
Perspective https://doi.org/10.1038/s41467-023-40533-1

Toward a formal theory for computing
machines made out of whatever physics
offers

Herbert Jaeger 1,2 , Beatriz Noheda 2,3 & Wilfred G. van der Wiel 4,5,6

Approaching limitations of digital computing technologies have spurred
research in neuromorphic and other unconventional approaches to comput-
ing. Here we argue that if we want to engineer unconventional computing
systems in a systematic way, we need guidance from a formal theory that is
different from the classical symbolic-algorithmic Turing machine theory. We
propose a general strategy for developing such a theory, and within that
general view, a specific approach that we call fluent computing. In contrast to
Turing, who modeled computing processes from a top-down perspective as
symbolic reasoning, we adopt the scientific paradigm of physics and model
physical computing systems bottom-up by formalizing what can ultimately be
measured in a physical computing system. This leads to an understanding of
computing as the structuring of processes, while classical models of com-
puting systems describe the processing of structures.

Digital computing technologies are accelerating into a narrowing lane
with regard to energy footprint1, toxicwaste2, limits ofminiaturization3

and vulnerabilities of ever-growing software complexity4. These chal-
lenges have spurred explorations of alternatives to digital technolo-
gies. A fundamental alternative is neuromorphic computing5, where
the strategy is to use biological brains as role model for energy-
efficient parallel algorithms and novel kinds ofmicrochips.We also see
a reinvigorated study of other unconventional computing paradigms
that search for computational exploits in a wide range of non-digital
substrates like analogue electronics6, optics7, physical reservoir com-
puting systems8, DNA reactors9,10, or chemical reaction-diffusion
processes11. These approaches have become branded under names
like natural computing, physical computing, in-materio (or in-
materia12) computing, emergent computation, reservoir computing
and many more13–15. These lines of study can be seen as belonging
together in that they typically are interested in self-organization,
energy efficiency, noise robustness, adaptability, statistical dynamics
in large ensembles—foci that set these approaches apart from

quantum computing, a field that we rather see as a variant of digital
computing16 and do not further address in this article.

A key objective in these fields is to understand how, given novel
sorts of hardware systems made from “intelligent matter”17, one can
“exploit the physics of its material directly for realizing its
operations”18. A salient example is the realizationof synaptic weights in
neuromorphic microchips through memristive devices19. In digital
simulations of neural networks, updating the numeric effect of a
synaptic weight on a neuron activation needs hundreds of transistor
switching events. In contrast, when a neural network is realized in a
physical memristive crossbar array20, one obtains an equivalent func-
tionality through a single voltage pulse applied across the corre-
sponding memristive synapse element.

This principle of direct physical mirroring is not limited to
updating single numerical quantities. Complex information-
processing operations—like random search in some state space,
graph transformations, findingminima in cost landscapes, etc.—can be
encoded in terms of complex spatiotemporal physical phenomena in
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many ways, for instance in oscillations, chaos and other attractor-like
phenomena; hysteresis; many sorts of bifurcations and input-induced
transits between basins of attraction; spatiotemporal pattern forma-
tion; intrinsic noise; phase transitions. In turn, these operations and
their spatiotemporal encodings can be used to serve complex cogni-
tive functions like problemsolving, attentionormemorymanagement.
The pertinent literature is so extensive that it defies a systematic sur-
vey. Other phenomena and their mathematical reconstructions are
more specific, for instance heteroclinic channels and attractor
relics21,22, self-organized criticality23–25 or solitons and waves26,27. Fabri-
cating materials with atomic precision is today routinely done world-
wide, exploring optical, mechanical, magnetic, spintronic or quantum
effects and their combinations, for instance in nanowire networks24,28

or skyrmion-based reservoir computing29. Physical materials and
devices offer virtually limitless resources of physical phenomena for
building unconventional computing machines. In contrast to the per-
fect precision of circuit layouts needed for digital hardware, many
usable physical phenomena thrive on disorder and can self-organize
into functional behaviour30,31. An illustrative example from our own
work is presented in Box 1.

It remains, however, unclear how one can make best use of these
opportunities. We are lacking a general theory framework that would

inform us what specific sorts of computations can be served by dif-
ferent physical phenomena. Under the influence of cybernetics, com-
putational neuroscience, systems biology, machine learning, robotics,
artificial life and unconventional computing, our intuitions about
computing have broadened far beyond the digital paradigm. Infor-
mation processing in natural and artificial systems has been alter-
natively conceptualized and formalized in terms of analogue
numerical operations6,32,33, probabilistic combinations of bit
streams34,35, signal processing and control36–40, self-organized pattern
formation11,26,41,42, nonlinear neural dynamics21,43,44, stochastic search
and optimization9,45, evolutionary optimization46–48, dynamics on
networks49,50 or statistical inference51–53. From this widened perspec-
tive, we investigate the need for, and the chances of, a formal theory
for computing systems that directly exploit physical phenomena.

The algorithmic and cybernetic modes of computing
One might think that we already have a theory of general computing
systems, namely what a Turing machine can do. Even philosophers,
when they try to come to terms with the essence of computing,
invariably orient their argumentation toward Turing computability54,55.
Themathematical theory of Turing computability constitutes theheart
ofmoderncomputer science, unleashing a technological revolution on

BOX 1

Complex spatiotemporal phenomena in thin film materials
One of us investigates ferroelectric and ferromagnetic effects in novel
computational materials. These materials display an ordered phase,
which is responsible for long-term bi-stability, and a disordered phase, in
which these properties vanish. Ordering across macroscopic distances
gives rise to strongly nonlinear responses to external stimuli. The com-
plexity and sensitivity to external stimuli is maximized at phase
transitions113,114. Some of the novel materials that we synthesize combine
multiple types of interactions (magnetic, electrical, mechanical, chemi-
cal) and thus display complex phase diagrams with multiple available
phases. Using state-of-the-art thin-film deposition techniques, we can
makematerials that persist permanently at the edgebetween twophases,
or close enough to a phase transition115, such that they can be brought
from one phase to the other with low-energy external stimuli116.

The image (obtained using conducting atomic force microscopy at
room temperature, taken from117) shows a network of conducting
domain walls in a ferroelectric BiFeO3 thin layer. The colour coding in

picoampere (pA) indicates the current measured vertically through the
film to the ground plate at 3 V probing voltage. The domain walls
(yellow) have a much higher conductivity than the regions in between
the walls. The areas in between (blue) are insulating ferroelectric
domains that can be switched into non-volatile memory states. Struc-
tures like this might become used, for example, to encode and dyna-
mically switch the large random bit vectors which are the main
representational elements in the hyperdimensional computing
paradigm35.

The properties of these materials—fine-grained conductivity path-
ways, local multi-stability with resistive properties that are switchable
with minimal energy, many timescales, hierarchical topological struc-
turing—hold many promises for computation in materials. Spatio-
temporal processes in a regime close to criticality near a phase
transition have been described as an enabling condition for complex
information processing dynamics23,25.
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a par with the invention of the wheel. The Turing machine is
simulation-universal in the sense that every physical system whose
defining equations are known can be simulated on a Turing machine.
Given these powers of the Turing paradigm, why should one wish to
develop a separate theory for computing with general physical phe-
nomena at all? What could such a theory give us that Turing theory
cannot deliver?

We beginwith the historical roots of the Turingmachine concept.
By inventing this formal concept, Turing set the capstone on two
millennia of inquiry which started from Aristotle’s syllogistic logic and
continued through an uninterrupted lineage of scholars like Leibniz,
Boole, Frege, Hilbert and early 20th century logicians. The original
question asked by Aristotle—what makes rhetoric argumentation
irrefutable?—ultimately condensed in the Entscheidungsproblem of
formal logic: is there an effective formal method which, when given
any mathematical conjecture as input, will automatically construct a
proof for the conjecture if it is true, and a counterproof if it is false?
While all the pre-Turing work in philosophy, logic and mathematics
had finalized the formal definitions of what are conjectures, formal
truth, and proofs, it remained for AlanTuring (and Alonso Church56) to
establish a formal definition of what is an effective method for finding
proofs. Turing’s formal model of a general mathematical proof-
searching automatism is the Turing machine.

In his ground-breaking article On computable numbers, with an
application to the Entscheidungsproblem57, Turing modelled proof-
finding mechanisms as an abstraction of a human mathematician
doing formal calculations with paper and pencil. The Turing machine
consists of a tape on which a stepwise moving cursor may read and
write symbols, with all these actions being determined by a finite-state
switching control unit. The tape of a Turing machine models the sheet
of paper used by the mathematician (a male in Turing’s writing), the
machine’s read/write cursor models his eyes and hands, and the finite-
state control unit models his thinking acts. Importantly, Turing speaks
of “states ofmind”when he refers to the switching states of the control
unit—not of physiological brain states. The Turing machine models
reasoning processes in the abstract sphere of mathematical logic, not
in neural electrochemistry. Students of computer science must do
coursework in formal logic, not physiology; and their theory textbooks
speak a lot about logical inference steps, but never mention seconds.
When one understands the Turing machine as a general model of
rational human reasoning, it becomes clear why computers can be
simulation-universal: everything that physicists can think about with
formal precision can be simulated on digital computers, because they
can simulate the physicist’s formal reasoning.

The royal guide for shaping intuitions about the physical basis of
computing are biological brains, especially human brains. We will now
take a closer look at what aspects of physical neural dynamics are not
captured by Turing computability.

We first admit that one specific aspect of brain-based infor-
mation processing is indeed homologous to Turing computing.
Humans can carry out systematic, logically consistent sequences of
arguments and planning steps. Let us call this the algorithmic mode
of computing (AC). After all, Turing shaped his model of computing
after a human mathematician’s reasoning activity. However, our
biological brains fall short of the mathematical perfection of Turing
machines in many ways. Our ability to construct nested symbolic
structures is limited58; the concepts that our thinking is made of are
not as clean-cut and immutable as mathematical symbols are, but
graded, context-varying and incessantly adapting59,60; our reasoning
often uses non-logical, analogy-based operations61. The Turing
machine is a bold abstraction of a particular aspect of a human
brain’s operation.

Most of the time, however, most parts of our brain are not busy
with logical reasoning. In our lives, most of the time we do things like
walking from the kitchen table to the refrigerator, without clean logical

thinking. Yet, while walking to the refrigerator, the walker’s nervous
systems is thoroughly busy with the continual processing of a massive
streamof sensor signals, smoothly transforming that input deluge into
finely tuned, uninterrupted signals to hundreds of muscles. Let us call
this sensorimotor flowof information processing the cybernetic mode
of computing (CC). For the largest part of biological history, evolution
has been optimizing brains for cybernetic processing—for “prerational
intelligence”62. Only very late, some animals’ brains acquired the
additional ability to detach themselves from the immersive sensor-
imotor flow and generate logico-symbolic reasoning chains. Several
schools of thinking in philosophy, cognitive science, AI and linguistics
explain how this ability could develop seamlessly from the cybernetic
mode of neural processing, possibly together with the emergence of
language63–68.

Aligning and contrasting algorithmic and cybernetic computing
In order to get a clearer view on these two modes of computing, we
place two schematic processing architectures side by side (Fig. 1). Each
of them is shownwith three levels ofmodeling granularity, from a fine-
grained machine interface level L(1) via an intermediate level L(2) to the
most abstract task specification level L(3). To make our discussions
concrete, we exemplify them with the elementary algorithmic task of
multiplying 6 with 5 on a pocket calculator69, and the paradigmatic
cybernetic task of regulating the speed of a steam engine with a cen-
trifugal governor70,71.

We begin with the algorithmic dissection of the multiplication
task. Digital computations are modelled (or, equivalently, pro-
grammed) by breaking down a user’s task description through a cas-
cade of increasingly finer-granular formalisms down to a low-level
machine interface formalism—think of compiling a programwritten in
the task-level machine learning toolbox TensorFlow72 down to
machine-specific assembler code, passing through a series of pro-
grams written in languages of intermediate abstraction like Python or
C/C++. In our arithmetics examplewe condense this to threemodeling
levels (Fig. 1a–c). On the top level L(3), the user specifies task instances
by typing the input string u(3) = 6 * 5, or 17 * 4 etc. In our graphics the
structure of this input is rendered by the cells in the vertical state bars.
The user knows that there is a mathematical function f (3) (the multi-
plication of integers) that is evaluated by the calculator, but the user is
not further concerned about how, exactly, this computation is effec-
ted. This is taken care of by the designer of the calculator, who must
hierarchically disassemble the input 6 * 5 down to amachine-interface
level L(1).

On an intermediate modeling level L(2) one might encode the
original input u(3) = 6 * 5 in a binary representation (for instance 6→ 1 1
0, 5→ 1 0 1, *→ binarymult (leftmost green cell bars u(2) in b)). This
new input encoding is then processed stepwise with functions f (2)

(green arrows), possibly in parallel threads, through sequences of
intermediate binary representations xð2Þ

i , until some binary string
representation y(2) of the result is obtained, which then canbe decoded
into the top-level representation y(3) = 3 0. One of these functions f (2)

could for instance be an addition operation xð2Þ
i + xð2Þ

j = xð2Þk , like
binaryadd(1 1 0, 1 0 0= 1 0 1 0 (inner grey rectangle)).

In a final compilation, this instance of the binaryadd operation
might become encoded in a sequence of transformations of 8-bit
strings (bytes), whose outcome y(1) decodes to xð2Þk =1 0 1 0. This
encoding format can be directly mapped to the digital hardware by an
experienced engineer. In our schematic diagram we assume that this
level specifies binary (Boolean) functions f (1) (violet arrows in c)
between 8-bit re-writeable register models (vertical violet bars).

We now turn to our view on hierarchical models of cybernetic
information processing systems (Fig. 1d–f). On all modeling levels
L(m), inputs u(m) and outputs y(m) are signal streams that are continually
received or emitted. These signals can be composed from subsignals
—think of a robot’s overall sensory input which might comprise
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subsignals from cameras, touch sensors, the battery and joint angles.
This multi-subsignal makeup is reflected in Fig. 1d–f by the stripes
inside the u(3), y(3), u(2), xð2Þi and y(2) bands. The time-varying subsignal
values, which we call their activations, are indicated by changing
colour intensity. The decomposition into subsignals may be hier-
archically continued. In Fig. 1 only the first-level subsignal decom-
position is shown.

At the lowest machine-interface level L(1) (f), input/output signals
u(1) and y(1) as well as intermediate processing signals xð1Þ

i are modelled
as evolving in real time t 2 R. At highermodeling levels, more abstract
mathematicalmodels t of temporal progressionmay be used, allowing
for increasing uncertainty about precise temporal localization
(detailed in Section 2.4 in73). We reserve the word signal for one-
dimensional, real-time signals, and use the word chronicles to refer to
possiblymulti-modal signals that are formalizedwith possibly abstract
time models t.

In our steam engine governor example, the highest-level input
chronicle u(3) could be composed of the measured current engine
speed s(3)(t) and the desired speed d(3)(t). The output chronicle y(3) is the
steam valve setting signal p(3)(t). The input and output chronicles are
continually connected by a coupling law F(3), say by the simple pro-
portional control rule _pð3Þ =K ðdð3Þ � sð3ÞÞ. While in this example the
coupling is unidirectional from u(3) to y(3), in general we admit bidir-
ectional couplings. In the terminologyof signals and systems,we admit

autoregressive filters for coupling laws. We note that the reafference
principle in neuroscience74 stipulates that output copy feedback is
common in biological neural systems.

An intermediate L(2)-model would capture the principal structure
and dynamics of the governor, using chronicles that monitor speeds,
forces, angles etc. of system components like masses, levers, axes,
joints etc.

On the lowest level L(1), the dynamical couplings between L(2)-
chronicles are concretized tomatch the specificdesign of an individual
physical governor. For instance, a coupling F (2) between a centrifugal
force and a compensating gravitational load force, which would pre-
sumably be formalized in level L(2) by a differential equation, would be
resolved to the metric positioning of joints on lever arms, the weights
and sizing and strengths of mechanical parts, etc., leading to fine-
grained signals u(1), x(1), y(1) like the current force or velocity compo-
nents on a specific joint, or—in a high-precision model—measures of
temperature or vibration which have an impact on the part’s
functioning.

The algorithmic–cybernetic distinction is not a clear-cut either-or
division. An intermediate view on computing is adopted in models of
analogue computing6,32,33,75. They follow the AC paradigm in that a
high-level function evaluation task is hierarchically broken down into
lower-level flowchart diagrams of sequential function evaluations
exactly like in our diagrams Fig. 1a–c. At the same time, they also
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Fig. 1 | Modeling an algorithmic and a cybernetic computing system on three
levels of abstraction. a–c Digital computing system are typically modelled as
algorithmic. The overall functionality of such a system is to transform input data
structures u(3) into output data structures y(3). An algorithmic model thus repre-
sents, on the global task level, a mathematical function f(3) from inputs to outputs
(a). To model and implement how this global task function is realized on a digital
computing machine, it it stepwise broken down (compiled) into finer-grained
models, where data structures (vertical colour bars) and functions (arrows)
become hierarchically dissected until at a machine-interface level (c), both can be

straightforwardly mapped to the digital circuits of the underlying microchip.
d–f Cybernetic computing systems, like brains or analogue processing chips for
signal processing and control, transform a continually arriving input signal u(3) into
an output signal y(3) by a continually ongoing nonlinear dynamical coupling F(3).
Like digital data structures and processes, signals and their couplings can be
hierarchically broken down from a global task-level specification (d) to machine-
interfacing detail (f). Symbols x represent intermediate data structures (in algo-
rithmic models) and signals (in cybernetic models). Three modeling levels are
shown, but there may be more or fewer.
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appear as cybernetic in that their data structures are composed of
analogue real numbers, and the functions f (m) are evaluated through
the continuous-time, coupled evolution of differential operators.
Furthermore, the input-output theory of algorithmic computing has
been variously extended to sequential processingmodels, for instance
through the concept of interactive computing76 and (symbolic) stream
computing77.

The major similarities and differences between algorithmic and
cybernetic models of information processing systems, so far as we
have identified them until now, are summarized in Box 2.

The core challenge for a theory of physical computing
Working out the general intuitions about modeling computing sys-
tems into a concrete theory of physical computing must meet two
conflicting demands. First, such a theory must be able to model sys-
tems that can exploit a rich diversity of physical phenomena. The
ultimate goal is to model systems that are as complex as brains (but
might be organized quite differently). Second, such a theorymust give
transparent guidance to engineers and users of computing systems.
The enormity of this double challenge becomes clear when we con-
template how theoretical neuroscience models brains (trying to

BOX 2

How algorithmic computing is like, and unlike, cybernetic computing
Online, real-time, brain-like, cybernetic transformations from input
signal streams tooutput signal streams is in someways similar to, and in
other ways fundamentally different fromalgorithmic (digital, symbolic)
computing (AC). The similarities justify to classify cybernetic comput-
ing (CC) as computing in the first place, while the differences mandate
the development of a new formal theory of physical computing. In this
box we summarize basic similarities and differences.

AC and CC are both based on compositional data models. All
data items of AC, from integers to spreadsheet tables, come in the form
of hierarchically organized, static symbol structures. The information-
carrying, continuously varying signals in CC, which we call chronicles,
are likewise hierarchically structured into subchronicles and sub-
subchronicles, etc.

Static and discrete versus temporal and graded data models.
The symbolic data structures in AC, once assembled in a computation,
stay immutably the same until they are discretely updated to a new
structure by a logical operation. Chronicles and their sub-chronicles

have continuously varying signal strengths (called activations) andmay
fade in and out.

AC as well as CC are based on hierarchical system models.
Designing and using complex computing systems requires theory-
guided methods for breaking down a user’s input-output task specifi-
cation to a formal model that maps to a machine’s hardware. This is
achieved by an abstraction hierarchy of computational models, each of
which has its own formal concepts.

Information processing by stepwise logical inference steps
versus continual dynamical coupling. In an AC computational model,
the transformation from input to output data structures occurs in
sequences of logical update steps. In contrast, the dynamical coupling
between input and output chronicles is inherently parallel and tied to
continuous physical time on both ends of the system modeling hier-
archy, through the external task source signals and the internal physical
dynamics of themachine. Inmathematical terms, an AC computation is
the evaluation of a function, while a CC computation is the evolution of
a dynamical system.
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address the phenomenal diversity demand), and how theoretical
computer science models symbolic computation (succeeding in mas-
tering the transparent engineering demand).

We begin with neuroscience modeling. Biological evolution is
apt to find and exploit any physiological-anatomical mechanism that
adds competitive advantage. Brains appear as “giant ’bags of tricks’ ”
which integrate “a huge diversity of specialized and baroque
mechanisms”78 into a functional whole. Neuroscientists attempt to
understand brains on increasingly abstract and integrative modeling
levels79, from the microscopic biochemistry of synapses to global
neural architectures needed for learning navigationmaps. Explaining
how the phenomena described on some level of abstraction arise
from the finer-grained dynamics characterized on the level below
often amounts to major scientific innovations. For instance, the
Hodgkin-Huxleymodel of a neuron80 abstracts from amodeling layer
of electrochemical processes and calls upon mathematical tools
from electrical circuit theory; while on the next level of small neural
circuits, collective voting phenomena may be explained by
abstracting Hodgkin-Huxley neurons to leaky-integrator point neu-
rons and using tools from nonlinear dynamical systems81. These ad
hoc examples illustrate a general condition in theoretical neu-
roscience: the price that is paid for trying to understand the phe-
nomenal richness of brains is a diversity of modeling methods.

In contrast, multilevel hierarchical modeling of digital computing
processes is done with one single background theory that covers all
phenomena within any modeling level as well as the exact translations
between adjacent levels. This theory is mathematically rigorous, fits in
a single textbook82, and lets an end-user of a pocket calculator be
assured that their understanding of arithmetic becomes exactly rea-
lized by the bit-switching mechanics of their amazing little machine.
The price paid is that digital machines can exploit only a single kind of
physical phenomenon, namely bistable switching—a constraint that
can be seen as the root cause for the problematic energy footprint of
digital technologies.

We are certainly not the first ones to take up the challenge of
modeling and engineering complex, hierarchically structured cyber-
netic computing systems. However, we find that none of the proposals
that we are aware of fully meets the twofold demand of openness to a
broad spectrum of physical mechanisms and unifying engineering
transparency acrossmodeling levels.We list four instructive examples.
The Neural Engineering Framework83, originally developed by Chris
Eliasmith and Charles Anderson and used in a sizeable community of
cognitive neuroscientists84–88, provides mathematical analyses and
design rules for modules of spiking neural networks which realize
signal processing filters that are specified by ordinary differential
equations. This framework does not provide methods for hierarchical
model abstraction, and the rangeof supporting dynamical phenomena
is restricted to spiking neurons. Youhui Zhang et al. present a method
for engineering brain-inspired computing systems89, programming
them in a high-level formal design language, which is compiled down
through an intermediate formalism to amachine-interface level, which
can be mapped to the current most powerful neuromorphic micro-
processors. This approach is motivated by practical systems engi-
neering goals and in many ways follows the role model of AC
compilation hierarchies. It is however limited to exactly the three
specificmodeling levels specified in this work, with different principles
used for the respective encodings, and at the bottom end exclusively
targets digitally programmable spiking neurochips. The Realtime
Control System37 of James Albus is a design scheme for control archi-
tectures of autonomous robotic systems, from the sensor-motor
interface level to high-level knowledge-based planning and decision
making. Like other models of modular cognitive architectures90, it is
taken for granted that they are simulated on digital computers.
Exploiting general physical phenomena has not been a motivation for
their inception. Johan Kwisthout considers Turing machines, which

upon presentation of a task input automatically construct a formal
model of a spiking neural network that can process this task, and
investigates the combined consumption of computational resources
for such twin systems91. For the neural network model, he allows
unconventional resource categories like the number of used spikes.
This work makes spiking neural networks accessible to the classical
theory of computational complexity, but does not specify how the
neural networks spawned by the Turing machine are concretely
designed, and the approach is only applicable to a specific formal
model of neural networks, not to general physical computing
systems.

We are not alone with our impression that we still lack a unifying
theory for neuromorphic or unconventional computing. In a 1948
lecture, John vonNeumannanalysedhowcomputations inbrains differ
from digital computing. Focusing on stochasticity and error tolerance,
he concluded that “we are very far from possessing a theory of auto-
mata which deserves that name...”92. Similar judgements can be found
in the contemporary literature: “The ultimate goal would be a unified
domain of all forms of computation, in as far as is possible...”13; “As the
domain of computer science grows, as one computational model no
longer fits all, its true nature is being revealed... new computational
theories ... could then help us understand the physical world around
us”93; “there is still a gap in defining abstractions for using neuro-
morphic computers more broadly”94; “The neuromorphic community
... lacks a focus. [...] We need holistic and concurrent design across the
whole stack [...] to ensure as full an integration of bio-inspired princi-
ples into hardware as possible”95.

In the remainder of this perspective we outline our strategy for
developing a formal theory of physical computing. Our aim is to
reconcile the two seemingly conflicting modeling demands of cap-
turing general physical systems with their open-ended phenomenol-
ogy on the one hand, and of enabling practical system engineering on
the other. Our strategy is to merge modeling principles that originate
in algorithmic and in cybernetic modeling, respectively. From AC we
adopt the hierarchically compositional structuring of data structures
and processes, which is a crucial enabler for systematic engineering.
From CC we take the perspective to view computing systems as con-
tinually operating dynamical systems, which enables us to model
information processing as the evolution of a physical system. Our key
rationale for working out this strategy is to start from physical dyna-
mical phenomena and model computing systems in a hierarchy of
increasingly abstracted dynamical systems models, starting from a
physics-interfacing modeling level L(1). Our name for such formal
model hierarchies is fluent computing (FC). This naming is motivated
by IsaacNewton’s wording, who called continuously varying quantities
“fluentes” in his (Latin) treatise96 on calculus.

A phenomenon is what can be observed
All theories of physics are about phenomena that can be observed
(measured, detected, sensed)—at least in principle, and possibly
indirectly. In the followship of physics, wewant to set up our FC theory
such that the values of its state variables can be understood as results
of observations (measurements, recordings), and the mathematical
objects represented by the variables as observers. We mention in
passing that this is the same modeling idea that lies at the basis of
probability theory, where randomvariables are construed as observers
of events, too. An observer responds to the incoming signals by
creating a response signal. For instance, an old-fashioned voltmeter
responds to a voltage input by a motion of the indicator needle. Fol-
lowing the cybernetic view in this regard, we cast observing as a
temporal process whose collected observation responses are time-
series objects (chronicles). The time axis of these timeseries may be
formalized with modes of progression t that abstract from physical
time t 2 R. Above we distinguished between input, intermediate, and
output variables uðmÞ,xðmÞ

i ,yðmÞ. For convenience we will henceforth use
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the generic symbol v(m) for any of them. We will speak of observers
when we mean the objects denoted by model variables v(m).

Interpreting model variables v(m) as formal representatives of
observers is our key guide for the design of FC model hierarchies,
which model a physical computing system in an abstraction sequence
that starts with amodel at amachine-interface level L(1) and ends with a
model at a high abstraction level L(K), which is suitable to express task-
specific conditions (as in Fig. 1). A detailedworkout of our FCmodeling
proposal is documented in the long version of this perspective16. Here
we give a summary of our main ideas.

An observer v(m) reacts to a specific kind of stimulus with an acti-
vation response (think of the readings of a voltmeter or the activation
of a visual feature-detecting neuron). This activation avðmÞ may con-
tinuously change in time.We admit only positive or zero activation (no
negative activations), following the leads of biology (neurons cannot
be negatively activated; they can only be inhibited toward zero acti-
vation) and the intuition of interpreting activation as signal energy
(energy is non-negative). We foresee that relaxed models a of real-
number activations a will be needed, with the latter possibly being
appropriate only in the physics-interfacing modeling level L(1). The
general format of an activation at some time at some modeling level
would thus be avðmÞ ðtÞ.

The specific stimulus part is harder to grasp. We call the specific
kind of stimulus to which the observer is responsive, the quality of the
observer. However, one cannot exhaustively characterize what a
measurement apparatus responds to. Consider a thermometer. While
a thermometer is engineered to specifically react to temperature, itwill
also be sensitive to other physical effects. For instance, it may also
react (if only slightly) to ambient pressure, vibration or radiation. In
neuroscience, attempts to characterize what exactly a neuron in a
brain’s sensory processing pathways responds to remains a
conundrum97. We do not want to become entangled in this question.
Whatever an observer reacts to, we will call the quality of the observer,
and we specify this quality by specifying the observer itself. While the
activation value of an observer varies in time, its defining quality is
unchangeable.

Observers can be composed of sub-observers, and sub-observers
can again be compositional objects, etc. For example, a retina can be
defined to be composed of its photoreceptor cells, or a safety warning
sensor on a fuel tank might be combined from a pressure and a tem-
perature sensor. In our proposed FC terminology, we say that com-
ponent observers are bound in a composite observer. A plausible
binding operator for retina observers would bind the photoreceptor
cells through a specification of their spatial arrangement, while the
pressure and temperature sensor values might be bound together by
multiplication. Many mathematical operations may serve as binding
operators. We mention that organizing complex systems models
throughhierarchically nested subsystemcompositions has been a core
rationale in complex systems modeling98 from the beginnings of that
field99; that composition hierarchies for data structures and processes
are constitutive for AC theory as well as in systems engineering and
control37,100,101 and the mathematical theory of multi-scale dynamical
systems40,42,102; and that the so-called binding problem is a core chal-
lenge for understanding how cognition arises from neural
interactions100,103–106. Let us denote the set of observers that are (direct
or deeper-nested) components of v(m) by B#

vðmÞ , and the set of observers
of which v(m) is a component by B"

vðmÞ .
Compositional observer-observee hierarchies, where composite

observers become tied together by formal binding operators, are the
main structuring principle for FCmodels. They are what we carry over
fromACmodeling and add to CCmodeling. Punchline: ACmodeling is
based on processing structures, while in FC modeling we structure
processes.

Observers can have memory. Their current activation response
may depend on the history of what they have observed before. In

simple cases, this amounts to some degree of latency needed before
the observer’s response settles. In more complex cases, the current
activation response can result from an involved long-term integration
of earlier signal input—at an extreme end, think of a human who, while
reading a novel (observing the text signal), integrates what is being
related in the story with their previous life experiences. There are
several mathematical ways to capture memory effects. We opt for
endowing observers v(m) with an internal memory state svðmÞ ðtÞ, which
evolves through a state update operator σvðmÞ via update laws of the
general format svðmÞ ðnext- tÞ= σvðmÞ ðsvðmÞ ðtÞ,ðav0 ðtÞÞv02B#

vðmÞ
Þ In words: the

memory state of v(m) becomes updated by incorporating information
from the activations of its component observers. The question how
information about previously observed input is encoded and pre-
served in memory states has been intensely studied, under the head-
lines of the echo state property and fading memory, in the reservoir
computing field107–112.

A common theme in complex systemsmodeling is to capture how
the dynamics of subsystems are modulated in a top-down way by
superordinatemaster systems in which the subsystem is a component.
This question arises, for instance, in neuroscience where top-down
subsystem control serves functions like attention, setting predictive
priors, or modulation of motion commands; or in AC programs when
arguments are passed down in function calling hierarchies; or in
hierarchical AI planning systems where subgoals for subsystems are
passeddown fromhigher-upplanning systems; or inphysicswhere the
interaction ofmulti-particle systems ismodulated by external fields. In
our FC proposal we capture top-down control effects by modulating
how the activation of a component observer v(m) is determined by its
memory state: avðmÞ ðtÞ=αvðmÞ ðsvðmÞ ðtÞ,ðav00 ðtÞÞv002B"

vðmÞ
Þ, where αvðmÞ is the

activation function of v(m).
The dynamics of thememory state svðmÞ ðtÞ and activation avðmÞ ðtÞ are

thus co-determinedbottom-upby the componentsofv(m) and top-down
by themaster compounds inwhich v(m) is a component, respectively, via
the state and activation update functions σvðmÞ and αvðmÞ . These interac-
tions are an explicit part of an FC model. They induce implicit interac-
tions between observers, in that two observers may share components
or be components in shared compounds.We use the word coupling for
these lateral, indirect interactions. Coupling interactions are not expli-
citly reflected in an FCmodel. They can, however, have a strong impact
on theoverall emerging systemdynamics. This poses a challenge for the

time

a

b
c

d

Fig. 2 | Dynamical re-configuration effects in FC modeling. Observers and their
associated chronicles can dynamically bind and unbind in and from compounds
during the execution of an FC model, leading to a variety of structural re-
organization effects that have obvious analogues in algorithmic computing. From
top to bottom:merging (a) and splitting (copying, b) of observers; termination and
creation (c); binding and unbinding (d). The central segment in d (dashed orange
outline) shows the temporary presence of a compound observer made from two
primitive observers andone compoundobserver,which in turn is a binding of three
primitive ones. The compound observers have activation histories of their own,
which are not shown in the graphic. Coupling dynamics is symbolized by the
circular arrow.
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modeler, who must foresee these interactions. This challenge of iden-
tifying emergingglobal organization (ordisorganization)phenomena in
complex dynamical systems is a notorious problem in all complex
systems sciences, and it is also amain problemwhen it comes to ensure
global functionality in complex AC software systems. Two highlight
examples: Slotine and Lohmiller100 derive formal contractivity

conditions for the stability of subsystems such that global system sta-
bility (in the sense of recovery from perturbations) is guaranteed; and
Hens et al.40 analyse how a local perturbation from a globally stable
system state spreads in activation waves through a network of coupled
subsystems. In this regard, FC modeling faces the same challenges as
other complex system modeling approaches.

BOX 3

Some observations about observing
In our project of developing a theory of fluent computing (FC), we
interpret the information-carrying model variables as observers
(detectors, sensors, measurement apparatuses). Here we point out
some aspects of the observer concept that an FC theory
should cover.

a. Localizing bit signals. An observer—whether a voltmeter or a
human—does not observe the world at large but focuses on a specific
signal source. One way to identify sources is by spatial localization. The
binary bit switching signals in a digital microchip can be picked up at
pointlike, non-moving localizations.

b. Observables can be spatially extended. In physical substrates
(image insert shows thematerial fromBox 1) one can observe objects or
phenomena that are spatially extended, geometrically time-varying,
and moving—fields, wave fronts, particles and more. An observer must
have means to identify and track such objects.

c. There are unlimited ways to define observables. The graphic
shows response signals from three observers vð1Þ1 , vð1Þ2 , vð1Þ3 whose com-
mon source is the voltage of an electronic contact point. Their activa-
tion (indicated by colour intensity) respond to the short-term averaged
signal energy, a specific sine frequency response, and the white noise
component, respectively.

d. A complex physical observer. The drawing (adapted from
ref. 118) shows a schematic of a dopant network processing unit

(DNPU)31, an unconventional nanoscale device developed in one of our
labs. It consists of a doped siliconwell which here is contacted by seven
input and one output electrode. DNPUs exhibit strongly nonlinear
charge transport behaviour between theelectrodes. Thedrawing shows
an experiment where different input voltage signals lead to a nonlinear
current response in the output. A neural network was trained to model
this highly nonlinear 7-input, 1-output function. Using this model,
modular DNPU architectures were mathematically optimized to yield
very compact signal processing and pattern recognition systems,
including handwritten digit recognition119, which were then tested with
physical DNPUs.

This neural networkmodel of a DNPU can be formally cast as a level
L(2) observer of seven signals vð1Þ1 � vð1Þ7 on the modeling level L(1). The
activation signal v(2) of the trainedmodel output neuron is the response
of this observer.

e. Observing spatiotemporal patterns. This graphic (background
image created with the online tool120) shows a snapshot from an evol-
ving chemical reaction-diffusion system. We might consider as obser-
vable phenomena, for example, moving solitons (A), moving and
growing filaments (B), neutral ground state areas (C), activated areas
(D), periodic patterns (E). Arbitrarily more pattern categories can be
defined.
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Binding relations as well as state and activation update functions
σvðmÞ and αvðmÞ can be time-varying, leading to dynamically changing
system re-organizations (Fig. 2).

Finally, two models that are adjacent at levels L(m−1), L(m) in an
abstraction hierarchy of FC models, are related to each other in that
some observers v(m) in level L(m) can be declared as observing observers
v(m−1) in the model below. This defines a grounding of the level-L(m)

model in the level-L(m−1) model, and most importantly, a grounding of
the machine-interfacing model at level L(1) in the physical reality of the
underlying physical system. We must refer the reader to our long
version16 of this perspective for a detailed discussion of consistency
conditions for this level-crossing model abstraction and a comparison
with model abstractions in traditional computer science and the nat-
ural sciences. In Box 3we point out some facts about observations that
are pertinent to building model abstraction hierarchies.

Outlook. Research in neuromorphic and other unconventional kinds
of computing is thriving, but still lacking a unifying theory grounding.
We propose to anchor such a theory in three ideas: viewing informa-
tion processing as a dynamical system (adopted from the cybernetic
paradigm), organizing these dynamics in hierarchical binding com-
pounds (adopted from the algorithmic paradigm), and ground theory
abstraction in hierarchies of formal observers (following physics).
Surely there are many ways how these ideas can be tied together in
mathematical detail. Our fluent computing proposal is a first step in
one of the possible directions. We hope that this perspective article
(and its long version16) gives useful orientation for theory builders
who, like ourselves, are searching for the key to unlock the richness of
material physics at large for engineering neuromorphic and other
unconventional computing systems.
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