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Abstract

When developing models of human hearing for communication devices, it is important to have
an accurate representation of auditory filter (AF) shape. AF shape has been traditionally es-
timated by the combination of notched-noise (NN) masking experiment and power spectrum
model (PSM) of masking. AFs of hearing impaired (HI) listeners were sometimes estimated ex-
tremely broader than ones expected from physiological observation when NN thresholds rapidly
converged onto the absolute threshold (AT) as notch width increases. The overestimation
happened probably because the conventional PSM does not adequately include the effect of
the cochlear noise floor associated with AT. This paper tried to clarify and solve the problem
through NN measurements and a new formula of the PSM.

We measured a detailed set of NN threshold values for normal-hearing (NH) listeners, including
low-level noises at four center frequencies (500, 1000, 2000, and 4000 Hz) to show how threshold
converges onto the AT as notch width increases at low noise levels. We incorporated AT into
the PSM for the AF shape estimation by introducing the level-dependent cochlear noise floor,
N

(LD)
c , which is a function of the NN masker level from the base level directly calculated from

the hearing level (HL) of 0 dB. We estimated the AF shapes for the four center frequencies
simultaneously and compared the N

(LD)
c model with a fixed noise floor model, N (Fx)

c and the
conventional P0 model in which an arbitrarily constant, P0, had been introduced to represent
the low-level threshold limit. The N

(LD)
c model provided an excellent fit and a major reduction

in the rms error of the AF shape estimation when comparing the P0 and N
(Fx)
c models. We

also examined the frequency distribution of the cochlear noise floor in quiet, which provides the
basis of the AT and AF shape estimation. It was found the frequency distribution associated
with the HL of 0 dB was optimal regardless of the frequency dependency for the detector SNR,
K, in the PSM. It implies that the AT can be explained by this noise floor in quiet.

1 Introduction

When developing models of human hearing for communication devices, it is important to have
an accurate representation of auditory filter (AF) shape. Traditionally, the shape is estimated
using a notched-noise (NN) experiment in which threshold for a sinusoidal signal is measured
in the presence of a broad band of noise (Moore, 2012; Patterson, 1976; Patterson, Unoki, &
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Irino, 2003). A notch is created in the noise around the signal frequency, fs, and tone threshold
is repeatedly measured as the width of the notch is increased. The resultant NN threshold
function is assumed to provide an estimate of the shape of the integral of the auditory filter at
that signal frequency. The shape of the filter itself is derived from the threshold function using
a relatively simple power spectrum model (PSM) (Fletcher, 1940) of tone-in-noise masking.

As notch width continues to increase, the descent of NN threshold is eventually limited by
absolute threshold (AT). Thus, the curve that describes AT as a function of signal frequency,
AT(fs) , also describes the lower boundary for NN threshold as a function of fs. For young
normal listeners, the form of AT(fs) is well known; it is codified in ANSI hearing-level standard
(ANSI_S3.6-2010, 2010) as HL-0dB (Hearing Level for 0 dB). This suggests that the PSM of
masking used to derive an AF shape from a set of NN thresholds should include the constraints
imposed by AT.

Moore (2012) pointed out that AFs of hearing impaired (HI) listeners differed considerably
with the individual. Some of them had extremely broad filters; others had filters with the
opposite asymmetry to those typically observed (Glasberg & Moore, 1986). But there was no
clear relationship between AF shape and the broadly tuned component of the cochlear traveling
wave observed physiologically (Pickles, 2013; von Békésy & Peake, 1990). Often with these HI
listeners, the sound pressure level (SPL) of the NN masker was not far above their elevated AT
value and NN threshold converges onto AT at a relatively narrow notch width. The conventional
PSM does not include the effect of AT, and in such cases the bandwidth of the AF is likely to
be overestimated. The incorporation of AT into the PSM would increase the stability of the
AF fit and reduce the number of free coefficients required for a good fit.

This paper shows that AT(fs) can be incorporated into the PSM by assuming that there is a
broad-band noise floor in the cochlea which combines with the NN masker as it appears in the
cochlea, and together they determine the threshold value observed in any given condition of the
experiment. It is also demonstrated that the level-dependency of the noise floor, which may
vary with NN masker levels, plays an important role in the AF shape estimation. Moreover, it
is necessary to know the wide-range distribution of the noise floor when we estimate the filter
shapes for various center frequencies simultaneously(Patterson, Unoki, & Irino, 2003). Buss et
al. (2016) reported that the frequency distribution of the internal “self-generating noise” of NH
listeners is similar to the 0-dB HL function(ANSI_S3.6-2010, 2010) on a dB scale. Although it
gives the first-order approximation, it was not proved to be optimum in the AF shape estimation.
It is another question to be answered in this paper.

This paper is organized as follows. Section 2 presents a large NN experiment performed with
NH listeners and a high proportion of wide notch conditions and low NN levels, to produce
a detailed record of how AT interacts with NN threshold. Section 3 shows how the PSM of
masking was extended to include the noise floor dictated by AT. Section 4 presents a quantitative
comparison of the conventional and extended PSMs for AF shape estimation. Finally, in Section
5, we confirm that the frequency distribution of the noise floor is reasonable in the extended
PSM.

2 Experiment

The NN experiment in this study is similar to those in the more recent AF studies (e.g., Baker
and Rosen (2002), Glasberg and Moore (2000); see Moore (2012), for details). NN threshold for
a sinusoidal signal (0.5, 1.0, 2.0 or 4.0 kHz) was repeatedly measured in the presence of a NN
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masker using an adaptive, two-alternative, forced-choice procedure (Levitt, 1971). The main
difference in the design of the current experiment was the inclusion of masker conditions with
low spectrum levels, where AT is observed to limit the descent of NN threshold in wide notches.

2.1 Notched-noise conditions

The signal frequencies (fs) were 0.5, 1.0, 2.0 and 4.0 kHz. The normalized frequency distances
from the signal to the nearer edges of the lower and upper noise bands {∆fl/fs,∆fu/fs} were
{0, 0; 0.1, 0.1; 0.2, 0.2; 0.4, 0.4; 0.3, 0.5; 0.5, 0.3}. The same notches were used at each spectrum
level. The bandwidth of the noise was 0.4 of the normalized signal frequency. The spectrum
levels (N0) were {38, 28, 18, 8,−2,−12} dB when fs = 2.0 kHz and {40, 30, 20, 10, 0,−10} dB
when fs was 0.5, 1.0, or 4.0 kHz. At each signal frequency, threshold was measured for six noise
spectrum levels in a random order1.

2.2 Listeners

The experiment was performed with NH listeners rather than HI listeners because their audio-
grams exhibit less variability and they were willing to participate in the long sessions required
to collect NN thresholds for such a wide range of SPLs and notch widths.

In total, 26 NH listeners participated in the experiment; they ranged from 19 - 28 years old; there
were 14 males and 12 females. They all had hearing levels (HLs) less than 20 dB between 125
and 8000 Hz. To make up the four groups of 8 observers required by the design, one man and one
woman participated at two of the four signal frequencies, and two different men participated
at three signal frequencies. The experiment was approved by the local ethics committee of
Wakayama University and all of the listeners provided informed consent before participating in
the experiment.

2.3 Signal generation and measurement procedure

The sinusoidal signals and the NN maskers were generated digitally at a sampling rate of 48 kHz
with 24-bit resolution using MATLAB 2017a on a Mac mini with MacOS 10.12. The signal and
the masking noise had the same, 200-ms, duration. The onset and offset were rounded with the
rise and fall of a 10-ms hanning window. The stimuli were presented over headphones (PM-1,
OPPO) via a USB interface (HA-1, OPPO) at a 48-kHz sampling rate and 24-bit resolution.
The listeners were seated in a sound attenuated room (RION AT62W). The headphone levels
were calibrated with a sound level meter (Type 2250-L, Bruël & Kjær) and an artificial ear
(Type 4153, Bruël & Kjær).

Signal threshold was measured using a two-interval, two-alternative, forced-choice procedure and
the transformed up-down method of Levitt (1971). In one interval, the masker was presented
on its own; in the other, the signal and masker were presented simultaneously. Listeners were
asked to select the interval containing the signal using a graphical user interface. Feedback
regarding the correct answer was indicated visually after the listener’s response. There was
a brief training session lasting about 20 minutes to familiarize the listener with the threshold
procedure.

1The 2.0-kHz fs condition was performed first. The conditions with the lowest masker levels (-10 or -12 dB)
were measured separately, after those for the other five noise levels when it became clear that the interaction of
NN threshold with AT continued below 0 dB
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2.4 Results

For the four signal frequencies, Figure 1 shows average NN threshold for the eight listeners at
the six masker levels (solid lines), along with their average AT (dashed line). The thresholds
associated with the two highest noise levels, 30 and 40 dB2, remain well above AT out to
the widest notches. At lower noise levels (20, 10 and 0), however, threshold is limited by the
proximity of AT, and NN threshold at the -10 dB noise level converges onto AT at the wider
notch widths. The set of curves shows that NN threshold does eventually converge onto AT at
all signal frequencies. This in turn suggests that NN threshold should be assumed to converge
onto AT in the PSM of masking. In earlier studies, although AT was routinely measured, it
was not included in the data set used to derive the shape and gain of the auditory filter, nor
was AT directly represented in the power-spectrum model used to derive filter shape and filter
gain.

3 Extension of the power spectrum model of masking

In the notched noise (NN) experiments, the PSM was used for estimating signal threshold, P̂s

(on a dB scale), with the following equations:

P̂ ′
s = K ′ + 10 log10 P̂ext, (1)

P̂ext =

∫ famax

famin

N0(f) ·W (f)df, (2)

N0(f) =

{
N0 · |T (f)|2 when {f |flmin

≤ f ≤ flmax , fumin ≤ f ≤ fumax}
0 otherwise

(3)

where K ′ is the signal-to-noise ratio (SNR) at the output of the auditory filter and P̂ext (on a
linear scale) is an estimate of the external noise that passes through the auditory filter. Note
that, to avoid confusion, the parameters with a prime (e.g.,K ′, P̂ ′

s) represent level on a dB scale
hereafter. N0(f) is the spectrum level of the noise, i.e., power density function, and W (f) is
the power weighting function of the auditory filter. famin and famax are the cochlear frequency
range 3. flmin

, flmax , fumin , and fumax specify lower and upper noise bands of NN. In Eq. 3,
T (f) is the transfer function of sound from the audio device to the input of the cochlea. It is
dependent on how sounds are delivered (e.g., free field or headphone) and where the noise level
is defined, which in this study was the ear drum. T (f) was the transfer function of the middle
ear, Tmid(f) (Aibara et al., 2001; Glasberg & Moore, 2006; Puria, Peake, & Rosowski, 1997) as
shown in Fig. 2(b).

When the auditory filter is modeled with the compressive gammachirp (GC), GC(f), as de-
scribed in Appendix 6 (see also Irino and Patterson (2001) and Patterson, Unoki, and Irino
(2003)), the filter weighting function, W (f) becomes |GC(f)|2. The GC filter was used as the
filter function in the current paper because it provides a better representation of the level-
dependence and compression of the auditory filter than the conventional roex filter (Patterson
& Nimmo-Smith, 1980); moreover, the GC filter requires fewer parameters (Unoki et al., 2006).

2At 2 kHz, they are 28 and 38 dB which are -2 dB less than those appear in this subsection.
3In the current simulation, famin = 100Hz and famax = 12kHz because the gains of the GC filters between

0.5 kHz and 4 kHz are sufficiently small beyond this range. Another reason is to avoid ill-defined noise level at
low and high frequencies affecting estimation of the noise floor at the reference frequency, 1 kHz.
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(a) fs = 0.5 kHz
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(b) fs = 1.0 kHz
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(c) fs = 2.0 kHz
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(d) fs = 4.0 kHz

Figure 1 — Average NN threshold (solid lines) for eight listeners, and their average AT
(dashed line). The signal frequencies (fs) were 0.5 kHz (a), 1.0 kHz (b), 2.0 kHz (c), and 4.0
kHz (d). The abscissa is normalized notch width (∆f/fs). The circles (◦) show symmetric
notch conditions; the right-pointing triangles (.), at ∆f/fs = 0.3, show conditions with
additional shifting of the upper noise band by 0.2; the left-pointing triangles (/), at ∆f/fs =
0.3, show conditions with additional shifting of the lower noise band by 0.2. The parameter
beneath each threshold curve is noise spectrum level which was the same for the lower and
upper bands throughout the experiment. The noise levels for the triangles are the same as
for the threshold curves just above them.

3.1 Incorporating absolute threshold into the estimation of NN threshold

In conventional NN experiments, the notched noise level is well above absolute threshold (AT),
so AT can be ignored in the derivation of AF shape. The PSM was extended to include AT by
assuming that there is an internal noise floor that limits NN threshold and the power at the
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Figure 2 — (a) Relationship between Self-generating noise (Buss et al., 2016) and HL-0dB
function at the ear drum (dashed lines) and at the cochlear input (solide lines). (b) The
middle ear transfer function, Tmid(f) (Glasberg & Moore, 2006) for compensating between
them.

output of the corresponding AF is

P̂int =

∫ famax

famin

Nc(f) ·W (f)df, (4)

where Nc(f) is the spectrum level of the internal noise floor. NN threshold depends on both
the internal noise P̂int in Eq.4 and the external noise P̂ext in Eq.2. so that NN threshold can
be predicted as

P̂ ′
s = K ′ + 10 log10(P̂int + P̂ext). (5)

Absolute threshold, P̂abs, can be estimated when the noise floor level Nc(f) is equal to N
(Q)
c (f)

which is the level in quiet, i.e., P̂ext = 0. Then AT can be estimated with the PSM as

P̂ ′
abs = K ′ + 10 log10

{∫ famax

famin

N (Q)
c (f) ·W (f)df

}
. (6)
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3.2 Frequency distribution of the cochlear noise floor

We would like to know whether AT is completely determined by the internal noise floor in
quiet, N (Q)

c (f), or whether some other factor is also involved. Buss et al. (2016) reported that
the distribution of internal “self-generated noise” of NH listeners is similar to the 0-dB HL
function(ANSI_S3.6-2010, 2010) on a dB scale as shown in Fig.2(a). If we assume that the
distribution of the cochlear noise floor, N (Q)

c (f), is indeed the 0-dB HL function, LHL0(f), it
can be represented as

N (Q)
c (f) = N (Q)

c (fref ) · |Tmid(f)|2 ·
LHL0(f)

LHL0(fref )
·
ERBN (fref )

ERBN (f)
. (7)

The noise floor, N
(Q)
c (f), is a spectral power density function and should be multiplied by

the AF bandwidth, ERBN (f), to convert a linear power function, LHL0(f). The function is
normalized at a reference frequency, fref , which is 1 kHz in this case. Tmid(f) is the middle
ear transfer function shown in Fig. 2(b). The noise floor, N (Q)

c (f), is uniquely determined by
a constant N

(Q)
c (fref ) which is involved in the filter estimation process. The rationale for this

definition will be presented in Section 5.

3.3 Level dependence of the noise floor

Irino et al. (2018) assumed that the cochlear noise floor, Nc(f), in Eq. 4 would be dependent
on the level of the external NN, in which case, Nc(f) should be greater than N

(Q)
c (f) in Eq. 7.

This is because distortion products would be generated by cochlear nonlinearity (e.g. Gaskill
and Brown (1990) and Hall (1972)) and its distribution could spread widely even beyond the
frequency regions of the NN. They found that the estimation error was significantly reduced
when the noise floor was made level dependent N

(LD)
c (f). In this paper, on a dB scale, it

Nc
(LD)′(f) was defined as

N (LD)′
c (f) = N (Q)′

c (f) + nLD · (N ′
0(f)−N (Q)′

c (f)) (8)
= (1− nLD) ·N (Q)′

c (f) + nLD ·N ′
0(f). (9)

where N
(Q)′
c (f) is the noise floor in quiet, i.e., when there is no external sound. Equation

9 means that the noise floor increases from its quiet level as the external noise level, N ′
0(f),

increases 4. The proportionality coefficient for the level dependence is nLD in dB/dB. This
equation is a revised version of Eq. 9 in Irino et al. (2018) with one less parameter. It increases
the stability of filter estimation. The noise level becomes a value which is linearly interpolated
with the ratio of nLD : (1− nLD) between N

(Q)′
c (f) and N ′

0(f). This model will be referred to
as the “N (LD)

c model” in what follows. When nLD = 0, it becomes a level-independent, fixed
function, N (Q)′

c (f), which will be referred to as the “N (Fx)
c model.”

4We assume this simple formula with frequency-independent nLD is sufficient to support a first order approx-
imation of the level dependence. There are several aspects of the noise floor which need to be considered for
accurate simulation. Firstly, the external noise (NN) is bandpass noise with width 2× 0.4∆fs/fs. Although it is
roughly constant on a logarithmic frequency axis, the location of the noise band in the NN condition may affect
the noise floor. Secondly, the transfer function T (f) from the headphones to the cochlea may also affect the noise
floor, although it is invariant across noise level. We assumed these factors are relatively small with respect to
the effect of Ñ0 level change. In any case, we do not know the exact characteristics of the noise currently and it
would be difficult to take all of the factors into account. This led us to use this simple formula in this study.
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3.4 Estimation of the filter shape

The coefficients of the auditory filter were estimated using a least-squares method (Moré, 1978)
to minimize the error between measured and predicted NN thresholds (P ′

s and P̂ ′
s in Eq. 5)

and the error between the measured and predicted ATs (P ′
abs, and P̂ ′

abs in Eq. 6) 5. Namely,

c
(Nc)
gc = argmin

cgc

{
1

N

N∑
i=1

(P ′
si − P̂ ′

si)
2 + (P ′

abs − P̂ ′
abs)

2

}
, (10)

where c
(Nc)
gc is a vector of the GC coefficients, {b1 , c1 , f (0 )rat , f

(1 )
rat , b2 , c2} (see Appendix 6), plus

the constants {K ′, N
(Q)′
c (fref ), nLD}.

3.5 Conventional P0 threshold limit

In the NN experiment, threshold asymptotes to a low level somewhat above absolute threshold
even when the NN level is relatively high (Patterson & Nimmo-Smith, 1980) (see Fig. 1). Glas-
berg and Moore (2000) introduced a term, P0, to represent the lower limit of NN threshold and
prevent it from distorting the representation of the tails of the auditory filter. In this case,

P̂ ′(P0)
s = 10 log10

{
10P̂

′
s/10 + 10P

′
0/10

}
(11)

= 10 log10

{
10(K

′+P̂ ′
ext)/10 + 10P

′
0/10

}
(12)

The coefficients of the auditory filter were estimated using the least-squares method to minimize
the error between the measured thresholds, Ps, and the thresholds predicted by the model, P̂s;
that is

c(P0)
gc = argmin

cgc

{
1

N

N∑
i=1

(P ′
si − P̂ (P0)′

si )2

}
(13)

where c
(P0)
gc is a vector of the GC coefficients, {b1 , c1 , f (0 )rat , f

(1 )
rat , b2 , c2}, plus the constants

{K&P0}. Glasberg and Moore (2000) showed that the use of P0 is effective in reducing estima-
tion error. They suggested that P0 is related to AT but they did not explain the relationship
in detail. This model will be referred to as the “P0 model” in what follows and is used as a
conventional model to compare the performance with the N

(LD)
c model.

4 The effect of a level-dependent noise floor

The N
(LD)
c , N (Fx)

c , and P0 models were compared to evaluate the effect of level dependence on
the goodness of the filter estimation.

4.1 Procedure

The auditory filters of 500, 1000, 2000, and 4000 Hz were simultaneously estimated by using all
of the 144 thresholds (= 36 × 4 probe frequencies ) shown in Fig. 1. It is similar to the global
fitting with P0 in Patterson, Unoki, and Irino (2003). They reported that filter shape can be

5We also introduced several constraints to improve the stability of the fitting process and to restrict the filter
shape coefficients to a reasonable range. There were limits on the GC coefficients, the bandwidth, and the slope
of the IO function. The constraints were introduced as error terms with small weighting values.
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Table 1 — Number of coefficients in selected fits of the N
(LD)
c , N (Fx)

c , and P0 (Patterson,
Unoki, & Irino, 2003) models with the rms errors of NN threshold and AT that each model
produced.

Number of coefficients NN error AT error
model total GC K N

(Q)
c nLD P0 (dB) (dB)

11 6 3 1 1 - 1.64 2.23
N

(LD)
c 10 6 2 1 1 - 1.68 2.10

9 6 1 1 1 - 1.65 2.58
10 6 3 1 - - 2.66 3.16

N
(Fx)
c 9 6 2 1 - - 2.64 2.45

8 6 1 1 - - 2.62 2.61
P0 12 6 3 - - 3 2.40 5.05

accurately determined using a GC filter with six, frequency independent coefficients and two
non-filter parameters P0 and K which were quadratic functions of frequency. The number of
coefficients for each parameter is listed in the bottom part of Table 1 and for the P0 model was
12 in total. Based on this knowledge, we set the number of coefficients for the N

(LD)
c and N

(Fx)
c

models as shown in Table 1. The number of GC filter coefficients was the same (6). N
(Q)′
c (fref )

in Eq. 7 and nLD in Eq. 9 were set to constants (1). The SNR at the output of the auditory
filter, K, was set to a constant, a linear function or a quadratic function of the normalized
frequency, Ef , defined as

Ef =
ERBNnumber

(f)

ERBNnumber
(fref )

− 1, (14)

ERBNnumber
(f) is the number of equal rectangular bands in Cam (Moore, 2012) and fref =

1 kHz.

In the estimation, each model was fitted to the 144 thresholds 10 times, using different initial
values for the GC coefficients, chosen randomly within a range ±20% of the summary coefficient
values reported in (Patterson, Unoki, & Irino, 2003). The best of the 10 filter set was selected
as the one that minimized the rms error of the NN threshold.

4.2 Results

4.2.1 Estimation error

The right two columns of Table 1 show the rms estimation errors of NN threshold and AT.
The table shows that the NN threshold errors of the N

(LD)
c model were between 1.64 dB and

1.68 dB, 0.9 dB and 0.7 dB, smaller than those of the N
(Fx)
c and P0 models, respectively. The

N
(LD)
c model also requires fewer coefficients than the P0 model. The AT errors of the N

(LD)
c

model were also much smaller than those of the P0 model.

Thus, the introduction of the level dependence coefficient, nLD, in Eq. 9 reduces the estimation
error of the NN threshold, which implies that the cochlear noise floor is dependent on the
external noise (NN) level, and the estimation of AF shape should take this into account.

With the N
(LD)
c model, NN threshold error is effectively independent of the form of K; the

version with 9 coefficients is as effective as the one with 11 coefficients. In other words a N
(LD)
c

model with a fixed K is sufficient to explain the NN threshold data.
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Table 2 — Values from the global fit for the nine-coefficient N
(LD)
c model and the twelve-

coefficient P0 model. Ef is normalized frequency as defined in Eq. 14. The NN threshold
and AT errors are listed in the last two columns. The bottom row, P (PUI)

0 shows the values
for the P0 model reported by Patterson, Unoki, and Irino (2003). The NN error with the
asterisk cannot be fairly compared with the two above it because the NN threshold data
were from a different experiment.

model No. Filter coefficients Non-filter coefficients NN err AT err
coeff b1 c1 f

(0)
rat f

(1)
rat b2 c2 K N

(Q)
c /P0 nLD (dB) (dB)

N
(LD)
c 9 2.17 -2.76 0.676 0.0085 1.79 2.77 -4.49 -20.30 0.20 1.65 2.58

-5.75 2.64
P0 12 2.26 -2.07 0.536 0.0099 2.23 2.77 0.076Ef -8.01Ef - 2.40 5.05

+1.48E2
f +9.50E2

f

-3.73 16.80
P

(PUI)
0 12 1.81 -2.96 0.467 0.0109 2.17 2.20 -4.89Ef -1.27Ef - 3.71∗ -

+8.30E2
f +5.74E2

f

This result also suggests that the distribution of the HL-0dB threshold largely explains the
frequency dependence which necessitated the frequency dependent terms associated with the
non-filter parameters K and P0. Indeed, it suggests that the arbitrary coefficient P0 is not
required for accurate AF shape estimation.

4.2.2 Filter coefficients

The filter coefficients of the nine-coefficient N
(LD)
c model and the twelve-coefficient P0 model

are listed in Table 2. For comparison the GC filter coefficients of the P0 model reported by
Patterson, Unoki, and Irino (2003) are also listed in the bottom row. The main difference
is the numbers of the non-filter coefficients. The level-dependency coefficient of the cochlear
noise floor nLD in Eq. 9 was 0.20 dB/dB, which is approximately the same as the minimum
slope of the compression function shown in Fig. 4b and described in, e.g., Moore (2012) and
Pickles (2013). This may indicate that the distortion products associated with the NN masker
produce a cochlear noise floor with an increasingly compressive growth rate. The N

(LD)
c model

includes this effect which may well account for the reduction in NN error to less than 2 dB.
The corresponding value for the P0 model with the current NN data is 2.40 dB and the value
reported in Patterson, Unoki, and Irino (2003) is 3.71 dB for the previous NN data set.

4.2.3 Filter shape

The filter shapes associated with the coefficients listed in Table 2 are shown in Fig. 3a for the
nine-coefficient N

(LD)
c model and Fig. 3b for the twelve-coefficient P0 model. The filter shapes

of the N
(LD)
c model are sharper than those of the P0 model. This means the N

(LD)
c model can

repress the effect of NN threshold convergence onto AT at low-levels as shown in Fig. 1.

4.2.4 Bandwidth and IO function

Figure 4a shows the bandwidth of the nine-coefficient N
(LD)
c model shown in Fig. 3a. When

the level of the cochlear input is between 30 dB and 50 dB, the bandwidth was effectively fixed
at approximately 1.5 times of the standard ERB of NH listeners, ERBN . Above 60 dB, the
bandwidth increased rather rapidly as the level increased. The rate of increase was slightly
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(a) Nine-coefficient N
(LD)
c model
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(b) Twelve-coefficient P0 model

Figure 3 — Filter shapes using the coefficients listed in Table 2. The center frequencies are
500, 1000, 2000, and 4000 Hz and the five lines at each frequency correspond to cochlear
input levels every 10 dB between 30 and 80 dB.

slower at 500 Hz than at the higher signal frequencies, perhaps because the dynamic range of
the 500 Hz filter is relatively smaller. This is slightly different from the result presented in
Patterson, Unoki, and Irino (2003) where the bandwidth increased almost linearly between
30 dB and 70 dB.
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Figure 4 — Bandwidth and IO function of the nine-coefficient N (LD)
c model shown in Fig. 3a.

The lines represent the values when the center frequencies are 500, 1000, 2000, and 4000
Hz. The IO function is drawn so that the output level is 100 dB when the cochlear input
level is 100 dB.

Figure 4b shows the IO function for the nine-coefficient N
(LD)
c model shown in Fig. 3a. The

slope of the IO function decreases as the center frequency increases. The minimum slope was
0.46 dB/dB at 500 Hz, 0.32 dB/dB at 1000 Hz , 0.23 dB/dB at 2000 Hz, and 0.18 dB/dB at
4000 Hz. The IO slopes are roughly consistent with those in Patterson, Unoki, and Irino (2003).

5 Estimation of the cochlear noise floor in quiet

In Section 4, it was demonstrated that AF estimation was successful when the cochlear noise
floor in quiet was defined as N

(Q)
c (f) in Eq. 7. It was assumed that N

(Q)
c (f) could be directly

from the HL-0dB function. The purpose of this section is to confirm this assumption. It is
equivalent to assuming that the frequency dependence of AT is entirely determined by the
internal cochlear noise floor.

AT can be estimated with the PSM as shown in Eqs. 6. In the PSM, the SNR detector, K, is
after the cochlear filter, and so may be involved in AF estimation. It is possible to make K a
frequency-dependent function as listed in Table 1, and there could be a trade-off in the frequency
dependence of the cochlear noise floor and that of K. If so, N (Q)

c (f) could be different from
Eq. 7, being at least partly determined by the frequency distribution of K.

In this section, the distributions of N
(Q)
c (f) and K are rewritten to check for a the trade-off

between them, and to find a plausible estimate of N (Q)
c (f).

5.1 Procedure

The distribution of the cochlear noise floor in Section 4 was defined as in Eq. 7 from the HL0-dB
function in Fig. 2(a). Although there would be number of potential variants, we introduced a
constant α into Eq. 7 to reduce or enhance the spectrum distribution of the HL-0dB function as

12
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N (Q)
c (f, α) =

[
|Tmid(f)|2 ·

LHL0(f)

LHL0(fref )

]α

·N (Q)
c (fref ) ·

ERBN (fref )

ERBN (f)
. (15)

It is equivalent to Eq. 7 when α = 1 and is equivalent to a uniformly exciting noise (Glasberg &
Moore, 2000) on the ERBN number axis when α = 0. The constant α determines the noise floor
function in the proportion from the HL-0dB function. The dynamic range of the distribution
is reduced when 0 < α < 1 and is emphasized when α > 1.

The fitting procedure was similar to that in Section 4. The auditory filter was estimated after
the proportion constant α was set to every 0.1 step between 0 and 1.6. The fit was performed
10 times with different initial coefficients and the best of 10 filter was selected as the one that
minimized the rms error of the NN threshold. We compared the N

(LD)
c models when K was

constant, linear, or quadratic functions of frequency.
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(a) NN threshold error
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(b) AT error

Figure 5 — Estimation errors (dB) of the NN threshold (a) and the AT (b) as a function of
the proportionality constant α in Eq. 15. Lines with circles (o), pluses (+), and diamonds
show the results from the N

(LD)
c model with constant, linear, and quadratic functions of K

, respectively. Square, asterisk, and triangle show the errors listed in Table 1 when using
the N

(Fx)
c model with constant, linear, and quadratic functions of K and α = 1.

5.2 Result

Figure 5a shows the estimation error of NN threshold as a function of the proportionality con-
stant α of N (Q)

c (f, α) in Eq. 15. The lines with circles (o), pluses (+), and diamonds show the
results from the N

(LD)
c model with constant, linear, and quadratic functions of K. These lines

were approximately parabolic and had minimum values of 1.64 dB, 1.68 dB, and 1.64 dB when
α was 1.0, 0.9, and 1.0, respectively. The estimation was best when α ≈ 1, independent of the
function order of K. As definition of Eq. 15 with α = 1 is equivalent to Eq. 7. This implies that
AT can be properly formulated by the cochlear noise floor function shown in Eq. 7 without the
need to make the SNR detector, K, frequency dependent.
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Figure 5b shows AT error as a function of the proportionality constant α. The error of the
N

(LD)
c model when K is a constant (line with circle) is approximately 2.6 dB. This value is

greater than that of the N
(LD)
c model when K is either a linear or a quadratic function α.

It appears that a frequency dependent K can reduce AT error but this is limited to 0.6 dB
improvement at maximum. The effect of the AT error on AF shape was much smaller than
that of NN threshold because the number of the NN thresholds was 144 while the number of
the ATs was 4.

In summary, AT can be well modeled by the cochlear noise floor function shown in Eq.7,
independent of the detector SNR, K.

6 Conclusions

This paper provided a detailed set of the NN threshold values, including low-level noises at four
center frequencies (500, 1000, 2000, and 4000 Hz), to show how threshold converges onto AT
as notch width increases at low noise levels. We assumed that the cochlear noise floor limits
threshold at wide notch widths. Then, we extended the power spectrum model of masking to
explain both the AT and the NN thresholds simultaneously by introducing a level-dependent
cochlear noise floor, N

(LD)
c . The distribution of the cochlear noise floor in quiet, N

(Q)
c , was

assumed to be directly defined by the 0-dB HL function, which was defined by AT of NH
listeners. The level dependence was set to be proportional to the external noise level. The GC
auditory filter was estimated by minimizing the errors between the experimental data and the
predicted data simultaneously for all the four center frequencies. The estimation error for the
N

(LD)
c model were much less than those for both the conventional P0 model and the fixed noise

floor, N (Fx)
c , model. The N

(LD)
c model with nine coefficients produces much smaller estimation

errors than the P0 model with twelve coefficients. The resultant filter shapes were sharper than
those estimated by the P0 model. This implies that the N

(LD)
c model can successfully repress

the effect of threshold convergence onto AT at low-levels as shown in Fig. 1, and thus, the N
(LD)
c

model is the better representation for auditory filter estimation.

Finally, we showed that the NN estimation error was minimum when the N
(Q)
c function was

directly set to the HL-0dB function, regardless of the frequency dependence of the detector
SNR, K. This suggests that AT is solely determined by the cochlear noise floor in quiet, and is
independent of the detector SNR following the cochlear filter.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP16H01734 and JP21H03468.
The authors wish to thank Toshie Matsui, Hiroki Matsuura and Anzu Nakama for assisting in
the data collection.

References

Aibara, R., Welsh, J. T., Puria, S., & Goode, R. L. (2001). Human middle-ear sound transfer function
and cochlear input impedance. Hearing research, 152(1-2), 100–109.

ANSI_S3.6-2010. (2010). Specification for audiometers [(American National Standards Institute, New
York, USA, 2010)].

14



ISH2022

Baker, R. J., & Rosen, S. (2002). Auditory filter nonlinearity in mild/moderate hearing impairment. The
Journal of the Acoustical Society of America, 111(3), 1330–1339.

Buss, E., Porter, H. L., Leibold, L. J., Grose, J. H., & Hall III, J. W. (2016). Effects of self-generated
noise on estimates of detection threshold in quiet for school-age children and adults. Ear and
hearing, 37 (6), 650.

Fletcher, H. (1940). Auditory patterns. Reviews of modern physics, 12(1), 47.
Gaskill, S. A., & Brown, A. M. (1990). The behavior of the acoustic distortion product, 2 f 1- f 2, from

the human ear and its relation to auditory sensitivity. The Journal of the Acoustical Society of
America, 88(2), 821–839.

Glasberg, B. R., & Moore, B. C. (1986). Auditory filter shapes in subjects with unilateral and bilateral
cochlear impairments. The Journal of the Acoustical Society of America, 79(4), 1020–1033.

Glasberg, B. R., & Moore, B. C. (1990). Derivation of auditory filter shapes from notched-noise data.
Hearing research, 47 (1-2), 103–138.

Glasberg, B. R., & Moore, B. C. (2000). Frequency selectivity as a function of level and frequency mea-
sured with uniformly exciting notched noise. The Journal of the Acoustical Society of America,
108(5), 2318–2328.

Glasberg, B. R., & Moore, B. C. (2006). Prediction of absolute thresholds and equal-loudness contours
using a modified loudness model. The Journal of the Acoustical Society of America, 120(2),
585–588.

Hall, J. (1972). Auditory distortion products f 2- f 1 and 2f 1- f 2. The Journal of the Acoustical Society
of America, 51(6B), 1863–1871.

Irino, T., & Patterson, R. D. (1997). A time-domain, level-dependent auditory filter: The gammachirp.
The Journal of the Acoustical Society of America, 101(1), 412–419.

Irino, T., Yokota, K., Matsui, T., & Patterson, R. D. (2018). Auditory filter derivation at low levels
where masked threshold interacts with absolute threshold. Acta Acustica united with Acustica,
104(5), 887–890.

Irino, T., & Patterson, R. D. (2001). A compressive gammachirp auditory filter for both physiological
and psychophysical data. The Journal of the Acoustical Society of America, 109(5), 2008–2022.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical
society of America, 49(2B), 467–477.

Moore, B. C. (2012). An introduction to the psychology of hearing. Brill.
Moré, J. J. (1978). The levenberg-marquardt algorithm: Implementation and theory. In Numerical anal-

ysis (pp. 105–116). Springer.
Patterson, R. D. (1976). Auditory filter shapes derived with noise stimuli. The Journal of the Acoustical

Society of America, 59(3), 640–654.
Patterson, R. D., Allerhand, M. H., & Giguere, C. (1995). Time-domain modeling of peripheral auditory

processing: A modular architecture and a software platform. The Journal of the Acoustical Society
of America, 98(4), 1890–1894.

Patterson, R. D., & Nimmo-Smith, I. (1980). Off-frequency listening and auditory-filter asymmetry. The
Journal of the Acoustical Society of America, 67 (1), 229–245.

Patterson, R. D., Unoki, M., & Irino, T. (2003). Extending the domain of center frequencies for the com-
pressive gammachirp auditory filter. The Journal of the Acoustical Society of America, 114(3),
1529–1542.

Pickles, J. (2013). An introduction to the physiology of hearing. Brill.
Puria, S., Peake, W. T., & Rosowski, J. J. (1997). Sound-pressure measurements in the cochlear vestibule

of human-cadaver ears. The Journal of the Acoustical Society of America, 101(5), 2754–2770.
Unoki, M., Irino, T., Glasberg, B., Moore, B. C., & Patterson, R. D. (2006). Comparison of the roex

and gammachirp filters as representations of the auditory filter. The Journal of the Acoustical
Society of America, 120(3), 1474–1492.

von Békésy, G., & Peake, W. T. (1990). Experiments in hearing. Acoustical Society of America.

15



ISH2022

Appendix

Compressive Gammachirp Filter

We describe the formula and parameters of the compressive gammachirp filter here. A brief
summary of the development of the gammatone and gammachirp filterbanks over the past is
provided in Appendix A of (Patterson, Unoki, & Irino, 2003).

The complex form of the gammachirp auditory filter (Irino & Patterson, 1997) is

gc(t) = at(n1−1) exp(−2πb1ERBN (fr1)t)

exp(2jπfr1t+ jc1 ln t+ jφ1) (16)

where time t > 0 ; a is amplitude; n1 and b1 are parameters defining the envelope of the
gamma distribution; c1 is the chirp factor; fr1 is the asymptotic frequency; ERBN (fr1) is the
equivalent rectangular bandwidth (Glasberg & Moore, 1990); jφ1 is the initial phase; and is the
natural logarithm of time. When c1 = 0, Eq. 16 reduces to the complex impulse response of the
gammatone filter (Patterson, Allerhand, & Giguere, 1995). The Fourier magnitude spectrum
of the analytic gammachirp filter in Eq.16 is

|GCA(f)| = aΓ · |GT (f)| · exp(c1θ1(f)), (17)

θ1(f) = arctan

(
f − fr1

b1ERBN (fr1)

)
. (18)

|GT (f)| is the Fourier magnitude spectrum of the gammatone filter, and exp(c1θ1(f)) is an
asymmetric function since θ1(f) is an anti-symmetric function centered at the asymptotic fre-
quency, fr1 (Eq. 17). aΓ is the relative amplitude of the magnitude spectrum of the gammatone
filter.

Irino and Patterson (2001) decomposed the asymmetric function, exp(c1θ1(f)), into separate
low-pass and high-pass asymmetric functions in order to represent the passive basilar membrane
and the subsequent level-dependent component separately in the filter function. The resulting
‘compressive’ gammachirp filter, |GC(f)|, is

|GC(f)| = {aΓ · |GT (f)| · exp(c1θ1(f))} · exp(c2θ2(f))
= |GCP (f)| · exp(c2θ2(f)) (19)

θ1(f) = arctan

(
f − fr1

b1ERBN (fr1)

)
, (20)

θ2(f) = arctan

(
f − fr2

b3ERBN (fr2)

)
. (21)

Conceptually, this compressive gammachirp is composed of a level-independent, ‘passive’ gam-
machirp filter, |GCP (f)|, that represents the passive basilar membrane, and a level-dependent,
high-pass asymmetric function (HP-AF) , exp(c2θ2(f)), that represents the active mechanism
in the cochlea. The peak frequency of the passive gammachirp, fp1, is

fp1 = fr1 + c1b1ERBN (fr1)/n1 (22)

The center frequency of the high-pass asymmetric function, fr2, is determined by the following
equation to introduce the level dependence.

fr2 = (f
(0)
rat + f

(1)
rat · P ′

gcp) · fp1 (23)
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where P ′
gcp is the output level of the passive gammachirp in a dB scale. When the slope

factor, f
(1)
rat, is positive, frat and fr2 increase as the output level increases. This means that

the HP-AF shifts upward relative to the passive gammachirp. As the result, the gain of the
composite, compressive gammachirp reduces as observed physiologically and psychoacoustically.
In summary, there are six parameters of the compressive gammachirp as {b1, c1, f (0)

rat, f
(1)
rat, b2, c2}.

Comments

Comment from Laurel H. Carney: This is an interesting paper that maps
out an approach to address a long-standing problem for deriving auditory filters
from notched-noise experimental results. It will also be very interesting to see your
approach applied to listeners with hearing loss, although as you explain, the exper-
imental data required may be difficult to collect from individuals (the suggestion
above to incorporate the AT from those listeners in order to reduce parameters may
make these experiments feasible?). Given the level-dependence that is ultimately
built into the NC(LD) model, a natural question is whether it would handle the
roving-level notched-noise results of Lentz et al., (1999, JASA). We were able to ex-
plain those data reasonably well with a detection model based on neural fluctuations,
as an alternative to the PSM (Maxwell et al., JASA 2020).

Thank you for your suggestion that we should try applying our NC(LD)
cochlear noise floor model to your roving-level notched-noise data, and com-
paring the resulting fit with that provided by your ‘detection of neural fluctu-
ations’ model. It is always good to have a published example of an alternative
approach to your own, and it is bound to produce interesting results. How-
ever, it would be a big project that is beyond the scope of the current paper.
If we decide to follow up on your suggestion we will come back to discuss the
project with you before we begin.

Comment from Nicolas Grimault: This paper provides a strongly significant
update to better estimate the auditory filters from notch noise data. In fact, for
hearing impaired listeners or for low levels of noises, the estimated widths of the
auditory filters might be previously strongly biased not taking into account the
absolute auditory thresholds of the listeners. This new methodology should then be
considered in the future to get accurate predictions of the auditory filters. Here, the
auditory filters are modelled with the compressive gammachirp. This leads from 8
to 12 coefficients and then requires a large number of experimental conditions (noise
levels, notch widths, symmetric and asymmetric notches...). Do you think that the
absolute threshold could be also taken into account in a faster procedure using, for
example, a roexp model to get a fast but more accurate estimation of the width of
the auditory filters?
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Yes, I think this method is applicable to any estimation algorithms but I
do not think a roex model is the best. It does not reduce the number of
coefficients as pointed in Unoki et al. (2001). We hope to develop a new
method which can be used in a clinical site.
Masashi Unoki, Toshio Irino, Brian Glasberg, Brian C. J. Moore, and Roy
D. Patterson, ”Comparison of the roex and gammachirp filters as represen-
tations of the auditory filter, ” J. Acout. Soc. Am. , 120(3), pp.1474-1492,
Sept., 2006. [doi:10.1121/1.2228539]

Up-to-date comments can be found on PubPeer.
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