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Time Synchronization over the Internet Using 
an Adaptive Frequency-Locked Loop 

Judah Levine 

Abstract-This paper describes the operation of an algo- 
rithm for synchronizing the time of computers using mes- 
sages transmitted over packet-switched networks such as 
the Internet. The algorithm configures itself to realize any 
specified performance level at minimum cost (measured in 
computer cycles or network bandwidth). If the highest pos- 
sible accuracy is requested, the performance will be limited 
by the larger of the instability of the local clock oscillator 
or the noise in the measurement process between the client 
and the server; I have obtained uncertainties of about 8 ms 
RMS using standard workstations and average network con- 
nections. Lower accuracy can be realized at substantially 
lower cost because the cost varies approximately as the in- 
verse of the accuracy squared over a wide range of these 
parameters. The algorithm makes better use of scarce net- 
work bandwidth than previous methods. This improvement 
is realized by using a pure frequency-locked loop (rather 
than mixed frequency/phase locking algorithms currently 
proposed for the NTP) with unequal spacing between cal- 
ibration cycles. The result is a cleaner separation between 
network noise and clock noise, which is especially important 
when the highest possible accuracy is desired. In addition, 
the algorithm is an improvement over the pure-FLL “Inter- 
lock” algorithm that I described previously because it is self 
configuring. In addition to supporting an explicit trade-off 
between cost and accuracy, the algorithm provides better 
performance than previous methods because it is better 
able to adapt itself to fluctuations in the asymmetry of the 
network delay. This robustness can be realized without the 
preliminary tuning that was necessary to realize optimum 
performance using previous methods. 

I. INTRODUCTION 

HIS PAPER discusses a method for synchronizing the T clock of a client computer using messages transmitted 
over the Internet from a remote server. The design prin- 
ciples would also be appropriate for other types of con- 
nections between the client and the server, provided only 
that the delay through the network connecting them is 
symmetrical on average. 

The work was motivated by two observations: the load 
on the network time servers operated by the National In- 
stitute of Standards and Technology (NIST) has been in- 
creasing at an average rate of 7% per month for several 
years with no sign that this rate of increase is slowing, 
and there are many indications that a significant fraction 
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(perhaps even a large majority) of the users of NIST digital 
time and frequency services do not need the millisecond- 
level accuracy that these services can support. Therefore. 
I set out to design an algorithm that would support an ex- 
plicit trade-off between the synchronization accuracy that 
could be achieved using the procedure and the cost of real- 
izing it (the cost is proportional to the average number of 
calibration requests generated by each client system). Such 
an explicit trade-off is not present in any of the other algo- 
rithms of which I know. As I will show subsequently, the 
relationship between accuracy and cost is approximately 
quadratic so that a modest relaxation in the accuracy re- 
quirement (to 100 ms RMS, for example) would be accom- 
panied by a decrease of more than two orders of magnitude 
in the average cost of realizing it. The result would be to 
continue to provide adequate support to our clients while 
significantly extending the useful life of the existing time 
servers. At the same time, the underlying capability of the 
algorithm would not be compromised, so that those users 
who needed millisecond-level accuracy could achieve it us- 
ing the same software. 

A number of other algorithms for synchronizing clocks 
in this environment have been published [1]-[6]. Each of 
these uses a different metric for evaluating the perfor- 
mance of the algorithm and for deciding what is meant 
by optimum operation. Some algorithms. for example. are 
designed to guarantee an upper bound on the absolute 
value of the time error of the client [4], [ 5 ] .  To realize this 
objective. they must make relatively frequent requests to 
servers that are close by (in a network delay sense) because 
the error caused by an asymmetry in the network dela>- is 
bounded by one-half of the round-trip value. Supporting 
this density of servers may be quite expensive in practice. 
especially as the Internet becomes more crowded so that 
the average delay between any two points increases. Other 
algorithms place very strong emphasis on dealing lvith un- 
reliable servers or with frequent large fluctuations in the 
network delay or in its asymmetry [l], [ 3 ] .  They realize 
these objectives by querying a number of servers on each 
calibration cycle and then by choosing the winner based 
on various criteria. 

We argue that all algorithms with these kinds of goals 
are relatively expensive from the point of view of the num- 
ber of servers that they require to realize their design goals. 
The reason is that the average operating cost (measured 
in terms of the number of calibration requests that are 
generated by a client) is driven by the desire to limit the 
maximum time error or to detect server failures, which 
should be relatively rare events. Although this machinery 
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undoubtedly improves the worst-case performance of a sys- 
tem synchronized in these ways, it may have little impact 
on the RMS time accuracy of a typical client. 

Our previous Internet-based algorithm [3] and the 
method that we describe here use the RMS time offset 
of the clock in the client as the measure of performance, 
and they are designed to maximize the ratio of this RMS 
performance to the average cost (measured in terms of the 
load on the servers and the network). This optimization 
can be implemented either by finding the best performance 
that can be achieved at a fixed cost or by minimizing the 
cost for a given level of performance. As we will show sub- 
sequently, the relationship between cost and performance 
is not linear-incremental improvements in performance 
become increasingly expensive to achieve. Some levels of 
performance may not be achievable at any cost in the given 
environment because the frequency of the local clock is 
too unstable to support the amount of averaging that is 
required to cope with a noisy communications channel. 

A .  Synchronizing the Local Clock 

All synchronization algorithms start from the same ba- 
sic data-the measured time difference between the local 
machine and the distant server and the network portion of 
the round-trip delay between the two systems. (Delays in 
the distant server are usually not a problem. Either they 
are small enough to be ignored or they are measured by 
the server and removed by the client.) These data are pro- 
cessed to develop a correction to the reading of the local 
clock. The usual approach is to use the measured time 
difference after it has been corrected by subtracting one- 
half of the round-trip delay. This model is based on the 
assumption that the transmission delay through the net- 
work is symmetrical SO that the one-way delay is one-half 
of the measured round-trip value. This corrected value may 
be used to discipline the local clock directly or it may be 
combined with similar data from other servers to detect 
outliers or to compute a weighted average time difference, 
which is then used to steer the local clock. 

These steering corrections generally take two forms: 
time steps, which adjust the local clock by a fixed amount 
essentially instantaneously, and frequency steps, which ad- 
just the effective frequency of the local clock oscillator and 
thereby slew the time relatively slowly. Frequency steps 
are usually realized by adjusting the size of the software 
tick-the amount added to the clock register in response 
to periodic interrupts from the physical clock oscillator. 
The frequency of the hardware oscillator itself is usually 
not accessible to software control. 

Time steps, especially those that move the clock back- 
wards in time, can cause unwanted side effects in other pro- 
grams, and their use is usually limited to setting the clock 
during an initial start up of the system. Frequency steps 
are the preferred means of adjustment, although they can 
have problems too. The minimum frequency adjustment 
that can be applied simply is to change the size of the tick 

by one least count. The resulting change in frequency is 
one least count per hardware interrupt, which is a frac- 
tional change of about lop3 for most systems. This value 
is much too large. The actual frequency offset is likely to 
be one-tenth of this value or less, and the precision with 
which this offset can be determined is even greater. 

In practice, frequency steering generally requires a res- 
olution of at least 5 x lov8 if the granularity of steering 
corrections is not to degrade the frequency stability of the 
clock oscillator [2, Fig. 11. This level of frequency adjust- 
ment is usually implemented in two ways: either the kernel 
is modified to allow static frequency adjustments that are 
smaller than one least count per hardware interrupt to be 
specified or the larger, standard frequency offset is used 
periodically with the ratio of the on interval to the off 
interval determined so that the average frequency offset 
corresponds to the estimate derived from the time differ- 
ence measurements. The first method has the advantage 
that the resulting time adjustment is smoother, but it re- 
quires access to the kernel source code. The second method 
is more general and can be applied to almost any system, 
but it results in a sawtooth-like variation in the time of 
the local clock with respect to the distant server. The am- 
plitude of this sawtooth is a function of the system design, 
but it can be as large as a full tick (i.e., on the order of mil- 
liseconds) in some implementations. The first method (i.e., 
modifying the kernel) is the best choice if it can be imple- 
mented in the client configuration, and it is the method 
that we use to keep our servers on time. 

The maximum frequency offset that is required is usu- 
ally on the order of seconds per day, which is a fractional 
frequency offset of about 5 x The dynamic range re- 
quired in the frequency steering loop is thus about 1OOO:l .  
This requirement is usually not a problem, and almost any 
method that can provide the required resolution can also 
satisfy the dynamic range requirement in steady-state op- 
eration. The maximum fractional frequency offset that is 
supported by the standard kernel of most systems is about 
4 x so that it is not practical to remove time offsets 
of more than a second or so using this method because it 
would take too long. The clock is usually set initially using 
a single time step for this reason. 

B. Effects of Measurement Noise 

Individual time difference measurements are likely to 
have a substantial uncertainty because of the noise in the 
measurement process itself. This noise arises from many 
sources-from fluctuations in the response time of the lo- 
cal operating system to interrupts, from jitter in the delay 
through the network or the interface hardware, and from 
other hardware-related causes. Whatever the cause, this 
noise is not associated with the frequency of the clock os- 
cillator. Using the time differences themselves to set the 
local clock directly is therefore not a great idea-no mat- 
ter how the adjustment is performed. Doing this would 
convert the phase noise of the measurement process into 
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frequency noise in the clock. The only reason for doing 
this might be simplicity. A procedure that sets the clock 
to the time received from the server would be simple to 
implement and would not have to run continuously as a 
background or daemon process. The price for this simplic- 
ity is that the performance of the local clock oscillator is 
degraded. 

The contributions to the noise in the measurement pro- 
cess vary very rapidly with time, and consecutive measure- 
ments for which the interval between them is long com- 
pared with the characteristic period of the variations will 
be affected by noise that is almost completely uncorrelated 
both with the value on the previous measurement and with 
the underlying frequency of the clock oscillator. The spec- 
trum of these variations is therefore approximately white, 
and averaging closely spaced time interval measurements 
results in an estimate that converges to the underlying 
mean value of the time difference, provided only that the 
measurements are made quickly enough so that the pa- 
rameters of the oscillator have not changed. 

It is usually easy to satisfy both of these time require- 
ments. The characteristic period of the hardware is on the 
order of microseconds or less, so that even measurements 
made a few seconds apart are affected by very different 
noise environments. On the other hand, the time disper- 
sion caused by the fluctuations in the frequency of the 
oscillator is usually negligible on this time scale. 

However, the averaging process cannot be continued in- 
definitely. It will only do the right thing as long as the 
spectrum of the fluctuations in the data can be charac- 
terized as predominantly white phase noise. The range of 
averaging times over which this is true is usually pretty 
small for typical computer clocks, and the nonstationary 
statistics of the delay in a typical Internet path further 
restrict the averaging times over which this is an appro- 
priate strategy. The result is that algorithms that develop 
a correction based on the average measured time differ- 
ence are likely to be useful only in local area networks and 
with a relatively short interval between calibration cycles 
(on the order of 1000 s or less). This argument is partic- 
ularly relevant to algorithms that use a pure phase-lock 
loop to discipline the local clock [4], and it explains why 
algorithms based on frequency loops tend to achieve com- 
parable synchronization at much lower cost [a], [3]. 

It is not always easy to detect the effects of too much 
averaging, that is averaging for a time interval that ex- 
ceeds the domain in which the noise is dominated by white 
phase noise. The average time difference still exists in this 
domain, but it is no longer a stationary quantity. The syn- 
chronization loop appears to be operating normally, but it 
is, in fact, increasingly dominated by flicker (and, at suf- 
ficiently long averaging times by random-walk) processes 
[a, Fig. 91. 

Algorithms that operate by stabilizing the frequency of 
the local clock (as opposed to its time) have an easier job, 
in principle. These algorithms can operate at much longer 
averaging times when white phase noise is no longer the 
main problem, and the performance is limited by the fre- 

quency stability of the local clock. It turns out that clock 
oscillators in man) computer workstations are surprisingl? 
good. Many of them hale Allan deviations of less than 
l0W7 at averaging times of lo4 s, so that they have a free- 
running time stability of better than 1 ms RMS [a, Figs. 1 
and 31. One way of realizing this stability is to average the 
individual time differences for a time that is well within 
the domain in which white phase noise dominates the noise 
spectrum and to then switch to averaging the frequency 
(that is. the first difference of these time differences) as 
long as the noise process can still be characterized by 
white frequency noise. For the oscillators typically found 
in computer hardware, this extends the averaging interval 
to about 15,000 s. The details of the design will depend on 
the stability of the local oscillator and on the noise in the 
network link to the server. However, a design configured 
for the highest possible accuracy would involve averaging 
time difference measurements over a period of a few sec- 
onds combined with averaging the frequency for a period 
of a few hours. This strategy is not equivalent to using the 
same number of measurements that are equally spaced in 
time. even though the average load on the servers would be 
the same in both cases [3]. The time between calibration 
cycles is often called the poll interval, and the argument 
presented here suggests that the average poll interval does 
not completely specify the performance capability of the 
procedure-that grouping the calibration requests makes a 
better use of the available resources than simply uniformly 
spreading them out. 

Frequency-locked loops are not better or more accurate 
than those based on phase-locking techniques-they are 
advantageous because they are almost always cheaper to 
operate for essentially the same performance. This is true 
because the high level of measurement noise over the In- 
ternet means that the local clock is usually more stable at 
short times than the distant server seen through the noisy 
Internet. A frequency-locked loop can better exploit this 
stability by longer averaging and, therefore, can be config- 
ured with longer intervals between the calibration cycles 
than the corresponding phase lock. Although neither de- 
sign is a priori more sensitive to glitches, the longer interval 
between calibration cycles in a frequency loop and its cor- 
respondinglj- longer time constants suggest that a glitch is 
likely to persist for a longer time in that design before it 
is detected and removed. 

C. Details of the Method 

The algorithm design is based on the principle of sep- 
aration of variance-that is it is possible to separate the 
contributions of the clock and the measurement process 
using statistical techniques. A second implicit assumption 
is that the variances of both the measurement process and 
the clock frequency can be modeled using stochastic pa- 
rameters. These turn out to be good approximations to the 
performance of real hardware over a wide range of oper- 
ating parameters, although the second assumption tends 
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to break down at averaging times approaching one day. 
To achieve this separation, the program evaluates the fol- 
lowing two statistics after each calibration cycle has been 
completed: 

$1. The standard deviation of a group of closely spaced 
time difference measurements that are made quickly 
enough so that the parameters of the local clock have not 
changed significantly while they are being made. As we 
discussed previously, this requirement is easily satisfied if 
the ensemble of measurements is completed within a few 
seconds. 

S-2. The error in predicting the currently observed av- 
erage time difference using the previously measured value 
and the estimated frequency offset. This prediction is done 
using a simple linear relationship: 

& = X i - 1  -k &-IT, (1) 

where xi is the time difference measured at time ti, yi is the 
frequency difference between the local clock and the server 
estimated at the same time, and T is the time interval from 
t i - 1  to ti. We use (1) to predict the time difference; the 
error in prediction on this cycle is the difference between 
the predicted and measured values: 

E i  = [ X i  -Pi[. (2) 

Both statistics are maintained in two versions: the value 
determined in the current calibration cycle and a sliding 
average over the most recent 12 hours or three calibration 
cycles, whichever is longer. 

The first statistic is sensitive primarily to the phase 
noise in the measurement process. The program first com- 
pares the average value of this parameter with the desired 
level of performance that was specified by the operator 
when the software was installed. The number of measure- 
ments in each group is adjusted once per day until the two 
are roughly equal-the size of the group is increased if the 
RMS of the mean is larger than the requested accuracy 
and decreased if the mean is much better than necessary. 
Assuming that the measurement noise is approximately 
white phase noise, the RMS value of the mean of a group 
of measurements varies as the square root of the size of 
the group. The specified performance level, therefore, has 
a quadratic effect on the cost of the algorithm. In the limit, 
it may not be possible to achieve the desired level of per- 
formance with a reasonably sized group (less than 25 or 50 
members). The program defaults to a specified maximum 
group size in this case. Likewise, the program will never 
decrease the size of a group below a defined minimum size 
(usually three) no matter how small the RMS becomes. 

The RMS of the group of time differences sets an u p  
per bound to the RMS performance of the synchronization 
loop at longer averaging times. No matter how stable its 
frequency is, on the average, the local clock cannot be set 
(in time) more accurately than this RMS value, and the 
subsequent algorithm can do no better than remember this 
adjustment without further degradation. This RMS value 
may be as small as 75 to 100 ps when the server and the 

client are on the same network but is more typically on the 
order of milliseconds for a continental length path. This 
limit is independent of the details of the synchronization 
procedure. 

If the standard deviation of the current group of time 
differences is much larger than the average, the most likely 
reason is that it is due to jitter in the symmetry of the 
network delay during the time that the group of measure- 
ments was being made. Although the measurements are 
made rapidly enough that the parameters of the local and 
remote clocks have not changed, the same cannot be said of 
the network (The magnitude of the delay is not a problem 
because it is measured on each cycle-only its asymmetry 
causes trouble.) The algorithm will drop a single member 
of the group as an outlier if doing so will reduce the stan- 
dard deviation to a more reasonable value (i.e., one that is 
consistent with the average over the previous observations) 
and will try to repeat the entire group if dropping a single 
value will not fix the problem. The assumption that un- 
derlies this procedure is that asymmetries in the network 
delay are transient effects. Small asymmetries will be av- 
eraged by multiple measurements, and large ones will be 
short-lived and detected as outliers. 

This method will fail if the path from the client to the 
server has a static asymmetry, which will bias the results 
but will not contribute to the variance of the group of 
measurements. The offset caused by this asymmetry is 
bounded by one-half of the round-trip delay, so that, at 
the instant of synchronization, the time difference between 
the client and the server is guaranteed to be less than the 
sum of the measured time difference and one-half of the 
round-trip delay. This may be good enough for some pur- 
poses, but, as we will show, this guarantee becomes weaker 
with time because of stochastic frequency variations in the 
clock oscillator. 

It is sometimes possible to detect a static asymmetry by 
requesting timing data from a second server, but the two 
data sets are likely to disagree consistently in this case, 
and it may not be possible to decide where the problem 
lies. In particular, if the local clock is synchronized initially 
to a server via a path that has a static asymmetry, then 
data from a second server received via a more symmetric 
path may be rejected as coming from a machine that is 
thought to be broken. 

Under normal, steady-state operating conditions, the 
magnitude of the second statistic is sensitive primarily to 
the frequency stability of the local clock, and its aver- 
age value is proportional to the value of the Allan devi- 
ation for an averaging time equal to the time interval be- 
tween calibration cycles. This magnitude is affected by two 
parameters-the time interval between calibrations and 
the time constant of the frequency update loop [2, eq. (3)]. 

The time constant of the frequency update loop rep- 
resents the optimum averaging time for the frequency es- 
timates, assuming that the process can be analyzed sta- 
tisticallyl. Averaging for a shorter time interval does not 
optimally attenuate the white frequency noise of the os- 
cillator. Averaging for a longer time results in an average 
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that exists in a formal sense but is no longer stationary 
because the procedure has entered the flicker and random- 
walk portions of the spectrum. This time constant is pri- 
marily a function of the design of the oscillator, and it 
needs to be determined only once when the algorithm is 
started for the first time. It is measured as part of the 
cold-start portion of the algorithm by evaluating the Al- 
lan deviation as a function of lag when the local clock is 
free running. This parameter is usually on the order of 
10,000 to 20,000 s, so that this initial evaluation process 
to determine it usually takes somewhat less than 1 day. 
(To have confidence in the Allan deviation estimates, it is 
usual to compute the deviation using a time series that is 
at least three times longer than the longest lag that is of 
interest .) 

Once the algorithm is running in steady state, the aver- 
age value of the statistic S-2 and the desired performance 
level are used to adjust the interval between calibration 
cycles. If the average prediction error is much larger than 
the measurement noise (i. e., statistic S-2 >> statistic S- 
1) then the prediction error is due to stochastic frequency 
fluctuations in the local oscillator. If the prediction error 
is larger than the desired level of performance, then the 
time between calibration cycles is too long-t he frequency 
stability of the oscillator is not good enough to support 
free running for that time interval, and more frequent cal- 
ibrations are necessary. If the prediction error is not larger 
than the desired level of performance, then there is no 
need to have more frequent calibrations, even though the 
performance would be improved by doing so. 

If the prediction error is much smaller than the mea- 
surement noise, then the calibration interval is unambigu- 
ously too small-the frequency stability of the oscillator 
would support the same level of stability with less fre- 
quent calibrations and the extra ones are essentially being 
wasted. The interval between calibrations can be increased 
in this case with minimal impact on the performance of the 
loop. The only reason for not doing so would be a concern 
about outlier detection, and the user can specify an ab- 
solute maximum interval between calibrations if this is a 
concern. 

The relationship between the performance of the loop 
and the interval between calibrations can be calculated if 
the noise type is known. This relationship tends to make 
predictions that are too optimistic when the averaging 
t i m e  exceeds a few hours-the performance tends to de- 

lThe primary assumption in any statistical analysis is that the 
data are stationary-that is that the properties of the data set have 
no dependence on time. This assumption usually fails primarily be- 
cause of a sensitivity of the oscillator frequency to fluctuations in the 
ambient temperature. This sensitivity introduces diurnal and other 
longer-period coherent frequency variations. These fluctuations could 
be dealt with by measuring the local temperature and using these 
data to model the performance of the oscillator, but most installa- 
tions do not have the hardware needed to make these temperature 
measurements. These temperature-induced fluctuations are impor- 
tant for systems that are designed to realize time with millisecond- 
level accuracy, and the usual method of dealing with these effects is 
to limit the poll interval t o  about 8 hours maximum. These effects 
are usually ignored in lower accuracy applications. 

grade faster than predicted as the time between calibration 
cycles is increased in that domain. There are two reasons 
for this. The first is that when the interval between cal- 
ibration cycles becomes longer than the time constant of 
the frequency update loop, then that time constant is ef- 
fectively forced to a value that is larger than optimum. In 
other words. the distribution of the prediction errors cal- 
culated using ( 2 )  become increasingly dominated by flicker 
and random-walk processes, and these errors are effectively 
fed back into the synchronization loop. The second reason 
is that at longer periods the frequency of the oscillator 
begins to be driven by nonstochastic effects such as fluc- 
tuations in the ambient temperature. These fluctuations 
are in addition to the increase in the stochastic level of the 
frequency variations. Temperature fluctuations in a typical 
office environment may pull the frequency of the oscilla- 
tor by up to 1 ppm with a period ranging from several 
hours to 1 day. Those frequency variations are larger than 
predictions based on a smooth extrapolation of the Allan 
deviation from its value at shorter periods. 

D. Parameter Update 

If the statistical comparisons indicate that the current 
time differences are consistent with the past performance, 
then the current data are used to update the parameters 
of the procedure. These include the average values of both 
statistics and the average frequency of the oscillator. This 
average frequency is used to steer the local clock using 
one of the methods described previosly-either it is trans- 
mitted directly to the kernel or it is used to schedule small 
periodic time adjustments that realize the computed offset 
frequency on the average. The details of these adjustment 
procedures are more fully discussed in [a ] .  

E. Error Detection 

A comparison of the values for each of the two statistics 
found on the current cycle with the corresponding average 
values can be used to detect many kinds of problems. We 
have already discussed this point previously with regard 
to the standard deviation of the group of time difference 
measurements, which can be used to detect jitter in the 
symmetry of the network delay. Likewise, this standard 
deviation is a measure of how well closely spaced time 
differences received from two different servers should be 
expected to agree. 

If the tests based on the first statistic are okay, but 
the prediction error on this cycle is much larger than the 
value expected based on the average of this parameter, the 
software attempts to determine the cause of this apparent 
change in performance. (This test is significant only if the 
algorithm is operating in steady state. If, based on the 
procedures outlined previously, the interval between cali- 
brations has just been increased, then an increase in the 
prediction error is to be expected, and a comparison with 
the average value is not appropriate until the average value 
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comes to equilibrium at this increased time interval.) The 
software conducts a number of tests in the following order: 

The simplest possibility is that the change is due to 
a temporary change in the symmetry of the network 
delay (because of congestion, for example). The pro- 
gram repeats the entire measurement protocol several 
times to see if the prediction error is improved on sub- 
sequent attempts. These repeated measurements are 
made to the same server. This procedure removes the 
discrepancy about 60% of the time after a single retry 
and about 80% of the time after a second one. This 
statistic differs in an important way from the clock fil- 
ter procedure used in NTP and described in [4]. This 
test (and the ones described subsequently) are only 
activated when the initial tests based on the compar- 
ison of data from a single server with the local clock 
indicate that there may be a problem. The NTP pro- 
cedure normally polls every server every time. This is 
a difference of principle as well as of implementation. 
The point is that the local clock should contribute to 
the data based on its statistics, and simply comparing 
the measurements made using a number of external 
servers does not do this in an optimum fashion. 
If the error persists then (and only then) the program 
queries an alternate server and uses majority voting to 
decide if the problem is in the first server or in the l e  
cal clock. (A network problem that is common to both 
servers will be considered-incorrectly-as a problem 
in the local clock, and the second server should be cho- 
sen to minimize the probability of this happening.) 
Note that the time of the local clock contributes to 
this comparison based on its expected stability as es- 
timated by its Allan deviation. If the two servers agree 
(to within the phase noise of the measurement process 
as estimated by S-l), then the local clock has expe- 
rienced a change in its characteristics. The response 
to this conclusion is outlined subsequently. If the data 
from the second server indicate that the first server 
is broken (or its path delay is significantly asymmet- 
ric), then the two interchange roles, and the alternate 
server becomes the primary one for the next 24 hours. 
The program tries to switch back to the first server 
at that point, and does so if its data satisfy the tests 
described previously. 
If the problem cannot be resolved in the second step 
(i.e., if the time differences between both servers are 
not consistent with the expected prediction error and 
if the data from the two servers are not mutually con- 
sistent either) then either the problem cannot be as- 
signed to one cause or our expectations based on the 
previous average performance are too optimistic. The 
operating parameters are not modified, and the pro- 
gram waits a short time and tries again. This can h a p  
pen if the network is very congested or if the path to 
one or both of the servers has a significant static asym- 
metry. The program will use a third server in an anal- 
ogous manner if one is defined. If only two servers are 

specified (or if data from a third server fails to resolve 
the question), the program increases the average vari- 
ances and goes into holdover mode. The holdover per- 
formance preserves the last estimate of the frequency 
offset of the local clock and continues to steer it in fre- 
quency based on that estimate. It makes no changes 
to its time. The clock accuracy will be limited by the 
flicker and random-walk frequency fluctuations of its 
oscillator. The time dispersion caused by these fluctu- 
ations depends on the quality of the oscillator; typical 
values for the Allan deviation of the frequency are on 
the order of lop6 at 1 day, which would result in a time 
dispersion of 50 to 100 ms. If the problem is due to a 
transient degradation of the network, then it will prob- 
ably disappear on the next cycle; if it is due to a more 
permanent degradation of its characteristics, then the 
synchronization procedure will slowly learn this by re- 
peated increases in the average variances that form the 
basis for all of the tests that we have described. 

The threshold for deciding that the current estimate 
of a statistic is much larger than the average value is set 
based on the usual compromise between the need to main- 
tain adequate sensitivity to problems and the desire not 
to  be overly sensitive to the statistical fluctuations in the 
amplitude of the noise. We have used a threshold of three 
times the standard deviation in all of our experiments. If 
the underlying statistics of the processes were Gaussian, 
a threshold of three times the standard deviation should 
cause the measurements to trigger these error tests about 
1% of the time in normal operation. In fact, the data are 
not Gaussian, and the tests are triggered in about 10% of 
the calibration cycles. These outliers are often quite large 
so that the algorithm is not sensitive to the exact value 
used for the threshold. (The use of additional data about 
10% of the time should be compared with other algorithms 
that use additional data on every poll cycle.) 

F. Error Modeling 

The most common cause of an error in older systems 
was a time step caused by a lost interrupt. These were easy 
to  detect because the prediction error was very close to an 
integral number of systems ticks. This problem is usually 
not important in newer systems, for which a large predic- 
tion error is usually due to a significant secular change in 
the frequency of the clock oscillator. As we suggested ear- 
lier, the usual cause of this frequency drift is a change in 
the ambient temperature, although a change in line volt- 
age may also contribute to a lesser extent. The relationship 
between ambient temperature and oscillator frequency is 
complicated because it depends both on the temperature 
and on its spatial gradient. Attempting to correct the os- 
cillator frequency based on temperature measurements is 
too complex for most installations and is not a very prof- 
itable strategy in any case. The best strategy is to limit 
both the time constant for the frequency update loop and 
the maximum interval between calibration cycles so that 
these temperature-induced frequency variations are mod- 
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eled as deterministic effects by the frequency estimator 
and removed. In other words, the parameters of the loop 
must be short enough so that these temperature-induced 
effects are treated as real frequency changes rather than 
as stochastic effects that should be averaged without ap- 
preciably changing the loop parameters. 

G. Synchronization Experiment 

To test these ideas, we conducted two synchronization 
experiments. The first was designed to synchronize the lo- 
cal clock as accurately as possible and to find out what 
accuracy could be achieved and how expensive it would be 
to realize it. The second experiment was designed to syn- 
chronize the same clock so that it was correct only to the 
nearest second using the same servers and network path as 
in the first experiment. The goal was to see how much this 
relaxation in accuracy would save in the operating costs. 

In both experiments, we synchronized the clock of a 
computer that was located in our laboratory in Boulder, 
Colorado to a server on the West Coast in Redmond, 
Washington and one on the East Coast in Gaithersburg, 
Maryland. The time of the local clock was also measured 
using diagnostics derived from other systems in Boulder, 
but these diagnostics were for information only and were 
not used to discipline the clock. The server in Redmond 
was the primary one; the one on the East Coast was only 
used as part of the error evaluation procedure as outlined 
previously. 

The details of the paths between our client in Boulder 
and our two servers were not under our control. Although 
the path to Gaithersburg, Maryland had a delay that was 
always very nearly symmetrical, the path from Boulder to 
Redmond was often 42 ms longer than the return path 
because the outbound path was routed through Atlanta, 
Georgia. When this was true, the two servers seemed to 
have a time offset of 21 ms-an offset that was large com- 
pared with the time dispersion created by all other causes 
for averaging times up to several hours. As we mentioned 
previously, static asymmetries of this type sometimes can- 
not be unambiguously removed by any statistical proce- 
dure. Our solution was to add a third server located in 
Reston, Virginia and to use its data in a simple exten- 
sion of the majority-voting algorithm described previously. 
The result was to exclude the server in Redmond when- 
ever ita delay became asymmetric and to make the server 
in Gaithersburg the primary one with the server in Reston 
as its backup when needed. Even when three servers are 
specified in the configuration file, only one is actually used 
most of the time-the others are used only to resolve am- 
biguities when a large prediction error indicates a possible 
problem or a change in the parameters of the system. 

The data from the first high accuracy experiment are 
shown in the first set of figures. Fig. 1 shows the mea- 
sured time difference between the local clock and UTC, 
and Fig. 2 shows the interval between calibration cycles 
for the same period. Note that the interval between cali- 
brations is gradually increased during the first week of op- 
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Fig. 1. The time difference in seconds between the local clock and 
UTC. Figs. 2, 3, and 4 use the same scale as Fig. 5 for the X axis. 
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Fig. 2. The interval in seconds between calibration cycles as a func- 
tion of epoch for the first experiment. 

eration without significantly affecting the accuracy of the 
clock. This situation changes abruptly when the interval 
reaches 32,000 s-an interval comparable with the length 
of the working day-bccausc both the local temperature 
and the network delay have deterministic fluctuations near 
this period. Although it does not happen immediately, one 
of these fluctuations eventually exceeds the threshold, and 
the algorithm is forced to decrease the time between cal- 
ibration cycles to maintain the desired performance level. 
The same story is repeated on a smaller scale several more 
times until about day 28-a day that had both a large 
change in temperature followed by the failure of a network 
element when the same kind of problem is repeated. The 
RMS accuracy of the entire data set is about 30 ms, but 
most of this is due to the two large events-the RMS of 
the data excluding these events is about 10 ms. 
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Fig. 3. The RMS spread of consecutive time difference measurements 
made over a short time interval. 

The large fluctuations shown in Fig. 1 are primarily 
due to large and slowly varying network asymmetries or 
glitches in the local clock itself. As shown in Fig. 3, they 
are not due to more rapid jitter in the network asymme- 
try because they are not visible in the RMS spread of 
consecutive measurements (S-1). Based on Fig. 3, the syn- 
chronization loop should have been able to synchronize 
the time of the clock with an uncertainty of 1 to 2 ms 
RMS; the actual loop achieved this on occasion, but the 
overall performance, even excluding the glitches, was not 
that good. The reason is that the interval between cal- 
ibrations was allowed to grow to values larger than the 
optimum time constant for the frequency averaging loop. 
The best performance would have been realized if we had 
clamped the interval between calibrations to a value less 
than 12,000 s-the measured optimal time constant for the 
frequency loop. Note that the interval between calibrations 
was almost always larger than this value. 

Fig. 4 shows the average frequency offset of the clock as 
estimated by the algorithm. Diurnal effects are visible on 
occasion, but they are smaller than the random-walk fre- 
quency noise, which dominates the noise spectrum at this 
period. These frequency fluctuations have an amplitude of 
about 3 x lop6 peak to peak with an irregular period of 
about 1 week, and they can be used to suggest an initial 
configuration for a synchronization loop designed to keep 
the clock on the machine accurate only to the nearest sec- 
ond. 

were applied to the 
clock oscillator of this system and if the machine was then 
left free running with no other updates, then the time dis- 
persion over the one month period shown in Fig. 4 would 
have been somewhat less than 1 s RMS. It would not be 
wise to allow the clock to run freely for this long of a 
period because there would be no means of detecting a 
glitch in the operation of the local clock. However, this 
result emphasizes the fact that keeping the clock correct 

If a static offset of about 10.5 x 

Fig. 4. The frequency offset of the local clock as estimated by the 
algorithm. 

to the nearest second requires very little external informa- 
tion, although the clock in the system we were using would 
gain almost 1 s/day if it were run with no correction at all. 
This frequency offset is very stable and can be predicted 
with considerable accuracy even a month into the future. 
Even the somewhat poorer clock shown in Fig. 1 of [2], 
for example, would have a time dispersion of about 1 s 
with one update about every 18 days. In practice, the in- 
terval between calibration cycles would be set more by our 
concern that we detect a glitch relatively promptly than 
by the need to adjust the steering of the clock when it is 
operating normally. 

We tested these ideas by configuring the algorithm to 
achieve an accuracy of 1 s RMS using the same servers as 
in the previous experiment. We set the initial interval be- 
tween calibration cycles to 32,000 s, and we specified that 
the interval should not exceed 200,000 s. The time constant 
for the frequency update loop was left at 12,000 s; because 
the minimum interval was larger than this value, the ef- 
fective time constant was three sample times as discussed 
previously. 

It took just over 10 days for the interval between cali- 
brations to reach the maximum specified value. The time 
differences during this period are shown in Fig. 5. Note 
that the RMS time difference increases with the interval 
between calibrations, but has not yet reached the specified 
accuracy of 1 s RMS, even with an interval between cali- 
brations of 200,000 s. The time constant for the frequency 
update loop (600,000 s) is long enough to average over 
diurnal thermally induced frequency fluctuations, and the 
main contributors to the variance will be the random-walk 
frequency noise of the clock oscillator and the long period 
changes in the ambient temperature. Neither of these ef- 
fects can be accurately modeled using the statistical ma- 
chinery that we have developed; so the long-term perfor- 
mance of the clock is difficult to predict. The performance 
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Fig. 5. The time difference in seconds between the local clock and 
UTC when the algorithm is configured to realize an accuracy of 1 s 
RMS. 

to date has been substantially better than the design spec- 
ification of 1 s RMS. 

As we discussed previously, the highest accuracy with 
this particular configuration would have been achieved 
with an interval between calibrations of about 4,000 s be- 
cause that would have resulted in three calibration cycles 
in a time equal to the time constant of the frequency up- 
date loop. The performance shown in Fig. 5 is about 50 
times less expensive in terms of network bandwidth and 
server load. 

11. CONCLUSIONS 

We have designed an algorithm for synchronizing the 
clock of a computer using messages transmitted over the 
Internet. The algorithm uses the network and message for- 
mats of the NTP [4] and can communicate with conven- 
tional unmodified NTP servers. 

The algorithm is based on our previous frequency- 
locked designs, but this version automatically adapts to 
changes in the symmetry of the network delay. It also au- 
tomatically adjusts its operating parameters to realize a 
specified level of performance. The adjustment algorithm 
uses the ratio of the RMS performance to the average cost 
as the metric for choosing the optimal operating condi- 
tions. 

In addition to synchronizing the local clock, the algo- 
rithm has a number of other diagnostic modes. It can be 
used to evaluate the Allan deviation of the freely running 
local clock or to estimate the jitter in the delay in a lo- 
cal network. These evaluations use the same machinery as 
the synchronization loop, except that the local clock is not 
steered in these modes. 

We hare conducted two experiments to illustrate the 
capabilities of the procedure. The first experiment was de- 
signed to synchronize a clock as accurately as possible: it 
achieved an accuracy of 30 ms RMS and would be capable 
of achieving an accuracy of better than 10 ms RNS if its 
configuration were changed as described in the text. This 
performance was realized using servers that \-ere more 
than 2,000 km away, and neither the servers nor the paths 
to them were conditioned in any way for this work. 

The second experiment was designed to synchronize a 
clock so that it was correct to the nearest second. a level 
which may be adequate for many users. The maximum 
interval between calibrations was set to 200,000 s. During 
the first two weeks of operation, the performance of the 
loop exceeded the specified performance level even at the 
longest permitted interval between calibrations. 
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