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Incorporating Data from a Primary Frequency 
Standard Into a Time Scale 

Judah Levine 

Abstract-It is difficult to combine data from a primary 
frequency standard with the time-difference measurements 
that are usually used as input to most time scales because a 
primary standard usually operates only occasionally on an 
irregular schedule and because the fundamental output of 
a primary frequency standard is a frequency rather than a 
time, and there is often no natural way of inserting this kind 
of datum into the scale in a manner that is statistically ro- 
bust. We will present a new time-scale algorithm that seeks 
to address these problems. We call this frequency-based al- 
gorithm AF1, by analogy with the time-based algorithm 
AT1 that has been used at NIST for many years. Unlike 
AT1 in which frequency is simply a parameter that speci- 
fies how the time of a clock evolves between measurements, 
however, the frequency of each clock is a fundamental pa- 
rameter in AF1. This change in focus provides a natural way 
for incorporating data from a primary frequency standard 
into the ensemble. We will present the details of the algo- 
rithm and results using data from our primary frequency 
standard, NIST-7. 

I. INTRODUCTION 

PRIMARY FREQUENCY STANDARD differs from the A commercial cesium devices that are used for time- 
keeping in one important respect: the device is constructed 
so that the systematic difference between its output fre- 
quency and the International System of Units (SI) defini- 
tion of the second can be evaluated each time a measure- 
ment of the standard frequency is performed. This eval- 
uation process is quite time-consuming and involves sev- 
eral diagnostic experiments which affect-and may even 
interrupt-the output signal. As a result, the output of 
such a device is only occasionally “on frequency,” and there 
are often significant periods of time when it is not pro- 
ducing any output at all. If the data are to be generally 
useful, there must be a procedure for realizing this stan- 
dard frequency in real-time by transferring these aperiodic 
observations to a system that operates continuously. 

Many laboratories (including NIST) use a hydrogen 
maser as the transfer oscillator between the primary stan- 
dard and other systems. The evaluation procedure for the 
primary standard uses the maser as a local oscillator, and 
effectively calibrates the frequency of the maser in abso- 
lute SI units. The output of the maser (corrected either 
electrically using a phase stepper or administratively via 
software) then serves as the real-time realization of the SI 
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frequency. The frequency stability of the maser (or, more 
precisely, the stability of its frequency aging) determines 
how well this procedure will work. This stability enters ex- 
plicitly into the uncertainty with which the calibration can 
be “remembered” between evaluations. It may also enter 
into the error budget of the evaluation process itself be- 
cause the maser is often used as the flywheel oscillator to 
monitor the effects of reversing the direction of the beam, 
changing the microwave power level, and the other experi- 
ments that are part of the evaluation protocol. Its stability 
(rather than its frequency accuracy) is all that is required 
here, so that it is important to be able to detect a glitch in 
its frequency that occurs during the evaluation procedures. 

These considerations suggcst that an algorithm that 
could provide real-time estimates of the frequency and 
frequency-aging of the mascr would be very useful. It could 
be used to detect glitches in the operation of the maser 
during an evaluation and would provide an estimate of 
the performance of the maser between evaluations. Ideally, 
this algorithm would not depend on thc data from the pri- 
mary frequency standard itself (at least in the short term) 
so that its data would provide a statistically independent 
measure of the performance of the maser and of the pro- 
cedure for realizing the standard frequency using it. 

Although a conventional time-scale (such as AT1) might 
be used for this purpose, there are a number of reasons 
why this is not an optimum solution. The AT1 scale as 
currently implemented at NIST [l] contains no algorithms 
for modeling frequency aging. This is appropriate for a 
scale that is based primarily on cesium devices, since such 
oscillators tend to have very small aging parameters which 
are difficult to determinc in thc presence of the flicker and 
random-walk frequency modulations that tend to charac- 
terize these devices at periods longer than a few days. A 
scale that makes heavy use of hydrogen masers, on the 
other hand, must have aging parameters, since they are 
usually statistically significant for most masers. A second 
concern is dealing with the white frequency noise that is 
important at shorter times. The need to detect frequency 
glitches during an evaluation process implies that the fre- 
quency stability of the scale at short times (on the order of 
a few hours) is an important parameter. Since the under- 
lying noise processes tend to be white at these averaging 
times, a natural solution is to measure the clocks much 
more frequently than is usually needed for time-scale op- 
er ations . 

Another fundamental consideration is the need to de- 
sign an algorithm that makes optimum use (in a statistical 
sense) of the calibration data from the primary standard. 
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If the frequency and frequency aging of a maser are care- 
fully modeled, its residual fractional frequency noise can 
be considerably smaller than the fractional uncertainty in 
the evaluation of the primary frequency standard, which is 
currently on the order of for NET-7.  If we think of 
the primary standard as having white frequency noise at 
about this level, then simply steering the maser (electri- 
cally or administratively) to follow the evaluation data is 
not optimum because the frequency stability of the maser 
(as distinct from its accuracy) is probably at least a factor 
of 10 better than this value. In other words, it is impor- 
tant to evaluate the primary frequency standard relatively 
frequently so as to average its white frequency noise us- 
ing some type of flywheel oscillator, and the link between 
it and its transfer oscillator must be designed to facili- 
tate this averaging process so as to make the best use 
of both devices. Loosely speaking, the algorithm should 
“average” a number of consecutive evaluations and steer 
the maser only when the uncertainty in this average has 
dropped below the frequency noise of the maser itself. An 
important design criterion for the algorithm is to provide 
an objective measure of determining this cross-over point 
using data from devices whose behavior is not correlated 
with the noise in the maser which is used as the transfer 
oscillator. 

11. THE MEASUREMENT PROTOCOL 

It would be nice if there was an easy way to measure 
frequency directly, but there is no easy way to do this with 
the requisite resolution. Therefore, our primary data are 
time differences. Our measurement hardware reports the 
time dzfleerence between each clock in the local ensemble 
and the hardware reference clock. The time difference he- 
tween the reference clock and the j- th clock, measured at 
epoch t k ,  is z : j ( t k ) .  The subscript value j = m will be used 
to designate the device (usually a maser) which is used in 
the evaluation process for the primary frequency standard 
and whose output realizes the standard frequency between 
evaluations. By analogy with the terminology used to de- 
scribe ATI, we will call this device the working frequency 
standard. It is connected to the measurement system just 
like any other clock. In particular, it is not necessarily the 
hardware reference clock of the measurement system. 

The parameter measured by the j- th hardware chan- 
nel is the time of the reference clock minus the time of 
clock j .  The average frequency difference between the j - th  
clock and the working frequency standard during the time 
interval At between t k - 1  and tk is: 

where 

and 

Note that the performance of the reference clock can- 
cels in (l), but that measurement noise associated with 
this procedure for determining f j m  is approximately J2 
larger than a procedure that measured the time differ- 
ences between clocks j and m directly because two in- 
dependent time differences are measured at each epoch in 
this method. 

We now define a pseudo-clock called “the ensemble,” 
and we use the subscript “e” to denote a parameter mea- 
sured or estimated with respect to it. We will define its 
frequency to be our best estimate of the frequency of In- 
ternational Atomic Time (TAI) [2], [3] at any epoch. The 
initial value for the average frequency of each clock with 
respect to the ensemble, yJe, is then the value published by 
the Time Service of the International Bureau of Weights 
and Measures (BIPM) for the frequency of the clock in 
question (with respect to TAI) for the epoch which we 
designate as the origin time for the algorithm. The fre- 
quency aging for each clock with respect to the ensemble, 
dJe,  is analogously defined using the first difference of the 
frequency estimates published by the BIPM for the two 
consecutive epochs ending with the origin time of the al- 
gorithm. These two parameters can be used to  predict the 
frequency of the clock with respect to the ensemble at any 
future time. Expressed in an iterative form, the frequency 
prediction becomes: 

C j e ( t k )  = Y j e ( t k - 1 )  + d : l e ( t k - l ) n t .  (4) 

We assume initially that the frequency aging terms do not 
evolve with time but are fixed at the initial values de- 
termined from the BIPM data. This assumption will be 
relaxed in the manner to be described below. 

In the AF1 algorithm, each clock is characterized by 
only these two parameters-a frequency term which is es- 
timated by the procedure after each measurement cycle 
and a frequency aging term which is adjusted much more 
infrequently using data from the primary frequency stan- 
dard in a subsidiary procedure to be discussed below. The 
algorithm does not incorporate time states either for the 
member clocks or for the ensemble itself, nor does it esti- 
mate the frequency aging using the same data as is used to 
estimate the frequencies (2) and (3). These are significant 
differences from AT1 [I], TA1 [ 3 ] ,  or the Kalman formula- 
tion of the algorithm discussed by Stein [4], [5]. 

These equations have been presented as defining the pa- 
rameters of the physical clocks with respect t o  a pseudo- 
clock called “the ensemble,” but they could equally well 
be thought of as definitions (or predictions) of the ensem- 
ble pseudo-clock with respect to the physically observable 
hardware. It is useful t o  keep both of these points of view 
in mind in the following discussion. 

It is also important to distinguish between the fre- 
quency of the ensemble, which is initialized using data 
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from TA1 but is then free-running using only data from 
our local clocks and TA1 itself, which is computed by the 
BIPM using a much larger number of clocks located in 
many laboratories. 

111. ESTIMATING THE ENSEMBLE PARAMETERS 

We can combine the equations above with the time- 
difference data obtained on each measurement cycle to up- 
date our estimate of the frequency of the working standard 
with respect to the ensemble. Specifically, the average fre- 
quency of the maser with respect to the ensemble during 
the time interval of length At ending at time tk can be esti- 
mated using the data from clock j .  To do this, we combine 
the predicted frequency difference between clock j and the 
ensemble from (4) with the measured frequency difference 
between clocks j and m over the most recent time interval 
from (1): 

where the superscript j on the left-hand side indicates 
that the estimate is made using the time-difference data of 
clock j .  The working standard requires no special handling. 
Equation 5 reduces to (4) in this case, since f m m  

There is one of these equations for each clock in the local 
ensemble, and each one of them provides an estimate of the 
frequency of the working standard with respect to it. Since 
any one of them uniquely defines the relationship between 
the working standard and the ensemble pseudo-clock, all 
of them together over-determine this parameter. The var- 
ious definitions may be mutually inconsistent because of 
noise in the measurement processes and in the clocks them- 
selves. If we have done our job properly, this noise will have 
a white spectrum about an underlying mean value, and we 
might suppose that a suitably weighted average of these 
definitions would provide an unbiased estimate of the en- 
semble frequency. In other words, if this algorithm worked 
properly, the weighted average (the ensemble frequency, in 
other words) would provide an unbiased prediction of the 
frequency of TAI. The frequency (with respect to TAI) of 
any member clock in general, or the working standard in 
particular, could be predicted using the equations above. 

Making the assumption that the estimat,es in (5) are 
characterized by white frequency noise about an underly- 
ing mean value, the average ensemble frequency over the 
time interval at ending at time tk is computed using: 

0. 

J 

where the weights are proportional to the reciprocal of the 
prediction variance (as defined below). They are normal- 
ized by: 

c w j  = 1. (7)  

The operation defined by (6) will always exist in a formal 
sense, but the result is meaningful if, and only if, the es- 
timates defined by (5) are dominated by white noise and 
are, therefore, normally distributed about an underlying 
mean value. 

There are two types of noise processes that contribute 
to the estimates in (5): measurement noise from the time 
difference hardware and frequency noise from the clocks. It 
is reasonable (although perhaps a bit optimistic) to assume 
that both contributions are dominated by white processes 
at short-time intervals, so that the weighted sum defined 
by (6) is still limited by white noise processes. Averag- 
ing this frequency would then yield an estimate that con- 
verged to  the mean frequency difference between the work- 
ing standard and the ensemble if the averaging interval is 
not too long. Decreasing the time interval between mea- 
surements should improve matters both because the clock 
noise is more likely to be white and because the standard 
deviation of the mean computed over a given time interval 
decreases as more measurements are averaged. Conversely, 
the ensemble frequency defined by this algorithm is likely 
to be limited by flicker and random-walk frequency fluc- 
tuations at longer times because those are the statistics of 
the clocks that contribute to its definition. 

These considerations lead us to the usual conclusion: 
there is an optimum averaging time for estimating the fre- 
quency of the working standard with respect to the en- 
semble. This averaging time is determined by the point 
at which non-white processes begin to dominate the noise 
spectrum of f m e .  By analogy with AT1, we average f,, 
using an exponential filter whose time-consta.nt is set using 
the considerations we have just discussed: 

The time constant G is dimensionless and is normally 
less than 1. Using this formulation, the crossover between 
white and non-white behavior is set at approximately 1/G 
time intervals (i.e., a time of A t / G ) .  The time constant is 
usually on the order of days for most clocks. 

As we discussed above, (8) can also be thought of as 
defining the frequency of the ensemble with respect to the 
working frequency standard. It is now a straightforward 
matter to compute the frequency of each of the other clocks 
with respect to the ensemble, f j , ,  by adding (8) and (1). As 
with the working frequency standard, we assume that the 
fluctuations in the frequency of each clock are dominated 
by white processes at short times, changing to flicker or 
random-walk fluctuations at longer periods. We average 
the frequency of each clock using an exponential filter as 
defined in (8) above; the time constant for each clock is 
determined from an evaluation of its noise performance. 

We could also think of the point at which non-white 
processes begin to dominate the statistics of the frequency 
estimated in (6) as due to the fact tshat the frequency ag- 
ing parameters are no longer constant. In this approach, 
we would use the f j e  to modify dje rather than yj,. It 
is much more difficult to do it this way because it is the 
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t i m e  integral of the aging that modifies the long-term fre- 
quency rather than the aging itself, and the integral of a 
white process is no longer white even at short times. We 
choose instead to modify the aging parameters using the 
data from the primary frequency standard. 

The uncertainty in an evaluation of the primary stan- 
dard is considerably larger than the noise of the ensem- 
ble at short averaging times. If we assume that data from 
primary frequency standards are characterized by white 
frequency noise at all averaging times, the standard devi- 
ation of their mean improves as more measurements are 
included. At the same time, the frequency fluctuations of 
the clocks that contribute to the ensemble computation 
(and therefore the ensemble frequency itself) will be in- 
creasingly affected by non-white processes at longer aver- 
aging times. The uncertainty in the ensemble frequency 
therefore does not  improve with averaging time beyond 
some point; in fact, it actually begins to increase again at 
very long times. The uncertainty in the frequency of the 
primary standard will, therefore, drop below the noise in 
the scale for some averaging time, and it is at this point 
that data from the primary standard should be included 
as a modification to the aging parameters of the ensemble 
members. The effect of this procedure is to use the ag- 
ing parameters to model the very long-term change in the 
frequencies of the clocks in the ensemble. 

A natural way to modify these aging parameters would 
be to define a second exponential filter which steered them 
using an “error term” proportional to the difference be- 
tween the frequency of TA1 estimated by the ensemble 
and the estimate from the primary frequency standard. 
The time constant of this filter would be determined by 
comparing the performance of the primary frequency stan- 
dard with the statistics of the ensemble. Assume, for ex- 
ample, that the “flicker-floor” of the ensemble frequency 
is about 4 x and that it is reached at an averaging 
time of about 6 months. If the primary standard is eval- 
uated once per month, and if the fractional uncertainty 
of each evaluation is about then the standard de- 
viation of the mean of six evaluations would be roughly 
equal to the flicker floor of the scale after 6 months. De- 
creasing the interval between evaluations does not improve 
the overall accuracy very rapidly, since the standard devi- 
ation of the mean decreases only as the square root of the 
number of observations. Increasing the interval between 
evaluations, on the other hand, means that it takes longer 
for the standard deviation of the mean frequency of the 
evaluations to reach the ensemble flicker floor. More im- 
portantly, random-walk processes are likely to become in- 
creasingly important in limiting the ensemble stability at 
these longer averaging times, so that the overall perfor- 
mance of the ensemble in “remembering” the evaluated 
frequency is degraded. 

The ensemble frequency itself should have no determin- 
istic frequency aging in principle, and this fact can be used 
to constrain the aging parameter of each of the clocks. The 
situation in practice is more complicated. In the first place, 
both the ensemble and the member clocks are likely to ex- 

hibit random-walk frequency noise at long periods, and it 
is not easy to differentiate between large random-walk ex- 
cursions and a deterministic secular aging. In the second 
place, TA1 itself is steered by the BIPM using data from a 
worldwide ensemble of primary frequency standards, and 
this steering will produce an apparent deterministic aging 
in the ensemble with respect to TA1 if it is not included. 

IV. PREDICTION ERROR AND THE WEIGHTS 

The prediction error for each clock is the difference be- 
tween the frequency of the working standard with respect 
to the ensemble predicted using its data (5) and the av- 
erage of these predictions over the ensemble (6). This dif- 
ference is converted to a time dispersion using the interval 
between measurements, At: 

As we pointed out above, we expect that e3 will be nor- 
mally distributed over short time intervals with a mean 
of 0 and a standard deviation that characterizes the qual- 
ity of clock j .  We can estimate this standard deviation 
using the standard exponential filter technique with the 
time constant, G’, determined in the same way as G in (8) 
above: 

The effective time constant in (10) is typically about 10 
days. Using a measurement interval of 720 s, values of o 
range from about 30 ps to 1 ns. 

In order to determine the weight of clock j and to detect 
a possible glitch in its performance, we form the statistic x ,  
which is the ratio of the prediction error in this measure- 
ment cycle to the average quality of the clock determined 
from previous data using (10): 

1. If x > 4 for some clock, then we assert that the 
frequency of that clock has suffered a glitch. We assume 
that the problem is an error in the measurement of its time 
difference, since that is the most common type of problem. 
We set the weight of the clock to  0 in (6) and recompute 
that average and all of the quantities that depend on it 
(such as (9) for each of the other clocks). Since our model 
of the event is that it is a one-time measurement error, we 
do not change any of the parameters of this clock using 
data from the current cycle, and we hope for better days 
ahead. The clock will be returned to the ensemble with its 
current parameters on the next measurement cycle. 

2. If x < 3 then we assert that the clock is behaving 
normally. We calculate its weight in the ensemble using: 



LEVINE: DATA AND TIME SCALE 633 

subject to the normalization requirement (7) and possibly 
to other limitations to be discussed below. (Although U 

has the dimensions of time, the weights are dimensionless 
numbers. The weight calculated above must be normalized 
by dividing by the sum of the weights before it can be used 
in (6), and this normalized ratio is dimensionless.) 

3. If 3 5 x 5 4 then we assert that the clock is not 
behaving normally but that its error is not large enough to 
be classified as a glitch. We compute the weight of the clock 
in the ensemble using (12) multiplied by the deweighting 
factor: 

which deweights t,he clock smoothly from the full weight 
used for normal performance to the weight of 0 that is 
used for a glitch. We use this modified weight to recom- 
pute the scale parameters as in case 1 above, and we allow 
the current measurements to modify the parameters of the 
deweighted clock. This linear deweighting function is cho- 
sen because it is simple and smooth-it has not been rig- 
orously justified. It is based on the idea, first suggested by 
Percival [6], that gradually deweighting a clock was a more 
reasonable procedure than resetting it abruptly when its 
error exceeded an arbitrary threshold. 

If the prediction errors can, in fact, be characterized 
as a normal process, then there is a 0.3% probability of 
making an observation which has a prediction error of 3 
standard deviations; the probability that the error is 4 
standard deviations is 0.006%. These values are not as 
small as they seem. Our test ensemble (to be discussed 
below) has eight clocks whose times are measured every 12 
minutes, which is 960 measurements/day. Based on these 
probabilities, we would expect two or three deweighting 
events every day and a reset about every two weeks due to 
statistical fluctuations alone. Since these events conform to 
the statistical model, the reset procedure we have outlined, 
which treats them as special non-conforming glitches, will 
do the “wrong” thing when they occur. 

Based on our experience with AT1 (which uses the same 
sort of reset procedure) and with the AF1 algorithm de- 
scribed in this work, it is quite likely that about 40% of 
the events that trigger the reset algorithm are actually 
observations that have large deviations but that conform 
to the statistics. We consider this balance as reasonable, 
although it is not possible to justify it rigorously on statis- 
tical grounds since it is designed to deal with events that 
are, by definition, not characteristic of the normal statis- 
tical performance of the clock. This procedure is particu- 
larly poor in modeling a clock that has large random-walk 
frequency noise at short periods. The procedure assumes 
that the noise at short periods is white, and the resulting 
unmodeled time dispersion will trigger the time-step de- 
tector more frequently than is appropriate for the actual 
performance of the clock. 

A more fundamental concern is that the algorithm for 
determining the weights is biased. The prediction error (es- 
timated by (9)) is always too small because the frequency 

of a clock is correlated with the frequency of the ensem- 
ble, since the ensemble includes a contribution from each 
device through (6). The weights, which are proportional 
to the reciprocal of the variance, are, therefore, systemat- 
ically too large. This problem becomes very important as 
the weight of a clock increases-in the limit, a clock that 
starts out as one of the better clocks in a small ensem- 
ble can have its weight increased to 100% if the positive 
feedback that results from this correlation is not limited 
in some way. 

One way of controlling this positive feedback is to use 
the correction to the variance proposed by Tavella, et al. 
[7] and Tavella and Thomas [8]. They show that the bias in 
the variance due to the correlation between the clock and 
the ensemble is proportional to the weight of the clock, 
and that an unbiased estimate of the variance, U:, may be 
calculated using: 

n 

where g 2  and w are the variance and weight, respectively, 
of any clock in the ensemble, calculated according to the 
procedures we have outlined above. 

There are a number of difficulties with this procedure. It 
complicates the error detection algorithm and may intro- 
duce a bias if a high-weight clock has a time step. While it 
attempts to provide an unbiased estimate of the variance 
of each clock, it does not address the situation in which 
one clock tries to take over the scale because it really i s  
better than most of the others in the short term-a situa- 
tion that is quite common when masers and cesium clocks 
are combined in a single ensemble. 

Another procedure is to administratively limit the 
weight of any clock by some means. This is currently done 
in the computation of TA1 by the BIPM and in the NlST 
time-scale algorithm AT1 [l], [9]. We have adopted the 
same procedure in the current work as is used in AT1: the 
normalized weight of any clock is administratively limited 
to 30% of the scale. The prediction error and standard 
deviation are calculated for each clock as specified in (9) 
and (10). If the normalized weight that results from these 
parameters exceeds 30%, then the corresponding weight is 
fixed at 30%. Note that this limit is relative-the value 
of the standard deviation that will cause it to be applied 
depends on the other clocks in the ensemble. A somewhat 
different procedure-with an absolute maximum weight- 
is used in the current computations of TA1 by the BIPM, 
but the overall effect is much the same. 

As we will show below, the correction factor proposed 
by Tavella et al. [7] has little effect in our ensemble. The 
weights of the two masers in our ensemble will be lim- 
ited by the 30% administrative limit whether the biased 
or unbiased variances are used, and the correction to the 
variances of the other clocks that results from applying the 
correction factor does not make much difference to their 
weights. 

Any procedure that introduces administrative weight 
limits guarantees that the scale cannot be completely cap- 
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tured by one clock, but this advantage does not come for 
free. The normalization condition on the weights (7) ,  guar- 
antees that, if the weight of a good clock is administra- 
tively limited to less than what its statistical performance 
would warrant, then the weights of poorer clocks become 
higher than they should be based on the same considera- 
tions. The performance of the scale (under normal operat- 
ing conditions) is inevitably degraded compared to the the- 
oretical performance that could be achieved if the clocks 
at hand were combined in an ensemble without such ad- 
ministrative limits. 

The weighting procedure that we have defined is sta- 
tistically optimum if the prediction errors of the clock fre- 
quencies with respect to the ensemble can be characterized 
as a white Gaiissian process over the time interval At. This 
is quite likely to be true for the small time intervals we use, 
but it does not follow that the weights defined in this way 
result in a scale whose stability is optimum at longer aver- 
aging times. In particular, the procedure we have defined 
assigns a high weight to a clock with good short-term sta- 
bility even if its long-term stability is poor. This is not as 
serious as it seems-the scale we have defined is optimized 
for short-term stability only, with the stability at longer 
term being provided by the procedure to adjust the aging 
parameters we outlined above. Nevertheless, it is possible 
to adjust the performance of the scale in longer term to 
some degree using the parameters G and GI, the time con- 
stants used in (8) and ( lo) ,  respectively. 

Parameters G and G' serve the same purpose-they at- 
tenuate rapid fluctuations in the estimates of the frequency 
and the prediction error, respectively, on the assumption 
that such fluctuations are white noise about underlying 
mean values which we are trying to estimate [lo] (rapid in 
this context means fast compared to the respective time- 
constant). The gain of both filters is unity at very long 
periods (i.e., at times much greater than the correspond- 
ing time-constant), and the exact magnitudes of G and G' 
become irrelevant in this regime. This is not true at in- 
termediate periods, however, where both G and G' affect 
the partition between deterministic signals and stochastic 
noise. Increasing G' , for example, decreases the filtering 
effect of ( lo),  increases the effect of e? on a? (making the 
latter larger) and therefore decreases the effective weight 
of a clock in the ensemble. The same sort of argument ap- 
plies to (8)-increasing G puts more of the fluctuations in 
the short-term frequency, f , into the corresponding aver- 
age value, y, thereby treating these fluctuations more as 
signal than as noise (because y is used to predict the per- 
formance of the clock between measurement cycles). Note 
that this effect begins to become important for fluctuations 
whose periods are on the order of the time constant-the 
gain of the filter will always be unity at very long periods. 

These effects are most important in the analysis of tran- 
sients and fluctuations whose periods are on the order of 
the time constants specified by G and GI. Adjusting these 
constants therefore provides a mechanism for differenti- 
ating between clocks with different performance at short 
and intermediate periods. This may be expedient, but it is 

usually not optimum, because changing the time constant 
changes both the performance at intermediate periods and 
the averaging at short periods, so that the two remain cou- 
pled. 

V. RESULTS 

I have tested the algorithm described above using time 
difference data from our dual-mixer measurement system. 
The time differences are read by the hardware every 1 2  
minutes, and a subset of the clocks that make up our of- 
ficial AT1 ensemble are also analyzed by the algorithm 
described in this paper, which we call AFI. (Note that the 
AT1 time-scale computation uses measurements made ev- 
ery 2 hours-that is every 10th point of the same data set 
used in this work.) 

The clocks in our test ensemble are described in Table I. 
The weights in the last column are the formal values cal- 
culated using equations (12) and (7) and are rounded to 
the nearest 0.1%. The weights actually used in the com- 
putation are administratively limited to 30% as discussed 
in the text; the values for the two masers that are larger 
than 30% are replaced by this limit in the algorithm. 

The time constants used in (8) and (10) were set to 60 h 
and 180 h, respectively, for all of the clocks; the results are 
not sensitive to  changes of up to 30% in these values. 

The algorithm was started on MJD 50070 using the 
data from the BIPM publications as described above and 
it has been free-running since that time. No administra- 
tive adjustments have been made to the parameters of any 
clock beyond the automatically imposed 30% limit on the 
weight of any clock that was discussed above. 

The first clock in Table I was designated as the working 
frequency standard in the ensemble. It is also the clock 
that is used as the local oscillator for the evaluation of 
NIST-7, and the results of these evaluations are reported 
to the BIPM with respect to its frequency. 

The interval between time-difference measurements is 
720 s, and the algorithm computes an estimate of the av- 
erage frequency of the working standard with respect to  
the ensemble on the same time mesh using the exponen- 
tial filter defined in (8). Fig. 1 shows these estimates for 
a typical 20-day interval. The standard deviation of the 
data is 1.9e-15; the variance of the frequency fluctuations 
is a combination of flicker and random-walk spectra as 
expected-the white fluctuations have been attenuated by 
the exponential filter. For comparison, Fig. 2 shows the 
estimates of the frequency difference between the working 
standard and the second maser, clock 1400222. The sig- 
nificant frequency aging between the two masers has been 
removed by subtracting a straight line whose parameters 
are determined from the aging entries in Table I. 

The data in Fig. 1 probably represent a pessimistic esti- 
mate of the frequency stability of the maser over relatively 
short time periods because the maser is being compared 
to an ensemble that is relatively noisy at short times. The 
values for CT in Table I confirm this. Even with this pes- 
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TABLE I 
THE PARAMETERS OF THE CLOCKS USED TO EVALUATE AFI 

Clock Number and type 
(BIPM Identifier) Frequency 

Initial Values 
Aging 0 

Typical Values 
Weight 

1400201 
1340493 
1350408 
1310569 
1350132* 
1350182 
1400222 
1160217 
1181007 

Maser 
Cesium 
Cesium 
Cesium 
Cesium 
Cesium 
Maser 
Cesium 
Cesium 

(s/s) 
-9.17e-14 

1.29e-12 
1.03e- 13 
1.50e-12 
1 .OOe- 13 
6.98e- 14 
8.54e-12 

-4.87e-13 
2.60e- 12 

(s/s2) 
- 1.15e-21 
- 1.68e-19 
-1.15e-21 
-2.15e-21 
-7.55e-21 

2.03e-21 
1.90e-21 

-1.15e-21 
-2.13e-20 

(PSI (%I 
40 186 

2000 0.1 
170 11 
200 6 
170 11 
170 11 
40 186 

900 0.5 
800 0.5 

* Clock 1350132 was included in this ensemble for only a portion of the period 
discussed in the text. Because of the normalization condition, the weights of 
the other clocks increased when it was not present. 
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Fig. 1. Average frequency of the working standard with respect to  
the ense+ble from (8). 
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Fig. 3. Average frequency of working standard. Connected points are 
AF1 estimate; stars are BIPM estimates, and hexagons are NIST-7 
evaluations. 

simistic view, both the ensemble and the maser have fre- 
quency stabilities substantially better than le-14. 

It would be tempting to assert that the actual short- 
term frequency stability of the maser is l /J2 of the vari- 
ance of the data in Fig. 2 (or about 0.2e-15), but this 
is probably too optimistic. In the first place, the data of 
Fig. 2 have a significant frequency-aging term removed 
(about 0.3e-l5/day), and there is an inevitable uncertainty 
in this process. In the second place, both masers are sen- 
sitive to environmental perturbations, so that the data in 
Fig. 2 may be contaminated with some common-mode fre- 
quency noise which would make the plot look too good. 
Note that even these data show periods when the fre- 
quency difference between the two masers changes by al- 
most le-15 in a period of a day or so. If these fluctuations 
are environmentally induced, the data-set may represent a 
lower bound on what either device is actually doing. 

Fig. 3 shows the frequency of the working standard with 
respect to the ensemble for 100 days, which is all of the 
data we acquired to date. We have decimated our data to 
4 points per day without averaging the skipped data. The 
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lines connecting the points are for ease of identification 
and are not otherwise significant. 

The filled stars show the frequency of the same clock 
as estimated from the BIPM data. Each value in this se- 
ries is the first difference of the time of the working stan- 
dard with respect to UTC divided by the interval between 
the measurements (10 days before MJD 50079 and 5 days 
thereafter). Since these data are obtained via GPS, the un- 
certainty in each time measurement is probably about 2 ns. 
The uncertainty of a frequency estimated using these time 
data will be about (2e-9 x ,,1‘2)/(5 x 86400) = 6.5e-15. As 
can be seen from Fig. 3, the agreement is generally much 
better than this value-in fact, most of the estimates agree 
far better than might be expected based on this noise es- 
timate. 

Finally, there have been two evaluations of NIST-7 dur- 
ing the period covered by Fig. 3. These evaluations es- 
timate the frequency of the maser used as the working 
standard in our ensemble. Since these evaluations include 
a correction for the black-body shift whereas TA1 did not 
during the period in question, we have subtracted 20e-15 
from the NIST-7 data to remove this correction. The re- 
sults are plotted as filled hexagons. The quoted uncertainty 
of these evaluations is le-14, but the agreement among the 
various estimators is much better than this. 

VI. DISCUSSION AND CONCLUSIONS 

I have designed an algorithm for estimating the fre- 
quency of a working standard using time-difference data 
from other devices. The algorithm, which I call AF1, is 
similar to the AT1 time-scale algorithm that has been used 
at NIST for many years. I have tested the algorithm using 
an ensemble of 2 hydrogen masers and 6 cesium standards, 
all of which are commercially produced. I find very good 
agreement between the frequency of the working standard 
estimated using AF1 and the frequency estimated using 
published BIPM data and using evaluations of NIST-7. In 
both cases, the agreement is at least as good as what would 
be expected based on estimates of the uncertainties in the 
data, and is generally considerably better than this. The 
technique shows great promise for providing a new tool 
for monitoring the local oscillator used in the evaluation 
process of a primary frequency standard and in providing 
a robust statistical procedure for “remembering” the stan- 
dard frequency between evaluations. The scale will prob- 
ably exhibit random-walk frequency fluctuations at long 
periods, and I have suggested a mechanism for addressing 
this problem using the primary standard data to modify 
the aging parameters of the member clocks. 

The data also suggest that the current oscillator hard- 
ware may not be adequate to support a significant im- 
provement in primary frequency standards. Our results 
suggest that the best hydrogen maser that we have some- 
times shows fluctuations in its frequency on the order of 
le-15 over periods of a few days. This is probably adequate 
to evaluate a primary standard whose accuracy is only on 

the order of le-14, but it is unlikely to be sufficiently stable 
to support the evaluation of a primary standard that was 
a factor of 10 better than this. Evaluation protocols would 
seem to depend on having a local oscillator whose short- 
term stability was at least as good-and ideally substan- 
tially better-than the overall accuracy of the evaluation. 
It is possible that this requirement might be satisfied by 
synthesizing a local oscillator derived from optimally aver- 
aging an ensemble of masers, but it is not at all clear how 
well this will work. We will need to exercise great care to 
minimize common-mode effects-especially environmental 
perturbations-if this strategy is to  be viable. 
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