of top-gated 2D MoS2-based
FETs.[211] Some relevant publications are listed in Table 5. In sum-
mary, this review discusses the latest progress of applying ML in
2D materials, and summarizes the commonly used algorithms,
descriptors, and workflows of ML in exploring different research
scenarios of 2D materials. The cross-combination of ML and 2D
materials has not only presented new challenges but also brought
new opportunities.

For ML-enabled prediction of properties of 2D materials and
development of new 2D materials, using an extensive array of
chemical, structural and other initial features is necessary for
training a ML model. However, if these initial features are not
preprocessed with existing physical or chemical knowledge, or
one relies solely on ML algorithms to handle the intricate re-
lationships among them, reduced computational efficiency and
minor prediction inaccuracy of the model may occur.[80,124] De-
scriptors refactoring provide a solution to this problem, these ini-
tial features can be restructured into new features, based on spe-
cific correlation functions or new theoretical constraints, which
not only expand the number of samples, but also improve the
ML model’s fitting capacity to include complex relations between
features. This method of creating descriptors based on combina-
tions of features has played a crucial role in predicting the proper-
ties of 2D materials, developing new 2D materials, and guiding
fundamental research on 2D materials.[33,170,210] Theoretical ex-
planations of the correlations between different descriptors and
target property are also necessary to give researchers a more in-
depth, theory-based understanding of the target properties and
improve the ML model’s prediction efficiency and accuracy. In
addition, interpretable ML models rooted in physical or chemical
knowledge can instill reliability in model predictions and unveil
unexpected correlations that may lead to scientific insights into
physical chemistry.[230] MLIPs algorithm involve the creation of
interatomic potentials through ML model training.[125] The crys-
tal diffusion variational autoencoder method enables direct learn-
ing of material properties from the atomic connections within
the crystal.[30] Furthermore, the application of SHAP analysis to
the RF model helps us understand how physical descriptors con-

tribute to the model’s predictive capacity for the magnetic order-
ing of 2D materials.[137]

Although there are some established open-source databases of
2D materials, such as C2DB, 2DMatPedia, and Materials Cloud,
these databases are still far from sufficient for ML-enabled in-
terdisciplinary research on 2D materials. As shown in the tables
associated with Sections 4 and 5, many publications on 2D ma-
terials still rely on small-scale databases created specifically by
researchers through DFT calculations and MD simulations, the
findings from which are limited. Furthermore, When the dataset
is insufficient in size, it can give rise to overfitting or underfit-
ting in ML models. Overfitting occurs when a ML model overly
fits the training data, meaning it learns the noise and specific ex-
amples within the training data, resulting in strong performance
on the training data but poor generalization and application per-
formance. Conversely, underfitting occurs when a ML model fails
to capture the genuine patterns and relationships within the data,
leading to subpar performance on both the training and test data.
However, 2D materials and their associated properties developed
based on ML can be verified by DFT calculations, experiments
and multiple ML models.[91] Once verified, these new data can
be updated or added to existing open-source databases, which can
then be reapplied to train ML models and accelerate advances in
research on 2D materials. For instance, Thygesen et al. utilized
two different methods (eigenvalues and wave functions) to gener-
ate features of individual electronic states, which were then em-
ployed to train the ML model for predicting the G0W0 corrections
to the PBE band structures of ≈700 2D semiconductors from the
C2DB. These band structures have been published on the C2DB
web page.[127] For the time being, databases of image processing-
based layers and defect characterization data exist independently
of one another, which makes it hard to obtain enough data for ML
model training. In this framework, the FAIR principles (Findabil-
ity, Accessibility, Interoperability, and Reuse) are becoming a rec-
ognized standard for open-access data availability and reuse, with
univocal metadata definitions currently under definition among
the different scientific communities.[231,232] In the future, efforts
should be made to build more complete image databases, and
database users should be encouraged to upload their experimen-
tal images to achieve massive amounts of data collection. Further-
more, while ML has shown promise in accelerating 2D materials
research, it is important to note that models are usually trained
using single algorithms. Since first-principles calculations are
unable to handle massive amounts of data, it becomes challeng-
ing to measure the deviation of the ML predictions from the ac-

Figure 13. a) Workflow of ML-based prediction of ideal candidate defects. Deep transfer learning detects deep-center defects of 2D materials, while
the RF model predicts structural characteristics of the defects in order to obtain the ideal type of candidate defects. Reproduced with permission.[194]

Copyright 2020, American Chemical Society. b) Five porous graphene structures with the lowest thermal conductivity predicted by CNN. Reproduced
with permission.[197] Copyright 2020, Elsevier. c) The ML model that predicts MoS2 kirigami structures with high tensibility: the model predicts tensibility
based on the agent and provides rewards, with the agent using these rewards to update its strategy to maximize the total reward and thereby construct
structures of higher tensibility. Reproduced with permission.[201] Copyright 2021, Springer Nature. d) The ten most important features affecting MAB-
phase exfoliation. Reproduced with permission.[13] Copyright 2020, American Chemical Society. e) RF module: each decision tree has several nodes, and
the threshold values of variables at each node are computationally determined to maximize the amount of information gained. This approach is designed
to improve the accuracy of replicating the low-temperature exciton valley polarization landscape of monolayer WSe2. Reproduced with permission.[205]

Copyright 2019, American Chemical Society. f) Application scene of ML-assisted fabrication of 2D FETs, from material synthesis to industrial circuit
design, fabrication, testing, feedback, and optimization. Reproduced with permission.[14] Copyright 2021, Springer Nature. g) Feature learning and
classification of 2D FETs: the ML model extracts features of FET current signals measured by a low-noise current amplifier; these features are then
engineered into digital features recognizable by the hidden Markov model-based neural network to infer the conditions of devices. Reproduced with
permission.[213] Copyright 2021, Springer Nature.

Adv. Sci. 2024, 11, 2305277 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305277 (33 of 40)

 21983844, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202305277 by C

ochrane E
stonia, W

iley O
nline L

ibrary on [02/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

tual values. To address this challenge, it is essential to train the
model using two or more different algorithms, yielding predic-
tions separately. By comparing these predictions, the best algo-
rithm for model training can be identified.

In addition, the family of 2D materials has expanded tremen-
dously over the last decade, collectively encompassing a huge
portfolio of properties ranging from semiconducting and insu-
lating to magnetic, and superconducting. Emerging members
include layered oxides with atomic layers connected by oxygen
bridges, weak covalent bonds, or intercalating elements,[233,234]

in turn endowing them a high degree of chemical tunability
via functionalization,[235] alloying,[236] doping,[237] intercalation
of ions and molecules,[238] etc.; the possibilities for property-
oriented materials design are thus immense. Nevertheless, the
most enduring impact of 2D materials in terms of innova-
tive devices and architectures is expected to come from their
heterostructures.[239] In this case, electrons in atomically thin
2D layers are exposed to layer-to-layer coupling, allowing for
the interaction and coupling of different properties in the in-
dividual layers in ways that are otherwise impossible in other
systems.[240–242] The coupled properties not only are highly
exotic by themselves but also can be modulated by various
means, such as the combination of constituent materials, stack-
ing sequence[243–245] and relative crystallographic alignment.[246]

Moreover, a plethora of extended opportunities has been re-
vealed in vdW heterostructures that are created by incorporat-
ing molecular species, such as molecule-intercalated 2D lay-
ered crystals, organic-2D interfaces, as well as mixed 2D/3D
heterostructures.[247–252] These are just non-exhaustive examples
for capturing the great potential of 2D materials for realizing ma-
terials by design. The 2D Crystal Consortium[253] and Brookhaven
National Laboratory’s Quantum Material Press (QPress)[254] are
collective platforms committed to the design and preparation of
2D materials and layered heterostructures.

However, with vast material choices and enormous parame-
ter space at our disposal, this also implies a must to collect and
sift through an immense amount of complex data to identify
meaningful information. In tandem with this challenge, ML en-
ables efficient and accurate algorithm-based approaches for ac-
celerated discovery and intelligent design of 2D materials and
heterostructures. Autonomous experimentation is another ML-
enabled aspect, which is essential in both reducing the number
of experiments to a more tractable scale and accelerating the pro-
cess of making decisions to match the rate of incoming data.
Within the scope of 2D materials, most attempts toward this
end are only semi-autonomous, i.e., mainly limited to character-
ization tasks, such as identifying layer number and atomic de-
fects (see Sections 4 and 5), in which decision-making still relies
heavily on human intervention. However, true autonomy should
become reachable when a full algorithm-driven cycle is devel-
oped for the processing-structure-properties-performance rela-
tionships. In particular, we expect this to create a long-lasting im-
pact on 2D materials research that employs large-scale facilities,
notable examples of which include synchrotron radiation light
sources[255–258] and large-scale material fabrication and analysis
platforms, such as Le TUBE-Daum at the Jean Lamour Institute
in France,[259] and Nano-X in China.[260] These strategically built
facilities have integrated capabilities for material growth, char-
acterization, and post-growth processing. Multiple experimen-

tal stations are installed as an all-in-one system and connected
through ultrahigh vacuum pipelines to achieve comprehensive
studies of materials in a contamination-free environment. To this
end, NANO-X has, for instance, planned 500 meters of pipelines
and ≈100 stations, of which 44 are already in place. While these
facilities have been deployed to great effect for low-dimensional
materials, it remains a daunting task to map out the right con-
ditions at each station for the best possible data output, which
could vary between users and even take months to master. In ag-
gregate, these issues are expected to motivate the establishment
of an automated control framework for large-scale facilities, that
will integrate ML algorithms at multiple scales to perform not
only equipment control but more ambitious tasks, such as scien-
tifically relevant modeling, interpretation, and uncertainty quan-
tification of multiple streams of incoming data.

The takeaway message this review aims to deliver – ML is in-
curring revolutionary shifts in 2D materials research. Moreover,
with the endless possibilities in the combined area of ML and
2D materials, the advances covered herewith only represent the
exciting start!

Appendix

Table listing the full names of machine learning algorithms.

Abbreviations Full names Abbreviations Full names

ABR Adaptive boosting
regression

KMC K-means clustering

Adaboost Adaptive boosting KNR K-neighbors regression

ALIGNN Atomistic line graph
neural network

KRR Kernel ridge regression

ANN Artificial neural networks LASSO Least absolute
shrinkage and
selection operator

BNN Bayesian neural network
model

LGB Light gradient boosting

BO Bayesian optimization LR Linear regression

CCN Concatenate
convolutional networks

LSTM Long short-term
memory

CGCNN Crystal graph
convolutional neural
networks

MDC Mean shift and
density-based spatial
clustering

CLSTM Convolutional long
short-term memory
network

ML Machine learning

CNN Convolutional neural
network

MLIPs Machine-learning
interatomic
potentials

DenseNet Dense convolutional
network

MLP Multi-layer perceptron

DL Deep learning MLR Multiple linear
regression

DNN Deep neural network MS Mean shift

DT Decision trees PUML positive and unlabeled
machine learning

EA Evolutionary algorithm RCN Residual convolutional
networks
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Abbreviations Full names Abbreviations Full names

EL Ensemble Learning RCNN Region convolutional
neural network

ERT Ensemble of regression
tree

RF Random forest

ET Ensemble trees RFE Recursive feature
elimination

ETR Extra tree regression RFR Random forest
regression

FCN Fully convolutional
network

RL Reinforcement learning

FFNN Feedforward neural
network

RT Regression tree

GA Genetic algorithm RVM Relevance vector
machine

GAP Gaussian approximation
potential

SGDC Stochastic gradient
descent classifier

GB Gradient boosting SISSO Sure independence
screening and
sparsifying operator

GBDT Gradient boosted
decision tree

SVC Support vector classifier

GBR Gradient boosted
regression

SVM Support vector machine

GCN Graph convolution
networks

SVR Support vector
regression

GEP Gene expression
programming

TL Transfer Learning

GGA Generalized gradient
approximation

TMINN Transition-metal
interlink neural
network

GNN Graph neural network UMLBC unsupervised machine
learning bilayer
clustering

GNBC Gaussian naive Bayes
classification

VCN VGG16 convolutional
networks

GPR Gaussian process
regression

VDNNs Voxel deep neural
networks

KNN K-nearest neighbor XGBoost Extreme gradient
boosting
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