
888 IEEE TRANSACTIONS ON ULTRASOSICS, FERROELECTRICS, AND FREQUESCY CONTROL, VOL. 16. so. 4. JL-LI- 1999

Time Synchronization over the Internet Using
an Adaptive Frequency-Locked Loop

Judah Levine

Abstract-This paper describes the operation of an algo-
rithm for synchronizing the time of computers using mes-
sages transmitted over packet-switched networks such as
the Internet. The algorithm configures itself to realize any
specified performance level at minimum cost (measured in
computer cycles or network bandwidth). If the highest pos-
sible accuracy is requested, the performance will be limited
by the larger of the instability of the local clock oscillator
or the noise in the measurement process between the client
and the server; I have obtained uncertainties of about 8 ms
RMS using standard workstations and average network con-
nections. Lower accuracy can be realized at substantially
lower cost because the cost varies approximately as the in-
verse of the accuracy squared over a wide range of these
parameters. The algorithm makes better use of scarce net-
work bandwidth than previous methods. This improvement
is realized by using a pure frequency-locked loop (rather
than mixed frequency/phase locking algorithms currently
proposed for the NTP) with unequal spacing between cal-
ibration cycles. The result is a cleaner separation between
network noise and clock noise, which is especially important
when the highest possible accuracy is desired. In addition,
the algorithm is an improvement over the pure-FLL “Inter-
lock” algorithm that I described previously because it is self
configuring. In addition to supporting an explicit trade-off
between cost and accuracy, the algorithm provides better
performance than previous methods because it is better
able to adapt itself to fluctuations in the asymmetry of the
network delay. This robustness can be realized without the
preliminary tuning that was necessary to realize optimum
performance using previous methods.

I. INTRODUCTION

HIS PAPER discusses a method for synchronizing the T clock of a client computer using messages transmitted
over the Internet from a remote server. The design prin-
ciples would also be appropriate for other types of con-
nections between the client and the server, provided only
that the delay through the network connecting them is
symmetrical on average.

The work was motivated by two observations: the load
on the network time servers operated by the National In-
stitute of Standards and Technology (NIST) has been in-
creasing at an average rate of 7% per month for several
years with no sign that this rate of increase is slowing,
and there are many indications that a significant fraction

Manuscript received May 22, 1998; accepted November 21, 1998.
This work was supported in part by the National Science Foundation
through grants NCR-9115055 and NCR-9416663 to the University of
Colorado. We gratefully acknowledge this support.

The author is with JILA and Time and Frequency Division, Na-
tional Institute of Standards and Technology and University of Col-
orado, Boulder, CO 80303.

(perhaps even a large majority) of the users of NIST digital
time and frequency services do not need the millisecond-
level accuracy that these services can support. Therefore.
I set out to design an algorithm that would support an ex-
plicit trade-off between the synchronization accuracy that
could be achieved using the procedure and the cost of real-
izing it (the cost is proportional to the average number of
calibration requests generated by each client system). Such
an explicit trade-off is not present in any of the other algo-
rithms of which I know. As I will show subsequently, the
relationship between accuracy and cost is approximately
quadratic so that a modest relaxation in the accuracy re-
quirement (to 100 ms RMS, for example) would be accom-
panied by a decrease of more than two orders of magnitude
in the average cost of realizing it. The result would be to
continue to provide adequate support to our clients while
significantly extending the useful life of the existing time
servers. At the same time, the underlying capability of the
algorithm would not be compromised, so that those users
who needed millisecond-level accuracy could achieve it us-
ing the same software.

A number of other algorithms for synchronizing clocks
in this environment have been published [1]-[6]. Each of
these uses a different metric for evaluating the perfor-
mance of the algorithm and for deciding what is meant
by optimum operation. Some algorithms. for example. are
designed to guarantee an upper bound on the absolute
value of the time error of the client [4], [5] . To realize this
objective. they must make relatively frequent requests to
servers that are close by (in a network delay sense) because
the error caused by an asymmetry in the network dela>- is
bounded by one-half of the round-trip value. Supporting
this density of servers may be quite expensive in practice.
especially as the Internet becomes more crowded so that
the average delay between any two points increases. Other
algorithms place very strong emphasis on dealing lvith un-
reliable servers or with frequent large fluctuations in the
network delay or in its asymmetry [l], [3] . They realize
these objectives by querying a number of servers on each
calibration cycle and then by choosing the winner based
on various criteria.

We argue that all algorithms with these kinds of goals
are relatively expensive from the point of view of the num-
ber of servers that they require to realize their design goals.
The reason is that the average operating cost (measured
in terms of the number of calibration requests that are
generated by a client) is driven by the desire to limit the
maximum time error or to detect server failures, which
should be relatively rare events. Although this machinery

U.S. Government work not protected by U.S. copyright.

LEVINE: TIME SYNCHRONIZATION OVER THE INTERNET 889

undoubtedly improves the worst-case performance of a sys-
tem synchronized in these ways, it may have little impact
on the RMS time accuracy of a typical client.

Our previous Internet-based algorithm [3] and the
method that we describe here use the RMS time offset
of the clock in the client as the measure of performance,
and they are designed to maximize the ratio of this RMS
performance to the average cost (measured in terms of the
load on the servers and the network). This optimization
can be implemented either by finding the best performance
that can be achieved at a fixed cost or by minimizing the
cost for a given level of performance. As we will show sub-
sequently, the relationship between cost and performance
is not linear-incremental improvements in performance
become increasingly expensive to achieve. Some levels of
performance may not be achievable at any cost in the given
environment because the frequency of the local clock is
too unstable to support the amount of averaging that is
required to cope with a noisy communications channel.

A . Synchronizing the Local Clock

All synchronization algorithms start from the same ba-
sic data-the measured time difference between the local
machine and the distant server and the network portion of
the round-trip delay between the two systems. (Delays in
the distant server are usually not a problem. Either they
are small enough to be ignored or they are measured by
the server and removed by the client.) These data are pro-
cessed to develop a correction to the reading of the local
clock. The usual approach is to use the measured time
difference after it has been corrected by subtracting one-
half of the round-trip delay. This model is based on the
assumption that the transmission delay through the net-
work is symmetrical SO that the one-way delay is one-half
of the measured round-trip value. This corrected value may
be used to discipline the local clock directly or it may be
combined with similar data from other servers to detect
outliers or to compute a weighted average time difference,
which is then used to steer the local clock.

These steering corrections generally take two forms:
time steps, which adjust the local clock by a fixed amount
essentially instantaneously, and frequency steps, which ad-
just the effective frequency of the local clock oscillator and
thereby slew the time relatively slowly. Frequency steps
are usually realized by adjusting the size of the software
tick-the amount added to the clock register in response
to periodic interrupts from the physical clock oscillator.
The frequency of the hardware oscillator itself is usually
not accessible to software control.

Time steps, especially those that move the clock back-
wards in time, can cause unwanted side effects in other pro-
grams, and their use is usually limited to setting the clock
during an initial start up of the system. Frequency steps
are the preferred means of adjustment, although they can
have problems too. The minimum frequency adjustment
that can be applied simply is to change the size of the tick

by one least count. The resulting change in frequency is
one least count per hardware interrupt, which is a frac-
tional change of about lop3 for most systems. This value
is much too large. The actual frequency offset is likely to
be one-tenth of this value or less, and the precision with
which this offset can be determined is even greater.

In practice, frequency steering generally requires a res-
olution of at least 5 x lov8 if the granularity of steering
corrections is not to degrade the frequency stability of the
clock oscillator [2, Fig. 11. This level of frequency adjust-
ment is usually implemented in two ways: either the kernel
is modified to allow static frequency adjustments that are
smaller than one least count per hardware interrupt to be
specified or the larger, standard frequency offset is used
periodically with the ratio of the on interval to the off
interval determined so that the average frequency offset
corresponds to the estimate derived from the time differ-
ence measurements. The first method has the advantage
that the resulting time adjustment is smoother, but it re-
quires access to the kernel source code. The second method
is more general and can be applied to almost any system,
but it results in a sawtooth-like variation in the time of
the local clock with respect to the distant server. The am-
plitude of this sawtooth is a function of the system design,
but it can be as large as a full tick (i.e., on the order of mil-
liseconds) in some implementations. The first method (i.e.,
modifying the kernel) is the best choice if it can be imple-
mented in the client configuration, and it is the method
that we use to keep our servers on time.

The maximum frequency offset that is required is usu-
ally on the order of seconds per day, which is a fractional
frequency offset of about 5 x The dynamic range re-
quired in the frequency steering loop is thus about 1OOO:l .
This requirement is usually not a problem, and almost any
method that can provide the required resolution can also
satisfy the dynamic range requirement in steady-state op-
eration. The maximum fractional frequency offset that is
supported by the standard kernel of most systems is about
4 x so that it is not practical to remove time offsets
of more than a second or so using this method because it
would take too long. The clock is usually set initially using
a single time step for this reason.

B. Effects of Measurement Noise

Individual time difference measurements are likely to
have a substantial uncertainty because of the noise in the
measurement process itself. This noise arises from many
sources-from fluctuations in the response time of the lo-
cal operating system to interrupts, from jitter in the delay
through the network or the interface hardware, and from
other hardware-related causes. Whatever the cause, this
noise is not associated with the frequency of the clock os-
cillator. Using the time differences themselves to set the
local clock directly is therefore not a great idea-no mat-
ter how the adjustment is performed. Doing this would
convert the phase noise of the measurement process into

890 IEEE TRANSACTIONS OS ULTRASONICS, FERROELECTRICS. LYD F R E Q I E \ C I CO\TROL, VOL 46, NO 4. JLL\ 1999

frequency noise in the clock. The only reason for doing
this might be simplicity. A procedure that sets the clock
to the time received from the server would be simple to
implement and would not have to run continuously as a
background or daemon process. The price for this simplic-
ity is that the performance of the local clock oscillator is
degraded.

The contributions to the noise in the measurement pro-
cess vary very rapidly with time, and consecutive measure-
ments for which the interval between them is long com-
pared with the characteristic period of the variations will
be affected by noise that is almost completely uncorrelated
both with the value on the previous measurement and with
the underlying frequency of the clock oscillator. The spec-
trum of these variations is therefore approximately white,
and averaging closely spaced time interval measurements
results in an estimate that converges to the underlying
mean value of the time difference, provided only that the
measurements are made quickly enough so that the pa-
rameters of the oscillator have not changed.

It is usually easy to satisfy both of these time require-
ments. The characteristic period of the hardware is on the
order of microseconds or less, so that even measurements
made a few seconds apart are affected by very different
noise environments. On the other hand, the time disper-
sion caused by the fluctuations in the frequency of the
oscillator is usually negligible on this time scale.

However, the averaging process cannot be continued in-
definitely. It will only do the right thing as long as the
spectrum of the fluctuations in the data can be charac-
terized as predominantly white phase noise. The range of
averaging times over which this is true is usually pretty
small for typical computer clocks, and the nonstationary
statistics of the delay in a typical Internet path further
restrict the averaging times over which this is an appro-
priate strategy. The result is that algorithms that develop
a correction based on the average measured time differ-
ence are likely to be useful only in local area networks and
with a relatively short interval between calibration cycles
(on the order of 1000 s or less). This argument is partic-
ularly relevant to algorithms that use a pure phase-lock
loop to discipline the local clock [4], and it explains why
algorithms based on frequency loops tend to achieve com-
parable synchronization at much lower cost [a], [3].

It is not always easy to detect the effects of too much
averaging, that is averaging for a time interval that ex-
ceeds the domain in which the noise is dominated by white
phase noise. The average time difference still exists in this
domain, but it is no longer a stationary quantity. The syn-
chronization loop appears to be operating normally, but it
is, in fact, increasingly dominated by flicker (and, at suf-
ficiently long averaging times by random-walk) processes
[a, Fig. 91.

Algorithms that operate by stabilizing the frequency of
the local clock (as opposed to its time) have an easier job,
in principle. These algorithms can operate at much longer
averaging times when white phase noise is no longer the
main problem, and the performance is limited by the fre-

quency stability of the local clock. It turns out that clock
oscillators in man) computer workstations are surprisingl?
good. Many of them hale Allan deviations of less than
l0W7 at averaging times of lo4 s, so that they have a free-
running time stability of better than 1 ms RMS [a, Figs. 1
and 31. One way of realizing this stability is to average the
individual time differences for a time that is well within
the domain in which white phase noise dominates the noise
spectrum and to then switch to averaging the frequency
(that is. the first difference of these time differences) as
long as the noise process can still be characterized by
white frequency noise. For the oscillators typically found
in computer hardware, this extends the averaging interval
to about 15,000 s. The details of the design will depend on
the stability of the local oscillator and on the noise in the
network link to the server. However, a design configured
for the highest possible accuracy would involve averaging
time difference measurements over a period of a few sec-
onds combined with averaging the frequency for a period
of a few hours. This strategy is not equivalent to using the
same number of measurements that are equally spaced in
time. even though the average load on the servers would be
the same in both cases [3]. The time between calibration
cycles is often called the poll interval, and the argument
presented here suggests that the average poll interval does
not completely specify the performance capability of the
procedure-that grouping the calibration requests makes a
better use of the available resources than simply uniformly
spreading them out.

Frequency-locked loops are not better or more accurate
than those based on phase-locking techniques-they are
advantageous because they are almost always cheaper to
operate for essentially the same performance. This is true
because the high level of measurement noise over the In-
ternet means that the local clock is usually more stable at
short times than the distant server seen through the noisy
Internet. A frequency-locked loop can better exploit this
stability by longer averaging and, therefore, can be config-
ured with longer intervals between the calibration cycles
than the corresponding phase lock. Although neither de-
sign is a priori more sensitive to glitches, the longer interval
between calibration cycles in a frequency loop and its cor-
respondinglj- longer time constants suggest that a glitch is
likely to persist for a longer time in that design before it
is detected and removed.

C. Details of the Method

The algorithm design is based on the principle of sep-
aration of variance-that is it is possible to separate the
contributions of the clock and the measurement process
using statistical techniques. A second implicit assumption
is that the variances of both the measurement process and
the clock frequency can be modeled using stochastic pa-
rameters. These turn out to be good approximations to the
performance of real hardware over a wide range of oper-
ating parameters, although the second assumption tends

LEVINE: TIME SYNCHRONIZATION OVER THE INTERNET 891

to break down at averaging times approaching one day.
To achieve this separation, the program evaluates the fol-
lowing two statistics after each calibration cycle has been
completed:

$1. The standard deviation of a group of closely spaced
time difference measurements that are made quickly
enough so that the parameters of the local clock have not
changed significantly while they are being made. As we
discussed previously, this requirement is easily satisfied if
the ensemble of measurements is completed within a few
seconds.

S-2. The error in predicting the currently observed av-
erage time difference using the previously measured value
and the estimated frequency offset. This prediction is done
using a simple linear relationship:

& = X i - 1 -k &-IT, (1)

where xi is the time difference measured at time ti, yi is the
frequency difference between the local clock and the server
estimated at the same time, and T is the time interval from
t i - 1 to ti. We use (1) to predict the time difference; the
error in prediction on this cycle is the difference between
the predicted and measured values:

E i = [X i -Pi[. (2)

Both statistics are maintained in two versions: the value
determined in the current calibration cycle and a sliding
average over the most recent 12 hours or three calibration
cycles, whichever is longer.

The first statistic is sensitive primarily to the phase
noise in the measurement process. The program first com-
pares the average value of this parameter with the desired
level of performance that was specified by the operator
when the software was installed. The number of measure-
ments in each group is adjusted once per day until the two
are roughly equal-the size of the group is increased if the
RMS of the mean is larger than the requested accuracy
and decreased if the mean is much better than necessary.
Assuming that the measurement noise is approximately
white phase noise, the RMS value of the mean of a group
of measurements varies as the square root of the size of
the group. The specified performance level, therefore, has
a quadratic effect on the cost of the algorithm. In the limit,
it may not be possible to achieve the desired level of per-
formance with a reasonably sized group (less than 25 or 50
members). The program defaults to a specified maximum
group size in this case. Likewise, the program will never
decrease the size of a group below a defined minimum size
(usually three) no matter how small the RMS becomes.

The RMS of the group of time differences sets an u p
per bound to the RMS performance of the synchronization
loop at longer averaging times. No matter how stable its
frequency is, on the average, the local clock cannot be set
(in time) more accurately than this RMS value, and the
subsequent algorithm can do no better than remember this
adjustment without further degradation. This RMS value
may be as small as 75 to 100 ps when the server and the

client are on the same network but is more typically on the
order of milliseconds for a continental length path. This
limit is independent of the details of the synchronization
procedure.

If the standard deviation of the current group of time
differences is much larger than the average, the most likely
reason is that it is due to jitter in the symmetry of the
network delay during the time that the group of measure-
ments was being made. Although the measurements are
made rapidly enough that the parameters of the local and
remote clocks have not changed, the same cannot be said of
the network (The magnitude of the delay is not a problem
because it is measured on each cycle-only its asymmetry
causes trouble.) The algorithm will drop a single member
of the group as an outlier if doing so will reduce the stan-
dard deviation to a more reasonable value (i.e., one that is
consistent with the average over the previous observations)
and will try to repeat the entire group if dropping a single
value will not fix the problem. The assumption that un-
derlies this procedure is that asymmetries in the network
delay are transient effects. Small asymmetries will be av-
eraged by multiple measurements, and large ones will be
short-lived and detected as outliers.

This method will fail if the path from the client to the
server has a static asymmetry, which will bias the results
but will not contribute to the variance of the group of
measurements. The offset caused by this asymmetry is
bounded by one-half of the round-trip delay, so that, at
the instant of synchronization, the time difference between
the client and the server is guaranteed to be less than the
sum of the measured time difference and one-half of the
round-trip delay. This may be good enough for some pur-
poses, but, as we will show, this guarantee becomes weaker
with time because of stochastic frequency variations in the
clock oscillator.

It is sometimes possible to detect a static asymmetry by
requesting timing data from a second server, but the two
data sets are likely to disagree consistently in this case,
and it may not be possible to decide where the problem
lies. In particular, if the local clock is synchronized initially
to a server via a path that has a static asymmetry, then
data from a second server received via a more symmetric
path may be rejected as coming from a machine that is
thought to be broken.

Under normal, steady-state operating conditions, the
magnitude of the second statistic is sensitive primarily to
the frequency stability of the local clock, and its aver-
age value is proportional to the value of the Allan devi-
ation for an averaging time equal to the time interval be-
tween calibration cycles. This magnitude is affected by two
parameters-the time interval between calibrations and
the time constant of the frequency update loop [2, eq. (3)].

The time constant of the frequency update loop rep-
resents the optimum averaging time for the frequency es-
timates, assuming that the process can be analyzed sta-
tisticallyl. Averaging for a shorter time interval does not
optimally attenuate the white frequency noise of the os-
cillator. Averaging for a longer time results in an average

892 IEEE TRANSACTIOX ON ULTRASONICS, FERROELECTRICS. AYD FREQL-ESCY CONTROL. VOL. 46, NO. 4, JULY 1999

that exists in a formal sense but is no longer stationary
because the procedure has entered the flicker and random-
walk portions of the spectrum. This time constant is pri-
marily a function of the design of the oscillator, and it
needs to be determined only once when the algorithm is
started for the first time. It is measured as part of the
cold-start portion of the algorithm by evaluating the Al-
lan deviation as a function of lag when the local clock is
free running. This parameter is usually on the order of
10,000 to 20,000 s, so that this initial evaluation process
to determine it usually takes somewhat less than 1 day.
(To have confidence in the Allan deviation estimates, it is
usual to compute the deviation using a time series that is
at least three times longer than the longest lag that is of
interest .)

Once the algorithm is running in steady state, the aver-
age value of the statistic S-2 and the desired performance
level are used to adjust the interval between calibration
cycles. If the average prediction error is much larger than
the measurement noise (i. e., statistic S-2 >> statistic S-
1) then the prediction error is due to stochastic frequency
fluctuations in the local oscillator. If the prediction error
is larger than the desired level of performance, then the
time between calibration cycles is too long-t he frequency
stability of the oscillator is not good enough to support
free running for that time interval, and more frequent cal-
ibrations are necessary. If the prediction error is not larger
than the desired level of performance, then there is no
need to have more frequent calibrations, even though the
performance would be improved by doing so.

If the prediction error is much smaller than the mea-
surement noise, then the calibration interval is unambigu-
ously too small-the frequency stability of the oscillator
would support the same level of stability with less fre-
quent calibrations and the extra ones are essentially being
wasted. The interval between calibrations can be increased
in this case with minimal impact on the performance of the
loop. The only reason for not doing so would be a concern
about outlier detection, and the user can specify an ab-
solute maximum interval between calibrations if this is a
concern.

The relationship between the performance of the loop
and the interval between calibrations can be calculated if
the noise type is known. This relationship tends to make
predictions that are too optimistic when the averaging
t i m e exceeds a few hours-the performance tends to de-

lThe primary assumption in any statistical analysis is that the
data are stationary-that is that the properties of the data set have
no dependence on time. This assumption usually fails primarily be-
cause of a sensitivity of the oscillator frequency to fluctuations in the
ambient temperature. This sensitivity introduces diurnal and other
longer-period coherent frequency variations. These fluctuations could
be dealt with by measuring the local temperature and using these
data to model the performance of the oscillator, but most installa-
tions do not have the hardware needed to make these temperature
measurements. These temperature-induced fluctuations are impor-
tant for systems that are designed to realize time with millisecond-
level accuracy, and the usual method of dealing with these effects is
to limit the poll interval t o about 8 hours maximum. These effects
are usually ignored in lower accuracy applications.

grade faster than predicted as the time between calibration
cycles is increased in that domain. There are two reasons
for this. The first is that when the interval between cal-
ibration cycles becomes longer than the time constant of
the frequency update loop, then that time constant is ef-
fectively forced to a value that is larger than optimum. In
other words. the distribution of the prediction errors cal-
culated using (2) become increasingly dominated by flicker
and random-walk processes, and these errors are effectively
fed back into the synchronization loop. The second reason
is that at longer periods the frequency of the oscillator
begins to be driven by nonstochastic effects such as fluc-
tuations in the ambient temperature. These fluctuations
are in addition to the increase in the stochastic level of the
frequency variations. Temperature fluctuations in a typical
office environment may pull the frequency of the oscilla-
tor by up to 1 ppm with a period ranging from several
hours to 1 day. Those frequency variations are larger than
predictions based on a smooth extrapolation of the Allan
deviation from its value at shorter periods.

D. Parameter Update

If the statistical comparisons indicate that the current
time differences are consistent with the past performance,
then the current data are used to update the parameters
of the procedure. These include the average values of both
statistics and the average frequency of the oscillator. This
average frequency is used to steer the local clock using
one of the methods described previosly-either it is trans-
mitted directly to the kernel or it is used to schedule small
periodic time adjustments that realize the computed offset
frequency on the average. The details of these adjustment
procedures are more fully discussed in [a] .

E. Error Detection

A comparison of the values for each of the two statistics
found on the current cycle with the corresponding average
values can be used to detect many kinds of problems. We
have already discussed this point previously with regard
to the standard deviation of the group of time difference
measurements, which can be used to detect jitter in the
symmetry of the network delay. Likewise, this standard
deviation is a measure of how well closely spaced time
differences received from two different servers should be
expected to agree.

If the tests based on the first statistic are okay, but
the prediction error on this cycle is much larger than the
value expected based on the average of this parameter, the
software attempts to determine the cause of this apparent
change in performance. (This test is significant only if the
algorithm is operating in steady state. If, based on the
procedures outlined previously, the interval between cali-
brations has just been increased, then an increase in the
prediction error is to be expected, and a comparison with
the average value is not appropriate until the average value

LEVINE: TIME SYNCHRONIZATION OVER THE INTERNET 893

comes to equilibrium at this increased time interval.) The
software conducts a number of tests in the following order:

The simplest possibility is that the change is due to
a temporary change in the symmetry of the network
delay (because of congestion, for example). The pro-
gram repeats the entire measurement protocol several
times to see if the prediction error is improved on sub-
sequent attempts. These repeated measurements are
made to the same server. This procedure removes the
discrepancy about 60% of the time after a single retry
and about 80% of the time after a second one. This
statistic differs in an important way from the clock fil-
ter procedure used in NTP and described in [4]. This
test (and the ones described subsequently) are only
activated when the initial tests based on the compar-
ison of data from a single server with the local clock
indicate that there may be a problem. The NTP pro-
cedure normally polls every server every time. This is
a difference of principle as well as of implementation.
The point is that the local clock should contribute to
the data based on its statistics, and simply comparing
the measurements made using a number of external
servers does not do this in an optimum fashion.
If the error persists then (and only then) the program
queries an alternate server and uses majority voting to
decide if the problem is in the first server or in the l e
cal clock. (A network problem that is common to both
servers will be considered-incorrectly-as a problem
in the local clock, and the second server should be cho-
sen to minimize the probability of this happening.)
Note that the time of the local clock contributes to
this comparison based on its expected stability as es-
timated by its Allan deviation. If the two servers agree
(to within the phase noise of the measurement process
as estimated by S-l), then the local clock has expe-
rienced a change in its characteristics. The response
to this conclusion is outlined subsequently. If the data
from the second server indicate that the first server
is broken (or its path delay is significantly asymmet-
ric), then the two interchange roles, and the alternate
server becomes the primary one for the next 24 hours.
The program tries to switch back to the first server
at that point, and does so if its data satisfy the tests
described previously.
If the problem cannot be resolved in the second step
(i.e., if the time differences between both servers are
not consistent with the expected prediction error and
if the data from the two servers are not mutually con-
sistent either) then either the problem cannot be as-
signed to one cause or our expectations based on the
previous average performance are too optimistic. The
operating parameters are not modified, and the pro-
gram waits a short time and tries again. This can h a p
pen if the network is very congested or if the path to
one or both of the servers has a significant static asym-
metry. The program will use a third server in an anal-
ogous manner if one is defined. If only two servers are

specified (or if data from a third server fails to resolve
the question), the program increases the average vari-
ances and goes into holdover mode. The holdover per-
formance preserves the last estimate of the frequency
offset of the local clock and continues to steer it in fre-
quency based on that estimate. It makes no changes
to its time. The clock accuracy will be limited by the
flicker and random-walk frequency fluctuations of its
oscillator. The time dispersion caused by these fluctu-
ations depends on the quality of the oscillator; typical
values for the Allan deviation of the frequency are on
the order of lop6 at 1 day, which would result in a time
dispersion of 50 to 100 ms. If the problem is due to a
transient degradation of the network, then it will prob-
ably disappear on the next cycle; if it is due to a more
permanent degradation of its characteristics, then the
synchronization procedure will slowly learn this by re-
peated increases in the average variances that form the
basis for all of the tests that we have described.

The threshold for deciding that the current estimate
of a statistic is much larger than the average value is set
based on the usual compromise between the need to main-
tain adequate sensitivity to problems and the desire not
to be overly sensitive to the statistical fluctuations in the
amplitude of the noise. We have used a threshold of three
times the standard deviation in all of our experiments. If
the underlying statistics of the processes were Gaussian,
a threshold of three times the standard deviation should
cause the measurements to trigger these error tests about
1% of the time in normal operation. In fact, the data are
not Gaussian, and the tests are triggered in about 10% of
the calibration cycles. These outliers are often quite large
so that the algorithm is not sensitive to the exact value
used for the threshold. (The use of additional data about
10% of the time should be compared with other algorithms
that use additional data on every poll cycle.)

F. Error Modeling

The most common cause of an error in older systems
was a time step caused by a lost interrupt. These were easy
to detect because the prediction error was very close to an
integral number of systems ticks. This problem is usually
not important in newer systems, for which a large predic-
tion error is usually due to a significant secular change in
the frequency of the clock oscillator. As we suggested ear-
lier, the usual cause of this frequency drift is a change in
the ambient temperature, although a change in line volt-
age may also contribute to a lesser extent. The relationship
between ambient temperature and oscillator frequency is
complicated because it depends both on the temperature
and on its spatial gradient. Attempting to correct the os-
cillator frequency based on temperature measurements is
too complex for most installations and is not a very prof-
itable strategy in any case. The best strategy is to limit
both the time constant for the frequency update loop and
the maximum interval between calibration cycles so that
these temperature-induced frequency variations are mod-

894 IEEE TRANSACTIONS os ULTRASONICS, FERROELECTRICS; AKD FREQCESCY COSTROL, VOL. 46, NO. 4. JULY 1999

eled as deterministic effects by the frequency estimator
and removed. In other words, the parameters of the loop
must be short enough so that these temperature-induced
effects are treated as real frequency changes rather than
as stochastic effects that should be averaged without ap-
preciably changing the loop parameters.

G. Synchronization Experiment

To test these ideas, we conducted two synchronization
experiments. The first was designed to synchronize the lo-
cal clock as accurately as possible and to find out what
accuracy could be achieved and how expensive it would be
to realize it. The second experiment was designed to syn-
chronize the same clock so that it was correct only to the
nearest second using the same servers and network path as
in the first experiment. The goal was to see how much this
relaxation in accuracy would save in the operating costs.

In both experiments, we synchronized the clock of a
computer that was located in our laboratory in Boulder,
Colorado to a server on the West Coast in Redmond,
Washington and one on the East Coast in Gaithersburg,
Maryland. The time of the local clock was also measured
using diagnostics derived from other systems in Boulder,
but these diagnostics were for information only and were
not used to discipline the clock. The server in Redmond
was the primary one; the one on the East Coast was only
used as part of the error evaluation procedure as outlined
previously.

The details of the paths between our client in Boulder
and our two servers were not under our control. Although
the path to Gaithersburg, Maryland had a delay that was
always very nearly symmetrical, the path from Boulder to
Redmond was often 42 ms longer than the return path
because the outbound path was routed through Atlanta,
Georgia. When this was true, the two servers seemed to
have a time offset of 21 ms-an offset that was large com-
pared with the time dispersion created by all other causes
for averaging times up to several hours. As we mentioned
previously, static asymmetries of this type sometimes can-
not be unambiguously removed by any statistical proce-
dure. Our solution was to add a third server located in
Reston, Virginia and to use its data in a simple exten-
sion of the majority-voting algorithm described previously.
The result was to exclude the server in Redmond when-
ever ita delay became asymmetric and to make the server
in Gaithersburg the primary one with the server in Reston
as its backup when needed. Even when three servers are
specified in the configuration file, only one is actually used
most of the time-the others are used only to resolve am-
biguities when a large prediction error indicates a possible
problem or a change in the parameters of the system.

The data from the first high accuracy experiment are
shown in the first set of figures. Fig. 1 shows the mea-
sured time difference between the local clock and UTC,
and Fig. 2 shows the interval between calibration cycles
for the same period. Note that the interval between cali-
brations is gradually increased during the first week of op-

Time difference, local clock - UTC
I 0.1 -

I I I
10 20 M

Epochmdaysfmm24Ml998

Fig. 1. The time difference in seconds between the local clock and
UTC. Figs. 2, 3, and 4 use the same scale as Fig. 5 for the X axis.

Interval between calibration cycles
c 4

MOD[)

a 2wM)

P

1m T

i
_J

0 I , 1
10 20 M

Epoehmdaysfrom24March 1998

Fig. 2. The interval in seconds between calibration cycles as a func-
tion of epoch for the first experiment.

eration without significantly affecting the accuracy of the
clock. This situation changes abruptly when the interval
reaches 32,000 s-an interval comparable with the length
of the working day-bccausc both the local temperature
and the network delay have deterministic fluctuations near
this period. Although it does not happen immediately, one
of these fluctuations eventually exceeds the threshold, and
the algorithm is forced to decrease the time between cal-
ibration cycles to maintain the desired performance level.
The same story is repeated on a smaller scale several more
times until about day 28-a day that had both a large
change in temperature followed by the failure of a network
element when the same kind of problem is repeated. The
RMS accuracy of the entire data set is about 30 ms, but
most of this is due to the two large events-the RMS of
the data excluding these events is about 10 ms.

LEVINE’ TIME SYNCHRONIZATION OVER T H E INTERNET 895

Rh4S spread of consecutive cabbratiam Frequency offset of client

O w 6
lL!n

115

11.25
0 00.5

0004 ! lo:;

1 om 4 105

P
O W 2 B 10.2.5

10

9.75

9.5

0.001

0 9.25

10 20 30
apocaindnyr elQn24Mrsb 1998

Fig. 3. The RMS spread of consecutive time difference measurements
made over a short time interval.

The large fluctuations shown in Fig. 1 are primarily
due to large and slowly varying network asymmetries or
glitches in the local clock itself. As shown in Fig. 3, they
are not due to more rapid jitter in the network asymme-
try because they are not visible in the RMS spread of
consecutive measurements (S-1). Based on Fig. 3, the syn-
chronization loop should have been able to synchronize
the time of the clock with an uncertainty of 1 to 2 ms
RMS; the actual loop achieved this on occasion, but the
overall performance, even excluding the glitches, was not
that good. The reason is that the interval between cal-
ibrations was allowed to grow to values larger than the
optimum time constant for the frequency averaging loop.
The best performance would have been realized if we had
clamped the interval between calibrations to a value less
than 12,000 s-the measured optimal time constant for the
frequency loop. Note that the interval between calibrations
was almost always larger than this value.

Fig. 4 shows the average frequency offset of the clock as
estimated by the algorithm. Diurnal effects are visible on
occasion, but they are smaller than the random-walk fre-
quency noise, which dominates the noise spectrum at this
period. These frequency fluctuations have an amplitude of
about 3 x lop6 peak to peak with an irregular period of
about 1 week, and they can be used to suggest an initial
configuration for a synchronization loop designed to keep
the clock on the machine accurate only to the nearest sec-
ond.

were applied to the
clock oscillator of this system and if the machine was then
left free running with no other updates, then the time dis-
persion over the one month period shown in Fig. 4 would
have been somewhat less than 1 s RMS. It would not be
wise to allow the clock to run freely for this long of a
period because there would be no means of detecting a
glitch in the operation of the local clock. However, this
result emphasizes the fact that keeping the clock correct

If a static offset of about 10.5 x

Fig. 4. The frequency offset of the local clock as estimated by the
algorithm.

to the nearest second requires very little external informa-
tion, although the clock in the system we were using would
gain almost 1 s/day if it were run with no correction at all.
This frequency offset is very stable and can be predicted
with considerable accuracy even a month into the future.
Even the somewhat poorer clock shown in Fig. 1 of [2],
for example, would have a time dispersion of about 1 s
with one update about every 18 days. In practice, the in-
terval between calibration cycles would be set more by our
concern that we detect a glitch relatively promptly than
by the need to adjust the steering of the clock when it is
operating normally.

We tested these ideas by configuring the algorithm to
achieve an accuracy of 1 s RMS using the same servers as
in the previous experiment. We set the initial interval be-
tween calibration cycles to 32,000 s, and we specified that
the interval should not exceed 200,000 s. The time constant
for the frequency update loop was left at 12,000 s; because
the minimum interval was larger than this value, the ef-
fective time constant was three sample times as discussed
previously.

It took just over 10 days for the interval between cali-
brations to reach the maximum specified value. The time
differences during this period are shown in Fig. 5. Note
that the RMS time difference increases with the interval
between calibrations, but has not yet reached the specified
accuracy of 1 s RMS, even with an interval between cali-
brations of 200,000 s. The time constant for the frequency
update loop (600,000 s) is long enough to average over
diurnal thermally induced frequency fluctuations, and the
main contributors to the variance will be the random-walk
frequency noise of the clock oscillator and the long period
changes in the ambient temperature. Neither of these ef-
fects can be accurately modeled using the statistical ma-
chinery that we have developed; so the long-term perfor-
mance of the clock is difficult to predict. The performance

896 IEEE TRANSACTIOKS ox ULTR;\SOSICS. FERROELECTRICS. ASD FREQL-ESCY CONTROL. 1-OL. 46; NO. 4, JULY 1999

0’

0.2:

s
8
I

$ 1

B
-0.2

4..

Time difference, local clock - UTC

I , I I 1 I I / / , , I

0 2 5 5 7 5 10 125 15 175
Epoch m days from 2 May 1998

Fig. 5. The time difference in seconds between the local clock and
UTC when the algorithm is configured to realize an accuracy of 1 s
RMS.

to date has been substantially better than the design spec-
ification of 1 s RMS.

As we discussed previously, the highest accuracy with
this particular configuration would have been achieved
with an interval between calibrations of about 4,000 s be-
cause that would have resulted in three calibration cycles
in a time equal to the time constant of the frequency up-
date loop. The performance shown in Fig. 5 is about 50
times less expensive in terms of network bandwidth and
server load.

11. CONCLUSIONS

We have designed an algorithm for synchronizing the
clock of a computer using messages transmitted over the
Internet. The algorithm uses the network and message for-
mats of the NTP [4] and can communicate with conven-
tional unmodified NTP servers.

The algorithm is based on our previous frequency-
locked designs, but this version automatically adapts to
changes in the symmetry of the network delay. It also au-
tomatically adjusts its operating parameters to realize a
specified level of performance. The adjustment algorithm
uses the ratio of the RMS performance to the average cost
as the metric for choosing the optimal operating condi-
tions.

In addition to synchronizing the local clock, the algo-
rithm has a number of other diagnostic modes. It can be
used to evaluate the Allan deviation of the freely running
local clock or to estimate the jitter in the delay in a lo-
cal network. These evaluations use the same machinery as
the synchronization loop, except that the local clock is not
steered in these modes.

We hare conducted two experiments to illustrate the
capabilities of the procedure. The first experiment was de-
signed to synchronize a clock as accurately as possible: it
achieved an accuracy of 30 ms RMS and would be capable
of achieving an accuracy of better than 10 ms RNS if its
configuration were changed as described in the text. This
performance was realized using servers that \-ere more
than 2,000 km away, and neither the servers nor the paths
to them were conditioned in any way for this work.

The second experiment was designed to synchronize a
clock so that it was correct to the nearest second. a level
which may be adequate for many users. The maximum
interval between calibrations was set to 200,000 s. During
the first two weeks of operation, the performance of the
loop exceeded the specified performance level even at the
longest permitted interval between calibrations.

REFERENCES

[1] D. L. Mills, “Improved algorithms for synchronizing computer
network clocks,” IEEE/ACM Trans. Networking, vol. 3, no. 3 ,
pp. 245-254, Jun. 1995.
J. Levine, “An algorithm to synchronize the time of a computer
to universal time,” IEEE/ACM Trans. Networking, vol. 3, no.
2: pp. 42-50. Feb. 1995.

“Time synchronization using the Internet,” IEEE Truns.
Ultrason.: Ferroelect., Freq. Contr., vol. 45, no. 2, pp. 450-460,
1998.

[4] D. L. Mills, ”Network time protocol (version 3); specifica-
tion; implementation and analysis,” DARPA Network Working
Group, Newark, DE, Rep. RFC-1305, 1992.
K. Arvind, “Probabilistic clock synchronization in distributed
systems,‘ IEEE Trans. Parallel Distrib. Syst., vol. 5, pp. 474-
487, Mar. 1994.
F. Cristian, ”A probabilistic approach to distributed clock syn-
chronization,” Distrib. Cornput., vol. 3 . , pp. 146-158, Jun. 1989.

[2]

[3]

[5]

[6]

Judah Levine was born in Kew York City in
1940. He received a B.A. degree from Yeshiva
College in 1960 and a Ph.D. degree in Physics
from New York University in 1966. He is cur-
rently a physicist in the Time and Frequency
Division of NIST and a Fellow of JILX. a joint
institute operated by the Universitl- of Col-
orado and NIST. He has held these positions
since 1969.

His research interests include dei-eloping
methods for distributing time and frequency
information using both satellite and ground-

based techniques with special emphasis& the statistics of ti& and
frequency distribution.

Dr. Levine is a fellow of the American Physical Society and a
member of the American Association of Physics Teachers and the
American Geophysical Union.

