

View

Online

Export
Citation

TUTORIAL | NOVEMBER 28 2023

Using the IBM analog in-memory hardware acceleration kit
for neural network training and inference
Manuel Le Gallo ; Corey Lammie ; Julian Büchel ; Fabio Carta ; Omobayode Fagbohungbe ;
Charles Mackin ; Hsinyu Tsai ; Vijay Narayanan ; Abu Sebastian ; Kaoutar El Maghraoui ;
Malte J. Rasch

APL Mach. Learn. 1, 041102 (2023)
https://doi.org/10.1063/5.0168089

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml/article/1/4/041102/2923573/Using-the-IBM-analog-in-memory-hardware
https://pubs.aip.org/aip/aml/article/1/4/041102/2923573/Using-the-IBM-analog-in-memory-hardware?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0003-1600-6151
javascript:;
https://orcid.org/0000-0001-5564-1356
javascript:;
https://orcid.org/0000-0001-9495-7150
javascript:;
https://orcid.org/0009-0007-4670-7545
javascript:;
https://orcid.org/0000-0002-0288-7093
javascript:;
https://orcid.org/0000-0001-8413-5583
javascript:;
https://orcid.org/0000-0002-3971-097X
javascript:;
https://orcid.org/0009-0008-8433-963X
javascript:;
https://orcid.org/0000-0001-5603-5243
javascript:;
https://orcid.org/0000-0002-1967-8749
javascript:;
https://orcid.org/0000-0002-7988-4624
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0168089&domain=pdf&date_stamp=2023-11-28
https://doi.org/10.1063/5.0168089
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2291239&setID=592934&channelID=0&CID=842328&banID=521636198&PID=0&textadID=0&tc=1&rnd=5119833637&scheduleID=2211452&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Faml%22%5D&mt=1719907780114150&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Faml%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0168089%2F19848543%2F041102_1_5.0168089.pdf&hc=e85270f0a9d7ea16d5dbb5957aa4d7417835a708&location=

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

Using the IBM analog in-memory hardware
acceleration kit for neural network training
and inference

Cite as: APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089
Submitted: 17 July 2023 • Accepted: 23 October 2023 •
Published Online: 28 November 2023

Manuel Le Gallo,1 Corey Lammie,1 Julian Büchel,1 Fabio Carta,2 Omobayode Fagbohungbe,2

Charles Mackin,3 Hsinyu Tsai,3 Vijay Narayanan,2 Abu Sebastian,1 Kaoutar El Maghraoui,2,a)

and Malte J. Rasch2,a)

AFFILIATIONS
1 IBM Research Europe, 8803 Rüschlikon, Switzerland
2 IBM Research - Yorktown Heights, Yorktown Heights, New York 10598, USA
3 IBM Research - Almaden, San Jose, California 95120, USA

a)Authors to whom correspondence should be addressed: kelmaghr@us.ibm.com and malte.rasch@ibm.com

ABSTRACT
Analog In-Memory Computing (AIMC) is a promising approach to reduce the latency and energy consumption of Deep Neural Network
(DNN) inference and training. However, the noisy and non-linear device characteristics and the non-ideal peripheral circuitry in AIMC
chips require adapting DNNs to be deployed on such hardware to achieve equivalent accuracy to digital computing. In this Tutorial, we
provide a deep dive into how such adaptations can be achieved and evaluated using the recently released IBM Analog Hardware Accelera-
tion Kit (AIHWKit), freely available at https://github.com/IBM/aihwkit. AIHWKit is a Python library that simulates inference and training
of DNNs using AIMC. We present an in-depth description of the AIHWKit design, functionality, and best practices to properly perform
inference and training. We also present an overview of the Analog AI Cloud Composer, a platform that provides the benefits of using
the AIHWKit simulation in a fully managed cloud setting along with physical AIMC hardware access, freely available at https://aihw-
composer.draco.res.ibm.com. Finally, we show examples of how users can expand and customize AIHWKit for their own needs. This
Tutorial is accompanied by comprehensive Jupyter Notebook code examples that can be run using AIHWKit, which can be downloaded
from https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168089

I. INTRODUCTION

Despite providing remarkable breakthroughs in various
domains, Deep Neural Networks (DNNs) have been accompanied
by a dramatic and growing increase in computational demands
for training and inference. With the slowing down of Moore’s law
and the ending of Dennard scaling, power consumption becomes
a key design constraint. Thus, energy-efficient implementations
on emerging specialized hardware that leverages approximate and
in-memory computing techniques have become essential for AI

systems. This has been accompanied by a rise in dedicated AI hard-
ware accelerators and an increased interest in AI processors that
are efficient, fast, or both when carrying out AI tasks. In addi-
tion to traditional digital accelerators, including the Google Tensor
Processing Unit, Amazon Inferentia, and IBM Artificial Intelli-
gence Unit,1 accelerators based on Analog In-Memory Computing
(AIMC) using Non-Volatile Memory (NVM) are being actively
researched.2–4 AIMC accelerators that are based on resistive mem-
ory device technologies, such as Phase Change Memory (PCM),5–8

Resistive Random Access Memory (ReRAM),9–12 and Magnetic

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-1

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0168089
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0168089
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0168089&domain=pdf&date_stamp=2023-November-28
https://doi.org/10.1063/5.0168089
https://orcid.org/0000-0003-1600-6151
https://orcid.org/0000-0001-5564-1356
https://orcid.org/0000-0001-9495-7150
https://orcid.org/0009-0007-4670-7545
https://orcid.org/0000-0002-0288-7093
https://orcid.org/0000-0001-8413-5583
https://orcid.org/0000-0002-3971-097X
https://orcid.org/0009-0008-8433-963X
https://orcid.org/0000-0001-5603-5243
https://orcid.org/0000-0002-1967-8749
https://orcid.org/0000-0002-7988-4624
mailto:kelmaghr@us.ibm.com
mailto:malte.rasch@ibm.com
https://github.com/IBM/aihwkit
https://aihw-composer.draco.res.ibm.com
https://aihw-composer.draco.res.ibm.com
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial
https://doi.org/10.1063/5.0168089

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

Random Access Memory (MRAM),13 have shown great promise in
accelerating and reducing the power consumption of deep learn-
ing systems. By leveraging the physical properties of such memory
devices, computations are performed at the same place where the
data are stored, which could considerably improve the run-time and
power consumption of today’s digital computing technology.14 In
an AIMC chip, spatially instantiated synaptic weights are encoded
in the tunable analog conductance of these devices arranged in
crossbar arrays. Matrix–Vector Multiplications (MVMs) are among
the most ubiquitous operations in deep learning and can be per-
formed directly using the network weights stored on the chip.15 In
addition, weight updates for DNN training can be performed in-
place by tuning the device conductance with suitable programming
pulses.16,17

However, despite prolonged ongoing efforts, analog resistive
memory devices suffer from various nonidealities, such as device-to-
device and cycle-to-cycle variations. These inherent characteristics
limit their accuracy and reliability for use in practical deep learning
workloads.18–20 Therefore, many large-scale simulations encompass-
ing device and circuit nonidealities have been performed to quantify
their impact on DNN accuracy for training and inference.21–28

Although some of these studies have been realized on circuit-level
simulators (e.g., SPICE), the size and complexity of deep learning
workloads motivated the adoption of an alternative approach of
using customized simulation frameworks/toolkits, which are inte-
grated into modern deep learning frameworks, including PyTorch
and TensorFlow. In contrast to SPICE-based simulation, which
is cycle-accurate, this new alternate approach provides an inter-
face between accurate mathematical models of non-ideal device
characteristics and peripheral circuitry and high-level deep learn-
ing frameworks. This methodology enables seamless integration
between modern DNN frameworks and the noisy physical char-
acteristics of AIMC hardware by modeling the physical properties
of AIMC and taking them into account for the training and infer-
ence of state-of-the-art DNN models. It is within this scope that
we have recently open-sourced the IBM Analog Hardware Accel-
eration Kit (AIHWKit), a simulation toolkit that focuses on the
algorithmic and functional levels as opposed to hardware and cir-
cuit design levels.29 The aim of this toolkit is to provide a complete
software package to estimate the accuracy of DNNs mapped to
AIMC hardware for the advancement of algorithmic analog deep
learning.

TABLE I. Comparison of AIHWKit with different related open-source AIMC simulation frameworks/toolkits. Traditional SPICE-based simulators are not compared.

Framework
NeuroSim and
derivatives31–35 XB-SIM36 MemTorch37,38

IBM analog
hardware

acceleration kit29 CrossSim39

Year 2017 2019 2020 2021 2022

Prog. language(s)
Python,
C, C++

Python,
C++, CUDA

Python,
C, C++, CUDA

Python,
C++, CUDA Python, CuPy

ML library PyTorch ✓ ✓ ✓

TensorFlow ✓ ✓

Supported network types Dense (MLP)a
✓ ✓ ✓ ✓ ✓

Convolutional ✓ ✓ ✓ ✓ ✓

Recurrent ✓ ✓

Transformer ✓

On-chip inference Accuracy est. ✓ ✓ ✓ ✓ ✓

HW-calib. noise ✓ ✓ ✓

HWA trainingb
✓ ✓

Performance est. ✓ ✓

On-chip training Digital gradient ✓ ✓ ✓

In-memory grad. ✓

Performance est. ✓

Unit testing ✓ ✓

Package index(s) PyPi PyPi, CFc

Actively maintainedd
✓ ✓ ✓

aMulti-layer perceptron.
bHardware-aware training.
cConda–Forge.
dAs per the current date of publication.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-2

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

In Table I, we compare the key features of AIHWKit to those
of related open-source AIMC simulation toolkits. Traditional simu-
lators, i.e., SPICE-based simulators, are not compared. We refer the
reader to Ref. 26 for a more comprehensive overview. As listed in
Table I, only three out of the listed five toolkits are actively main-
tained: NeuroSim, AIHWKit, and CrossSim. The toolkits are com-
pared against five key dimensions: Machine Learning (ML) libraries,
supported network types, on-chip inference capabilities, on-chip
training, and on-chip inference. Despite its current lack of support
for performance estimation, AIHWKit is the only actively main-
tained tool that supports all the features listed and fully embraces
modernized software engineering practices. In addition to being
available on popular package indices (PyPi and conda–forge30),
AIHWKit uses automated continuous integration and continuous
development services (CI/CD) (e.g., Travis) to execute unit tests and
to build and deploy standardized packaged releases.

It is noted that a large number of AIMC simulation frame-
works have been developed. However, most of them remain closed-
source or have been solely used for standalone research projects.
Hence, they have not attracted significant attention from the broader
research community. Consequently, they have been omitted from
our comparative study. While many of these toolkits are comple-
mentary in nature, such as those listed in Table I, it is clear that
the lack of standardization and excessive tool fragmentation are still
prevalent when it comes to AIMC simulation and software toolkits.

The rest of this paper is organized as follows: In Sec. II, AIMC
concepts are introduced to familiarize the reader with the kinds of
research problems that can be tackled with AIHWKit. In Sec. III, a
comprehensive overview of the AIHWKit design is provided, along
with a detailed description of each simulated AIMC nonideality.
Then, in Secs. IV and V, in-depth step-by-step descriptions on how
to perform inference and training with AIHWKit are provided. We
explain standard practices to faithfully capture hardware aspects
as well as algorithmic techniques to improve accuracy. In Sec. VI,
we present the Analog AI Cloud Composer, which leverages the
AIHWKit simulation platform to allow a seamless, no-code interac-
tive cloud-hosted experience and provide physical AIMC hardware
access. In Sec. VII, we provide three concrete examples of customiza-
tion of AIHWKit that the user could implement to fit their own
research needs. Finally, Sec. VIII provides an outlook on possible
future research directions and additions for AIHWKit.

II. AIMC CONCEPTS
A. Detailed introduction to AIMC

By exploiting the physical attributes of memory devices and
their array-level organization, it is possible to perform specific com-
putational tasks in the memory itself without the need to shuttle
data between the memory and the processing units. The AIMC
computational paradigm is paving the way for a range of applica-
tions, including scientific computing and deep learning.2 Memory
devices exhibiting two or more stable states can perform in-memory
arithmetic operations, such as MVMs. For example, to perform the
matrix–vector multiplication Wx = y, the elements of matrix W, i.e.,
wij, can be mapped linearly to the conductance values of memory-
based unit-cells organized in a crossbar configuration. The values of
the input vector x can be mapped linearly to the amplitudes (dura-
tions) of read voltages, applied to the crossbar along the rows, or

Word-Lines (WLs). The resulting current (charge) measured along
the columns of the array, or Bit-Lines (BLs), will be proportional
to the result of the computation, y. Another attribute exploited
for computation is accumulative behavior, whereby the device con-
ductance progressively increases or decreases with the successive
application of programming pulses. This enables the tuning of the
synaptic weights of a neural network during training.

As shown in Fig. 1(a), an AIMC chip would ideally com-
prise a network of AIMC cores, each of which would perform a
MVM primitive along with some light digital post-processing opera-
tions. Each AIMC core comprises a crossbar array of memory-based
unit-cells along with bit-line drivers, analog-to-digital converters
(ADCs), custom digital compute units to post-process the raw ADC
outputs, local controllers, transceivers, and receivers. Core-to-core
communication can be realized using a flexible on-chip network,
akin to those used in traditional digital DNN accelerators. To real-
ize a complete AIMC accelerator for DNN workloads, AIMC cores
that each perform weight-stationary and energy-efficient MVM
operations at O(1) time complexity can be combined with special-
function Digital Processing Units (DPUs) to implement auxiliary
DNN operations, such as activation functions and self-attention
computation. Such an architecture is projected to provide highly
competitive throughput while offering 40×–140× higher energy effi-
ciency than an NVIDIA A100 graphics processing unit (GPU).14

Therefore, there is a strong premise for AIMC to enable highly
efficient execution of DNN workloads.

There are many promising candidates for the memory ele-
ment in AIMC, including PCM, ReRAM, Electrochemical Random
Access Memory (EcRAM), complementary metal-oxide semicon-
ductor (CMOS) capacitive cells, Flash memory, MRAM, ferroelec-
tric memory such as ferroelectric field-effect transistor (FeFET)
or ferroelectric tunnel junction (FTJ), and photonic memory. The
list shown in Fig. 1(b) is not a complete list of possible mem-
ory elements but provides examples of how analog resistance levels
are achieved with various materials and circuit implementations.
All devices described in Fig. 1(b) have hardware-calibrated mod-
els implemented in AIHWKit to simulate training and/or inference
(see Secs. IV and V). In PCM, data are stored by using the electri-
cal resistance contrast between a high-conductive crystalline phase
and a low-conductive amorphous phase of a phase-change material.
The phase-change material resistance can be modulated by creat-
ing amorphous regions of varying sizes through the application of
electrical current pulses. ReRAM switches between high and low
conductance states based on the formation and dissolution of a
filament in a non-conductive dielectric material. Intermediate con-
ductance is achieved either by modulating the width of the filament
or by modulating the composition of the conductive path. EcRAM
modulates the conductance between the source and drain terminals
using the gate reservoir voltage that drives ions into the channel.
Finally, CMOS-based capacitive cells can also be used as memory
elements for analog computing, as long as leakage is controlled and
the compute and read operations can be completed quickly.

Clearly, at the time of writing, there is still no “optimal” AIMC
device technology, as each one of the current available technolo-
gies has its strengths and weaknesses, as illustrated in Fig. 1(b). For
instance, PCM devices are arguably considered the most mature
among resistive memory types; however, they suffer from tem-
poral conductance drift, and the uni-polar/asymmetric switching

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-3

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 1. (a), Illustration of a potential AIMC chip. (b) AIMC devices implemented in AIHWKit and their properties.

behavior leads to several complications for training. This is one of
the key motivations behind building a simulator such as AIHWKit:
to allow the exploration of the impact of various devices with their
multitude of characteristics on the performance of AI models.

B. How to perform DNN training
and inference with AIMC

A neural network layer can be implemented on (at least) one
crossbar array of an AIMC core, in which the weights of that layer
are stored in the charge or conductance state of the memory devices
at the crosspoints [see Fig. 2(a)]. Because the state of a memory
device can encode only a positive quantity, usually at least two
devices in a differential configuration are used per weight: one to
represent a positive synaptic weight component and the other to
represent a negative weight component. The propagation of data
through the layer is performed in a single step by inputting the data
into the crossbar rows and deciphering the results in the columns.

The results are then passed through the neuronal activation func-
tion and input to the next layer. The neuronal activation function
is typically implemented at the crossbar periphery using analog or
digital circuits. Because every layer of the network is stored physi-
cally on different arrays, each array needs to communicate at least
with the array(s) storing the next layer for feed-forward networks,
such as multi-layer perceptrons (MLPs) or convolutional neural net-
works (CNNs). For recurrent neural networks (RNNs), the output of
an array needs to communicate with its input.

The efficient matrix multiplication realized via AIMC is very
attractive for inference-only applications, where data are prop-
agated through the network on offline, pre-trained weights. In
this scenario, the weights are typically trained using conventional
GPU-based hardware and then are subsequently programmed into
the AIMC chip, which performs inference. However, because of
device and circuit level nonidealities in the AIMC chip, custom tech-
niques must be included in the training algorithm to mitigate their
effect on network accuracy [so-called hardware-aware (HWA) train-
ing]. For inference tasks, device nonidealities that affect network

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-4

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 2. (a) Mapping of a neural network to an AIMC chip. (b) Implementation of an in-memory SGD weight update. (c) Implementation of the TTv2 weight update. (d)
Implementation of the mixed-precision weight update.

accuracy include conductance drift, programming errors, read noise,
and stuck on/off devices. Circuit nonidealities, including finite res-
olution of digital-to-analog converters (DACs) and ADCs, parasitic
voltage drops on the devices during readout when a high current
is flowing through the crossbar wires (IR-drop), noise from the
peripheral circuits at the crossbar output (e.g., amplifiers), and par-
asitic currents from sneak-paths during readout, will also negatively
impact the accuracy.

AIMC can also be used in the context of neural network
training with backpropagation. This training involves three stages:
forward propagation of labeled data through the network, back-
ward propagation of the error gradients from output to input of
the network, and weight update based on the computed gradients
with respect to the weights of each layer. This procedure is repeated
over a large dataset of labeled examples for multiple epochs until
satisfactory performance is reached by the network. When perform-
ing training of a neural network mapped on AIMC cores, forward
propagation is performed in the same way as inference, as described
above. The only difference is that all the activations xj of each layer

have to be stored locally in the periphery. Next, backward prop-
agation is performed by inputting the error gradient δi from the
subsequent layer onto the columns of the current layer and deci-
phering the result from the rows. The resulting sum ∑i δiwij needs
to be multiplied by the derivative of the neuron non-linear func-
tion, which is computed externally, to obtain the error gradient of
the current layer. Finally, weight updates are implemented based on
the outer product of activations and error gradients Δwij ∝ δixj of
each layer.

The weight update is performed in-memory by applying suit-
able electrical pulses to the devices, which will increase or decrease
their conductance in proportion to the desired weight update. There
are multiple approaches to perform the weight update with AIMC.
Each approach has its advantages and drawbacks. One approach
is to perform a parallel weight update by sending deterministic or
stochastic overlapping pulses from the rows and columns simulta-
neously to implement an approximate outer product and program
the devices at the same time [Fig. 2(b)].16,17,40 This method, which
we term in-memory stochastic gradient descent (in-memory SGD),

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-5

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

has the advantage of performing a fully parallel analog weight update
on the crossbar array at O(1) time complexity and, therefore, is
highly efficient in terms of speed. However, it requires stringent
specifications on the conductance update granularity (minimum
increase/decrease of device conductance with a single pulse), asym-
metry (difference in device response when increasing or decreasing
conductance), and linearity (dependence of conductance update on
the device conductance state) to obtain accurate training, and high
device endurance is critical. To mitigate some of these issues, the
Tiki-Taka (TT) training algorithm was proposed,41,42 which signif-
icantly relaxes the device conductance update requirements. Here,
two matrices are encoded in AIMC cores, A and W. W encodes the
network weights, whereas A computes and accumulates the weight
gradient information. A is updated via parallel weight updates as
described for in-memory SGD. After a certain number of updates
on A, W is updated based on reading the gradient information
from A via parallel weight updates. In the second version of Tiki-
Taka (TTv2),42,43 an additional matrix H, implemented in the digital
domain, is used. H implements a low pass filter while transfer-
ring the gradient information processed by A to W, which further
improves the robustness of non-ideal conductance updates. This low
pass filter reduces the gradient noise and averages the gradient infor-
mation over more inputs before updating the weights. A schematic
implementation of the TTv2 weight update is shown in Fig. 2(c).
Finally, a third approach is to perform so-called mixed-precision
deep learning by computing the weight updates on a separate dig-
ital processor and accumulating them in a high-precision digital
memory [Fig. 2(d)].44 When the accumulated weight updates reach
a threshold, the corresponding devices get updated through single-
shot programming pulses. This approach is much less sensitive to
nonidealities such as limited device granularity because the gradient
is not computed using AIMC but instead in high-precision floating
point (FP). It is also more flexible since the more complex learn-
ing rules can readily be implemented digitally. Moreover, the digital
computation and accumulation of weight updates significantly relax
the requirements on device endurance. However, the cost of the dig-
ital computations is significant [O(n2

) for a n × n weight matrix]
and, thus, limits the speed of the AIMC training, even though
forward and backward passes are fast (O(1)). In contrast, for the in-
memory SGD and Tiki-taka learning rules, the number of additional
digital operations is linear to the size of the input vector (O(n))
and often executed only periodically, so that the update is done
much faster than for mixed-precision. All three methods presented
here, as well as continuously improved versions, are implemented in
AIHWKit, and Sec. V describes how to configure them for testing on
different AIMC device models.

III. AIHWKIT DESIGN
As laid out in Sec. II, AIMC can accelerate certain parts of

typical DNN (and other computing) workloads. Dense MVMs are
particularly favorable for AIMC when the matrix elements are sta-
tionary and stored in (analog) memory. However, today’s DNNs are
often heterogeneous and include a variety of layers, such as non-
linear activation functions or attention mechanisms, that cannot
be efficiently computed in-memory. The AIHWKit, which primar-
ily focuses on functional verification of AIMC, is thus designed to

handle both digital as well as AIMC components within the same
DNN compute graph.

A. Simulator code-design overview
Since the AIHWKit is based on the ML framework PYTORCH,

the user can rely on the vast library of digital FP layers and functions
for defining common DNNs. Only some layers of the DNN that are
supposed to run on AIMC will use the simulation AIMC capabili-
ties of the AIHWKit. The overall design is depicted in Fig. 3. The
DNN is conveniently defined in standard PYTORCH syntax using,
e.g., Linear and Conv2d layer modules for fully connected and con-
volutional layers, respectively. If one decides to simulate such a layer
on AIMC, AIHWKit provides corresponding layer modules, such as
AnalogLinear and AnalogConv2d, respectively, that simulate the
underlying matrix–vector products with customizable AIMC non-
idealities. In such a way, the impact of AIMC nonidealities on the
function of the DNN (e.g., prediction accuracy) can be measured.
The analog layers available are listed in Table II. As illustrated fur-
ther in Fig. 3, each analog layer module consists of one or multiple
analog tiles that are meant to be a single physical crossbar core
with an immediate periphery. Analog weights are assumed to be
stationary once initialized. For instance, a large linear layer could
be made up of multiple 512 × 512 crossbar arrays, where multiple
non-ideal MVMs need to be performed and concatenated. The par-
tial sum of the individual outputs is assumed to be computed with
FP accuracy. In this case, the tile module would consist of multiple
analog tiles with additional digital summations. Each analog tile in
AIHWKit itself consists of a physical (simulated) memristive cross-
bar (of class SimulatorTile), as well as immediate periphery such
as ADCs or error dynamic corrective steps such as noise or bound
management.45 Depending on the hardware customization, it can
also hold an affine transform (digital output scales and biases, global
or column-wise), which is known to greatly improve the mapping
of weights to conductances and is needed for converting ADC-tics
to meaningful quantities for the subsequent layers of the DNN (see
also Ref. 22).

In AIHWKit, nonidealities, material response characterization,
and general hardware configurations of each analog tile can be spec-
ified by a RPUConfig. The RPUConfig is, in principle, unique per
analog tile; however, in common use cases, one assumes the same
RPUConfig for each analog tile on the chip. We will explain how
to configure the AIMC hardware using the RPUConfig in detail
in Sec. III C. Internally, each analog tile will call the low-level
SimulatorTile class to actually perform the non-ideal compu-
tations requested by the RPUConfig. As indicated in Fig. 3, a
number of optimized core routines are available that simulate the
AIMC MVMs. In particular for analog training, when the MVM
as well as the outer-product update are both done in-memory, the
C++/CUDA library (RPUCuda) is used through Python bindings to
increase the simulation performance.

B. Model conversion and analog optimizers
As described in Sec. III A, typical PYTORCH syntax is used

to define the DNN to be simulated. This has the advantage that
the vast amount of pre-coded and DNNs available for download
from the ML community are readily usable for AIHWKit. How-
ever, layers within the DNNs that should run using AIMC need to

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-6

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 3. Design of the AIHWKit. A DNN is defined with typical PYTORCH commands, except for layers that are to be performed in AIMC. We provide analog layers to
implement convolution layers, linear layers, etc. (see Table II). Each of these analog layer modules contains (at least) one analog tile module that encapsulates the analog
computations as well as the concatenation of logical tile arrays. Each analog tile module consists of one or multiple analog tiles. These analog tiles encapsulate the NVM
crossbar operations together with immediate peripheral compute (such as ADC and DAC, affine output scaling, and bias). Each analog tile can be configured in a broad way
using a RPUConfig. The RPUConfig determines in a highly customizable way how the non-ideal AIMC forward, backward, and update behavior is actually implemented and
what peripheral aspects and device materials are used in the AIMC hardware of investigation.

TABLE II. Analog layer modules. In addition, the toolkit provides mapped versions that enforce the mapping of large weight
matrices onto multiple physical tiles.

Module name Torch equivalent Functionality

AnalogLinear Linear Linear layer with bias
AnalogConv1d Conv1d 1-dim convolution
AnalogConv2d Conv2d 2-dim convolution
AnalogConv3d Conv3d 3-dim convolution
AnalogRNN RNN Recurrent layer(s) with configurable cell
AnalogLSTM LSTM Uni/bi-directional LSTM layers

be replaced by their “analog” counterparts (see Table II). To ease
the conversion of pre-coded (and possibly pre-trained) DNNs to
AIHWKit, convenient conversion tools are provided that auto-
matically replace PYTORCH layers, such as Linear, with their
counterparts, e.g., AnalogLinear. Thus, e.g., a call

would convert all applicable layers of the FP DNN to an analog
model featuring AIMC layers, where all analog tiles instantiated are

configured using the same hardware configuration, RPUConfig, and
the FP weights. Note that here we always assume that enough analog
tile resources are available on the chip to store the requested weight
matrices of the DNN. Furthermore, weights are initialized perfectly
without any programming noise, which is appropriate for untrained
DNNs as the initial setting is random anyway. However, if weights
are pre-trained, extra steps are necessary to actually program the
weights into the conductances of the crossbars so that they show
a realistic deviation from the targets as expected for the material
choice. We will describe this process in detail in Sec. IV, where we
also describe how inference is performed on this analog model and

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-7

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

TABLE III. Examples of different config classes (the suffix RPUConfig is omitted). Note that we make a distinction between chips that are only designed for inference (defined
by configs having Inference in their name) and chips that support in-memory training (all other RPUConfig types). In the case of inference-only chips, only the forward
pass is done with analog nonidealities, and tools are available to add phenomenological programming noise and drift during the evaluation (see Sec. IV). Training with such a
configuration means “hardware-aware training,” where a more robust FP model is trained, e.g., with noise injection to be programmed on the analog inference chip during the
evaluation phase. On the other hand, in the case of in-memory training, the backward pass is non-ideal as well, and the weight update is defined by the material properties of
the device model, as pulses will be used to incrementally update the device in-memory using the corresponding gradients. Thus, in this case, fully analog in-memory training is
performed (see Sec. V for more details).

RPUConfig name Algorithm Forward Backward Update

Inference AIMC inference/SGD AIMC FP FP
TorchInference AIMC inference/SGD AIMC FP FP using PYTORCH46 autograd
Single In-memory SGD16 AIMC AIMC Stoch. pulsed in-memory update (⋅ ⋅ ⋅ÐÐ→W̆)
UnitCell Specialized SGD AIMC AIMC Using multiple devices (crossbars),

based on the compound, see Table IX

how one could potentially retrain the model with noise injection for
increased AIMC robustness.

The AIHWKit provides analog optimizers, such as AnalogSGD,
that make PYTORCH aware of the analog layers so that the correct
(custom) forward, backward, and update passes (and potential post-
update steps) are performed, as requested in the RPUConfig. Before
going into detail on training and inference, we first introduce the
extensive hardware customization possibilities using the RPUConfig
in the next Secs. III C and III D.

C. Tile-level RPUConfig specifies
all analog hardware settings

The RPUConfig is a Python data class that has a number of
fields and sub-structures that allow the specification of hardware
properties, such as the amount and type of nonidealities, in the

AIMC MVMs. On a higher level, AIHWKit provides a number of
basic RPUConfig classes that are used to distinguish fundamentally
different hardware designs. In particular, it distinguishes between
in-memory analog training and chips that do not support training
capabilities and instead are used for inference only. Inference-
only configurations are based on the InferenceRPUConfig class,
whereas in-memory training settings are either derived from the
SingleRPUConfig or UnitCellRPUConfig classes (see Table III
for an overview of different RPUConfig types). Note that the main
difference between in-memory training and inference-only chips is
how the backward and update nonidealities are defined. While for
inference-only chips, they are simply done in FP (possibly imple-
menting hardware-aware training, see Sec. IV), whereas in the
case of in-memory training configurations, a plethora of device-
material settings and parameters define specialized AIMC Stochastic
Gradient Descent (SGD) algorithms.

TABLE IV. Typical fields of the RPUConfig data class and their functionality. Note that not all fields are available for each of the RPUConfig types (see Table III). There are
more fields available not mentioned here that are specific to InferenceRPUConfig (such as noise_model and drift_compensation), which specify hardware-aware
training and evaluation options for inference-only chip designs (see Sec. IV for a detailed description).

RPUConfig field Parameter class Functionality

tile_class ⋅ ⋅ ⋅ Specifies the class used for the analog tile (e.g.,
AnalogTile)

tile_array_class ⋅ ⋅ ⋅ Logical array class used if requested (typical
TileModuleArray)

device PulsedDevice / UnitCell Specifies the material device properties for in-
memory update (e.g., ReRAM-like device-to-device
variation during pulsed update)

forward IOParameters Specify the AIMC MVM nonidealities during the
forward pass (e.g., IR drop strength)

backward IOParameters Specify the AIMC MVM nonidealities during the
backward pass (transposed MVM)

update UpdateParameters Specify the pulsing properties during the update (e.g.,
pulse train length)

mapping MappingParameter Architectural and peripheral settings (e.g., maximal
tile size, whether to use digital affine scales and biases)

pre_post PrePostProcessingParameter Pre-post processing (e.g., input range learning)

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-8

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

Given that the RPUConfig mainly specifies the hardware set-
tings, in general, all its properties are assumed to be constant and
non-changeable after the analog model is constructed using a partic-
ular RPUConfig. However, in some cases, one wants to experiment
with one hardware setting, e.g., during training, while changing
some hardware settings during inference, which would mean chang-
ing some properties of the RPUConfig after model creation. While
this cannot be conducted directly by modifying the RPUConfig
fields of the constructed model, it can still be conducted indirectly
by exporting and importing its state, as long as the class of the
RPUConfig does not change. In more detail, it can be achieved by
constructing a second model analog_model_new using a new and
modified RPUConfig rpu_config_new and loading the state dictio-
nary from the first model analog_model without loading the RPU-
Config from the state dictionary by using the load_rpu_config
flag. For example:

Now the new model, analog_model_new, has the same para-
meters as analog_model but a modified RPUConfig. Any further
evaluation or training will thus be based on the new hardware
configuration.

In Table IV, typical sub-fields of a RPUConfig are listed. Note
that there are other fields that define additional input process-
ing (pre_post) or the weight-to-tile mapping (mapping) prop-
erties. All nonidealities of the AIMC MVM itself are defined in
the forward and backward fields, respectively, as described in
Sec. III D.

TABLE V. IOParameters class customizes the MVM AIMC nonidealities. Here, a selection of commonly used settings is summarized. Note that the nonidealities can be
selected independently for a “normal” MVM during the forward pass and the transposed MVM, which is used during the backward propagation in the case of in-memory training
(see RPUConfig field in Table IV).

Class field Typical value Functionality

is_perfect False Debug switch for removing all nonideality settings
mv_type OnePass Select the type of analog mat-vec computation. For instance,

whether only one pass is performed, so that negative and positive
currents are added in analog, or multiple passes, where positive and
negative inputs are given sequentially in two passes

noise_management AbsMax Type of noise management,16 which is a dynamic input scaling per
input vector (dynamic quantization)

bound_management None Type of output bound management. When set to Iterative, each
MVM is “speculatively” computed, which means that it is dynami-
cally recomputed with reduced inputs only if the output is hit. Note
that this incurs a run-time penalty in practice

inp_bound 1.0 Input bounds and ranges for the digital-to-analog converter
(DAC). The MVM computation is typically normalized to a fixed
−1 to 1 input range

ir_drop 1.0 Scale of IR drop along the inputs (rows of the weight matrix)
w_noise 0.01 Scale of output referred MVM-to-MVM weight read noise
w_noise_type AddConstant Type of the weight noise, for instance, adds a constant Gaussian to

each weight element
inp_noise 0.0 Standard deviation of Gaussian (additive) input noise (after

applying the DAC quantization)
inp_res 254 Resolution (or quantization steps) for the full input (signed) range

of the DAC
inp_sto_round False Whether to enable stochastic rounding of the DAC
out_bound 10.0 Output range for an analog-to-digital converter (ADC) in normal-

ized units. Typically, maximal weight and input are normalized to
1, so that 10 means outputs are clipped at a current generated from
10 max inputs with all max weights

out_noise 0.04 Standard deviation of Gaussian output noise
out_nonlinearity 0.0 S-shaped non-linearity applied to the analog output (with possible

output-to-output variation)
out_res 254 Number of discretization steps for ADC or resolution in the full

(signed) output range
out_sto_round False Whether to enable stochastic rounding of the ADC

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-9

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

D. Configurable MVM nonidealities
As mentioned above, MVMs implemented on AIMCs are non-

ideal. This is due to a number of device and circuit nonidealities,
including but not limited to device-to-device and cycle-to-cycle
conductance variations, output noise, weight read noise, IR drop,
and quantization noise. The forward field of RPUConfig handles
attributes related to how each AIMC MVM is to be performed in the
forward pass (during inference as well as during training), and the
backward field handles all attributes related to a possibly non-ideal
backward pass during backpropagation. It is noted that all forward
or backward attributes do not change the underlying weights (con-
ductances) from one MVM to the next. Instead, reversible noise is
added as requested, and for some nonidealities, such as IR-drop, the
expected MVM output is modified in-place.

Long-term effects, such as diffusion processes, are not consid-
ered by default at the level of the duration of processing a single
mini-batch. Instead, diffusion or decay processes can be applied only
after processing a mini-batch. The user has the responsibility to
ensure that this approximation of the long-term effects is reasonable
for the hardware and materials under investigation. Other long-term
weight-related effects, including programming noise, retention, 1/f
noise, and drift, can be specified using specialized RPUConfig fields
related to inference (e.g., noise_model; see Sec. IV for details).

Mathematically, the generally simulated AIMC forward and
backward passes can be expressed as

yi = αout
i fadc

⎛

⎝
∑

j
(w̆ij + σwξij)(fdac(xj) + σinpξj) + σoutξi

⎞

⎠
+ βi, (1)

where fadc and fdac model are the (possible non-linear) analog-
to-digital and digital-to-analog processes (together with dynamic

FIG. 4. Non-ideal MVMs from a 512 × 512 analog tile simulated using the AIH-
WKit with commonly used settings, as listed in Table V, when programming noise
is not applied. Inputs are sampled from a sparse uniform distribution with a spar-
sity of 50%, and weights are sampled from a clipped Gaussian distribution with a
standard deviation of 0.246. Output values are normalized using out_bound, so
clipping happens at different normalized output values.

scaling and range clipping), and the ξ are the Gaussian noise. In
general, it is assumed to have an analog part of the weight W̆, the
analog weight, that is stored in physical units. The ADC counts (that
have arbitrary units) are then converted back to the correct FP range
by a digital out-scaling factor(s) αout

i that could either be set to be
column-wise (i.e., depending on i) or tile-wise. The bias βi could
be digital or analog as well. Mathematically, because of the output
scales, the actual weight W is given by a combination of the ana-
log weight W̆ and the output scales, W ≈ αoutW̆. Since the physical
units of W̆ and yi are, therefore, arbitrary (they can be incorporated
in αout), we define the analog weight as well as the input voltage in
normalized units (maximally 1) for simplicity and define all MVM
nonideality parameters with respect to these normalized units.

A non-ideal MVM performed with AIHWKit using the typical
value settings shown in Table V is depicted in Fig. 4. In general, RPU-
Config fields can be specified by either passing the keyword values to
the IOParameter class or by simply modifying the attributes of the
class. For instance, to set the out_noise parameter of the forward
and backward passes, one can write

Note that while for inference-only chips the forward pass
matters (see Sec. IV), for in-memory training both forward
pass and backward MVM nonidealities are set separately. Most
RPUConfig related classes and enumerators can be imported from
aihwkit.simulator.configs. Consequently, we will omit the
import statements below. In Secs. III D 1–III D 7, we give an
overview of the different configurable MVM nonidealities that can
be simulated using the AIHWKit.

1. AIMC network weight encoding
When performing MVMs, the conductance of NVM elements

is usually linearly mapped to a range of weight values, and it
is assumed that a typical pulse-width modulation of the voltage
input5,6 can be approximated by a time average (so that x cor-
responds to the mean voltage given). Multiple-passes per MVM
(for example, applying positive and negative inputs in two sepa-
rate phases) can be simulated. However, the toolkit currently does
not natively support a bit-wise “digital” mapping of weights, where
only 1 and 0 states are (approximately) represented by conductances,
and multiple devices are used with different significances to approx-
imate a digital MVM.19 However, it could be readily implemented
by defining a new analog tile module that consists of multiple ana-
log tiles representing different significances and summing over the
individual outputs. In Sec. VII, we give some examples of how to
customize analog tile modules.

Before going into more detail about describing the simulated
AIMC nonidealities, there are a number of configurations that
define how to map the FP weights W to the analog weights W̆

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-10

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

and the output scales αout [see Eq. (1)]. These are governed by the
MappingParameter in the mapping field of the RPUConfig.

a. Analog tile size and bias. The max_in_size and
max_out_size properties set the (maximal) tile size in the
input and output dimensions. If for a given layer the weight matrix
is larger than this maximal size, multiple analog tiles will be used
to represent the full weight matrix, where the outputs of each tile
are assumed to be added up in FP precision (after ADC conversion)
and concatenated and split as demanded. Note that currently there
is no accuracy effect from limiting the output size, as simulations
are all independent of columns. Thus, to increase simulation speed,
it is advisable in most cases to set max_out_size to 0 to turn off the
splitting. However, the input size is crucial for some nonidealities
(such as IR drops or ADC saturation) and, thus, should be set as
required by the hardware design.

The bias of the analog layer can either be encoded in the analog
tile (as an additional column) or assumed to be digital (selected with
digital_bias).

b. Initial weight mapping. The property weight_scaling_
omega specifies how initially [when (re)setting the weights
of an analog layer or using analog_tile.set_weights()]
weights W are distributed among the analog weights W̆
and the output scale(s) αout. The value specifies the ana-
log weight value w̆∗ that is used for the absolute max of
wmax ≡ maxij∣wij∣. Thus, if weight_scaling_omega equals ω (and
weight_scaling_columnwise = False), then αout

← wmax/ω
and W̆ ← ωW/wmax. Typically, ω = 1 for inference or somewhat
smaller for training (see Ref. 47 for details). This initial weight map-
ping can also be done per column (thus computing the maximum
per column and having individual output scales per column) when
setting weight_scaling_columnwise.

Note that for the special case ω = 0, the initial weight map-
ping is turned off, that is, αout

= 1. In this case, the user has to
make sure that MVM nonideality values are correctly specified
and weights are not too large to invalidate range assumptions. It
is advisable to always map the weights correctly to avoid these

complications. Moreover, the AIHWKit supports learning the dig-
ital output scales during training, either as tile-wise or column-
wise scales (out_scaling_columnwise), which is enabled with
learn_out_scaling.

2. Output noise
When an analog MVM is performed, weight-independent noise

from the peripheral circuits at the crossbar output is introduced,
from sources such as operational transconductance amplifiers used
in ADCs. This is referred to as output noise, which is called σout
in Eq. (1). In the AIHWKit, output noise is assumed to be addi-
tive Gaussian, i.e., it is sampled from a normal distribution centered
around zero. The standard deviation of the output noise σout can be
specified with out_noise (see Table V).

3. Short-term weight noise
In addition to output noise, when performing MVMs, weight-

dependent noise, referred to as short-term weight noise, can be
applied. In Eq. (1), this noise corresponds to σw. This Gaussian noise
of zero mean thus models variations in the weights that occur every
time an MVM is performed, such as short-term read fluctuations.
For efficiency of implementation, this noise is applied to the out-
put yi and, therefore, does not modify the actual weight matrix from
one mini-batch to the next. In principle, the σw could be a function
of actual conductances and inputs. The AIHWKit so far supports
three different types of short-term weight noise, which are listed
and described in Table VI. The weight noise type is specified by
w_noise_type and its standard deviation or scale by w_noise (see
Table V).

4. Input and output quantization
In conventional AIMC systems, for each crossbar, analog-to-

digital and digital-to-analog conversions are required to convert the
WL inputs and BL outputs using DACs and ADCs, respectively.
Due to practical constraints, these conversions are performed with
reduced precision and, thus, introduce input and output quantiza-
tion noise. In the AIHWKit, both input and output quantization
are modeled using the following assumptions: values are bounded
between a fixed range, i.e., a minimum and maximum value, and

TABLE VI. Types of short-term weight noise set using the w_noise_type property.

Type Description

NONE Do not apply short-term weight noise
ADDITIVE_CONSTANT Apply constant additive noise with a standard deviation

given by w_noise. Note that the weight noise is applied
directly to the mapped weights [they can be accessed with
get_weights(apply_weight_scaling = False)], which are
typically in the range −1, . . . , 1

PCM_READ Apply output-referred PCM-like short-term read noise that scales
with the amount of current generated for each output line and thus
scales with both conductance values and input strength. In this
case, w_noise specifies the scale, for which a value of 0.0175 has
been found to capture PCM device measurements (for details, see
Ref. 22, section “Short-term PCM read noise”)

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-11

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

2nbit − 1 quantization states are linearly spaced between (inclusive of)
these values. Optionally, one can also add input and output noise to
model conversion inaccuracies and S-shaped output non-linearity to
model non-linear ADC saturation.

Generally, the input (DAC) and output (ADC) quantizations
are modeled as uniform quantizations between symmetric bounds
around zero. In more detail, it is

quantr
b(z) ≡ clipb

−b(2br round(
z

2br
)), (2)

where the resolution r controls the number of bins in the range
−b, . . . , b. The distance between adjacent bins is 2br. The input and
output resolution can be specified using the inp_res and out_res
properties of the IOParameters, respectively, and the bounds with
inp_bound and out_bound (see Table V).

The resolution can either be set as the number of discrete val-
ues using an integer value or as the distance relative to a range of 1
between each discrete value (the resolution) using a floating point
value. Assume that the bound is set to b = 1 and the resolution to
r = 1/2. This would result in a partition of three bins, namely −1 ≤ x
< − 1

2 , − 1
2 ≤ x < 1

2 , and 1
2 ≤ x ≤ 1 (where the value x is clipped at

the bounds). This would need at least two bits to code in digital
(one of the 22

= 4 values is discarded). Thus, in general, to set a
bit resolution of, e.g., nbit = 8, the resolution parameters need to
be set to either (2nbit − 2) or 1.0/(2nbit − 2). If this is set to −1,
quantization noise is not modeled; however, the clipping bound is
still applied. Stochastic rounding48 can be modeled by enabling the
boolean inp_sto_round and out_sto_round properties.

Input and output bounds, i.e., the clipping bounds/ranges
for ADCs and DACs [see Eq. (2)], can be specified using the
inp_bound and out_bound properties, respectively (see Table V).
The input bound corresponds to the maximum (read) voltage ampli-
tude/duration for a given WL input. Typically, we assume that the
inp_bound is set to 1.0 so that the voltage is given in normalized
units and maximally 1. To convert the actual input range into these
normalized units, an additional scalar factor is used, which can also
be learned (see Sec. IV B 4) or dynamically set (see Sec. III D 6 for
details).

The output bound is a design choice referring to the maxi-
mally accumulated currents before the ADC saturates. Typically,
we assume that weights are given in normalized units as well and
clipped at maximal 1 [which needs to be ensured by enabling remap-
ping or clipping in the case of HWA training (Sec. IV) or is set
as a material device property during training (Sec. V)]. Thus, if
out_bound is set to 10 (the default), the ADC will saturate when
more than ten inputs are maximally on (1) while all weights are set
to the maximal conductance (1). In other words, the output bound
can be interpreted as corresponding to the maximum number of
devices in a given column that can be at a maximum conductive
state when all corresponding WL inputs are at a maximum, i.e., 1.0,
and all other WL inputs are disabled before hard ADC saturation
occurs.

5. IR drop
Ideally, for each crossbar, the voltage along each BL can be

assumed to be constant. In a real crossbar, however, finite wire resis-
tance causes current and voltage drops between adjacent rows and

columns. This phenomenon is commonly referred to as IR drop49

and can be accurately modeled using a number of non-linear dif-
ferential equations. In the AIHWKit, to keep the simulation-time
reasonable when modeling IR drop, a number of approximations
are made. First, IR drop is modeled independently for each BL,
as column-to-column differences are implicitly corrected (to first
order) when programming weights with an iterative-based pro-
gramming scheme. Second, only the average integration current is
considered. Finally, the solution is approximated with a quadratic
equation. We refer to Ref. 22 for more details. The scale of IR drop
ir_drop and the physical ratio of wire conductance from one cell
to the next to the physical max conductance ir_drop_g_ratio
can be set as part of the IOParameters (see Table V). The lat-
ter default value is computed with 5 μS maximal conductance and
0.35 Ω wire resistance, i.e., (1/0.35/5 × 10−6

) = 571 428.57. Note
that the approximations made here to obtain a fast implementation
do not allow an arbitrary setting of this parameter. The approxima-
tions only hold when the order of magnitude of this default value is
not changed.

6. Noise and bound management
To avoid the operation of peripheral circuitry in non-linear

regimes and to improve signal quality, noise and bound manage-
ment can be employed.45 Noise management is used to dynamically
re-scale inputs using a linear factor, α, prior to digital-to-analog con-
version to match the (fixed) input range, and bound management
is used to dynamically avoid or minimize the amount of output
clipping (e.g., by dynamically recomputing with down-scaled inputs
when outputs were clipped). Note that while these dynamic tech-
niques often improve accuracy, they also may implicate higher chip
complexity to implement additional (FP) operations needed, which
typically translate to higher run-time, energy, or performance costs
(not captured with AIHWKit). Thus, the user needs to carefully
adjust these settings as appropriate for the hardware under consid-
eration. In any case, the AIHWKit can readily be used to quantify
the impact on accuracy when enabling such dynamic compensation
methods for a given AI workload.

Different types of noise and bound management strategies
are available (see documentation for NoiseManagementType and
BoundManagementType). By default, the following bound and noise
management strategy types are used:

The noise management type NoiseManagementType.ABS_MAX
sets initially α ≡ maxi∣xi∣ and, thus, divides the input by the
absolute maximum, e.g., x/α, before reaching the DAC and
then re-scales the output of the ADC with α again. For
BoundManagementType.ITERATIVE, the MVM is recomputed
iteratively with setting α← α/2 until the output bounds are not
clipped anymore. max_bm_factor sets the maximal bound manage-
ment factor (if this factor is reached, the iterative process is stopped),
and max_bm_res sets the maximum effective resolution number of
the inputs. It is noted that, for inference, noise/bound management
is typically disabled/not used, as it requires additional computational
resources to be implemented in hardware and is not supported in
typical AIMC inference chips.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-12

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

7. Other MVM nonidealities
In addition to the aforementioned nonidealities, the AIH-

WKit can be used to simulate many other MVM nonide-
alities, including but not limited to voltage offset variation,
device polarity read dependence, output asymmetry, and S-shaped
non-linearity. We refer the reader to the API documentation
of the IOParameters for a comprehensive list of parameters
and values, which have not been explicitly described in this
section.

IV. ANALOG IN-MEMORY DNN INFERENCE
As previously mentioned, the AIHWKit can be used to accu-

rately model AIMC MVMs and, by extension, DNN inference by
simulating a large variety of device and circuit-nonidealities. In this
section, we introduce additional nonidealities used to model DNN
inference. In addition, techniques for training for inference, also
referred to as HWA training, will be discussed. We also describe how
externally trained models can be imported into the AIHWKit to per-
form inference evaluation simulations and discuss best practices for
inference evaluation.

We assume that the reader is familiar with the AIHWKit
high-level design (Sec. III) and how to configure the hardware
characteristics using the RPUConfig (Sec. III C). In particular,
here we discuss the situation of investigating a chip that is
designed for AIMC inference only, so that the RPUConfig is
derived from the InferenceRPUConfig class (see Table III). We
will discuss the additional RPUConfig fields available for this
case.

A. Noise models for inference
In Sec. III, configurable MVM nonidealities are described,

which can be used for modeling both DNN on-chip inference and
training. In Secs. IV A 1 and IV A 2, we introduce additional devi-
ations and long-term effects on the weights, which are specific to
DNN inference.

When evaluating a given analog model for inference accuracy,
prior to the inference evaluations, programming noise, as well as
long-term effects up to a time tinf (such as drift and accumulated
read noise, see below), need to be applied. In AIHWKit, this is done
with special methods:

Thereafter, the test set can be evaluated with the correctly applied
long-term effects on the model. In the following, we describe in
more detail what noise and compensations are applied during these
calls.

1. Phenomenological weight noise models
During inference, weight programming error, conductance

drift, and read noise are modeled using phenomenological noise
models. Some of these models, such as the PCMLikeNoiseModel50

and ReRamWan2022NoiseModel,9 are hardware-calibrated. The
PCM model is calibrated using a large number of device measure-
ments, as depicted in Fig. 5. The phenomenological noise model to
use can be specified using the noise_model field of the RPUConfig,
as follows:

FIG. 5. (a) Experimentally (hardware) obtained temporal evolution of PCM conductance21 compared to that simulated by the AIHWKit PCMLikeNoise statistical noise
model. Note that it is assumed all weights are programmed at the same time in the simulation, whereas in the experiment, devices converged at different iterations of
programming. (b) Non-ideal MVMs from a 512 × 512 analog tile simulated using the AIHWKit with commonly used settings, as listed in Table V, and the PCMLikeNoise
statistical noise model. Inputs are sampled from a sparse uniform distribution with a sparsity of 50%, and weights are sampled from a clipped Gaussian distribution with a
standard deviation of 0.246. For t = 1 s, the reported L2 error of the MVM is 13%.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-13

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

Note that most inference-only related classes and tools can be
imported from aihwkit.inference.

a. Weight programming error. When programming real NVM
devices, the programmed conductances, gP

i j , differ from the desired
target values, ĝi j , due to many underlying mechanisms, including
but not limited to cycle-to-cycle and device-to-device variability, WL
and BL voltage mismatches, device-level voltage asymmetries,51 and
temporal drift. While many of these mechanisms can be emulated
for a given programming scheme to infer the weight programming
error, it is much more computationally efficient to compute the pro-
gramming error using an arbitrary function, gP

i j = f (ĝi j), which is
defined for each device model and programming scheme. It is typi-
cally assumed that the weight error can be modeled using a normal
distribution centered around ĝi j , where the standard deviation, σ, is
dependent on ĝi j , as follows:

gP
i j = N (ĝij , σ(ĝij)). (3)

In the AIHWKit, the apply_programming_noise_to_
conductance(g_target) method of the noise model (base class)
is used to apply the weight programming error. For more details
and how to customize the noise model, see Sec. VII.

b. Conductance drift. Many types of NVM devices, most
prominently PCM, exhibit temporal evolution of the conductance
values, referred to as the conductance drift. This poses challenges for
maintaining synaptic weights reliably.52 Conductance drift is most
commonly modeled using the following equation:

gdrift(t) = gP
(t/t0)

−ν, (4)

where t0 is the time at which the programmed conductance gP

is measured and ν is the drift exponent. In practice, conductance
drift is highly stochastic because ν depends on the programmed
conductance state and varies across devices. In the AIHWKit, the
apply_drift_noise_to_conductance(g_prog, nu_drift,
t_inference) method of the noise model (base class) is used to
apply the conductance drift noise.

c. Low-frequency read noise. When devices are read, after the
conductances have been programmed, there will be instantaneous
fluctuations in the hardware conductances due to the intrinsic noise
from the NVM devices. Many NVM devices exhibit 1/ f noise and
random telegraph noise characteristics, which alter the effective con-
ductance values used for computation. This noise is referred to as
read noise because it occurs when the devices are read after they
have been programmed. Note that here we refer to longer-term
and lasting effects on the conductances after programming, such
as low-frequency 1/f fluctuations (typically much slower than pro-
cessing a single mini-batch) as opposed to weight read fluctuations
on the time-scale of a single MVM. Therefore, this read noise is
resampled only once at every inference time tinf. Short-term read
fluctuations that are resampled every MVM can instead be set using
the IOParameters as listed in Table V.

The low-frequency read noise is typically modeled using a
normal distribution centered around zero with a standard devia-
tion of σnG dependent on the time elapsed since the programming,

i.e., N (0, σnG(t)).50 The conductance of a device as a function of
time, accounting for both conductance drift and read noise, can be
modeled using the following equation:

g(t) = gdrift(t) + N (0, σnG(t)). (5)

In the AIHWKit, the apply_noise(weights, t_inference)
method of the noise model (base class) is used to apply both
conductance drift and read noise.

2. Drift compensation
Various methods can be employed to mitigate the effect of con-

ductance drift during inference.53 In the AIHWKit, such techniques
are referred to as drift compensation techniques. As proposed in
Ref. 54, a single scaling factor, γ, can be applied to the output of
an entire crossbar (after the ADC) in order to compensate for a
global conductance shift. In the AIHWKit, to compute the cor-
rect value for a time tinf after the conductance programming (at
tinf = 0), first a measure for the strength of a reference output using
MVMs right after programming is stored in s0. When compen-
sating after a time tinf, the same MVMs are computed with the
drifted weights to get another output strength st . The compensa-
tion factor is then set to γ ≡ s0/st . For the global drift compensation
(GlobalDriftCompensation), the output strength is computed as
the mean absolute yi values resulting from giving all one-hot vectors
as input. However, other strength measures can be implemented by
customizing the drift compensation, as explained in Sec. VII.

The drift compensation type can be specified using the
drift_compensation field of the RPUConfig:

B. Hardware-aware training for inference
HWA training, a popular alternative to on-chip training, can

also be used to train networks for deployment on AIMC hardware.
Unlike on-chip training, HWA training is solely performed in soft-
ware and does not require detailed behavioral or physical device
models. Instead, additional operations, such as weight noise injec-
tion, are added during forward and backward propagation passes,
and standard SGD methods are used. These are added to increase
the model’s robustness21,22,55–59 and can be specified using different
RPUConfig parameters (as part of the InferenceRPUConfig class),
which are discussed in Secs. IV B 1–IV B 4.

1. AIMC forward pass during HWA training
It is common for HWA training to assume a perfect back-

ward pass, with nonidealities only added during the forward pass,
which is the default behavior of InferenceRPUConfig. MVM
nonidealities added to the forward field (see Table V) of the
class are applied when the model is in train() mode and
eval() mode. One can configure additional noise sources that
are only present when the model is in train() mode (see Secs.
IV B 2–IV B 4 for details). While InferenceRPUConfig uses
a C++/CUDA backend, TorchInferenceRPUConfig is purely
based on PyTorch, making debugging easier as one is able to step
through every part of the forward pass. Switching to the PyTorch
based tile is as simple as exchanging InferenceRPUConfig with
TorchInferenceRPUConfig (see Table III).

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-14

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

TABLE VII. Types of weight modifiers. Some experimental weight modifier types, including WeightModifier
Type.DOREFA, are not listed. Parameters are grouped in the class WeightModifierParameter and accessible in
the modifier attribute of the RPUConfig.

Type Description

NONE No weight modifier is applied
DISCRETIZE Weights are discretized (quantized) according to the resolution specified

by res. If sto_round is enabled, stochastic rounding is performed
MULT_NORMAL Multiplicative Gaussian noise is added to all weights with a standard

deviation of std_dev
ADD_NORMAL Additive Gaussian noise is added to all weights with a standard deviation

of std_dev
POLY Noise is added to all weights from a normal distribution with a stan-

dard deviation of σwnoise(c0 + c1∣wij∣/ω + cN ∣wij∣
N
/ωN
), where ω is either

the actual absolute max weight (if rel_to_actual_wmax is set) or the
value assumed_wmax. σwnoise is set using the std_dev parameter. The
coefficients c0, . . . , cN are set using the coeffs parameter

PROG_NOISE Identical to POLY except that a positive or negative weight will remain
positive or negative, respectively, after the noise is applied to simulate
the situation of programming the weight to two separate conductances
depending on the sign. If weights change sign after applying noise, the
absolute value with the preserved sign is taken

2. Weight modifier parameter
Weight modifier parameters (WeightModifierParameter),

set using the special field modifier of the RPUConfig, are used to
specify different attributes about the injected weight noise during
HWA training, such as the noise type and amplitude. In Table VII,
a description of each weight modifier parameter type is provided.
When a weight modifier type other than COPY is used, unless oth-
erwise specified, for the duration of a mini-batch, each weight will
be modified during both forward and backward propagation cycles.
Drop connect,57,60,61 which is used to set weights to zero with a given
probability during training, can be used with any other modifier type
in combination. As an example, additive Gaussian noise with a stan-
dard deviation of 0.1 can be applied, in addition to drop connect
with a drop connect probability of 0.05, as follows:

For relatively small networks and datasets, we found that
increasing the number of times we draw samples from our weight
distribution improves the robustness of the programming noise of
our model. This can be achieved by adding noise drawn from the
distribution specified by WeightModifierType for every sample in
the batch. Concretely, for inputs of shape [batch_size,d_in] and
a layer weight of shape [d_in,d_out], instead of applying noise to
the weights once, yielding again a matrix of shape [d_in,d_out],
we add noise for every sample in the batch, yielding a weight
matrix of shape [batch_size,d_in,d_out]. This feature can be
turned on by setting rpu_config.modifier.per_batch_sample
to True. Note that this feature is only available for the PYTORCH-
based analog tile implementation, which can be selected by using
TorchInferenceRPUConfig as the rpu_config class.

3. Weight clipping and remapping parameter
Weight clipping and remapping ensure that the weight is

correctly mapped to (normalized) conductances in the range
and, thus, should always be applied during HWA training (at
least fixed_value clipping to 1) to avoid unrealistic weight
ranges that are not in line with the assumptions when specify-
ing the other MVM nonidealities (such as ADC range, etc., see
Table V). Note that the weight range here refers to the ana-
log weight W̆. The actual FP weight is given by the W̆ times
the (digital) output scaling parameters (see Sec. III D 1 for
details).

Weight clipping parameters (WeightClipParameter), set
using the special field clip of the RPUConfig, are used to specify dif-
ferent attributes that control how weights are clipped during HWA
training. In Table VIII, different weight clipping technique types are
listed. Weight remapping parameters (WeightRemapParameter),
set using the special field remap of the RPUConfig, are used to specify
different attributes that control how weights are re-mapped to ana-
log weights W̆ and the output scales αout during HWA training using
the assumption of having digital output scales that can represent part
of the full weight together with the value represented in the conduc-
tances (see Sec. III D 1). The remapped_wmax parameter specifies
the assumed maximum analog weight value. This is typically set to
1.0. In Table VIII, different weight remapping parameters are listed.
As an example, weight clipping using LAYER_GAUSSIAN at two
times the standard deviation of the weight distribution and weight
remapping (in CHANNELWISE_SYMMETRIC mode) can be enabled as
follows:

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-15

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

TABLE VIII. Types of weight clipping and remapping techniques.

Type Description

NONE Clipping/remapping behavior is disabled

Weight clipping

FIXED_VALUE Weights are clipped to fixed value give, symmetrical around zero,
specified by rpu_config.clip.fixed_value

LAYER_GAUSSIAN Calculates the second moment of the whole weight matrix and clips
at σ times the result symmetrically around zero. σ is specified using
the rpu_config.clip.sigma parameter

Weight remapping

LAYERWISE_SYMMETRIC Remap according to the absolute max of the full weight matrix
CHANNELWISE_SYMMETRIC Remap each column (output channel) in respect to the absolute

max

Note that mapped weights in the analog representation should
always be smaller than the assumed maximal value (typically 1) to
ensure that this clipping at a fixed value can be used in combination.

4. Setting and learning the input ranges
As previously described, inputs are first clipped to a fixed

range before being presented to each crossbar. The input range for
each crossbar can either be learned during training, dynamically
computed during inference, or fixed (set manually).

In the AIHWKit, pre-post processing parameters, specified
using PrePostProcessingParameter, can be used to augment
digital input and output processing steps. Currently, input range
learning is the only natively supported processing step. Input range
learning can be used to find the optimal input range for each cross-
bar during HWA training. For initialization, one can use the first
init_from_data input batches for calculating a moving average
of the init_std_alphath standard deviation of the input distribu-
tion. After a certain number of batches have been presented, learning
takes over. This is done by calculating the gradient of the input range
to be proportional to the amount of clipping caused by the current
input range and the gradient of the crossbar inputs. This typically
widens the input range so that no clipping occurs; however, a tight
input range is often more favorable since it reduces quantization
error and boosts the overall signal strength, which is important if
the hardware suffers from output noise. How much the input range
is tightened at every backward pass can be controlled via the decay
attribute, which adds input_range∗ decay to the gradient if not
more than some percentage of the inputs are clipping. This percent-
age can be controlled via input_min_percentage. As an example,
using a value of 0.95 as input_min_percentage will only lead to
a tightening of the input range if less than 5% of the inputs have
been clipped using the current input range. The input range can
also be loosened up if the outputs are clipping at the ADC. This
can be turned on by setting manage_output_clipping = True.
Again, for output_min_percentage = 0.95, the input range is
not loosened if less than 5% of the outputs are clipping. It should be
noted that this feature is currently not supported in the torch-based

tile. By default, the gradient of the input range (before decaying)
is scaled by the current input range. To turn this feature off, set
gradient_relative = False. For an example of how to use
input range learning, see notebook hw_aware_training.ipynb.62

If learning the input ranges is not desired, but HWA train-
ing with DACs and ADCs is, then a second option is to use
the NoiseManagementType to dynamically scale the inputs dur-
ing HWA training and inference such that each input covers the
full input range. However, note that this is typically not supported
by most AIMC hardware due to the high computational overhead
involved in implementing this dynamic range computation. For
more details, refer to Sec. III D 6.

To simplify the HWA training, one might eventually want
to train without DACs and ADCs altogether, in which case
one can simply enable a perfect forward pass by setting
forward.is_perfect = True in the RPUConfig. In this case,
one has to calibrate them post-training before deploying them on
hardware. Setting the input ranges post-training typically involves
calibration using a subset of the training data. During the calibra-
tion phase, the model is in evaluation mode, which means that layers
such as torch.nn.Dropout operates in inference mode, and any
distortions such as output noise, weight noise, or input quantiza-
tion are turned off. The activations from every crossbar are then
cached until no more inputs are provided. To avoid exhausting the
memory, one can set an upper limit on the number of activation
samples cached at every crossbar. In order to prevent sampling of
activations that are not representative of the true distributions, new
samples are randomly mixed into the cache, which is then trimmed
to the maximum number of samples. After the sampling phase,
the input_range field of every crossbar is populated with a cer-
tain quantile of the recorded samples. This ensures that outliers are
not mapped to the full range, causing an overall weak signal for
the intermediate values. This model is demonstrated in notebook
post_training_input_range_calibration.ipynb.63

For large models, caching even a couple of hundred activa-
tion samples per crossbar might already be too memory intensive.
For this reason, a moving average of the quantile can be computed.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-16

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

This drastically reduces the memory footprint since no caching
is required, but it still enables input range calibration on large
amounts of data. However, the moving average is, of course, an
approximation to the true quantile, which might lead to worse
performance.

5. Importing externally trained models
Externally trained models can be imported to the AIHWKit,

either to be retrained using HWA training for inference or direct
inference evaluation. Currently, the AIHWKit natively supports the
conversion of PYTORCH models, so models trained using other
Machine Learning (ML) frameworks first require conversion to
a PYTORCH-based model. External libraries, such as those listed
here,64 can be used to convert trained models from many popular
libraries to PYTORCH-based models.

All linear (dense) and convolutional layers of an arbi-
trary PYTORCH-based model can be automatically converted to
analog equivalent layers using the aihwkit.nn.conversion.
convert_to_analog(module, rpu_config) methods, where
the AIMC hardware properties (including tile size, etc.) are defined
in rpu_config. Other layers, namely Long Short-Term Memory
(LSTM) cells, require manual in-place conversion.

It should be noted that most imported models do not have pre-
calibrated input ranges, which is why, most of the time, one needs to
calibrate them after loading the model. For information on how to
do that, see Sec. IV B 4.

6. Hardware-aware training example
For HWA training, one typically starts off with a model that

was pre-trained without any AIMC nonidealities or techniques, such
as weight clipping or noise injection. If there is a need for training
from scratch, the user can either define the network in PYTORCH
and then convert it using convert_to_analog or directly substi-
tute the individual layers with their analog counterparts in the model
definition. Notebook hw_aware_training.ipynb62 demonstrates
this workflow with a ResNet-32 trained on the Cifar-1065 dataset.
We start off by pre-training the model to the baseline accuracy,
which in this case hovers around 94%. For the HWA training,
we first generate an RPUConfig that is then used when convert-
ing the model to analog. For training an analog network, one has
to use an AnalogOptimizer, which adds specific logic to be exe-
cuted after parameter updates. In this case, we use the simple
AnalogSGD; however, more complex algorithms can be used by mix-
ing AnalogOptimizerMixin into the PYTORCH-based optimizer
class (see AnalogAdam for an example). It should be noted that for
HWA training, the learning rate might need to be reduced. By how
much depends on the network, but reducing it by roughly one order
of magnitude is a good starting point. Apart from that, we are able
to use the same training code to do HWA training on the converted
analog model since all HWA training parameters are automatically
applied as defined in the RPUConfig. After HWA training, we per-
form inference using the model, which is now in eval() mode (see
Sec. IV C for more information).

C. Inference accuracy evaluation
For a given RPUConfig, during inference evaluation of

the analog model, the parameter setting specific to the HWA
training, such as the specified weight noise modifier type, i.e.,

rpu_config.modifier.type, is not used (unless modifier.
enable_during_test is explicitly set to True for debugging
purposes). The MVM nonidealities, as specified by the forward
field of the RPUConfig (see Table V), are, however, always
applied (during HWA training as well as inference evaluation),
since they define the AIMC properties rather than any extra
regularization techniques for HWA training. As described in
more detail in Sec. IV A, programming noise can be applied by
calling either the analog_model.program_analog_weights()
or analog_model.drift_analog_weights(t_inference)
methods, which both inject programming noise using the
rpu_config.noise_model. For the latter, in addition to program-
ming noise, the current reference weights (i.e., the conductance
state of all devices) are drifted for t_inference seconds.

1. Multiple models and evaluation instances
As AIMC hardware is inherently stochastic, a single evaluation

instance is typically not representative of the behavior of the mod-
eled hardware over multiple evaluation instances. Consequently,
multiple evaluation instances should be used to evaluate both the
mean and variance (typically the standard deviation) of the metrics
being evaluated. Moreover, as many analog NVM devices, such as
PCM, are susceptible to temporal conductance drift and the behavior
of analog In-Memory Computing (IMC) hardware can evolve over
time, performance-based metrics for analog IMC hardware are typi-
cally reported for a specific length of time with respect to a reference
point-in-time. This is typically defined as the point-in-time when
all devices have been programmed. Ideally, multiple model (random
initialization) instances should also be used.

2. Inference evaluation example
Notebook hw_aware_training.ipynb62 provides an infer-

ence configuration example that uses the PCMLikeNoiseModel
during inference. The mean and standard deviation of the test set
are reported for different logarithmically spaced time steps, from
t_inference = 60.0 s up to one year (365 × 24 × 60 × 60 s). For
each point in time, the mean and standard deviation of the test set’s
accuracy are reported across five evaluation instances. Note that we
kept the number of repetitions low for this example. In practice,
one should repeat the same measurements at least ten times (we
typically use 25). The soundness of the experiments can be even
further improved, if computational resources allow, by training the
same network multiple times and reporting the performance metrics
averaged across the different model instances.

V. ANALOG IN-MEMORY DNN TRAINING
While using AIMC chips dedicated to inference is a common

application for in-memory acceleration, the training of today’s ever-
increasing DNNs would greatly benefit from hardware acceleration
as well. For that purpose, analog in-memory training algorithms
have been developed (as introduced in Sec. II). From an algorithmic
as well as chip architecture perspective, analog in-memory training
is far more challenging than solely AIMC inference. In particular,
for in-memory SGD training, the backward pass as well as the incre-
mental update are done in-memory and, thus, subject to additional
noise sources and nonidealities. For the development of robust
AIMC training algorithms, it is thus especially important to have

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-17

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

TABLE IX. Compounds are derived from UnitCell and used to define a specialized updated behavior of the UnitCellRPUConfig (e.g., set to the device field). To
indicate a weight matrix W thought of stored on an analog crossbar, we here write W̆ . To indicate a pulsed outer product update (according to Ref. 16), we write

⋅ ⋅ ⋅ÐÐ→ . Slow
(row-wise) read and pulsed update are indicated with

.Ð→ , and a column-wise read (that is, an AIMC MVM forward pass with one-hot inputs and addition to a digital matrix) is
indicated with→. Note that each of the compounds has a number of configuration settings for exploring the hyperparameters of the optimizers.

Compounds Algorithm Update

Vector In-memory SGD ⋅ ⋅ ⋅

ÐÐ→W̆ w/multiple devices per crosspoint
MixedPrecision Mixed-precision44 Digital rank-update onto χ, (row-wise) pulsed transfer χ .

Ð→W̆
Transfer Tiki-taka41 ⋅ ⋅ ⋅

ÐÐ→Ă, slow (row-wise) transfer Ă .
Ð→W̆

BufferedTransfer TTv242 ⋅ ⋅ ⋅

ÐÐ→Ă→ H .
Ð→W̆, with digital matrix H

ChoppedTransfer Chopped-TTv243 ⋅ ⋅ ⋅

→
+−

Ă with chopper, Ă→ H .
Ð→W̆

DynamicTransfer AGAD43 ⋅ ⋅ ⋅

→
+−

Ă→ H with dynamic offset correction, H .
Ð→W̆

good estimates of attainable accuracy assuming a particular device
material, as well as be able to determine the limits of device material
properties that still guarantee convergence of the training algorithm.

The AIHWKit provides a particularly rich set of tools for
the testing and development of AIMC training algorithms. Out-of-
the box, it provides naïve in-memory SGD using stochastic pulse
trains,16 as well as improved in-memory training algorithms, such
as mixed-precision,44 Tiki-taka I and II,41,42 as well as the newest
state-of-the-art algorithmic developments, namely Chopped-TTv2
(c-TTv2) and Analog Gradient Accumulation with Dynamic refer-
ence (AGAD)43 (see Table IX).

A. Configuration of material properties
for in-memory analog training

For in-memory training, apart from the actual AIMC training
algorithm, the device material response properties are important.
The fully in-memory training algorithm will typically use stochas-
tic pulse trains and cross-point pulse coincidences to implement
the outer product,16 or might use an intermediate digital compu-
tation before updating the analog weights matrix with incremen-
tal pulses.44 In AIHWKit, each single incremental pulse update is
explicitly modeled according to a device response model. AIHWKit

TABLE X. Selection of (predefined) device models and configurations (the Device and DevicePreset name suffixes are omitted here). For AIMC training, the update
behavior (the weight change in response to a pair of coincident voltage pulses from BL and WL) is governed by the device field of the RPUConfig. AIHWKit provides numerous
functional device models as well as presets, where the parameters of the functional device models are set according to measurements. All devices additionally implement device-
to-device variations, where each device in the array will be set to slightly varying parameters (typically drawn from a Gaussian around the mean with user-defined variance). For
instance, the actual update δ is typically computed as δij + σξ, where σ is the pulse-to-pulse standard deviation (ξ ∈ N (0, 1)) and δij = δwmin + σd-to-dξ is set at the device
array construction time to model device-to-device variations (indices and details are omitted in the simplified equations above). The device is modeled in normalized weight units,
assuming a linear mapping of weights to conductances. For more complete equations and details, see the API documentation.

Device config Simplified mathematical model Functionality

Constant-Step w ← clip(w ± δ) Update independent of current weight (conductance)
Linear-Step w ← clip(w ± δ(1 − γw)) Gradual saturation toward weight bounds with clipping
SoftBounds w ← w ± δ(1 − w

b±
) Gradual saturation toward the bounds

Pow-Step w ← w ± δ (b±−w
b+−b−

)
γ

Power dependency on weight
Exp-Step w ← w ± δ(1 − c0e−c1w

) Exponential dependency with current weight with para-
meters c0 and c1

Piecewise-Step w ← w ± δ((1 − q)vk + q vk+1) User-defined nodes vk with linear interpolation,
w ∈ [vk, vk+1], q = w−vk

vk+1−vk

ReRamES Based on Exp-Step Preset setting for ReRAM66

ReRamArrayOM Based on SoftBoundsReference Preset setting from optimized material ReRAM arrays67

ReRamArrayHf2O Based on SoftBoundsReference Preset setting from HfO2 ReRAM arrays67

Capacitor Based on Linear-Step Preset setting for CMOS68

EcRam Based on Linear-Step Preset setting for ECRAM69

EcRamMO Based on Linear-Step Preset setting for single metal-oxide ECRAM70

GokmenVlasov Based on Constant-Step Device setting used by Gokmen and Vlasov16

PCM Based on Exp-Step and OneSided PCM preset device pair with one-sided update (and
occasional reset)

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-18

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 6. Example conductance responses to a series of up, down, and up-down pulses for different device configurations as listed in Table X. Note that various asymmetric
shapes and device-to-device variations (different colors) can be set by the user. Presets that fit measurements are available, and a fitting tool for new device measurements
is provided as well. The bar shows the x-axis scale in the number of pulses given.

provides highly optimized and self-tuned GPU routines to enable
larger-scale AIMC in-memory training simulations at this level of
detail. This is different from the approach for inference in Sec. IV,
where statistical weight programming noise models are used instead.

Material response properties for in-memory training are cap-
tured in functional device models, such as the soft-bounds model
that has been used to model conductance responses to voltage

pulses for ReRAM devices.66 AIHWKit also provides other models
and data-calibrated preset settings that are (partly) summarized in
Table X. See also Fig. 6 for an illustration.

When setting up a RPUConfig to specify an in-memory train-
ing simulation, the device configurations listed in Table X can be
assigned to the device field or as part of a device compound.
If one wants to define a plain in-memory SGD using stochastic

TABLE XI. Selection of the possible configuration of the update pulse behavior. The most often used parameter is the desired bit length (the maximal number of pulses per
update), which effectively determines the maximal change in conductance (weight). Since each pulse given to the device is of equal minimal amplitude (with possible variations
determined by the device model setting), the maximal amount that can be written onto the device is the number of pulses given per update times the average change in
conductance per pulse. Thus device update will clip at some point if the SGD demands a too large gradient update. Small update values (smaller than the minimal update) are
effectively implemented by stochastic pulsing probabilities smaller than one. To determine the probability the average expected minimal conductance response at the (logical)
zero point is used and expected to be known (dw_min in many device models). See Ref. 16 for details.

Update field Default value Functionality

desired_bl 31 Desired length of the pulse trains. In the case of using the update
BL management, it is the maximal pulse train length

pulse_type StochasticCompressed Pulse types used when computing the outer product. Can be
stochastic or implicitly deterministic

update_bl_management True Dynamic selection of the length of the pulse train as described in
Refs. 43 and 45

update_management True Scaling of the update pulse probability to load-balance the word
and bit-lines. See Ref. 45 for details

x/d_res_implicit 0.0 Resolution (i.e., bin width) of each quantization step for activation
x or the error d, respectively, in the case of DeterministicImplicit
pulse trains

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-19

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

pulsing,16 the device configuration is directly applied to the device
field, and additional properties for the update behavior, such as puls-
ing schemes and corrective methods, are set in the update field
(see Table XI).

However, the device field can also be a device compound,
in which case multiple crossbars (or parts of the more compli-
cated unit cell at each crosspoint) are simulated according to the
definition of the training algorithm [compare to Figs. 2(b)–2(d)].
The specialized AIMC update algorithms supported are listed in
Table IX.

In Sec. V B, we give an example of how to fit device material
measurements to one of the device models in AIHWKit, use this
configuration to train a DNN with one of the specialized AIMC
training algorithms, and evaluate the impact of some of the device
properties on the achievable accuracy.

B. Analog in-memory training: From device
measurements to DNN accuracy

Notebook analog_training.ipynb71 provides an example
of how the AIHWKit can be used to evaluate the performance of
newly characterized devices in the context of analog IMC. The note-
book starts by introducing the RPUConfig, which is used to define
many of the hardware aspects of the analog tile used in the sim-
ulation. Properties such as the tile size (which is the number of
devices used in rows and columns), the number of bits used by the
ADC/DAC converters, and others, as well as the specialized update
algorithm and material properties, can all be defined within the
RPUConfig.

A typical scenario in the development of new device materials
includes iterations of device fabrication, characterization, and eval-
uation of their performance for the application under study, in this

FIG. 7. (a) Response curve of a ReRAM memristive element. 200 pulses to increase the conductance, followed by 200 pulses to decreases it, give the maximum and
minimum conductance that the device can reach. The following 1 increase and 1 decrease pulses are repeated 100 times to find the symmetry point of the device. (b) The
response curve and the fitted model. (c) Modeled response curve with noise and device-to-device variation.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-20

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

case, full-scale DNN training. In particular, one wants to under-
stand how the fabricated device performs when used in an AIMC
accelerator. To illustrate the steps involved, we show how device
measurements can be fitted to one of the AIHWKit device models
and then show how its impact on training accuracy can be evaluated.

1. Fit device measurements to a device model
provided by AIHWKIT

In Fig. 7(a), a typical conductance response of an ReRAM
device to voltage pulse trains is shown. Here, to span the full con-
ductance range of the device, a sequence of 200 electrical pulses is
given, which incrementally increases the device conductance, fol-
lowed by 200 pulses that decrease the device’s conductance. This
200 up/200 down sequence is then followed by a 1 up/1 down
pulse sequence, which moves the conductance of the device to its
symmetry point.41,72

In the AIHWKit, there are many different device models
that can be used to represent the electrical response of different
devices. ReRAM electrical response is well represented through the
SoftBoundsReferenceDevice model (see Table X), where the
conductance response is gradually saturating to some level and the
symmetry point can be implicitly controlled by a tunable refer-
ence device. The device models typically have many parameters
that can be fitted to the measured device characteristics. Among
others, w_max and w_min represent the maximum and minimum
analog weight73 value that the device can represent, respectively (in
normalized conductance units of the analog weights); dw_min rep-
resents the mean of the distribution of the weight change that the
device can achieve at symmetry point with a standard deviation of
dw_min_std; and dw_min_dtod specifies the device-to-device vari-
ation of the dw_min parameter so that different devices can have a
slightly different response curve.

The AIHWKit provides a fitting utility fit_measurements
that can be used to extract most of the needed parameters from
device measurements. The notebook shows how the fitting utility
can be used to automatically fit the device model to the measured
response curve shown in Fig. 7(b). Since in this example the model
is extracted from a single device, a device-to-device variation of 10%
is assumed. Figure 7(c) shows the fitted device response curve when
noise and device-to-device variation are applied to simulate the real
device characteristics. After fitting the device model, the device con-
figuration can now be used to customize the RPUConfig used in the
AIMC training.

2. How to specify the RPUConfig
for in-memory training

Assuming the fitted device configuration is now given as
device_config_fit (see notebook for an example), we can now
build the RPUConfig to describe the hardware and algorithmic
choices of the DNN in-memory training simulation. As described
in Sec. III C, the RPUConfig defines many more aspects of the ana-
log tile hardware than just the device material behavior; for instance,
nonidealities in the forward and backward passes as well as the dig-
ital periphery choices (see Table IV). As illustrated in more detail
in the notebook, we can build the following RPUConfig for SGD
in-memory training, where we set some (here arbitrary selected)
non-default parameters:

In this training example, in-memory training with stochastic
pulses is used to train the network. Before training the DNN with
this RPUConfig and device setting, a DNN needs to be constructed
and converted to analog tiles that are roughly equivalent to AIMC
crossbars.

3. Construct the desired DNN and convert to analog
While the AIHWKit provides analog layers to directly build up

an analog DNN (see Table II), it is often more convenient to auto-
matically convert a native PYTORCH model into an analog model
using the provided conversion utilities. As we show in the notebook,
the native PYTORCH DNN, a three layer fully connected network
defined using the standard PYTORCH syntax, is converted to an ana-
log model by the convert_to_analog utility. This utility translates
the layers with parameters (i.e., the three fully connected layers in
this case) to be simulated with AIMC tiles, whereas other layers,
such as the Sigmoid and Softmax activation functions, are kept and,
thus, assumed to be processed in digital at full precision. In the
AIHWKit, it is generally assumed that analog signals are converted
back to digital numbers after each tile operation so that activa-
tion functions and other layers can be computed in FP. Because
AIHWKit is a functional simulator that aims to compute attainable
accuracy with configurable AIMC nonidealities and is not concerned
with performance or latency estimation, the digital layers simply use
native PYTORCH code, assuming floating-point precision.

FIG. 8. Accuracy achieved by the different algorithms after ten epochs of training.
The Tiki-Taka (TT) and Mixed-Precision algorithms, being specifically designed
around IMC, clearly outperform more standard SGD algorithms.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-21

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

4. Train the analog model and inspect the results
The constructed network is trained on the MNIST dataset for

100 epochs with a batch size of 10 and a learning rate starting at
0.1, which is further decayed at the 50th and 80th epochs by a factor
of 10 each time. Figure 8 shows the performance achieved during
training and compares the performance achieved by different ana-
log in-memory training algorithms. The naive SGD performs quite
poorly, which is mainly due to the limited number of states and the
asymmetry in up vs down response, as standard SGD requires very
symmetrical update characteristics (see Ref. 16 or Ref. 47 for device
specifications of SGD). Therefore, this example shows the need for
innovation not only at the device level to limit device nonidealities
and obtain a better response curve but also at the algorithmic level
to relax some of the requirements on the AIMC device.

5. Selecting different in-memory training optimizers
In the above, we only used the standard in-memory SGD

training using stochastic pulse trains. The choice of other update
algorithms is done by configuring the device field with the
appropriate compound (see Table IX). To make the building
of the RPUConfig more convenient, the build_config tool
exists:

The notebook shows some more algorithmic choices. In this
regard, the Tiki-Taka (TT) algorithm45 is specifically designed for
training neural networks with non-ideal devices. Both SGD and TT
use error backpropagation to train the network; however, the TT
algorithm replaces each weight matrix W with two matrices, referred
to as Ă and W̆. The gradients are accumulated directly onto Ă (using
pulse coincidence) for a certain number of updates before being
transferred to W̆. Figure 8 shows the improved performance that
the TT algorithm achieves. In contrast to the TT algorithm, the
Mixed-Precision (MP) optimizer44 uses digital computing for the
update of the gradient accumulator matrix instead of gradient accu-
mulation in-memory. The accumulated gradient matrix M is kept,
computed with floating-point digital precision, and then used to
update the (analog) weight matrix. Given that gradients are accu-
mulated flawlessly (but without the benefits of in-memory acceler-
ation of the update pass), we expect that the accuracy will improve
for MP.

C. Optimize hyperparameters of the analog optimizer
As is common in SGD training, algorithmic hyperparameters

such as the learning rate need to be tuned for a given AI workload.
Similarly, the specialized analog optimizers come with a number of
additional hyperparameters that often need to be tuned to obtain the
best training result for a given device material configuration. Exam-
ples of such algorithmic hyperparameters, e.g., the c-TTv2 algo-
rithm,43 are specified in the “compound”-level of the device field (see
also Table IX). For instance, the parameters auto_granularity
and in_chop_prob that govern the (inverse of the) learning rate
onto the W̆ matrix and the chopper probability, respectively, can be
set with

FIG. 9. Validation test error (100% - accuracy) achieved for different
auto_granularity values when using the Chopped-TTv2 (c-TTv2) in-
memory training algorithm. Each data point is generated using a new RPUConfig
setting with an adjusted auto_granularity value, and using this new RPU-
Config to train the model on the train set is then tested on the separated
validation set. The model used for this experiment is the model defined in
Sec. V B 3, and the base RPUConfig is the ReRamArrayOMPresetDevice
with a dw_min_factor of 1.0 defined in Sec. V D 1.

Note that in this case, the device is of the UnitCell type (as
detailed in Table IX). While default hyperparameter values are set to
result in reasonable training behavior, depending on the optimizer,
other hyperparameters might need to be tuned, such as the learning
rate onto the gradient accumulation matrix (fast_lr) or the rate of
transfer reads. See Ref. 43 for a more detailed discussion of the TT
optimizers and their variants.

In practice, these hyperparameters need to be optimized
on a separate validation dataset to obtain optimal AIMC train-
ing results for a given device model. Here, we show the
effect of auto_granularity on the model inference error (see
Fig. 9). Note that the validation test error reduces with larger
auto_granularity values, which essentially increases the amount
of noise averaging on the digital hidden matrix of the c-TTv2
algorithm used here.

D. Device parameter variation to obtain
device specifications

Apart from directly evaluating the impact of a measured device
on DNN accuracy, one is often interested in the impact of cer-
tain selected device properties on accuracy. That could be used,
in particular, for material innovations and process developments,
but also for algorithmic improvements. For instance, what is the
largest device-to-device variation one can accommodate for suc-
cessful training with a given analog optimizer? If known, useful
design targets can be set for device material improvements. In the
AIHWKit, all device properties can be easily varied so that such
targets can be conveniently obtained, as illustrated in this section.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-22

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

Although many device models are available in AIHWKit (see
Table X and Fig. 6), which have a variety of parameters, some prop-
erties are common, such as dw_min, which governs the amount
of conductance change induced by a single pulse. A typical char-
acteristic of the device is the (average) number of states, which is
defined by dividing the average conductance range by dw_min. In
most device models, the number of states and conductance ranges
are, thus, configured by the parameters dw_min, w_max, and w_min
and their standard deviations (across pulses and devices). Here, we
take a closer look at the effect of some of these common material
specifications and the algorithmic hyperparameters on the attain-
able accuracy of the trained model in comparison to standard SGD
floating point training. As a small example of DNN, we again use
the 3-layered fully connected (3FC) model defined and trained in
Sec. V B 3 on the MNIST dataset.

1. Setting the RPUConfig with custom
device parameters

The basic RPUConfig used in this section is based on the
material specification obtained from ReRAM arrays.67 This device
is already available in the preset library of the AIHWKit and
is named ReRamArrayOMPresetDevice. Here, we investigate the
impact of different values of various parameters describing the
mean response and variability, such as dw_min, dw_min_std,
write_noise, w_max, w_max_std, w_min, w_min_std, etc.

We first train the 3FC model with the given device material
configuration using the specialized analog in-memory c-TTv2 algo-
rithm (see also Table IX). The impact of changes in the device-to-
device variation, dw_min, which determines the number of states
in the device, is investigated. To achieve this, a multiplicative fac-
tor is introduced for each parameter of interest. For example, a
dw_min factor is introduced to change the dw_min value. This could
be achieved as follows:

The resulting RPUConfig due to a change in a parameter factor is
then used to train the model until convergence, and the evaluation
accuracy on the test set is stored. Similar functions can be defined
for other variations (see notebook71 for more examples).

2. Impact of number of states of the device material
The number of states of the device material has a large impact

on the in-memory training quality, as shown in the following: The
number of states of the devices is here defined by the ratio of the
average conductance range to the expected response magnitude at
(algorithmically) zero. Note that the device conductance in the AIH-
WKit is usually modeled in dimensionless parameters, assuming that
the conductance is directly proportional to the analog weight value.
All parameters of the AIMC MVM are related to this normalized
unit. Thus, typically, the w_min and w_max values of the device are
fixed to−1 and 1, respectively. Digital output scales can be used to set
the analog weights initially, as described in Sec. III D 1. For training,
we use default torch weight initialization ranges and set the weight
scaling omega to 0.3 so that the analog weights are guaranteed to be
filled with uniform numbers from −0.3, . . . , 0.3 (independent of the
layer size47), and then fix the output scales during training. This is
achieved by setting

FIG. 10. (a): Test error achieved by different dw_min factors using the c-TTv2 algorithm (here plotted as the number of states, which is defined as the weight range divided
by dw_min). Each data point is generated using a new RPUConfig obtained by varying the dw_min factor only and using the new RPUConfig to train the model to obtain the
test error. (b): Test error achieved by the different device-to-device variation noise factor using the c-TTv2 algorithm. Each data point is the test error of a separate training run
with modified RPUConfig obtained by varying the device-to-device variation noise factors. The dashed line indicates 99% of the accuracy achieved with no variation noise.
This shows that about 120% of the noise (with respect to the noise as measured for the device data at 100%) is tolerable without a significant accuracy drop.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-23

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

When we now set the dw_min parameter, the value is in nor-
malized conductance units, ranging from−1 to 1, so that the number
of states is simply 2 divided by the value of dw_min.

Figure 10(a) shows how the model test error varies with
changes in the dw_min factor. It shows there is a range of dw_min
values that improve the attainable accuracy, which thus means that
one should optimize the device materials to match the requirements.
Note, however, that too low dw_min factor values (a higher number
of states) also negatively impact the accuracy.

3. Impact of device-to-device variations on accuracy
Similarly, the impact of device-to-device variations can be esti-

mated. For that, a similar parameter factor, called the noise factor
and measured in percentages, is introduced as a multiplicative fac-
tor to control write noise and the various standard deviations in the
material specification in relation to the baseline. A noise factor value
of zero means that there is no device-to-device variation.

Figure 10(b) shows how the device-to-device variation noise
factor influences the inference performance. The validation error
generally increases when increasing the noise factor, suggesting that
variations negatively impact the in-memory training. However, the
rate of change is very small for noise factors between 1% and 70%,
compared to the rate of change when the noise factor becomes
greater than about 70%. Hence, reducing the noise variation to 70%
of the baseline might significantly improve the in-memory training
performance and, thus, could be a helpful target for the next device
material designs.

VI. ANALOG AI CLOUD COMPOSER
In the following, we describe the Analog AI Cloud Composer

(AAICC) platform, a cloud offering that provides the benefits of
using the AIHWKit simulation platform in a fully managed cloud
setting. The Analog Composer is introducing for the first time Ana-
log AI as a service or, in short, AAaaS. The cloud composer can be
freely accessed at https://aihw-composer.draco.res.ibm.com.

We first describe the architecture of the cloud composer
and then the various services it provides including inference,
training, and hardware access. We then present future features
and directions.

A. Composer design and architecture
The AAICC is a novel approach to AIMC that leverages

the AIHWKit simulation platform to allow a seamless, no-code
interactive cloud experience. With access to the open-source AIH-
WKit libraries and an easy-to-use interface, it provides a plat-
form for researchers, hardware-engineers, developers, and enthu-
siasts to explore, experiment, simulate, and create Analog AI
neural networks and tune various analog devices to create accu-
rate and sustainable AI models. This platform also serves as
an educational tool to democratize IMC and introduce its key
concepts.

The AAICC adopts a modern distributed architecture based
on IBM Cloud services and guidelines. The user input is limited
to data (not code) with strong control and validations during the
lifecycle of the application and the input data. The design main-
tains a separation of concerns and responsibilities between the
various components. Tracking, monitoring, and auditing services
are enforced to ensure security and compliance according to IBM
Cloud security standards.

The architecture of the AAICC can be divided into five main
components, as illustrated in Fig. 11:

a. The Front-end Client Component: This component provides an
entry point for clients to interact with the composer application.
Two scenarios are supported. The user can interact with the
composer through a web application or through the command-
line interface. Through this component, the user defines a
training or inference experiment that can run on the AIHWKit
simulator.

b. The API: The API component is an HTTP microservice that
provides the endpoints that are used by the web application and

FIG. 11. Analog AI Cloud Composer (AAICC) architecture.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-24

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml
https://aihw-composer.draco.res.ibm.com

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

the backend Python libraries. The API provides user authenti-
cation, database access, setup of the queuing system, job process
flow setup, and collection of various statistics.

c. The Backend Execution Services: These services are responsi-
ble for executing all the training and inference jobs that are
submitted by end users. There are two sub-components in the
execution services: the validator and the workers. The validator
service ensures that all training and inference jobs that are sub-
mitted are composed correctly and adhere to the specifications
of the AIHWKit for defining the neural network, the various
training or inference parameters, and the supported hardware
configurations. For example, it validates that the analog lay-
ers and the RPUConfig are correctly defined. The workers are
responsible for executing the submitted experiments and send-
ing the results to the front end component for web rendering.
Various worker instances are implemented, depending on the
backend infrastructure that will be used to execute the experi-
ment. We have implemented three workers. The GPU worker
provides GPU acceleration for running the AIHWKit training
or inference experiments. The central processing unit (CPU)
worker will run the submitted experiments on a CPU backend
server. The IMC hardware worker will run the experiments on
supported IMC chips. The design is flexible as it allows us to
plugin more workers as more IMC chips are implemented or
different backend implementations are added. The infrastruc-
ture is also based on Kubernetes, which allows automatic scaling
of the resources depending on the load the application receives
from end-users.

d. The Queuing Services: This component provides the
asynchronous-based communication backbone between
the various components of the composer application. It imple-
ments various message queues for the CPU, GPU, and any
future IMC hardware backends. The CPU and GPU queues are
used to route jobs to the AIHWKit backend simulation library
and receive notifications of the results when the jobs are done.
The IMC hardware queue(s) are used to route the jobs to analog
IMC chips that will be supported on the platform. In addition,
we have a validator queue that serves the communication
between the validator and the execution workers.

e. The Backend Analog IMC Systems: This component provides
access to the AIHWKit for simulating training or inference on a
variety of AIMC hardware options. Real AIMC chips will also
be used to run inference or training on actual hardware (see
Sec. VI D).

B. Analog AI training service
The AAICC offers two key services: in-memory training (as

explained in Sec. V) and inference (as explained in Sec. IV), as
shown in Fig. 12. In what follows, we explain how these services
can be used to configure, launch, and perform experiments using the
AIHWKit. Most of the experiments are based on templates that users
can choose from and customize further.

The training user experience in the AAICC offers the end user
the choice to start from an existing template or build an analog neu-
ral network from scratch. Each template provides a neural network

FIG. 12. Analog AI Cloud Composer (AAICC) experiments menu.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-25

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 13. Analog AI Cloud Composer (AAICC) training user interface.

architecture translated into analog layers or a mix of analog and digi-
tal layers, a dataset, an optimizer choice, various training parameters,
and an analog preset choice. We currently support templates that
use the VGG8, 3FC, and LeNet DNNs for image classification tasks

using various device materials and optimizer settings. This list can
be easily extended as we support more neural networks and datasets.

The AIHWKit includes built-in analog presets that implement
different types of devices that could be used to implement AIMC

FIG. 14. Analog AI Cloud Composer (AAICC) in-memory training workflow.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-26

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

neural network training. Many of these presets are calibrated based
on the measured characteristics of real hardware devices. Device
non-ideal characteristics, noise, and variability are accurately sim-
ulated in all presets (see Table X for a selection of device presets).
Many of these presets are readily available in AAICC, and the user
can choose one of several in-memory optimizers and, thus, conve-
niently investigate the accuracy impacts of various nonidealities and
material choices on the DNN at hand.

Figure 13 shows the composer training interface. The steps used
to launch a training experiment and visualize its results are detailed
below and summarized in Fig. 14:

1. The user can start a new experiment or select one of the
existing templates.

2. After picking a template or choosing to compose a network
from scratch, the user is then shown the composer playground
interface, where one can choose or configure various para-
meters. In the middle, the neural network layers are visualized.
The left and right sides of the screen provide tabs that allow
the user to set training hyperparameters, analog-related con-
figurations, or layer specific parameters. The user needs to first
choose a proper name for the experiment to be created.

3. The next step is to input the training hyperparameters, such
as the batch size, the loss function, the number of epochs, and
the learning rate.

4. The user can also add or select a layer to configure its type,
size, and activation function.

5. One of the key features of this interface is the ability to explore
and apply an analog device preset, as shown in Fig. 15. The

interface also provides useful documentation about each pre-
set. The user can learn about the technology and device mate-
rials used in each preset and view the conductance response
curve.

6. Once the user defines all training and analog related para-
meters, a training experiment can be launched on the cloud
by clicking on the save and run button to launch. The jobs will
be accelerated by GPUs in the cloud. The experiment is val-
idated first by the back-end to ensure the correctness of the
user-provided input before invoking the AIHWKit to run the
AIMC training simulation.

7. Upon completion of the training experiment, the results page,
as shown in Fig. 16 summarizes the key training job para-
meters that were used, such as the analog preset and the analog
optimizer algorithm, and plots the trained model’s accuracy,
validation loss, and training loss per epoch.

C. Analog AI inference service
Similar to the training service, the AAICC inference service

provides a template-based interactive no-code user experiences that
allow creating analog inference experiments and launching them in
the cloud. Figure 17 illustrates the high-level workflow used, which
is detailed below:

1. First, the user can pick one of the pre-trained model templates.
We provide models that are either hardware-aware trained or
trained in digital hardware, such as GPUs. There are a number

FIG. 15. Apply an analog training preset.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-27

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 16. Analog AI Cloud Composer (AAICC) training results page.

FIG. 17. Analog AI Cloud Composer (AAICC) inference workflow.

of available pre-trained models and their characteristics (using
VGG8 and LeNet DNNs for image classification with a com-
bination of digital and analog layers). Future work will enable
hardware-aware training directly from the composer interface
that can feed into this interface.

2. An AIMC inference device needs to be chosen. We provide
two choices: a PCM abstract device or a state-independent
generic device. The PCM model (PCMLikeNoiseModel) is
described in detail in Sec. IV A.

3. The next step is to configure different noise parameters
and drift strengths. Different MVM nonideality sources can

be tuned to study their effect on the accuracy, as shown
in Fig. 18. These nonideality settings correspond to the
RPUConfig choices for inference (see Sec. IV and Table V for
details).

4. Depending on the configured parameters, the inference ser-
vice provides an interactive graph that visualizes the drift
effect over time of the hardware device that is simulated
(PCM or generic device). As shown in Fig. 18, the graph
shows how the weights are drifting over time for differ-
ent weight values after they have been programmed on the
device.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-28

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 18. Design of the Analog AI Cloud Composer (AAICC) inference user interface.

5. The inference simulation using AIHWKit can then be
launched as a job in the cloud. The user can visualize the
results of the inference, including model accuracy and drift
effects over time.

D. Access to analog IMC hardware
In addition to the inference and training simulations using

the AIHWKit, the composer application provides a framework for
accessing real IBM IMC chips as they become available. The first
IMC chip that we will expose is the Fusion PCM chip.21 As shown in
Fig. 19, the Fusion chip has 512 word lines (WL) and 2048 bit lines
(BL). Each WL/BL address has a PCM device and an access transis-
tor, which can be individually accessed. Hence, there are 512 × 2048
PCM devices in total. Because the chip only stores the weights and
does not perform an explicit MVM on-chip, they can be placed at
any arbitrary location on the chip, independently of which layer they
encode. Each PCM device stores the absolute value of a weight in
its conductance state. The sign information is stored in the Python
client software. Figure 19 shows a high level description of how the

Fusion chip interacts with the composer. Trained weights from the
user are converted to conductance values in Gtrain and then sent to
the Python client running on a local host to program the weights
on the PCM chip. After programming, conductance values are read
from the PCM chip through the local Python client and, thus, pro-
vides an accurate measurement of the programmed weight and its
deviation from the target conductance. The hardware conductance
measurements are sent to the AIHWKit running on the IBM cloud,
which will then perform inference on them and simulate the addi-
tional MVM nonidealities shown in Table V. Inference results are
displayed on the UI or can be retrieved via a command line interface.
Figure 20 shows a preview of the AAICC user experience that allows
access to our first analog inference Fusion chip. This capability is still
in beta version and under active development.

E. Road-map and future directions
A cloud no-code interactive experience has been developed

to provide a platform for cloud-based experiments, access to IBM
Research hardware technology, and the creation of a vibrant ecosys-
tem around Analog AI. AIHWKit can be used online through

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-29

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 19. Access to the fusion chip through the Analog AI Cloud Composer (AAICC).

FIG. 20. Workflow of accessing the analog inference PCM-based fusion chip.

a web-based, front-end AAICC. The composer provides a set of
templates and a no-code experience to introduce the concepts of
Analog AI, configure experiments, and launch training and infer-
ence experiments on the IBM public cloud. The future road-map
includes adding hardware-aware training, energy, and latency per-
formance models’ estimators, access to more IBM Research pre-
mium Analog AI chips as a service, adding additional advanced
capabilities such as a material builder for training and inference, and

continuing to expose the latest algorithmic innovations from IBM
Research to the open-source community as consumable services.
Figure 21 summarizes our short-term and long-term plans.

VII. HOW TO EXTEND AND CUSTOMIZE THE AIHWKIT
The AIHWKit has been designed to be easily customizable

and modular to ease any feature extensions. Moreover, AIHWKit is

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-30

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

FIG. 21. AAICC application roadmap.

implemented using modern coding and open source practices, such
as Python code formatting guidelines, versioning, GitHub integra-
tion for collaborative coding, and unit testing to ensure quality and
back-functionality when adding new code (see Ref. 29 and the online
documentation for more details).

In the following, we give a number of examples of how to
extend functionality. In particular, we show how a new phenomeno-
logical inference noise model can be added, how a custom drift com-
pensation is implemented, and how the AIMC crossbar simulation
could be enhanced.

A. Custom phenomenological inference noise model
Phenomenological inference noise models are applied to model

the long-term noise effects of the NVM device (see Sec. IV A). To
capture the initial programming error as well as the long-term tem-
poral component of the conductance changes, AIHWKit allows for
defining inference noise models (such as PCMLikeNoiseModel).

Let us assume one has a new material, and matching
the measurements with the provided noise models is not pos-
sible even when changing the parameters. In this case, one
needs to implement a customized noise model. For that, one
needs to derive a new class from the BaseNoiseModel, and
override a number of methods that define what noise is
added. First, apply_programming_noise_to_conductance, that
applies programming noise to given conductances (in μS) and
returns the programmed conductances. Second, apply_drift_
noise_to_conductance, which applies long-term noise (e.g.,
drift and 1/f noise) to the programmed conductances. Finally,
generate_drift_coefficients, which generates the drift coef-
ficients during the programming that will be given as input when
applying the drift, if needed.

In the following example, we implement a very simple
model that just assumes a Gaussian additive programming model
and constant conductance drift. The new noise model class

could look like this (omitting import statements; see notebook
extending_functionality.ipynb74):

Note that before the noise model is applied for inference
accuracy evaluation (see Sec. IV), the learned target weight val-
ues are passed through a conductance converter to get a list of
conductances, for which the noise model is applied [i.e., when
analog_model.drift_analog_weights(t_inference) is
called].

To describe this process in more detail, let us first get
the target analog weight values of an analog tile. The target
analog weight values are the tile weight values without apply-
ing any digital output scales. We thus get these target analog
weight values with (here simply for the first analog tile of a
model):

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-31

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

These target analog weight values are, however, still in nor-
malized units (typically in the range −1, . . . , 1), thus having both
negative and positive values. To get the conductances from these
normalized target analog weight values, a conductance converter is
used (see aihwkit.inference.converter.conductance). For
instance, the SinglePairConductanceConverter would return a
list of conductance matrices, one for positive values of the analog
weights (setting negative values to zero and scaling it by gmax to get
values in μS) and one for negative values (setting positive values to
zero and scale it similarly):

This list of conductance matrices can be converted back to

where, in this case, the new analog weights are simply the old ones
because the noise model was not yet applied. Note that the conver-
sion from normalized target analog weight values to conductances
can also be customized by adding a new conductance converter.

However, this conductance conversion happens internally
when the programming is applied. In other words, the noise model
above is applied after the conversion to conductances, and then
conductances are internally converted back to normalized analog
weights and applied back to each analog tile. Therefore, to use the
above new noise, model one can simply do, for instance, evaluate a
ResNet:

Now the analog weights are programmed and drifted, and one could
evaluate the accuracy with such long-term noise sources applied to
the analog weights.

B. Custom drift compensation
In the above example, no drift compensation was used. Drift

compensations are needed for inference with materials that exhibit
conductance drift, and they are modular classes in the AIHWKit that
can be easily customized.

For instance, assume that the baseline of the drift compensation
should be read multiple times (instead of a single time) to improve
the signal-to-noise ratio when applying the drift compensation dur-
ing inference. For that, one could implement a new custom drift
class that derives from the base drift compensation class. The custom
drift compensation class could look like the following (all import
statements are omitted for brevity; see notebook74 for more details):

Now this new drift compensation can be simply set when
specifying the RPUConfig, such as

This RPUConfig can then be used to define an analog model and
will be used for inference evaluation as described in the previous
example.

C. Modifying the AIMC MVM for each analog tile
The basic AIMC MVM is typically part of the C++ RPUCUDA

engine for speed and, thus, less easily extended using Python. How-
ever, AIHWKit provides a separate Python implementation of (some
of) the AIMC MVM nonidealities. This analog MVM is encapsu-
lated in the base class SimulatorTile. Here we show how one
could add changes to the way the analog MVM is performed. In
this example, we only show it for inference (deriving from the
inference-only tile TorchSimulatorTile and modifying the for-
ward pass), but a custom in-memory training tile can similarly
be implemented by deriving from the CustomSimulatorTile in
aihwkit.simulator.tiles.custom by overriding the forward,
backward, or update methods.

In a simple example, we create a new simulator tile class that
modifies the forward pass of the inference evaluation. Currently, the
implementation in TorchSimulatorTile does negative and posi-
tive inputs in one MVM pass. Let us assume one wants to simulate
two analog MVMs instead, one for positive and one for negative
inputs, and add their results together in digital.

This could be simply done by defining a new SimulatorTile
that derives from the TorchSimulatorTile but overrides the for-
ward pass accordingly. Parameters from the RPUConfig can be
passed during the initialization and are considered constant. The
new class could be defined as (omitting the import statements; see
notebook74 for details)

Note that this new class defines a new simulator tile that
modifies the way the MVM is computed and defines new para-
meters (one_pass). To use this tile in DNN, we need to provide
a compatible RPUConfig that uses this simulator tile:

Now we can simply use this new RPUConfig for model conversion,
e.g.:

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-32

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

The analog model will now use the new simulator tile.
Similarly, other aspects of the AIMC compute can be extended

by an analogous approach. For instance, one could add a new
peripheral (digital) computation, which would then require overrid-
ing methods of the AnalogTile or InferenceTile, that encapsu-
late the full tile operations on a higher level (that is, analog MVM
simulations in the lower-level SimulatorTile and also digital
periphery, such as output scaling).

If users decide to implement custom functionality, we highly
encourage them to share the new code with the community. Inte-
grating the new addition to the open source community is as easy as
raising a new pull request on the AIHWKit GitHub.

VIII. OUTLOOK
Having described in detail the functionality of AIHWKit and

how to customize it, we would like to briefly highlight a few pos-
sible research directions that could be pursued with the toolkit in
this last section. The primary use case for AIHWKit is, of course,
the exploration of device-level parameter specifications for infer-
ence and training, which has already been the subject of several
publications.22,61,75,76 In addition, novel analog optimizers for on-
chip training could be implemented and tested to demonstrate
improvement over the existing ones on a wide range of device
parameters.43 For inference, a noteworthy addition to AIHWKit
could be to implement the auxiliary digital operations for affine
scaling, batch normalization, and activation functions with low-
precision arithmetic to study the digital precision requirements
on a wide range of networks. Another interesting direction would
be to implement input and weight bit slicing19 and evaluate the
impact of those schemes for inference and training. While (almost)
arbitrary pre-trained models can already be converted by AIH-
WKit and custom trained, it would still be worthwhile in the
future to make (HWA) training compatible with other training
pipeline libraries, such as DeepSpeed,77 HuggingFace,78 or Fairseq,79

in order to conveniently re-use preexisting code using these
pipelines. Finally, extending AIHWKit to generate approximate
power and latency estimates, using some fairly generic assumptions
on the hardware architecture being modeled, would be desirable to
explore optimal AIMC design approaches using neural architecture
search.80

We hope that this Tutorial will make the barrier of entry more
accessible for new users to adopt AIHWKit to simulate the infer-
ence and training of DNNs with AIMC. AIHWKit not only provides
accurate hardware-calibrated models of AIMC devices and the main
peripheral circuit nonidealities present in a AIMC chip, but it is
also continuously being maintained by a team of developers who are
actively fixing issues and adding new features. Therefore, user-made
contributions to AIHWKit will be integrated into a well-maintained
toolkit and will benefit from being further improved as the toolkit
develops, instead of getting “lost” into a private repository that
would involve too much overhead from the user to be maintained
properly. For this reason, we strongly encourage users working in
the AIMC field to adopt actively maintained toolkits, such as AIH-
WKit, and make the effort to integrate their contributions to them.

Otherwise, contributions put in individual repositories will likely get
abandoned and just add up to the excessive tool fragmentation that
already prevails. It is only with active contributions from the com-
munity and by bringing all those contributions together into a single
tool that AIMC can eventually become commercially successful and
lead to a new era of efficient and sustainable non-von Neumann
accelerators.

SUPPLEMENTARY MATERIAL

The supplementary material contains four Jupyter Notebooks
that accompany this Tutorial.

ACKNOWLEDGMENTS
We thank Geoffrey Burr, An Chen, Andrea Fasoli, Pritish

Narayanan, Tayfun Gokmen, Takashi Ando, John Rozen, Irem Boy-
bat, Athanasios Vasilopoulos, Hadjer Benmeziane, and Ghazi Sarwat
Syed for technical input on AIHWKit; Kim Tran, Kurtis Ruby, Borja
Godoy, Jordan Murray, Todd Deshane, Diego Moreda, and Kevin
Johnson for developing the Analog AI Cloud Composer; and Jeff
Burns for managerial support. This work was supported by the IBM
Research AI Hardware Center. This work also received funding
from the European Union’s Horizon Europe research and inno-
vation program under-Grant Agreement No. 101046878 and was
supported by the Swiss State Secretariat for Education, Research
and Innovation (SERI) under Contract No. 22.00029. We thank the
computational support from AiMOS, an AI supercomputer made
available by the IBM Research AI Hardware Center and Rensse-
laer Polytechnic Institute’s Center for Computational Innovations
(CCI).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Manuel Le Gallo: Methodology (lead); Project administration
(equal); Supervision (equal); Writing – original draft (equal);
Writing – review & editing (lead). Corey Lammie: Investigation
(equal); Methodology (equal); Writing – original draft (equal);
Writing – review & editing (equal). Julian Büchel: Investigation
(equal); Software (equal); Writing – original draft (equal). Fabio
Carta: Investigation (equal); Software (equal); Writing – original
draft (equal). Omobayode Fagbohungbe: Investigation (equal);
Writing - original draft (equal). Charles Mackin: Software (support-
ing). Hsinyu Tsai: Supervision (equal). Vijay Narayanan: Supervi-
sion (equal). Abu Sebastian: Supervision (equal); Writing – review
& editing (supporting). Kaoutar El Maghraoui: Project admin-
istration (lead); Software (equal); Supervision (equal); Writing –
original draft (equal); Writing – review & editing (equal). Malte
Rasch: Methodology (equal); Project administration (equal); Soft-
ware (lead); Writing - original draft (lead); Writing – review &
editing (equal).

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-33

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

DATA AVAILABILITY
The data that support the findings of this study are

openly available in the AIHWKit repository at https://github.com/
IBM/aihwkit.81

REFERENCES
1J. Burns and L. Chang, “IBM’s new AIU artificial intelligence chip,”
https://research.ibm.com/blog/ibm-artificial-intelligence-unit-aiu (2023).
2A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory
devices and applications for in-memory computing,” Nat. Nanotechnol. 15,
529–544 (2020).
3M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M.-F. Chang, D. Akinwande,
F. M. Puglisi, H. N. Alshareef, M. Liu, and J. B. Roldan, “Memristive technologies
for data storage, computation, encryption, and radio-frequency communication,”
Science 376, eabj9979 (2022).
4S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory chips for
deep learning: Recent trends and prospects,” IEEE Circuits Syst. Mag. 21, 31–56
(2021).
5R. Khaddam-Aljameh, M. Stanisavljevic, J. Fornt Mas, G. Karunaratne, M.
Brändli, F. Liu, A. Singh, S. M. Müller, U. Egger, A. Petropoulos, T. Antonakopou-
los, K. Brew, S. Choi, I. Ok, F. L. Lie, N. Saulnier, V. Chan, I. Ahsan, V. Narayanan,
S. R. Nandakumar, M. Le Gallo, P. A. Francese, A. Sebastian, and E. Eleftheriou,
“HERMES-core—A 1.59-TOPS/mm2 PCM on 14-nm CMOS in-memory com-
pute core using 300-ps/LSB linearized CCO-based ADCs,” IEEE J. Solid-State
Circuits 57, 1027–1038 (2022).
6P. Narayanan, S. Ambrogio, A. Okazaki, K. Hosokawa, H. Tsai, A. Nomura, T.
Yasuda, C. Mackin, S. C. Lewis, A. Friz, M. Ishii, Y. Kohda, H. Mori, K. Spoon,
R. Khaddam-Aljameh, N. Saulnier, M. Bergendahl, J. Demarest, K. W. Brew, V.
Chan, S. Choi, I. Ok, I. Ahsan, F. L. Lie, W. Haensch, V. Narayanan, and G. W.
Burr, “Fully on-chip MAC at 14 nm enabled by accurate row-wise programming
of PCM-based weights and parallel vector-transport in duration-format,” IEEE
Trans. Electron Devices 68, 6629–6636 (2021).
7M. Le Gallo, R. Khaddam-Aljameh, M. Stanisavljevic, A. Vasilopoulos, B. Kerst-
ing, M. Dazzi, G. Karunaratne, M. Brändli, A. Singh, S. M. Müller et al., “A 64-core
mixed-signal in-memory compute chip based on phase-change memory for deep
neural network inference,” Nat. Electron. 6, 680–693 (2023).
8S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A.
Nomura, T. Yasuda, A. Chen, A. Friz et al., “An analog-AI chip for energy-efficient
speech recognition and transcription,” Nature 620, 768–775 (2023).
9W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss,
P. Raina, H. Qian, B. Gao et al., “A compute-in-memory chip based on resistive
random-access memory,” Nature 608, 504–512 (2022).
10J.-M. Hung, C.-X. Xue, H.-Y. Kao, Y.-H. Huang, F.-C. Chang, S.-P. Huang,
T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-S. Khwa et al., “A four-megabit compute-
in-memory macro with eight-bit precision based on CMOS and resistive
random-access memory for AI edge devices,” Nat. Electron. 4, 921–930 (2021).
11W. Zhang, P. Yao, B. Gao, Q. Liu, D. Wu, Q. Zhang, Y. Li, Q. Qin, J. Li, Z. Zhu,
Y. Cai, D. Wu, J. Tang, H. Qian, Y. Wang, and H. Wu, “Edge learning using a fully
integrated neuro-inspired memristor chip,” Science 381, 1205–1211 (2023).
12J.-M. Hung, T.-H. Wen, Y.-H. Huang, S.-P. Huang, F.-C. Chang, C.-I. Su, W.-S.
Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-D. Chih, T.-Y. J. Chang,
and M.-F. Chang, “8-b precision 8-Mb ReRAM compute-in-memory macro using
direct-current-free time-domain readout scheme for AI edge devices,” IEEE J.
Solid-State Circuits 58, 303–315 (2023).
13P. Deaville, B. Zhang, and N. Verma, “A 22 nm 128-kb MRAM row/column-
parallel in-memory computing macro with memory-resistance boosting and
multi-column ADC readout,” in 2022 IEEE Symposium on VLSI Technology and
Circuits (VLSI Technology and Circuits) (IEEE, 2022) pp. 268–269.
14S. Jain, H. Tsai, C.-T. Chen, R. Muralidhar, I. Boybat, M. M. Frank, S. Woźniak,
M. Stanisavljevic, P. Adusumilli, P. Narayanan, K. Hosokawa, M. Ishii, A. Kumar,
V. Narayanan, and G. W. Burr, “A heterogeneous and programmable compute-
in-memory accelerator architecture for analog-AI using dense 2-D mesh,” IEEE
Trans. Very Large Scale Integr. Syst. 31, 114–127 (2023).

15G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani,
M. Ishii, P. Narayanan, A. Fumarola et al., “Neuromorphic computing using non-
volatile memory,” Adv. Phys.: X 2, 89–124 (2017).
16T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training with
resistive cross-point devices: Design considerations,” Front. Neurosci. 10, 333
(2016).
17S. Agarwal, R. B. J. Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller, A. A. Talin,
C. D. James, S. J. Plimpton, and M. J. Marinella, “Achieving ideal accuracies in
analog neuromorphic computing using periodic carry,” in 2017 Symposium on
VLSI Technology (IEEE, 2017), pp. T174–T175.
18S. R. Nandakumar, I. Boybat, J.-P. Han, S. Ambrogio, P. Adusumilli, R. L.
Bruce, M. BrightSky, M. J. Rasch, M. L. Gallo, and A. Sebastian, “Precision of
synaptic weights programmed in phase-change memory devices for deep learning
inference,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2020).
19M. Le Gallo, S. Nandakumar, L. Ciric, I. Boybat, R. Khaddam-Aljameh, C.
Mackin, and A. Sebastian, “Precision of bit slicing with in-memory computing
based on analog phase-change memory crossbars,” Neuromorphic Comput. Eng.
2, 014009 (2022).
20C. Mackin, M. J. Rasch, A. Chen, J. Timcheck, R. L. Bruce, N. Li, P. Narayanan,
S. Ambrogio, M. Le Gallo, S. Nandakumar et al., “Optimised weight program-
ming for analogue memory-based deep neural networks,” Nat. Commun. 13, 3765
(2022).
21V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M.
Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural net-
work inference using computational phase-change memory,” Nat. Commun. 11,
2473 (2020).
22M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F. Odermatt, N. Li,
S. Nandakumar, P. Narayanan, H. Tsai et al., “Hardware-aware training for large-
scale and diverse deep learning inference workloads using in-memory computing-
based accelerators,” Nat. Commun. 14, 5282 (2023).
23X. Liu and Z. Zeng, “Memristor crossbar architectures for implementing deep
neural networks,” Complex Intell. Syst. 8, 787–802 (2022).
24T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M. J. Marinella, “Analog
architectures for neural network acceleration based on non-volatile memory,”
Appl. Phys. Rev. 7, 031301 (2020).
25A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim simulator for compute-
in-memory hardware accelerator: Validation and benchmark,” Front. Artif. Intell.
4, 659060 (2021).
26C. Lammie, W. Xiang, and M. Rahimi Azghadi, “Modeling and simulating in-
memory memristive deep learning systems: An overview of current efforts,” Array
13, 100116 (2022).
27X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 31, 994–1007 (2012).
28L. Xia, B. Li, T. Tang, P. Gu, P.-Y. Chen, S. Yu, Y. Cao, Y. Wang, Y. Xie,
and H. Yang, “MNSIM: Simulation platform for memristor-based neuromorphic
computing system,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37,
1009–1022 (2018).
29M. J. Rasch, D. Moreda, T. Gokmen, M. Le Gallo, F. Carta, C. Goldberg, K. El
Maghraoui, A. Sebastian, and V. Narayanan, “A flexible and fast PyTorch toolkit
for simulating training and inference on analog crossbar arrays,” in 2021 IEEE 3rd
International Conference on Artificial Intelligence Circuits and Systems (AICAS)
(IEEE, 2021), pp. 1–4.
30CPU and GPU versions can be installed from https://anaconda.org/conda-
forge/aihwkit and https://anaconda.org/conda-forge/aihwkit-gpu, respectively.
31L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang, “Accelerator-
friendly neural-network training: Learning variations and defects in RRAM
crossbar,” in Proceedings of the Conference on Design, Automation and Test in
Europe (European Design and Automation Association, 2017), pp. 19–24.
32P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model
for benchmarking neuro-inspired architectures in online learning,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 37, 3067–3080 (2018).
33Y. Luo, X. Peng, and S. Yu, “MLP+NeuroSimV3.0,” in Proceedings of the
International Conference on Neuromorphic Systems (ACM, 2019).
34X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An end-to-
end benchmarking framework for compute-in-memory accelerators with versatile

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-34

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml
https://github.com/IBM/aihwkit
https://github.com/IBM/aihwkit
https://research.ibm.com/blog/ibm-artificial-intelligence-unit-aiu
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1126/science.abj9979
https://doi.org/10.1109/mcas.2021.3092533
https://doi.org/10.1109/jssc.2022.3140414
https://doi.org/10.1109/jssc.2022.3140414
https://doi.org/10.1109/ted.2021.3115993
https://doi.org/10.1109/ted.2021.3115993
https://doi.org/10.1038/s41928-023-01010-1
https://doi.org/10.1038/s41586-023-06337-5
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41928-021-00676-9
https://doi.org/10.1126/science.ade3483
https://doi.org/10.1109/jssc.2022.3200515
https://doi.org/10.1109/jssc.2022.3200515
https://doi.org/10.1109/tvlsi.2022.3221390
https://doi.org/10.1109/tvlsi.2022.3221390
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1088/2634-4386/ac4fb7
https://doi.org/10.1038/s41467-022-31405-1
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-023-40770-4
https://doi.org/10.1007/s40747-021-00282-4
https://doi.org/10.1063/1.5143815
https://doi.org/10.3389/frai.2021.659060
https://doi.org/10.1016/j.array.2021.100116
https://doi.org/10.1109/tcad.2012.2185930
https://doi.org/10.1109/tcad.2012.2185930
https://doi.org/10.1109/tcad.2017.2729466
https://anaconda.org/conda-forge/aihwkit
https://anaconda.org/conda-forge/aihwkit
https://anaconda.org/conda-forge/aihwkit-gpu
https://doi.org/10.1109/tcad.2018.2789723
https://doi.org/10.1109/tcad.2018.2789723

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

device technologies,” in 2019 IEEE International Electron Devices Meeting (IEDM)
(IEEE, 2019).
35X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim v2.0: An
end-to-end benchmarking framework for compute-in-memory accelerators for
on-chip training,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40,
2306–2319 (2021).
36H. Liu, J. Han, and Y. Zhang, “A unified framework for training, mapping and
simulation of ReRAM-based convolutional neural network acceleration,” IEEE
Comput. Archit. Lett. 18, 63–66 (2019).
37C. Lammie and M. R. Azghadi, “MemTorch: A simulation framework for deep
memristive cross-bar architectures,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS) (IEEE, 2020).
38C. Lammie, W. Xiang, B. Linares-Barranco, and M. Rahimi Azghadi,
“MemTorch: An open-source simulation framework for memristive deep learning
systems,” Neurocomputing 485, 124–133 (2022).
39T. P. Xiao, C. H. Bennett, B. Feinberg, M. J. Marinella, and S. Agarwal,
“CrossSim: Accuracy simulation of analog in-memory computing,” GitHub, v2.0,
https://github.com/sandialabs/cross-sim (2022).
40G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,
P. Narayanan, K. Virwani, E. U. Giacometti et al., “Experimental demonstration
and tolerancing of a large-scale neural network (165 000 synapses) using phase-
change memory as the synaptic weight element,” IEEE Trans. Electron Devices
62, 3498–3507 (2015).
41T. Gokmen and W. Haensch, “Algorithm for training neural networks on
resistive device arrays,” Front. Neurosci. 14, 103 (2020).
42T. Gokmen, “Enabling training of neural networks on noisy hardware,” Front.
Artif. Intell. 4, 1–14 (2021).
43M. J. Rasch, F. Carta, O. Fagbohungbe, and T. Gokmen, “Fast offset corrected
in-memory training,” arXiv:2303.04721 (2023).
44S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boybat, G.
Karunaratne, R. Khaddam-Aljameh, U. Egger, A. Petropoulos, T. Antonakopou-
los, B. Rajendran, A. Sebastian, and E. Eleftheriou, “Mixed-precision deep learning
based on computational memory,” Front. Neurosci. 14, 406 (2020).
45T. Gokmen, M. Onen, and W. Haensch, “Training deep convolutional neural
networks with resistive cross-point devices,” Front. Neurosci. 11, 1–22 (2017).
46A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An imperative style, high-
performance deep learning library,” Advances in Neural Information Processing
Systems (IEEE, 2019), Vol. 32.
47M. J. Rasch, T. Gokmen, and W. Haensch, “Training large-scale artificial neural
networks on simulated resistive crossbar arrays,” IEEE Des. Test 37, 19–29 (2020).
48M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic round-
ing: Implementation, error analysis and applications,” R. Soc. Open Sci. 9, 211631
(2022).
49A. Chen, “A comprehensive crossbar array model with solutions for line resis-
tance and nonlinear device characteristics,” IEEE Trans. Electron Devices 60,
1318–1326 (2013).
50S. R. Nandakumar, I. Boybat, V. Joshi, C. Piveteau, M. Le Gallo, B. Rajendran,
A. Sebastian, and E. Eleftheriou, “Phase-change memory models for deep learning
training and inference,” in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS) (IEEE, 2019), pp. 727–730.
51S. G. Sarwat, M. Le Gallo, R. L. Bruce, K. Brew, B. Kersting, V. P. Jonnala-
gadda, I. Ok, N. Saulnier, M. BrightSky, and A. Sebastian, “Mechanism and impact
of bipolar current voltage asymmetry in computational phase-change memory,”
Adv. Mater. 35, 2201238 (2022).
52I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell, T. Tuma,
B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou, “Neuromorphic
computing with multi-memristive synapses,” Nat. Commun. 9, 2514 (2018).
53S. Ambrogio, M. Gallot, K. Spoon, H. Tsai, C. Mackin, M. Wesson, S. Kariyappa,
P. Narayanan, C.-C. Liu, A. Kumar, A. Chen, and G. W. Burr, “Reducing the
impact of phase-change memory conductance drift on the inference of large-scale
hardware neural networks,” in 2019 IEEE International Electron Devices Meeting
(IEDM) (IEEE, 2019), pp. 6.1.1–6.1.4.
54M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou,
“Compressed sensing with approximate message passing using in-memory
computing,” IEEE Trans. Electron Devices 65, 4304–4312 (2018).

55H. Tsai, S. Ambrogio, C. Mackin, P. Narayanan, R. M. Shelby, K. Rocki, A. Chen,
and G. W. Burr, “Inference of long-short term memory networks at software-
equivalent accuracy using 2.5 M analog phase change memory devices,” in 2019
Symposium on VLSI Technology (IEEE, 2019), pp. T82–T83.
56X. Yang, C. Wu, M. Li, and Y. Chen, “Tolerating noise effects in processing-
in-memory systems for neural networks: A hardware–software codesign
perspective,” Adv. Intell. Syst. 4, 2200029 (2022).
57T. Gokmen, M. J. Rasch, and W. Haensch, “The marriage of training and
inference for scaled deep learning analog hardware,” in 2019 IEEE International
Electron Devices Meeting (IEDM) (IEEE, 2019), pp. 22–23.
58S. Kariyappa, H. Tsai, K. Spoon, S. Ambrogio, P. Narayanan, C. Mackin, A.
Chen, M. Qureshi, and G. W. Burr, “Noise-resilient DNN: Tolerating noise
in PCM-based AI accelerators via noise-aware training,” IEEE Trans. Electron
Devices 68, 4356–4362 (2021).
59K. Spoon, H. Tsai, A. Chen, M. J. Rasch, S. Ambrogio, C. Mackin, A. Fasoli,
A. M. Friz, P. Narayanan, M. Stanisavljevic, and G. W. Burr, “Toward software-
equivalent accuracy on transformer-based deep neural networks with analog
memory devices,” Front. Comput. Neurosci. 15, 1–9 (2021).
60L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in Proceedings of the 30th International
Conference on Machine Learning, Proceedings of the Machine Learning Research,
edited by S. Dasgupta and D. McAllester (PMLR, Atlanta, Georgia, 2013), Vol. 28,
pp. 1058–1066.
61N. Li, H. Tsai, V. Narayanan, and M. Rasch, “Impact of analog memory
device failure on in-memory computing inference accuracy,” APL Mach. Learn. 1,
016104 (2023).
62J. Büchel, M. Le Gallo, and K. El Maghraoui, https://github.com/IBM/aihwkit/
tree/master/notebooks/tutorial/hw_aware_training.ipynb, 2023.
63J. Büchel, M. Le Gallo, and K. El Maghraoui, https://github.com/IBM/aihwkit/
tree/master/notebooks/tutorial/post_training_input_range_calibration.ipynb,
2023.
64See https://github.com/ysh329/deep-learning-model-convertor for more infor-
mation about external libraries that can be used to convert trained models to
PYTORCH-based models.
65A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” technical report, https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf (2009).
66N. Gong, T. Idé, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, and T. Ando,
“Signal and noise extraction from analog memory elements for neuromorphic
computing,” Nat. Commun. 9, 2102 (2018).
67N. Gong, M. J. Rasch, S.-C. Seo, A. Gasasira, P. Solomon, V. Bragaglia, S.
Consiglio, H. Higuchi, C. Park, K. Brew et al., “Deep learning acceleration
in 14 nm CMOS compatible ReRAM array: Device, material and algorithm
co-optimization,” in IEEE International Electron Devices Meeting (IEEE, 2022).
68Y. Li, S. Kim, X. Sun, P. Solomon, T. Gokmen, H. Tsai, S. Koswatta, Z. Ren, R.
Mo, C. C. Yeh et al., “Capacitor-based cross-point array for analog neural net-
work with record symmetry and linearity,” in 2018 IEEE Symposium on VLSI
Technology (IEEE, 2018), pp. 25–26.
69J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin, K.-T. Lee,
P. Solomon, K. Chan, W. Haensch, and J. Rozen, “ECRAM as scalable synaptic cell
for high-speed, low-power neuromorphic computing,” in 2018 IEEE International
Electron Devices Meeting (IEDM) (IEEE, 2018), pp. 13.1.1–13.1.4.
70S. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon, K.-T. Lee,
M. Copel, D. B. Farmer, J. A. Ott et al., “Metal-oxide based, CMOS-compatible
ECRAM for deep learning accelerator,” in 2019 IEEE International Electron
Devices Meeting (IEDM) (IEEE, 2019), pp. 35–37.
71F. Carta, M. J. Rasch, and K. El Maghraoui, https://github.com/IBM/aihwkit/
tree/master/notebooks/tutorial/analog_training.ipynb, 2023.
72H. Kim, M. J. Rasch, T. Gokmen, T. Ando, H. Miyazoe, J.-J. Kim, J. Rozen, and S.
Kim, “Zero-shifting technique for deep neural network training on resistive cross-
point arrays,” arXiv:1907.10228 [cs.ET] (2019).
73 Note that the weight in this context refers to the analog weight W̆, that is the nor-
malized conductance value that is stored in physical units in the crossbar devices
(see Sec. III D 1). The full mathematical weight that is responsible for the MVM as
seen by the next layer is given by the product of the analog weight and the digital
output scales after the ADC.

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-35

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml
https://doi.org/10.1109/tcad.2020.3043731
https://doi.org/10.1109/lca.2019.2908374
https://doi.org/10.1109/lca.2019.2908374
https://doi.org/10.1016/j.neucom.2022.02.043
https://github.com/sandialabs/cross-sim
https://doi.org/10.1109/ted.2015.2439635
https://doi.org/10.3389/fnins.2020.00103
https://doi.org/10.3389/frai.2021.699148
https://doi.org/10.3389/frai.2021.699148
https://arxiv.org/abs/2303.04721
https://doi.org/10.3389/fnins.2020.00406
https://doi.org/10.3389/fnins.2017.00538
https://doi.org/10.1109/mdat.2019.2952341
https://doi.org/10.1098/rsos.211631
https://doi.org/10.1109/ted.2013.2246791
https://doi.org/10.1002/adma.202201238
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1109/ted.2018.2865352
https://doi.org/10.1002/aisy.202200029
https://doi.org/10.1109/ted.2021.3089987
https://doi.org/10.1109/ted.2021.3089987
https://doi.org/10.3389/fncom.2021.675741
https://doi.org/10.1063/5.0131797
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/hw_aware_training.ipynb
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/hw_aware_training.ipynb
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/post_training_input_range_calibration.ipynb
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/post_training_input_range_calibration.ipynb
https://github.com/ysh329/deep-learning-model-convertor
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1038/s41467-018-04485-1
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/analog_training.ipynb
https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial/analog_training.ipynb
https://arxiv.org/abs/1907.10228

APL Machine Learning TUTORIAL pubs.aip.org/aip/aml

74M. J. Rasch, https://github.com/IBM/aihwkit/blob/master/notebooks/tutorial/
extending_functionality.ipynb, 2023.
75Z. Yu, S. Menzel, J. P. Strachan, and E. Neftci, “Integration of physics-derived
memristor models with machine learning frameworks,” in 2022 56th Asilomar
Conference on Signals, Systems, and Computers (IEEE, 2022), pp. 1142–1146.
76C. Lee, K. Noh, W. Ji, T. Gokmen, and S. Kim, “Impact of asymmetric weight
update on neural network training with Tiki-Taka algorithm,” Front. Neurosci.
15, 767953 (2022).
77J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters,”
in Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD’20 (Association for Computing Machinery,
New York, 2020), pp. 3505–3506.
78T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y.
Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush,
“Transformers: State-of-the-art natural language processing,” in Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations (Association for Computational Linguistics, Online, 2020),
pp. 38–45.
79M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M.
Auli, “fairseq: A fast, extensible toolkit for sequence modeling,” in Proceedings of
the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics (Demonstrations) (Association for Computational Linguistics,
Minneapolis, Minnesota, 2019), pp. 48–53.
80H. Benmeziane, C. Lammie, I. Boybat, M. Rasch, M. Le Gallo, H. Tsai,
R. Muralidhar, S. Niar, O. Hamza, V. Narayanan, A. Sebastian, and K. El
Maghraoui, “AnalogNAS: A neural network design framework for accurate
inference with analog in-memory computing,” in 2023 IEEE International
Conference on Edge Computing and Communications (EDGE) (IEEE, 2023),
pp. 233–244.
81M. Rasch, T. Gokmen, D. Moreda, M. Le Gallo, and K. El Maghraoui
(2023). “IBM analog hardware acceleration kit,” GitHub, v. 0.8.0. https://github.
com/IBM/aihwkit

APL Mach. Learn. 1, 041102 (2023); doi: 10.1063/5.0168089 1, 041102-36

© Author(s) 2023

 02 July 2024 08:09:40

https://pubs.aip.org/aip/aml
https://github.com/IBM/aihwkit/blob/master/notebooks/tutorial/extending_functionality.ipynb
https://github.com/IBM/aihwkit/blob/master/notebooks/tutorial/extending_functionality.ipynb
https://doi.org/10.3389/fnins.2021.767953
https://github.com/IBM/aihwkit
https://github.com/IBM/aihwkit

