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Abstract

During speech perception, a listener’s brain activity tracks amplitude modulations in the speech
signal, which are encoded in the speech envelope. The neural tracking of the speech envelope
is modulated by cognitive factors such as attention to one of several competing speakers. De-
coding the speech envelope from noninvasive electroencephalography (EEG) may be useful in
future auditory prosthesis that could restore speech comprehension in noisy environments. Such
applications require, however, a robust decoding of the speech envelope that functions in differ-
ent acoustic conditions and that generalizes between different participants. Here we show that
deep neural networks (DNNs) can lead to an enhanced decoding that has around 38% higher
performance than the standard method, linear regression. The advantage of the DNNs persists
across different acoustic scenarios and also when listener-independent decoders are used. We
also show how an improved envelope decoding performance translates into a higher auditory
attention decoding accuracy for the DNNs, in comparison to the method of linear modelling.
Our work therefore demonstrates that DNNs show promise for data efficient, real-world auditory
attention decoding.

1 Introduction

Conventional hearing aids are known to provide only a limited benefit to their users, especially
when operating in noisy conditions (Lesica, 2018). The ability to determine the focus of a
user’s attention could enable the development of smart hearing aids with improved outcomes for
those who suffer with hearing loss. Recent studies have demonstrated that auditory attention
in multi-speaker scenarios can be decoded noninvasively from electrophysiological recordings
such as the electroencephalogram (EEG) (Bleichner, Mirkovic, & Debener, 2016; Fiedler et
al., 2017; Looney et al., 2010; Miran et al., 2018; O’Sullivan et al., 2014). One common
paradigm for auditory attention decoding (AAD) is the method of backward linear modelling,
whereby a set of coefficients are estimated in order to linearly reconstruct a speech feature
from EEG recordings. Typically, the feature of choice is the speech envelope. The envelope of
the attended speech stream is more strongly represented in a listener’s EEG, and can be more
accurately reconstructed from EEG recordings than the envelopes of the unattended speech
streams. Therefore, in the backward modelling approach, a reconstruction score (typically
Pearson’s correlation coefficient between the reconstructed and the actual speech envelope) for
each speech stream serves as a marker of selective attention.
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Since the processing in the auditory system is inherently nonlinear, it is natural to ask whether
nonlinear methods for auditory attention decoding can offer superior performance over linear
methods. Nonlinear methods for backward modelling and AAD based on artificial neural net-
works have been introduced recently (Ciccarelli et al., 2019; de Taillez, Kollmeier, & Meyer,
2020). Artificial neural networks are heavily-parameterised, nonlinear models which are capa-
ble of representing a broad class of functions. In fact, they are universal function approxima-
tors (Mandic & Chambers, 2001). Deep neural networks (DNNs) are artificial neural networks
which contain many layers of processing units (neurons). The correlation-based AAD technique
described above can be also be used in conjunction with a DNN, by exchanging the linear
backward model with a nonlinear DNN.

Deep neural networks are known to suffer from issues surrounding generalisability. This has
been highlighted by some some recent investigations which did not achieve a competitive AAD
performance across multiple datasets, when using DNNs which have elsewhere been reported
to be effective (Ciccarelli et al., 2019; Geirnaert et al., 2021). In this work, we compared
the performance of two nonlinear DNNs as well as one linear model for predicting the speech
envelope from EEG recordings. We applied the DNNs to two distinct EEG datasets. Following
a recent study, we examined a fully-connected feed-forward neural network (FCNN) (de Taillez,
Kollmeier, & Meyer, 2020). We also considered a more lightweight convolutional neural network
(CNN) based on the EEGNet architecture, which has been proposed for a range of brain-
computer-interface applications (Lawhern et al., 2018).

2 Materials and Methods

2.1 Datasets and preprocessing

Two datasets from our research group were used in this work. The first dataset (termed Dataset
1 hereafter) was collected by Weissbart et al. (Weissbart, Kandylaki, & Reichenbach, 2020). A
total of 13 native English-speaking participants were asked to attend to a single speaker nar-
rating an audiobook in English, in noiseless and anechoic listening conditions. Each participant
listened to 15 audiobook chapters in one recording session. The duration of each chapter was
approximately 2.5 minutes, and each participant took breaks between chapters. Attendance to
the audiobook was ensured by asking comprehension questions during the breaks.

The second dataset (termed Dataset 2 hereafter) was collected by Etard and Reichenbach (2019).
A total of 18 native English-speaking participants attended to speakers narrating audiobook
chapters in several listening conditions: clean speech, speech in noisy conditions, and speech
in competing-speaker scenarios. Additionally, 12 of the participants listened to a speaker nar-
rate an audiobook in a foreign language, Dutch. For the noisy speech, background babble
noise was synthesised and combined with the speech at three different signal-to-noise ratios
(SNRs) of -1.4 dB, -2 dB, and -3.2 dB. There were two competing-speakers scenarios: either the
male speaker was ignored, and the female speaker attended, or vice-versa. For each listening
condition, EEG was recorded in four trials of approximately 2.5 minutes in duration.

Preprocessing was performed using default routines available in MNE-Python version 0.24.1 (Gram-
fort et al., 2013). To obtain the speech envelopes, we computed the absolute value of the Hilbert
transform of each speech stream. The speech envelopes were low-pass filtered below 50Hz (linear
phase type 1 FIR anti-aliasing filter, Hamming window, 12.5Hz transition bandwidth, −6 dB
attenuation at 56.25Hz, −53 dB stopband attenuation) and resampled to 125Hz. To preprocess
the EEG recordings, all channels were low-pass filtered below one of several upper passband
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edges (linear phase type 1 FIR anti-aliasing filters, Hamming windows, −53 dB stopband at-
tenuation). The considered upper passband edges were: 8Hz, 12Hz, 16Hz, and 32Hz. The
EEG recordings were subsequently resampled to 125Hz and high-pass filtered above one of two
lower passband edges in order to remove slow drifts (linear phase type 1 FIR filters, Hamming
windows, −53 dB stopband attenuation): 0.5Hz, or 2Hz. Finally, for every trial, each EEG
channel was standardised to have zero mean and unit variance.

2.2 Linear models and deep neural networks

A linear backward model can be specified in the time domain by a matrix of parameters θi,j .
These are convolved with the EEG recordings to produce an estimate of the speech envelope:

ŷt =
C∑
i=1

L−1∑
j=0

xt−j,iθi,j . (1)

In this expression, yt denotes the speech envelope sampled at time t, xt,i designates the EEG
sampled at time t from electrode i, C represents the number of EEG channels being considered,
and L is the filter length which describes how many temporal EEG samples are employed to
estimate the speech envelope. The parameters were fitted through ridge regression.

The fundamental unit of any neural network is the “neuron”. A neuron receives a pre-determined
number of inputs, which it linearly combines according to its set of parameters (or weights). A
nonlinear activation function is then applied to the resulting scalar quantity.

A feed-forward neural network consists of layers of neurons, with neurons in a particular layer
receiving as inputs the outputs of neurons in preceding layers (neurons within a single layer
do not connect with one another). If each neuron in a particular layer is connected with each
neuron in the preceding layer, the neural network is described as ‘fully connected’ (FC). The
fully-connected feed-forward neural network (FCNN) used in this work is depicted in Figure 1.
If each neuron in a particular layer is instead only connected to a neighbourhood of input
neurons, and all neurons in the same layer share the same parameters (weight sharing), then
the neural network is described as a convolutional neural network (CNN). The CNN that was
used in this work is shown in Figure 1.

The FCNN used in this work was inspired by the architecture of de Taillez et al. (de Taillez,
Kollmeier, & Meyer, 2020). A spatiotemporal segment of EEG recordings is passed through
several fully-connected feed-forward layers, with each layer containing fewer neurons than the
preceding layer. The activation function is the hyperbolic tangent. The number of inputs is
equal to C×T , with C as the number of EEG channels used, and T as the number of temporal
samples in the segment. The scalar output represents a point estimate of the speech envelope at
the onset of the segment. Following de Taillez et al., the number of neurons in each hidden layer
decreases linearly from C × T to 1. The number of hidden layers is a tunable hyperparameter.

Our choice of CNN was inspired by the EEGNet architecture of Lawhern et al. (Lawhern et
al., 2018), which employs the exponential linear unit (ELU) as a nonlinear activation function,
as well as batch normalisation and average pooling. Batch normalisation improves convergence
during training by making the optimisation problem smoother (Ioffe & Szegedy, 2015; Santurkar
et al., 2018). Average pooling is a form of downsampling. To regularise the CNN, we used L2
regularisation and a variant of dropout known as spatial dropout (Tompson et al., 2015). The
scalar output of the CNN is formed by taking a linear combination of all of the activations in
the final convolutional layer.
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Figure 1 — The two neural network architectures used in this work. A spatiotemporal seg-
ment of T EEG samples and C channels is presented to both of the neural networks. Top:
the FCNN architecture consists of several fully-connected hidden layers. The Lth hidden
layer consists of NDL

neurons. A nonlinear activation function is applied to the output of
each hidden layer, followed by a dropout layer. Bottom: the CNN architecture employs
convolutional layers, which make use of local connectivity and weight-sharing to reduce the
number of parameters in the network. The 1st convolutional layer consists of F1 convolu-
tional filters, each sharing common input but comprising distinct parameterisations. The
2nd convolution flattens the channel dimension, and consists of D × F1 convolutional fil-
ters. The 3rd convolutional layer implements the so-called depthwise separable convolution,
which is similar to an ordinary convolutional layer consisting of F2 low-rank convolutional
filters. Following (Lawhern et al., 2018), we set F2 = D × F1 to reduce the dimensionality
of the hyperparameter search. Several operations may be applied to the activations of each
convolutional layer, including a non-linear activation function, batch normalisation, and
spatial dropout. Average pooling is a form of downsampling whereby the activations of a
neighbourhood of neurons are replaced by the average activation. This form of downsam-
pling is only applied along the temporal dimension.
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2.3 Training procedure

The coefficients of the linear model were fitted through ridge regression, as discussed in Section
2.2. Following (de Taillez, Kollmeier, & Meyer, 2020), we optimised the DNN parameters by
minimising the negative correlation coefficient between the reconstructed speech envelope and
the target speech envelope. The NAdam optimiser was used (Dozat, 2016).

Dataset 1 consisted of 15 trials per participant, each of approximately 2.5 minutes in duration.
We reserved 9 of these trials for model training, 3 for validation, and 3 for evaluation. Dataset
2 consisted for four trials per listening condition, per participant. Each trial had a duration
of approximately 2.5 minutes. We used 8 trials for model training (4 clean-speech trials and 4
high-SNR speech-in-noise trials), and 4 trials for validation (from the low-SNR speech-in-noise
condition). The remaining trials were used for evaluation.

During training, batches of EEG data were presented to the DNNs, and a corresponding batch
of predicted speech envelope values was produced. These were correlated against the actual
speech envelope values, and the DNN parameters were updated via a NAdam gradient descent
step in order to maximise the correlation coefficient. After iterating through all batches of
data (one epoch), the correlation score was evaluated on the validation dataset. The DNN
hyperparameters were tuned via a random search.

For each analysis, we trained 15 linear models with different regularisation parameters spaced
evenly on a logarithmic scale (ranging from 10−7 to 107 inclusive). The model that achieved
the highest correlation score on the validation dataset was selected for testing.

2.4 Analysis procedure

To evaluate the models, the EEG data were split into contiguous windows. The predicted
speech envelope values in each widow were correlated against the actual speech envelope values.
The mean and variance of the correlation score over all windows were calculated, since these
quantities are of interest in AAD applications. To construct a null distribution, the predictions
for each window were also correlated against the true speech envelope in unrelated windows.

In Section 3.4 we applied the linear model as well as both DNNs to EEG recorded in competing-
speakers scenarios. The correlation-based method was used to decode auditory attention using
each DNN or the linear model. The performance of each backward model was quantified through
the attention decoding accuracy for a given window size W . The information transfer rate (bit
rate) B was also calculated according to (McFarland, Sarnacki, & Wolpaw, 2003; Wolpaw et al.,
1998):

WB = log2N + P log2 P + (1− P ) log2
1− P

N − 1
, (2)

where N is the number classes in the classification problem (two in this case), and P is the
attention decoding accuracy. The bitrate in (2) is scaled by the window duration W to obtain
an effective bitrate that takes into account the size of window.

The neural networks were implemented in PyTorch version 1.10.0 (Paszke et al., 2019). Statis-
tical analyses were conducted using Scipy version 1.7.1 and Statsmodels version 0.11.1 (Seabold
& Perktold, 2010; Virtanen et al., 2020).
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Figure 2 — Two distinct DNN architectures, as well as a linear model, were used to relate
EEG recordings to the envelope of clean speech. The decoding performance for all three
methods when different EEG frequency bands are used is shown in (a). Each boxplot com-
prises the mean envelope reconstruction score (correlation coefficient) for each participant.
The subject-level results for the EEG frequency band 0.5-8Hz are depicted in (b). Each
boxplot represents the median and range of the reconstruction score when a 2 s correlation
window is employed. The median reconstruction scores of the null distributions are shown
in green.

3 Results

3.1 Subject-specific models

We first evaluated the performance of the DNNs and linear models at reconstructing the envelope
of clean speech, using Dataset 1. We considered several different EEG frequency bands, and
we found that using the 0.5-8Hz band yielded the most effective linear decoders (Figure 2a).
For this frequency band, the spread of reconstruction scores for all participants is reported in
Figure 2b. We used this frequency band for all subsequent analyses.

The median values of the null scores are shown in green on Figure 2b. We tested the re-
construction scores for significance with a t-test (single-tailed unpaired t-test, FDR-corrected).
Additionally, we compared the reconstruction scores of each pair of models for every participant
(unpaired t-tests, FDR corrected). The corrected p-values are reported in Table 1.

To analyze the performance on the population level, we calculated the mean reconstruction
score for every participant and model. We then compared the 13 mean reconstruction scores
achieved by each model. We found no significant difference between the two DNNs (p = 0.83,
two-tailed paired t-test). However, both DNNs significantly outperformed the linear model
(CNN: p = 2.2× 10−5; FCNN: p = 1.6× 10−4; single-tailed t-tests, Bonferroni corrected.)

The mean and standard deviation of the reconstruction score varied with window duration. We
determined the dependence of the mean and standard deviation of the reconstruction scores on
the duration by performing the analysis procedure with windows of various sizes (ranging from
0.1 s and 10 s). The mean and standard deviation of the reconstruction scores were averaged
over all participants (Figure 3). The mean reconstruction scores of both linear and nonlinear
models are strongly degraded for window sizes less than 2 s. For window sizes greater than 2 s,
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Table 1 — Statistical tests on the data shown in Figure 2b. The first three rows show
the p-values obtained when testing for difference between the reconstruction scores (ρ) and
null distributions (ρ0) for each method. These were FDR-corrected independently of the
p-values in the next three rows. The next three rows show the p-values obtained by testing
for differences between the reconstruction scores of the different techniques.

Alternative Hypothesis Participant

1 2 3 4 5 6 7 8 9 10 11 12 13

ρridge > ρridge0 2.94e-05 2.77e-04 1.02e-03 1.48e-09 7.86e-13 1.23e-06 1.89e-08 1.61e-09 2.05e-13 1.10e-13 2.01e-19 2.57e-19 3.79e-19
ρCNN > ρCNN

0 1.08e-09 1.48e-09 3.04e-09 8.09e-19 2.08e-13 1.50e-12 2.30e-12 2.19e-16 2.64e-12 3.73e-21 7.60e-27 7.56e-21 1.69e-31
ρFCNN > ρFCNN

0 2.09e-14 3.90e-11 7.92e-10 1.04e-15 1.71e-18 3.55e-11 1.03e-17 3.18e-16 4.31e-13 3.04e-28 2.97e-26 1.66e-22 1.35e-20

ρCNN 6= ρFCNN 5.12e-01 5.12e-01 9.11e-01 9.97e-01 3.91e-01 9.97e-01 9.97e-01 9.97e-01 7.90e-01 9.11e-01 7.90e-01 9.11e-01 5.12e-01
ρCNN > ρridge 3.18e-02 2.09e-02 1.63e-01 1.82e-02 3.67e-02 1.99e-01 2.97e-01 2.84e-01 3.67e-01 1.71e-03 2.34e-02 5.12e-01 3.67e-02
ρFCNN > ρridge 2.43e-03 1.00e-01 1.00e-01 1.82e-02 2.43e-03 1.96e-01 2.97e-01 2.62e-01 5.12e-01 7.66e-04 7.86e-03 6.11e-01 1.99e-01
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Figure 3 — The mean (a) and standard deviation (b) of the reconstruction score (Pearson’s
correlation coefficient), averaged over all participants from Dataset 1, is plotted against
the size of the correlation window used during evaluation. For window sizes less than 2 s
in duration, the mean reconstruction score was considerably degraded. The variability of
the reconstruction score increases sharply with decreasing window size, but is similar for
all three methods. The dotted lines show the mean and standard deviation of the null
reconstruction scores for the three methods.

the mean reconstruction score for each DNN was around 38% above that of the linear model.
The mean of the set of 13 standard deviations was very similar for all three methods across all
window sizes.

3.2 Subject-independent models

To test whether the models generalise between participants, we left one participant’s data out
of the training procedure, and instead trained each of the models on the data from the 12
remaining participants in Dataset 1. We repeated this process 13 times, leaving out a different
participant each time. In this way, we pre-trained 13 subject-independent models and applied
them to data from the unseen participant. For comparison, we also trained population models
using training data from all of the participants, and applied these to distinct test data (recorded
from the same 13 participants). Our results are summarised in Figure 4.
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Figure 4 — Comparison between subject-specific and subject-independent decoders applied
to clean speech (Dataset 1). The boxplots represent the spread of the mean reconstruc-
tion scores achieved for each participant. The first group (subject-specific models) shows
the mean reconstruction scores achieved by subject-specific decoders applied to Dataset 1.
The second group (leave-one-subject-out experiment) shows the mean reconstruction scores
achieved by the subject-independent decoders described in Section 3.2. For the third group
(population models), population models were trained with Dataset 1 and subsequently ap-
plied them to data recorded from individual subjects in Dataset 2.

On the subject level, the use of the linear subject-independent models resulted in significant
mean reconstruction scores for 9 of the 13 participants (single-tailed unpaired t-test, FDR
corrected). Both the subject-independent CNN and FCNN yielded significant reconstruc-
tion scores for 12 participants. For each participant, we compared the use of each pair of
subject-independent models using unpaired t-tests (FDR corrected). We found that no subject-
independent model significantly outperformed either of the other subject-independent models
for any of the participants. On the population level, however, both subject-independent DNNs
significantly outperformed the subject-independent linear models (CNN: p = 3.1×10−4; FCNN:
p = 0.01; single-tailed t-tests, Bonferroni corrected). There was no significant difference between
the subject-independent DNNs on the population level.

The subject-independent decoders yielded scores which were approximately 50% below those
of the subject-specific decoders. The population decoders performed better than the subject-
independent decoders, but worse than the subject-specific decoders.

3.3 Performance of subject-specific models in different listening conditions

For real-world applications, a decoder needs to perform well across a range of listening condi-
tions. We therefore trained subject-specific decoders using Dataset 2, which consisted of EEG
recorded under a number of different listening conditions. The spread of mean reconstruction
scores in each test condition are shown in Figure 5. We compared the sets of mean reconstruction
scores achieved by each pair of models within each listening condition using two-tailed paired
t-tests (FDR corrected). There was no significant difference between the DNNs in any listening
condition. However, both DNNs significantly outperformed the linear model at reconstructing
the attended speech stream in the competing-speakers conditions, as well as in the background
babble noise condition. The DNNs performed similarly to the linear models at reconstructing
the envelope of clean speech in a foreign language, as well as at reconstructing the unattended
speech envelope in the competing-speakers conditions.
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Figure 5 — The spread of mean reconstruction scores for the participants in Dataset 2 when
subject-specific decoders were applied in different listening conditions.

3.4 Attention decoding performance

For our final case study, we investigated whether the subject-specific decoders described in
Section 3.3 could actually be used for auditory attention decoding in the competing-speaker
scenarios. We compared the reconstruction score (correlation coefficient) for the attended and
unattended speakers in each window, and calculated the proportion of windows for which the
reconstruction of the attended envelope was greater than that of the unattended envelope (the
binary classification accuracy). The decoding accuracies for three different window durations
(2 s, 5 s, 10 s) are shown in Figure 6. Both DNNs offered clear accuracy improvements over the
linear model across all three window durations.

Following (de Taillez, Kollmeier, & Meyer, 2020), we also calculated effective bitrates for at-
tention decoding using different window sizes. The bitrate is related to the time-rate of correct
classifications, and was calculated according to Equation 2. We found that a window size of 2 s
maximises the decoding performance of the CNN as well as that of the linear model (Figure 6b).
A window size of 1 s was marginally more suitable for the FCNN. Both DNNs achieved much
higher bitrates than the linear model.

4 Discussion

We have investigated the performance of two types of DNNs at estimating the speech envelope
from EEG recordings. The performance of each DNN was compared to that of a standard
linear model. A comprehensive evaluation has shown that the two DNNs can achieve very
similar performances when reconstructing the envelope of clean speech, whilst exceeding that
of the linear model by about 38%. The advantage of using the DNNs over the linear models
remained even when the models were applied to subjects whose EEG data had not been seen
during training. Importantly, the DNN architectures and hyperparameters have been shown to
generalise to a distinct data set, and subject-specific models have been applied effectively to
data in which speech was presented in different types of noise. Our results have demonstrated
that DNNs can robustly enhance the decoding of speech features from EEG recordings.
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Figure 6 — Comparison of the attention decoding accuracies of the three methods, across
three different window sizes (a). The information transfer rate for the three methods, which
quantifies the tradeoff between decoding accuracy and window duration (b).

4.1 Similarities between the two DNNs

The scores achieved by the two DNNs investigated in this work were remarkably close. In
fact, the outputs of the two neural networks were themselves highly correlated, which suggests
that the two DNNs had learned to represent very similar functions. Owing to local neuron
connectivity, the CNN required far fewer parameters than the FCNN: about four thousand
versus twelve million, respectively. The linear model required about three thousand parameters,
which is comparable to the number of parameters in the CNN. The CNN may therefore be a
preferable, lightweight alternative to the FCNN for practical applications. Future investigation
may reveal effective architectures which are even more lightweight, for example by removing
or ‘pruning’ neurons which are of low importance (Frankle & Carbin, 2019; Zhu & Gupta,
2017). Additionally, prior information about this signal processing problem could be exploited
by imposing inductive biases on a DNN (Bronstein et al., 2021). For example, the neural
response to the speech envelope is well characterised in the literature, and the known spatial
arrangement of the EEG sensors may be leveraged.

4.2 Subject-specific decoders

The effect of broadening the EEG frequency band from 0.5-8Hz to 0.5-32Hz had no discernible
impact on the performance of the DNNs. De Taillez et al. found that the use of broadband EEG
improved the attention decoding accuracy of their DNN when applied in a competing-speaker
scenario (de Taillez, Kollmeier, & Meyer, 2020). Whilst it could be true that more information
is encoded by higher frequency oscillations during selective attention in competing-speaker sce-
narios, it could also be argued that the noise introduced through the higher frequency bands
assisted the optimisation procedure during DNN training in that study (via noise injection).

We used the 0.5-8Hz EEG frequency band for subsequent analyses. Both of the DNNs as well
as the linear modelling method achieved significant reconstruction scores for all participants.
On the population level, the improvement offered by the DNNs was statistically significant. The

10



ISH2022

overall performance of the DNNs was around 38% greater than that of the linear model. Even
on the subject level, the CNN (FCNN) offered a statistically significant performance increase
compared against the linear model for 7 (5) participants.

We found that for windows smaller than around 2 s in duration, the reconstruction accuracy of
all three methods was severely degraded. The latency of a real-world decoder which is based
on the correlation method may therefore be limited to this timescale, unless techniques such as
state-space models are employed (Miran et al., 2018). Indeed, we found that a window size of
about 2 s maximises the information transfer rate of the correlation-based auditory attention
decoding algorithm. The variability in the reconstruction score followed similar power-law
dependencies on window size for all three methods. This finding contrasts with a previous
study which found that the reconstruction score of a DNN similar to the FCNN used in this
work was much more variable than that of a linear model, when applied in a competing-speaker
scenario (Aroudi, de Taillez, & Doclo, 2020).

4.3 Subject-independent decoders

All three subject-independent decoders yielded reconstruction scores that were significantly
different from the null distribution for the majority of the participants (9 for the linear model;
11 for both the CNN and the FCNN). We found that all three subject-independent decoders
performed very similarly on the subject level. However, on the population level, the subject-
independent DNNs both significantly outperformed the subject-independent linear model.

The subject-independent decoders performed significantly worse than their subject-specific
counterparts (the performance decrease was around 50% for all three methods). Whilst a
performance penalty is to be expected when subject-independent information is unavailable,
a penalty of this magnitude may imply that some subject-specific information is required for
real-world applications.

4.4 Application to EEG recorded under different listening conditions

We trained linear and nonlinear subject-specific decoders using a mixture of clean speech and
speech-in-babble-noise conditions. We found that the DNNs outperformed the linear model by
a considerable margin when reconstructing the envelope of an attended speaker in competing-
speaker scenarios, as well as in background babble noise. All three methods performed very
similarly at the task of reconstructing the unattended speaker in the competing-speaker scenar-
ios.

The three methods also performed very similarly at reconstructing the envelope of clean speech
in foreign Dutch. The comprehension score in this listening condition was 0%, and it is has been
shown that cortical speech tracking in the delta band is modulated by the speech comprehension
level (Etard & Reichenbach, 2019). Since very low comprehension levels were not represented
in the training data, this may explain why the DNNs did not perform as well in this listening
condition.

4.5 Attention decoding performance

Finally, we decoded auditory attention in competing-speaker scenarios using the subject-specific
decoders that were trained with Dataset 2. It was found that the use of DNNs was advantageous
for this purpose, as was shown in (de Taillez, Kollmeier, & Meyer, 2020). We also replicated the
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finding that a short window length of about 2 s was optimal for real-time applications. However,
the bitrates that were achieved by the DNNs were somewhat lower than those reported in (de
Taillez, Kollmeier, & Meyer, 2020): this might be explained by the fact the authors trained
their DNN using EEG recorded in a competing-speaker scenario, which was the same listening
condition as was used for evaluation. Nevertheless, our study provides conclusive evidence that
DNNs can be used for enhanced and robust decoding of selective attention in competing-speaker
scenarios.
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Comments

Comment from Sarah Knight: This is by no means my specialist subject (I’m
a behavioural psychologist), so I’m afraid I can’t comment on the technical aspects
of the paper. However, I have a couple of (probably very naïve) questions!
First, why did the DNNs outperform the linear model by such a margin when it came
to reconstructing the attended speaker in the speech-in-noise (competing talker +
babble) conditions? Is this related to the fact that the EEG signal captured the
process of selective attention?
Second, does the lower limit of a 2s window for reasonable reconstruction accuracy
severely limit the likely usefulness of these techniques for real-world applications?
Thanks for the opportunity to read this work!

Thanks for your comment!
I think the DNNs worked so well in the attended speaker + babble condition
because this was represented in the training data (the training data consisted
of clean speech, and two speech-in-babble-noise conditions - low SNR and
high SNR. the network was evaluated on a medium SNR condition).
The other conditions were not represented in the training data. I think
the DNNs worked so well in the attended + distracting speaker conditions
because a) perhaps the EEG response to the attended speaker is not so
different in the competing-speakers scenarios and the speech-in-babble noise
scenarios and b) it is possible that the speech-in-babble noise conditions also
elicit similar attentional effects in the EEG response to the attended speech
stream in the two-speakers condition.
As you suggest, shorter windows would improve the responsiveness of a de-
coder to switches in auditory attention (e.g. from one speaker to another).
So I would say shorter windows are better, with two caveats (I will try to
find references when I find some time):

1. Quickly-adapting hearing aids don’t appear to offer much benefit to
users with lower cognitive function - and if I remember correctly, adapt-
ing too quickly may even be detrimental for the user.

2. Some work on closed-loop hearing devices of the type suggested in the
paper has already been carried out in the literature, and the main com-
plaint from users was actually to do with the relatively low AAD accu-
racy - it appears that rather higher accuracies will be required if this is
going to work well for users. So in some sense the latency of the decoder
may actually be a secondary consideration.

Up-to-date comments can be found on PubPeer.
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