
assumed to vary continuously through-
out the space–time region of interest.
Undergraduate texts describe the solu-
tion of “easy” continuum problems, in-
cluding the flow of heat in response to
imposed thermal boundary conditions
and the linear-elastic response of solids
to imposed loads. A variety of grid-
based approaches work very well for
such problems. For more difficult prob-
lems, in which the structure under study
undergoes extreme shape changes and
forms new surfaces while resisting in-
terpenetration at interfaces, more so-
phisticated and flexible techniques are
required.

Smooth Particle Applied Mechanics
is such a technique.1–6 SPAM provides
a versatile approach to simulating
many difficult problems in continuum
mechanics, such as the breakup of a
cavitating fluid and the penetration of
one solid by another. SPAM also pro-
vides a simple evaluation method for
all the continuum variables, as well as
the spatial gradients required by the
evolution equations. This global eval-
uation simplifies interpolation, rezon-
ing, and Fourier transformation. Be-
cause SPAM is so flexible and easy to
program, it should be included in the
toolkit of anyone doing simulations.

SPAM
The primary application of SPAM is

to the solution of problems in contin-
uum mechanics, where the governing
partial differential equations describe
the evolution of the mass density ρ, ve-
locity , and energy per unit mass e
in terms of gradients of the velocity,
pressure tensor P, and heat-flux vector

:

(1)

(2)

. (3)

Vectors are denoted by an arrow and
tensors are in boldface. If we denote
the components of a vector as Aα, then
the components of the tensor are

and 

.

In D spatial dimensions the notation
in the energy evolution equa-

tion (Equation 3) indicates the sum of
D2 terms of the form Pαβ ∂vβ /∂xα.
These continuum equations are com-
pletely general, with P and the co-
moving fluxes of momentum and en-
ergy—that is, fluxes measured in a
frame moving with the local velocity

. The equations apply to gases, liq-
uids, and solids, both near to and far
from equilibrium. Flows in systems as
diverse as phase-separating fluid mix-
tures, deforming metals, breaking
rocks, and colliding astrophysical bod-
ies can all be treated with SPAM.

Although the dependent variables ρ,
, and e are defined throughout space

and for a continuously varying time,
the solutions of the partial differential
equations (Equations 1 through 3) can
be made tractable by converting them
to ordinary differential equations,
spanning space with a grid of points,
and computing the time histories for a
closely spaced set of discrete times. A
low-order Runge-Kutta method is the
best choice for the time integration.
Until Leon Lucy1 and Joseph Mon-
aghan2 conceived of SPAM in 1977,
spatial gradients of the field variables
ρ, , and e were typically evaluated on
an underlying spatial grid of interpola-
tion points. (Joseph Monaghan of
Monash University, Adelaide, Aus-
tralia, is a prolific and creative expo-
nent of smooth-particle methods. The
reader is encouraged to seek out Mon-
aghan’s recent work on the Internet.)
Both comoving Lagrangian grids,
moving with the material, and station-
ary Eulerian grids, fixed in space, were
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SPAM-BASED RECIPES FOR CONTINUUM SIMULATIONS
By William G. Hoover and Carol G. Hoover

IN THE ABSENCE OF IMPORTANT ATOMIC-SCALE EFFECTS,

MACROSCOPIC CONTINUUM MECHANICS IS THE METHOD OF

CHOICE FOR SIMULATION. IN CONTINUUM MECHANICS THE DEN-

SITY, VELOCITY, PRESSURE, AND SIMILAR FIELD VARIABLES ARE

(US government work not protected by US copyright.)
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used in this way. In both cases, the spatial derivatives ap-
pearing in the continuum equations were approximated as
simple finite differences of field-point values at neighboring
points. Although this interpolation approach works well for
simple problems, it has difficulties with the chaotic irregu-
lar flows typified by mixing, penetration, fracture, and tur-
bulence. The distortion of a comoving mesh, the difficulty
of following material interfaces, the prevention of overlaps
within a fixed mesh, and the smooth implementation of
boundary conditions all can cause major headaches.

SPAM solves the problem of choosing a spatial grid by in-
troducing smooth particles, with a finite spatial extent or
width. The instantaneous coordinates of the particles define
the set of points used to interpolate the field variables’ val-
ues. The interpolation grid varies continuously as the parti-
cles move. This spatial interpolation method is in itself a
useful algorithm for smoothing data known on an irregular
set of points. To illustrate the interpolation method, con-
sider a 2D space with a set of points (the particle coordi-
nates), all of which have the same mass m and the same
weight function w(r). The particle mass density (or proba-
bility distribution) can be thought of as spread out in space
according to w(r) with a range h characterizing the size of
the particles. The sum of all particle contributions to the
mass density ρ at a point gives the total density (or prob-
ability). We define the mass density as

(4)

where the sum is over all particles within the range h of 
and m is the particle mass. Note that the form of Equation
4 is similar to the usual expression for the density, but with
the usual delta functions replaced by a “smooth” (at least
twice differentiable) weight function w. This is the reason
the particles are referred to as smooth particles. For a gen-
eral field variable f, the same procedure of adding all the
nearby particle contributions motivates the fundamental
definition for :

. (5)

At any position , the interpolated value of the field vari-
able is given by a weighted average of contributions fj
from nearby particles j within the range h. We emphasize
that the discrete particle properties fj, one for each particle,
differ from the continuum of interpolated averages ,

which are defined everywhere, not just at the particle posi-
tions . In particular, fj differs from if, as is usual,
there are local fluctuations in f.

For reasonable accuracy at manageable cost, the range of
the weight function w should be such that the weighted av-
erages include contributions from about 20 particles. Lucy
introduced a useful form for w(r):1

(6)

where

. (7)

The normalization of w is chosen to make the representa-
tion exact in the limiting case of an infinite number of in-
terpolating particles.

For r just inside the range h, the weight function in Equa-
tion 6 vanishes as the cube of the distance to the cutoff, 
w(r) ∝ (h − r)3. Thus w has two continuous derivatives every-
where. Likewise, the first and second spatial derivatives of
field-variable sums such as

have no discontinuities. Such a smooth-particle interpola-
tion method can be applied to molecular dynamics, where
the individual particles have kinetic and potential energies.
In this case, smooth-particle interpolation provides a
twice-differentiable, continuous representation of the
two-particle energy functions based on the summed con-
tributions from discrete points. This representation is
much more useful than the usual delta-function form.

Continuum equations
The SPAM representation, with two continuous deriva-

tives for the field variables, is the key to solving the contin-
uum equations. Consider ρi, the total mass density at the lo-
cation of particle i. It is given by a special case of the general
rule for , with :

. (8)

Note that the choice of the normalization of w guarantees
that the integral over all space, ∫∫ρ(x, y) dx dy, equals the to-
tal mass mN, where N is the number of smooth particles.

Not only mass but also momentum and energy are
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conserved by SPAM. The latter two conditions follow
directly from the smooth-particle version of the continuum
evolution equations for velocity and energy. To see this, we
use the definition (Equation 5) to find the smooth-particle
representation of spatial gradients:

. (9)

Because the fj are particle properties rather than spatial av-
erages, the gradient operator affects only the weight func-
tion w through its explicit dependence on .

By setting f → f = (P/ρ2), we can show that the smooth-
particle equations of motion conserve momentum exactly.
We first evaluate the divergence of (P/ρ) in the usual con-
tinuum way, following the rules of ordinary calculus:

. (10)

We can rearrange this identity to provide a useful form of
the continuum equation, , for the evolution
of :

. (11)

The two gradients on the right-hand side, ∇ ρ and ∇ ⋅ (P/ρ),
can be replaced by simple sums using the smooth-particle
gradient representation given in Equation 9:

(12a)

and

. (12b)

If we combine the two gradients and replace by , we
find the smooth-particle form for the acceleration at the po-
sition of particle i. This form is the equation of motion for
particle i:

. (13)

It is important to note—as will be emphasized in the fol-
lowing example—that the special case of a scalar pressure P
proportional to ρ2 gives equations of motion isomorphic to
those of molecular dynamics, with the weight function w
playing the role of a pair potential. Whenever the quotient
(P/ρ2) varies slowly in space, the smooth-particle continuum
dynamics resembles ordinary molecular dynamics.

Even in the most general case of a tensor pressure, the
smooth-particle equations of motion conserve momentum
exactly. To see this, consider the time variation of the sum
of the particle momenta,

. 

Because the contributions of each interacting {i, j} pair ex-
actly cancel in this sum, the sum must vanish. Thus the
smooth-particle equation of motion (Equation 13) conserves
momentum. The reader should be able to verify, using a
similar argument, that the continuum energy equations can
be written in a smooth-particle form that conserves energy
exactly:

(14)

So far we have not restricted the pressure tensor P and the
heat flux vector in any way. They can depend upon ve-
locity or temperature gradients, elastic or plastic strains, and
the equilibrium values of density and energy. For the simple
idealized Euler fluid, with vanishing viscosity and conduc-
tivity, the pressure is purely hydrostatic and is a scalar func-
tion (Pαβ = Pδαβ) of density and energy without any viscous
or plastic contributions. Smooth-particle formulas for the
velocity and temperature gradients needed for the pressure
tensor and heat flux vector of nonideal fluids can be derived
by using the gradient definition (Equation 9) in a different
way. Consider, for example, ∇ (Tρ) = ρ∇ T + T ∇ ρ, or

ρ∇ T = ∇ (Tρ) − T ∇ ρ. (15)

The smooth-particle representation of the two gradients in
Equation 15 gives
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. (16)

Equation 16 can be symmetrized by using a mean density,
either arithmetic or geometric, for ρ on the left-hand side.
The mean density ρij is

or . (17)

The corresponding expressions for the velocity and tem-
perature gradients at the position of particle i guarantee that
the gradient contributions of each pair of particles are pro-
portional to the corresponding velocity and temperature
differences:

(18)

and

. (19)

Implementing the simulation
A SPAM simulation can be implemented by the following

procedure:

1. Choose initial conditions: positions , velocities , and
energies ei for each particle i.

2. Compute ρi for each particle using Equation 8.
3. Compute the gradients and for each parti-

cle using Equations 18 and 19. These gradients are gen-
erally required for computing the particle values of Pi
and .

4. Compute Pi and at each particle, using the constitu-
tive relations, which include the equation of state P(ρ, e)
or P(ρ) as well as the phenomenological relations gov-
erning diffusive, viscous, and conductive flows.

5. Compute and using Equations 13 and 14, includ-
ing the pressure tensors and heat flux vectors computed
in step 4.

6. Compute new values of , , and ei by numerically 
integrating the differential equations for ,

, and dei/dt.
7. At the end of step 6, return to step 2 until the simulation

is completed.

To illustrate the smooth-particle method we apply it to a
relatively difficult problem, the free expansion of a 2D ideal
gas, an Euler fluid with vanishing transport coefficients, into
a container four times its original size.5,6 The equilibrium
isentropic equation of state for such a gas is P ∝ ρ2, with the
proportionality constant a function of energy only. A con-
ventional fixed-mesh Eulerian grid approach to this prob-
lem exhibits catastrophic instabilities unless artificial damp-
ing is added. A conventional Lagrangian approach, with its
mesh elements moving with the fluid, exhibits two kinds of
numerical shear instabilities, the butterfly and the hourglass,
as shown in Figure 1. Both instabilities can be tamed by in-
troducing numerical viscous damping terms to control them,
but the programming effort is severe. The smooth-particle
method requires no unusual precautions. No catastrophic
instabilities can occur, because the particle grid is continu-
ally evolving, with the field variables everywhere smooth.
Because the system is not heated in any way, and there are
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Figure 1. The (a)
butterfly and (b)
hourglass shear
instabilities. In
each of the 16
elements shown,
the mean shear
strain vanishes 
so that the 
corresponding
deformation has
no restoring
force.
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no transport coefficients to increase the entropy above its
initial value, it is a challenge to understand the entropy in-
crease that must result, ∆S = Nk ln 4. The resolution of this
problem arises naturally from the SPAM simulations.5,6

For the free-expansion problem, it is straightforward to
choose the initial particle coordinates (a square grid is fine).
By introducing small random offsets—equivalent to small
initial random particle velocities—the square symmetry of
the grid can be broken. In the simulations, we choose the
smooth-particle mass and initial density both equal to unity
and use the isentropic equation of state

. 

With these choices the equation of motion (Equation 13)
becomes

. (20)

Equation 20 is the smooth-particle representation of an
Euler fluid with the polytropic equation of state P ∝ ρ2. The
weight function w plays the role of a pair potential, and the

heat flux vector vanishes. Thus the smooth-particle rep-
resentation of a special ideal gas isentrope gives particle tra-
jectories identical to those of molecular dynamics. The
reader should be able to show that the continuity equation
(Equation 1) and the energy equation (Equation 14) both
lead to the same result:

. (21)

Because these two continuum equations are simultaneously
satisfied by the density definition (Equation 4), we do not
need to integrate the energy equation. Figure 2 shows snap-
shots of the particle motion during the free-expansion simu-
lation. The underlying equations of motion have simple cu-
bic forces derived from the weight function given in Equation
6. The range h of the weight function w was chosen to be
equal to six times the initial square-lattice nearest-neighbor
spacing of unity. The density contours—equivalent to inter-
nal energy contours—and the kinetic energy contours shown
in Figure 2 were computed with the smooth-particle defini-
tions. The smooth-particle approach captures velocity fluc-
tuations in the flow, through the difference of 〈v〉2 and 〈v2〉 at
each point.
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Figure 2. The top row shows snapshots of 16,384 smooth particles undergoing free expansion. The time τ is that required for a
sound wave to travel across the system. The second and third rows show contours of density and kinetic energy, respectively.
Above-average values are indicated by white; below-average values are indicated by black.

τ/8 τ/4 τ/2 τ 2τ

ρ(τ/8) ρ(τ/4) ρ(τ/2) ρ(τ) ρ(2τ)

Κ(τ /8) Κ(τ /4) Κ(τ /2) Κ(τ) Κ(2τ)



MARCH/APRIL 2001 83

The velocity fluctuations are crucial to an understanding
of the entropy increase in this problem. In equilibrium s, the
entropy density (per unit volume) for a 2D ideal gas is equal
to −k(ρ/m) ln (e/ρ), where k is Boltzmann’s constant. In the
nonequilibrium case considered here, the local velocity fluc-
tuations, relative to the mean flow, must be included in the
local internal energy. The smooth-particle approach gives
these fluctuations—absent in the usual grid-based ap-
proaches—at every point. The nonequilibrium entropy den-
sity, including this local kinetic energy density due to fluc-
tuations, is5,6

. (22)

The total entropy for the smooth particles can be evaluated
in either of two ways: by integrating this expression over a
regular grid spanning the system, or by summing up the in-
dividual particle contributions. The two methods agree
quite well (see Figure 3). In only a little more than the time
required for sound to travel across the system, both the re-
sulting integral and the corresponding sum reproduce the

expected increase of the entropy as predicted from statisti-
cal mechanics, ∆S = Nk ln 4.

The results shown in Figures 2 and 3 were computed with
periodic boundary conditions. Mirror boundary conditions,
applied as illustrated in Figure 4, are another possibility and
lead to very similar results. With mirror boundaries, each
particle near, but inside, the boundary (within the range h)
produces an image particle outside the boundary, to which
boundary values of velocity and energy per unit mass can be
attributed. The treatment of problems in which the location
of the boundary is unknown (as in the surf near a beach or
the formation of a crack or tear) is a challenging research
area for smooth particles. Now that parallel processing with
thousands of processors is a reality, some of the difficulties
in treating boundaries are being alleviated by more com-
puter power.

Although the example discussed here involves identical
particles with equal masses and the same weight function,
there are circumstances that justify the extra work of a more
general treatment.2 It is relatively easy to use a position-
dependent particle size, with h depending upon the local
density. A more sophisticated treatment introduces ellip-
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Figure 3. The entropy increase with time
for systems of increasing numbers of
smooth particles. The abscissas correspond
to two sound traversal times. The ordinates
correspond to entropy increase and range
from 0 to Nk ln 4. The lower full curve and
the dotted curve indicate the entropy
summation and integration calculations
discussed in the text. The entropy is
essentially unchanged until the expanding
gas reaches the system boundary. An
entropy based on the full kinetic energy
density ρv2 rather than the fluctuation
leads to a substantial error and is shown
in the upper full curve.
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soidal particles, with the principal-axis lengths depending
on the density gradient.

An underlying set of smooth particles makes it possible to
evaluate field variables on a regular grid, not just at the par-
ticle locations. This flexibility is particularly advantageous
if a rectangular mesh is required, as is the case for some
graphics programs and for computing fast Fourier trans-
forms of the field variables.

Rezoning can be accomplished easily with smooth parti-
cles. In the event that more detail is required in a particular
region, a particle can be replaced by two or more smaller
ones, choosing the new masses, velocities, and energies so
as to conserve mass, momentum, and energy. Similarly, if a
region has too many particles, two can be combined into a
more massive and energetic single particle. The method can
be extended in many ways to treat special situations. Chem-
ical reactions can be introduced. Electromagnetic fields can
be included by using tree techniques to evaluate the effect
of long-range forces. As is usually the case, the major ad-
vances in numerical simulation methods have resulted from
the desire to simulate challenging problems.
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Figure 4. Mirror
boundaries are
shown at the top
and bottom of this
fluid convection
simulation. Each
bulk particle within
the range h of the
top or bottom
boundary is 
mirrored by an
image particle, 
outside the bulk
system. The
velocities and 
energies of the
mirror particles are
all specified by the
boundary conditions
that, along with
gravity, drive the
flow.

Suggestions for Further Study

1. In one dimension Lucy’s1 choice of the weight function,
w(x) =c[1 + 3|x/h|][1 − |x/h|]3, is nonzero over the interval
|x| < h. Find the value of the normalization constant c. Use
this weight function to simulate the twofold expansion
problem in one dimension. The free expansion problem of
a 1D ideal gas, with p = ρe = ρ3/3, should give an entropy
increase of Nk ln 2 for a twofold expansion.

2. Plot ∇ w and ∇ 2w in one, two, and three dimensions, where
w is given by Equation 6 in the main text. Note the similari-
ties of the derivatives to derivatives of a Gaussian function.

3. Consider a 1D system (with equally spaced particles) and
a 2D system (using a square particle grid), and find the
maximum and minimum values of the density using Lucy’s
choice of w with 10 equally spaced choices of the range 
1.5 ≤ h ≤ 6.0. Note that the fluctuations in the density can be
made relatively small by using modest values of the range.

4. Simulate the fourfold expansion problem using 100
smooth particles expanding from an area of 25 to an area
of 100. How would the elapsed computer time vary with
the number of particles? What is the maximum number of
particles that could be considered with a petaflops com-
puter (1015 floating-point operations per second)?

Reference
1. L. Lucy, “A Numerical Approach to Testing the Fission Hypothesis,”

Astronomical J., vol. 82, Dec. 1977, pp. 1013–1024.



MARCH/APRIL 2001

References
1. L. Lucy, “A Numerical Approach to Testing the Fission Hypothesis,” As-

tronomical J., vol. 82, Dec. 1977, pp. 1013–1024.

2. J. Monaghan, “Smoothed Particle Hydrodynamics,” Ann. Rev. Astronomy
and Astrophysics, vol. 30, 1992, pp. 543–574.

3. F. Vesely, Computational Physics: An Introduction, Plenum, New York,
1994.

4. W.G. Hoover, Time Reversibility, Computer Simulation, and Chaos, World
Scientific, Singapore, 1999.

5. W.G. Hoover et al., “Computer Simulation of Irreversible Expansions via
Molecular Dynamics, Smooth Particle Applied Mechanics, Eulerian, and
Lagrangian Continuum Mechanics,” J. Statistical Physics, vol. 100, nos.
1–2, July 2000, pp. 313–326.

6. W.G. Hoover and H.A. Posch, “Entropy Increase in Confined Free Ex-
pansions via Molecular Dynamics and Smooth-Particle Applied Mechan-
ics,” Physical Rev. E, vol. 59, no. 2, Feb. 1999, pp. 1770–1776.

William G. Hoover is Professor Emeritus at the University of California,

Davis, Department of Applied Science at Livermore

and is a participating guest in Lawrence Livermore

National Laboratory’s Methods Development

Group. He has published over 200 articles dealing

with computer simulation and three books: Molecu-

lar Dynamics (Springer-Verlag, 1985), Computational

Statistical Mechanics (Elsevier, 1991), and Time Re-

versibility, Computer Simulation, and Chaos (World

Scientific, 1999). He received his PhD in chemistry from the University

of Michigan. Contact him at LLNL, L-794, Livermore, CA 94551-7808;

hoover3@llnl.gov.

Carol G. Hoover leads the Methods Development Group, Department of

Mechanical Engineering, at Lawrence Livermore Na-

tional Laboratory. The group focuses on the develop-

ment of Lagrangian finite-element continuum meth-

ods to model fluids and solids. Her main responsibility

is the 3D parallel simulation code ParaDyn. She ob-

tained her PhD in applied science from the University

of California, Davis/Livermore. Contact her at LLNL, 

L-125, Livermore, CA 94551-7808; hoover1@llnl.gov.

How to
Reach CiSE

Writers

For detailed information on
submitting articles, write to 
cise@computer.org or visit 
computer.org/cise/edguide.htm.

Letters to the Editors

Send letters to

Jenny Ferrero, Contact Editor
jferrero@computer.org

Please provide an e-mail address or
daytime phone number with your
letter.

On the Web

Access computer.org/cise or
ojps.aip.org/cise for information
about CiSE.

Subscription Change of Address
(IEEE/CS)

Send change-of-address requests for
magazine subscriptions to address.
change@ieee.org. Be sure to spec-
ify CiSE.

Subscription Change of Address
(AIP)

Send general subscription and
refund inquiries to subs@aip.org.

Subscribe

Visit ojps.aip.org/cise/subscrib.html 
or computer.org/subscribe.

Missing or Damaged Copies

If you are missing an issue or you
received a damaged copy, contact 
membership@computer.org.

Reprints of Articles

For price information or to order
reprints, send e-mail to cise@
computer.org or fax +1 714 821
4010.

Reprint Permission

To obtain permission to reprint an
article, contact William Hagen,
IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.


