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Abstract: Integrated neuromorphic photonic circuits aim
to power complex artificial neural networks (ANNs) in
an energy and time efficient way by exploiting the large
bandwidth and the low loss of photonic structures. How-
ever, scaling photonic circuits to match the requirements
of modern ANNSs still remains challenging. In this per-
spective, we give an overview over the usual sizes of
matrices processed in ANNs and compare them with
the capability of existing photonic matrix processors.
To address shortcomings of existing architectures, we
propose a time multiplexed matrix processing scheme
which virtually increases the size of a physical photonic
crosshar array without requiring any additional electrical
post-processing. We investigate the underlying process of
time multiplexed incoherent optical accumulation and
achieve accumulation accuracy of 98.9% with 1 ns pulses.
Assuming state of the art active components and a rea-
sonable crossbar array size, this processor architecture
would enable matrix vector multiplications with 16,000 X
64 matrices all optically on an estimated area of 51.2 mm?,
while performing more than 110 trillion multiply and
accumulate operations per second.
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1 Introduction

Matrix vector multiplications (MVMs) are the computa-
tional backbone of artificial neural networks (ANNs) as
they mathematically describe the connections between
neurons in the layers the network is composed of. There-
fore, energy efficient, compact and high-speed matrix pro-
cessors are crucial to power the complex ANNs deployed
for autonomous driving [1] and language processing [2]
among other important applications. Integrated photonic
circuits are an attractive approach to implementing MVM
processors due to their large optical bandwidth [3-6],
inherentlow latency [7] and minimal heating losses in com-
parison to electronic approaches. Prototypes deploying
Mach-Zehnder interferometer (MZI) meshes [8], photonic
crossbar arrays (PCAs) [9] and ring resonator weight
banks [10] have demonstrated that photonic computing is
viable and highlight the capabilities for MVM operations.
However, one of the largest functional systems built to date
is a 64 X 64 matrix processor deploying MZI meshes which
is, even in view of being a substantial achievement, still
of moderate size considering that modern ANNs consist of
billions of free parameters. This particular system occupies
a chip area of 150 mm? [11]. Substantially increasing
the size of such photonic circuits is challenging due to
fabrication imperfections impacting the splitting ratios in
the MZI meshes/crossbar arrays and the overall optical
loss of the system. Therefore, a range of architectures
and approaches are being developed which could enable
processing larger ANNs in the photonic domain.

In this perspective, we give an overview on ANNs
deployed in computer vision, natural language process-
ing and combinatorial optimization and compare their
requirements with the capability of different integrated
photonic matrix processors. As a particular addition
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building on photonic processors, we propose a time
multiplexed architecture that employs a high-speed recon-
figurable photonic crossbar array to allow for MVM pro-
cessing of larger matrices. Time multiplexing virtually
increases the size of the PCA without suffering from the
drawbacks of having to fabricate large photonic circuits.
Moreover, this approach does not require any additional
electrical processing. We experimentally characterize the
process of time multiplexed incoherent optical accu-
mulation and propose a design of the photonic circuit
underlying the required matrix processor and estimate its
performance.

2 Integrated photonics for artificial
neural networks

On a basic level, artificial neural networks consist of linear
matrix vector multiplications and non-linear activation
functions. Additionally, their physical implementation
requires memory and a process/data flow corresponding
to the chosen ANN architecture. Integrated photonics
promise to speed up ANNs in an energy efficient manner
in two different ways. First, the photonic circuit computes
the full ANN directly in one or few processing steps [12,
13]. Second, the photonic circuit only computes a part
of the ANN, for example the MVMs [8-11, 14, 15]. Only
performing the MVMs drastically reduces the complexity
of the photonic circuit and hence allows accelerating more
complex ANNs, but this advantage comes at the cost of
having to perform more electro-optic conversions.

Figure 1A shows the typical input vector sizes of the
MVM processors depending on the application. Convolu-
tional neural networks perform excellently in computer
vision. The main building blocks are convolutional layers
which calculate the convolution of the layer input with a
trained kernel. The employed kernels are typically rather
small, ranging from 3 X 3 to 11 X 11 for many networks
[16-19], which in turn leads to small input vector sizes
for one channel. In contrast, transformer architectures
excel in the area of natural language processing. Their
main feature is the attention module, which computes
correlations between the different symbols in the input
sequence. The input vector size of the performed MVMs
depends on the model dimension which is often on the
order of 10° [20-23]. Finally, recurrent neural networks
like Hopfield nets and Boltzmann machines can find the
ground state of the Ising model and hence are suitable
to obtaining good solutions of NP-hard problems like the
travelling salesman problem [24—27]. The input vector size
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of the underlying MVMs directly translates to the number
of spins in the ising model, where state of the art ising
machines can simulate spins in the order of 10 to 10°
[28-31].

In contrast, Figure 1B shows the (projected) input vec-
tor size of various integrated photonic matrix processors. In
photonic computing, the input vector is encoded in optical
pulses and the respective multiplications are carried out
via interaction of the pulses with phase-shifters, atten-
uators, or amplifiers [8, 32, 33]. There are two different
approaches to accumulate the weighted optical pulses,
performing either a coherent, phase sensitive superpo-
sition [8] or performing an incoherent superposition [9].
While coherent superposition also enables subtraction via
destructive interference, practical systems require phase
error compensation. In contrast, when using incoherent
signals, two pulses of different wavelength are temporally
overlapped to perform an incoherent superposition. Since
the result of the MVM is calculated at the photodetectors,
all interference effects are averaged out if the frequency
detuning between both pulses is larger than the detector
bandwidth [34]. The main drawback of incoherent super-
position is that subtraction cannot be performed optically.
The advantage is that the overall system is much more
tolerant to fabrication imperfections and measurement
conditions because of the inherent phase insensitivity.
Furthermore, incoherent superposition can be easily used
in combination with wavelength division multiplexing
(WDM) [35]. However, both approaches are using a physical
photonic circuit to represent the matrix vector multiplica-
tion leading to huge circuits for large scale MVMs. A com-
mon workaround is to deploy tiled matrix multiplication
to reduce the matrix size; however this creates additional
electronical overhead. In this perspective we propose an
architecture that virtually increases the size of the photonic
matrix processor based on time multiplexed incoherent
optical accumulation. This allows computing MVMs with
large input vector size all optically (in contrast to electronic
addition of tiles, which require much more analogue to
digital conversions and additional electronic circuitry) on
a chip size compatible with commercial foundry processes.

3 Time multiplexed incoherent
optical accumulation
In order to virtually enlarge the processing capacity of

photonic MVM processors, we combine the concept of
incoherent superposition with charge accumulation inside
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Figure 1: Applications and prototypes of (optical) neural networks. (A) Typical input vector size of the MVMs for different applications.
Convolutional layers convolve the input with a kernel, typically in the range of 3 X 3 to 11 X 11 for computer vision. The attention head is the
main block of the transformer architecture excelling in natural language processing. The input vector sizes depend on the model dimension,
usually in the order of 103. Hopfield and Boltzmann networks can mimic the Ising model and thus find good solutions to complex
computational problems. The input vector size directly translates to the number of spins, which is in the range of 10* to 10 for modern Ising
machines. (B) Input vector size of operational and projected integrated photonic matrix processors.

a photodetector (Figure 2A). We perform incoherent super-
position by temporally overlapping two pulses of different
wavelengths and accumulate several pulses of the same
wavelength by making use of charge accumulation inside
the photodetector [36]. If the delay between the pulses is
short in comparison to the inverse detector bandwidth,
the detector cannot distinguish between the individual
pulses. Instead, the output signal of the detector has
higher amplitude. To show the feasibility of this approach
experimentally, we use 1ns pulses at 1550 and 1560 nm
together with a 10 MHz detector (New Focus Model 2053)
to characterize the process of time multiplexed incoher-
ent optical accumulation. Figure 2B shows the detector
output signal of two delayed pulses normalized to the
manually summed output signal of the individual pulses
for different delays between the pulses. We perform each
individual measurement 10 times, where the measurement
setup itself shows a noise level in the order of 1-2%. Up
to a delay of 10 ns, the error caused by charge accumu-
lation inside the detector is within the uncertainty of the
measurement setup itself. Next, we perform time accu-
mulation simultaneously with incoherent superposition.
We accumulate four pulses of two different wavelengths
with a time delay of 1.86 ns in each wavelength channel.
Figure 2C shows the measured sum of the four pulses
versus the calculated sum of the pulses. The measured sig-
nals are distributed around the ideal line with a standard
deviation of 1.1% which is again inside the uncertainty

of the measurement itself. The main advantage of this
approach is the scaling properties. Individual approaches,
incoherent superposition and charge accumulation, scale
linearly with the number of wavelength channels/pulses.
However, the combination of both scales with the number
of wavelength channels X number of pulses. Moreover, the
comparably slow detector and readout process enables low
noise operation which in combination with high saturation
powers makes scaling possible (in our experiments, the
deployed detector has a noise equivalent power of 0.34
pW/Hz and the saturation power is 10 mW). For broadband
operation, the wavelength dependent responsivity of the
detector can be compensated by setting a wavelength
dependent calibration factor.

4 Large-scale photonic matrix
vector multiplication

Since the accumulation is independent from the multi-
plication for incoherent crosshar arrays, we can directly
transfer the concept of time multiplexed optical accumu-
lation to the complete system. In this way, we virtually
increase the size of a photonic crossbar array beyond
its physical dimensions without inducing any additional
electrical processing. Figure 3A depicts how the matrix
multiplication y = M - x is performed. In the context of
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Figure 2: Time multiplexed incoherent accumulation. (A) Concept of time multiplexed incoherent accumulation. We combine two
accumulation schemes, temporally overlapping pulses of different wavelength and charge accumulation inside a detector by delayed
pulses. Both processes are phase insensitive. (B) Accumulation time of a 10 MHz Photodetector. We determine the accumulation time of the
photodetector by comparing the detector signal of the delayed accumulated pulse with the signal of the individual pulses. Up to a delay of
about 10 ns the error induced by this accumulation scheme is within the uncertainty of the measurement setup. (C) Accuracy of time
multiplexed incoherent accumulation. We accumulate four different 1 ns pulses as sketched in (A) with a delay of 1.86 ns. The measured
signal is distributed around the calculated signal with a standard deviation of 1.1% which is comparable the noise within the measurement

setup itself.

artificial neural networks, each component of x corre-
sponds to the activation of a neuron, thus we assume x;
> 0. MVMs with arbitrary input vectors can be computed
by using a reference vector component [35]. In contrast,
the weights connecting the various neurons of the ANN
can be positive and negative. Hence, M is an arbitrary
real valued m X n matrix. The m X n matrix is divided
into several m X n’ matrices with n’ <« n. Then, the
matrix vector multiplication is performed stepwise where
the first sub matrix is multiplied with the first elements
of the vector, analogously for the other sub matrices.
The different sub results are then accumulated by the
photodetector to obtain the correct result without requiring
any electro-optical conversion and electrical processing. In
this way, only a m X n’ crossbar array is required to carry
out the same processing as obtained from the significantly

larger m X n matrix, greatly reducing the complexity of the
photonic circuit.

We propose a design for a matrix cell of the photonic
crossbhar array which encodes the matrix weight into a
Mach-Zehnder modulator (MZM) as shown in Figure 3B.
This enables a fast modulation of the matrix elements
which is crucial for the time multiplexed MVMs. Moreovetr,
it allows for reference computation without inducing
any additional loss by performing balanced detection
between the two output waveguides. In this scheme, a
matrix weight of zero is encoded by setting the MZM to
equal splitting between Output+ and Output—. Similarly,
negative weights are implemented by guiding are larger
fraction of the Input to Output- and vice versa. State
of the art MZM achieves modulation speeds of 100 GHz
on a comparably small footprint [37-40]. Assuming the
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Figure 3: Large scale photonic matrix vector multiplication scheme. (A) Time multiplexed matrix vector multiplication (MVM). We decompose
the large-scale matrix vector multiplication into several small MVMs which the photonic crossbar array computes. We sum the intermediate
results by charge accumulation inside the photodetector. In this way, no additional electrical processing is required. (B) Concept of an
active, arbitrary valued matrix cell. We design matrix cells deploying an MZM as the matrix weight. In this way, the weight can be modulated

as fast as the input vector, which is crucial for this matrix architecture.

Moreover, the MZM allows for lossless reference computation. (C)

Sketch of the complete matrix processor. The processor computes several MVMs in parallel by encoding each vector in a different

wavelength range. Before sending the vectors to the crossbar array, th

ey are multiplexed together and afterwards demultiplexed again to

obtain the individual output vectors. Finally, balanced detection is performed to obtain the correct result.

silicon-organic hybrid MZM in [40], the crossbar cell size
would be in the order of 0.05 mm?.

Figure 3C sketches the photonic circuit of the complete
system consisting of MZMs to modulate the input vectors,
a quickly reconfigurable photonic crossbar array, compa-
rably slow photodetectors for temporal accumulation and
wavelength multiplexer. Wavelength division multiplexing
enables several parallel computational channels which
further increases the speed of the photonic matrix proces-
sor [35]. We estimate the ultimate performance capabilities
of the time multiplexed matrix processor architecture
based on the characterized 10 MHz photodetector, 100 GHz
MZMs and a 16 X 64 crosshar array. The photodetector
precisely accumulates the optical pulses within a time of

10 ns, corresponding to 1000 pulses due to the modulation
speed of the MZMs. In this way the size of the crosshar
array is virtually increased to 16,000 X 64 but only requires
1024 MZMs instead of more than a million as its equivalent
physical counterpart. Moreover, it greatly reduces the
overall loss of the system in comparison to a physical,
incoherent PCA of the same size, since the splitter induced
loss scales as 1/n where n is the number of physical input
waveguides to the PCA. Even though the time-multiplexing
decreases the theoretical maximal speed of the system (due
to the need for slower than state-of-the-art photodetectors),
wavelength division multiplexing still unlocks exceptional
computational power. Frequency combs can generate the
required input wavelengths over a wavelength range of
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1500-1650 nm [9]. Assuming a 100 GHz spacing between
the wavelengths of one channel to avoid interference, each
optical matrix vector multiplication requires 16 (#inputs) x
0.8 nm (#channel spacing) = 12.8 nm optical bandwidth,
so 11 vectors can be computed in parallel. The matrix
processor performs MVMs with 16,000 X 64 matrices
at a speed of 10 MHz on an estimated crossbar array
area of 51.2 mm?, leading to 112.64 trillion multiply and
accumulate operations per second. The main advantage
of this approach is that the matrix vector multiplication
is performed fully optically without any intermediate
electrical processing steps. A physical implementation
would thus greatly reduce the bottleneck of optical data
processing caused by electro optical conversion.

5 Summary

Photonic computing is a promising approach to fulfil
the ever-growing demand on computational perfor-
mance arising from the use of artificial neural net-
works. The combination of wavelength division multi-
plexing and in-memory computing enables matrix-vectors-
multiplications at unprecedented computation speeds
and low latency times [7, 9, 41]. However, scaling the
photonic circuit to perform large-scale MVMs remains
challenging, due to the physical size of the photonic
components and fabrication imperfections. We propose a
novel computation scheme for photonic matrix processors,
which allows one to virtually increase the size of the MVMs
without suffering from the drawbacks of large photonic
circuits. The computation scheme uses time multiplexed
incoherent accumulation, which encodes the pulses in
both the frequency and time domain. We characterize this
scheme with a 10 MHz detector and 1 ns pulses, allowing
integration in the time domain up to 10 ns with an accuracy
0f 98.9%. Assuming a 100 GHz MZM [40], a 1500-1650 nm
frequency comb [9] and a reasonable sized physical 16
X 64 crossbar [11], the system could perform MVMs with
16,000 X 64 matrices all optically at a speed above 110
trillion multiply and accumulate operations per second.
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