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As the need for personal authentication increases, many peo-
ple are turning to biometric authentication as an alternative to
traditional security devices. Concurrently, users and vendors of
biometric authentication systems are searching for methods to
establish system performance. This paper presents a model that
defines the parameters necessary to estimate the performance
of fingerprint-authentication systems without going through the
rigors of intensive system testing inherent in establishing error
rates. The model presented here was developed to predict the
performance of the pore-based automated fingerprint-matching
routine developed internally in the research and development
division at the National Security Agency. This paper also discusses
the statistics of fingerprint pores and the efficacy of using pores
in addition to the traditionally used minutiae to improve system
performance. In addition, this paper links together the realms
of automated matching and statistical evaluations of fingerprint
features. The result of this link provides knowledge of practical
performance limits of any automated matching routine that utilizes
pores or minutia features.

Keywords—Access control, biometric authentication, fingerprint
identification, identification of persons, modeling, pattern match-
ing, probability.

I. INTRODUCTION

This paper provides a statistical analysis of fingerprint
features as well as a description and comparison of au-
tomated and manual (forensic) fingerprint-matching tech-
niques, including the identification of certain critical pa-
rameters involved in any automated matching technique.
The authors use these critical parameters to determine
the expected performance of any automated fingerprint-
matching routine and apply their model to a specific system.

This paper establishes the performance estimates for a
pore-based automated fingerprint-matching routine that is
under development in the research and development divi-
sion of the National Security Agency (NSA). Many factors
influence the performance of such a system. Some have
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been explored previously either in studies of automated
matching systems or in the forensic arena, but there has
been little effort to tie together information from both areas
to estimate performance. To assess performance, feature
uniqueness, reliability, and automated matching parame-
ters must be understood. Literature from law enforcement
and criminology tends to focus solely on the uniqueness
of a configuration of fingerprint features, and literature
concerning automated systems deals with processing and
matching techniques without regard to feature uniqueness
or variation of matching parameters. Neither source has
addressed feature reliability, although knowledge of all
these issues is intrinsic to the development of a sound
fingerprint-matching technique.

Currently, the performance of biometric systems is
gauged mostly by error rates. Errors in a fingerprint-
recognition system can be one of two types. A false
accept occurs when an unauthorized user is identified
as an authorized user and is therefore accepted by the
system. A false reject occurs when an authorized user is
not recognized as such and is rejected by the system. To
describe the performance of a system, both the false accept
rate (FAR) and false reject rate (FRR) must be determined.
These FAR’s and FRR’s currently are accepted as the
metrics by which biometric system performance is judged.

Although error rates serve as a good indicator of system
performance, the most common method of determining
FAR’s and FRR’s requires extensive testing, which is very
time consuming. If the system parameters change, then
the testing must be redone. One motivation of this paper
is to provide an alternative, more immediate method for
projecting system performance. In this paper, a model
for fingerprint matching is developed that encompasses
both uniqueness (from forensic analyses) and parameters
needed for automated matching techniques. This proba-
bilistic model is generated using knowledge acquired from
several sources: existing models for uniqueness of sets of
fingerprint features developed in forensic studies, a phys-
iological model based on morphogenesis of fingerprints,
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Fig. 1. Physiology of the skin.

a mathematically derived matching scheme, and results
from measurements of real fingerprint images. The resulting
model is intended to simulate a real matching system and
provide the ability to estimate error rates for a given set of
system parameters.

Inherent in developing this theoretical model, and es-
pecially in gauging the performance of the internally de-
veloped system of the NSA, is exploring the efficacy of
using pores to match fingerprints. Automated matching
techniques traditionally have used configurations consist-
ing of medium-resolution features, such as branch points
(bifurcations) and end points of epidermal ridges, but it is
also possible to implement pores, which are high-resolution
features. The NSA internal system is one of only a few
systems to date that utilizes pores as features to match
fingerprints. (For those interested in exploring this topic
further, [16]–[35] are suggested reading.)

II. HISTORY

Branch and end points of epidermal ridges were used
by Sir F. Galton in 1872 to develop a probabilistic model
of fingerprint individuality. They have been used since
then in both forensic work [3] and automated matching
[2], [5]. These Galton features, or minutiae, contain unique
information that enables their use in probabilistic analyses.
Each Galton feature has a specific type, i.e., branch point
or end point, a unique location on the fingerprint, and a
specific orientation [12]. The orientation can be defined for
an end point, for example, as the approximate tangent angle
to the ridge ending.

Most probabilistic models to date have utilized Galton
features exclusively; two of these models will be presented
in this paper. The first model, published in 1977 by Os-
terburg et al. at the University of Illinois [9], determines
the probability of occurrence of a certain configuration
of Galton features in a fingerprint. Two years later, a

member of Osterburg’s team, S. Sclove, published a paper
presenting the occurrence of Galton features as a two-
dimensional Markov model [10]. Both of these models can
be adapted to use pores instead of Galton features.

Pores historically have been used to assist in forensic
matching. Although most matching methods have empha-
sized minutia comparisons and used pores as ancillary
comparison features, the ability to match prints based on
pore information alone has been documented [1], [7], [13].
The concept of using pores to match prints has been
essentially dormant during the rise of automated fingerprint-
recognition systems.

III. PHYSIOLOGY

The uniqueness of a configuration of pores depends on
several factors, such as the number of pores involved, their
respective shapes and sizes, the locations of these pores
with respect to each other, and so on. These factors all
are a function of morphology. Thus, it would be helpful
to discuss briefly the genesis and formation of fingerprints
as well as the implications imposed in the development of
pores.

Pores are formed where sweat glands in the subcutaneous
layer of the skin generate sweat ducts. These sweat ducts
grow through the subcutaneous layer and dermis to the
epidermis, where the open duct on the skin’s surface
presents itself as a pore [15] (see Fig. 1). According to a
1973 study on skin-ridge formation [4], sweat glands begin
to form in the fifth month of gestation. The sweat-gland
ducts reach the surface of the epidermis in the sixth month,
forming pores.

The epidermal ridges are not formed until after the sixth
month; then, the pattern that has been forming in the
glandular fold region is transferred to the epidermis. Hirsch
and Schweichel [4] concluded that several forces affect the
epidermal pattern formation. One of these forces is the
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Fig. 2. Lattice model for sweat gland/pore placement on the finger. (a) Pores are represented in
a lattice formation. (b) The lattice of pores is overlaid on a real fingerprint structure. (c) Some
pores must be moved to comply with the ridge structure. (d) The resulting lattice with small
random deviations added to some of the members. In a lattice formation, the positions are entirely
deterministic. In (c) and (d), the pores are distributed stochastically over the surface of the finger.

stabilization that occurs “when sweat gland secretion ducts
open on to the surface, at regular intervals, in the papillary
ridges.” These openings of the ducts on the surface are
the pores, and the regularity of their appearance plays a
significant part in the uniqueness of pore configurations.
Once these pores form on the ridge, they are fixed at that
location. Considerable research has shown that pores do not
disappear, move, or spontaneously generate over time [7].

A. Model of Pore Spatial Distribution

To study the spatial distribution of pores, it is helpful to
imagine a fingerprint based on an underlying lattice struc-
ture of sweat glands separated by distance. Furthermore,
pore distribution is assumed to be purely homogeneous and
isotropic as a result of sweat glands’ being thus distributed
[see Fig. 2(a) and (c)]. This first-order approximation to
actual pore formation is based on the assumption that the
primary function of pores is heat transfer; therefore, pores
should be evenly spaced. Matching a print with this kind
of distribution would be trivial; if any pore in the first print
matches any pore in the second print, then all pores match
(neglecting rotation effects).

The lattice model must be adjusted since the formation of
epidermal ridges constrains pores to appear on them. The
lattice is modulated by the underlying ridge structure [see

Fig. 2(b) and (d)]; however, a certain degree of regularity
remains. Assume that each pore is located in a “sweat-
gland unit,” where the units occur side by side on a ridge.
Furthermore, assume that the position of the pore inside
the sweat-gland unit is a random variable that is uniformly
distributed over the dimensions of the sweat-gland unit.

A comparison of real and modeled pore spatial distribu-
tion is explored in Fig. 3. Here, a fingerprint is shown in
(a), with pore-location information extracted and displayed
in (b). A rectangular lattice model is shown in (c). (d)
is a modification of (c) that allows a small degree of
random variation in the lattice point positions. (e) depicts a
lattice with an even greater degree of variation in the pore
positions. Note that in (c), (d), and (e), no ridge modulation
has been performed, and it is assumed that the underlying
ridge structure is purely unidirectional (either vertical or
horizontal rows of ridges). For (f), unlike (d) and (e), the
points were not constrained by a lattice structure in their
positioning. The position of each point was considered to
be a random variable with a uniform distribution (over
the dimensions of the image). Therefore, an element is
equally likely to occur at any location within the image.
The real spatial pore distribution in (b) is more similar to
the point distribution in (e) than (f). Thus, a model based
on a uniform probability distribution for the pore positions
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. (a) Original image. (b) The position of more than 400 pores within a fingerprint image.
(c) Lattice of points. (d) Lattice of points with random variation in position (within unit cell). (e)
Lattice of points with larger allowed position variation. (f) Plot of a set of points with positions
generated from uniformly distributed random variables (uniformly distributed set of points). (g) and
(h) Fingerprint segment with more uniformly spaced pores than (a).

is not accurate. In fact, the magnitude of small random
perturbations added to each lattice location should be quite
small based on inspection of the images in Fig. 3.

Although regular spacing of sweat glands within a ridge
is assumed to be the norm, one must allow for the possibil-
ity of an absent sweat gland. Along with the randomness of
pore positions within the existing sweat-gland units, physio-
logical omissions of sweat glands contribute to the deviation
from the expected distance between nearest neighbor pores
[8]. These omissions are evident in Fig. 3(a) and (b).

Before progressing further into a discussion of system
performance and model derivation, it is important to con-
sider how a matching routine works, especially since the
matching routine is a critical component of any recognition
system.

IV. A UTOMATED MATCHING PRINCIPLES

Consider the problem of comparing two different fin-
gerprint subsegments selected from complete prints. The
first segment is obtained from a known user at the time
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(a) (b)

Fig. 4. Fingerprint features. (a) Features of minutiae points are
demonstrated. In this case, bothM1 andM2 are end points with
orientation defined as the direction of ridge flow at the end point.
Knowing the relative positions ofM1 and M2 is sufficient to
determine the degree of rotation between sets of images. The
features of pores and their relative position (defined at the center
of mass of the pore), size, and shape are seen in both (a) and (b).
Using only position information, a set of pores is unique.

of enrollment, or registration, into the system. The second
segment results from a live scan acquired for the purpose
of verifying a user’s identity. When the two segments are
compared, there are two possible outcomes: the live-scan
segment either matches or does not match the registered
segment.

An enrollment procedure is used to extract pertinent
information from the fingerprint and store the information
to a template (or feature vector), which then represents the
user. When matching is based on minutiae or pores, the
template consists of vital information about these features.
In the case of minutia points, knowing the relative position,
orientation, and type (branch or end) of each minutia in the
set is sufficient

minutia features:

where there are minutia enrolled, is the position,
is the orientation, and is the type. For pores, the position
relative to a local reference point, size, and shape could
be stored

pore features:

where is the number of enrolled pores,is the position
(defined as the center of mass of the pore),is the size,
and is the shape. See Fig. 4, which is a high-resolution
fingerprint image, for examples of fingerprint features.

Whether pores or minutia are the basic features, it is pos-
sible to use a subset of the full feature set (for instance, the
location only) to represent the fingerprint. Authentication is
then reduced to a comparison of two sets of points in space
and a decision on whether they match well enough

enrolled features

comparison features

where is the number of enrolled features (pores or
minutiae) and is the number of live-scan or comparison
features (pores or minutiae). Fig. 5 shows some basic
matching principles.

(a)

(b)

Fig. 5. Basic matching principles. The concept of a search area
represented by� is shown. Also, measurement is based on relative
positions as opposed to relying on an absolute coordinate system.
Featuref0;e, which corresponds tof0;c, is a feature (local origin)
that is used to establish relative positions of other features.

An important step in matching is determining a common
reference point or origin in each of the print segments. For
example, a particular minutia point may be used as a local
origin from which to measure the position of a set of nearby
pores. This minutia point must be properly identified in both
images before the pores can be matched.

A. Pore Extraction Technique

The method used to extract the pores as fingerprint
features is critical to the matching routine. The pore’s
position, size, and shape are features that make it distinct
from other objects in an image. Techniques used for the
fingerprint data capture can be used to enhance the pore
information. For example, high-resolution scanning and
manipulation of the gain and contrast camera controls can
highlight the pores. The position of the pore is determined
by processing the gray-scale fingerprint image and trans-
forming it to a skeleton representation. By applying models
and processing routines to the skeleton of the fingerprint
image, the pore locations can be extracted. Pores are
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transformed into isolated and connected short lines in the
skeleton image. Given this information, the size of the pore
can be determined by region-growing routines operating on
a binary version of the fingerprint image. More details can
be found in [13] and [14].

B. Scanning Resolution

Some parameters become critical to the matching routine.
For instance, the resolution at which the fingerprints are
scanned determines the accuracy of feature location mea-
surements. Inherently, there may be only one pore in a given
1 1 mm section of print, and at 1000 pixels per inch
(ppi), this section is represented by approximately 4040
(1600) pixels. In comparison, at a scanning resolution of
500 ppi, the same segment is represented by 2020 (400)
pixels. Therefore, the probability of another 1 mmsegment
of print’s matching with respect to pore position is either
1/1600 or 1/400 depending on the scanning resolution. It
can be seen that the FAR will be reduced at a higher
scanning resolution at the cost of an increased FRR.

C. Feature or Search Area

The scanning resolution issue can be made invariant
by defining an absolute area to be associated with each
feature (a feature area or search area). For instance, the
location of a pore in the enrolled print segment may be
determined to be but in the corresponding live-scan
segment, its location may be shifted some distanceas
a result of rotation, plasticity, or other distortion. For the
purpose of matching these two segments, a search area

, as seen in Fig. 5, can
be defined such that if the feature is within, the features
match with respect to position.

The size of is a parameter that influences the perfor-
mance of the system (decreasingproduces a decreasing
FAR and increasing FRR; increasingproduces an increas-
ing FAR and decreasing FRR). Practically, should be
large enough to account for effects such as plasticity of the
finger and deviations in feature position due to variations
in the data, as well as effects of the processing algorithms,
but not large enough for areas associated with distinct
features to overlap. In a forensic comparison, plasticity
and distortion of the finger are accounted for by human
processing, but in an automated process, tolerances such
as must be incorporated to accommodate these inherent
variations.

D. Finger Plasticity

The distance between two features can change signifi-
cantly due to plasticity of the finger. This relative change
of position is generally not significant for nearby features
within small areas of print. Therefore, when measuring the
position of small high-density features such as pores, a local
origin should be established. A minutia point can be used
to establish a local origin.

E. Reliability

A critical factor when considering the performance of a
fingerprint-matching system is reliability. Within the scope
of this paper, overall reliability is broken down into two
components: inherent reliability and algorithm (processing)
reliability. Inherent reliability refers to the physiological
dependability of pores, which is the probability that a
known pore will be visible in a particular live-scan print.
Pores do not always appear on print images; factors such
as temperature and skin condition can conspire to alter or
suppress altogether the physical appearance of a given pore.

Algorithm or processing reliability must also be taken
into account. Depending on the quality of the image,
automated processing and detection algorithms make errors.
There are two errors that the feature-detection algorithm
can make: a missed detect and an incorrect (false) detect.
A missed detect occurs when a feature (pore or minutia) is
discernible in an image yet is not picked up by the detection
algorithm. A false detect occurs when the algorithm mis-
takenly marks a feature when in fact no feature is present.
The degree of noise and degradation in the image influences
the quantity of errors. The probability of incorrect detection

and missed detection are parameters on which the
performance of the system depends. A highor will
tend to increase the FRR but have little effect on the FAR.

F. Match Score

A particular matching technique will produce a score
representing the fraction of features matching between the
enrolled and live-scan prints. Fig. 6 provides an example
of matching based on either minutiae or pores for two
segments from different fingers and also for two segments
from the same finger. Generally, the number of features
detected in the two different prints, and , will be
different. Therefore, the matching routine must compare
two sets, or configurations, with a different number of
elements. For example, a pore match score can be
defined as

(1)

where

total number of pores in both segments

number of pores that match

number of pores that do not match

and using

The pore matching score can be rewritten as

(2)

A match occurs when a pore is detected in the comparison
image at an enrolled pore’s location. A mismatch occurs
when a detected pore from either image does not correspond
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(a) (b) (c)

(d) (e)

Fig. 6. Pore-based matching example. (a) is from one finger; (b) and (c) are from another. There
are two very similar end-point minutiae in both print segments. In fact, it is likely that the different
print segments would match based on minutia comparison alone. If the minutiae are used to align
the prints, the pore information matches for the center and right images but does not match for
the center and left images.

to one from the other image. Based on , a decision is
made to accept or reject the claimed identity of the user.

This score will be in the range , where repre-
sents a perfect alignment of the pores in two different image
segments. The local origin is defined to be a minutia point
and the relative rotation of the two image segments can
be measured by determining the angles of corresponding
minutia points.

V. UNIQUENESS OFFINGERPRINT FEATURE

CONFIGURATIONS

The goal of this paper is to establish the practical perfor-
mance limits of fingerprint-matching systems. Section V is
devoted to determining uniqueness estimates that are related
to the FAR. The reliability of features, which provides
FRR limitations, will be presented later. In Section V-A,
work done to establish the uniqueness of configurations of
minutiae will be reviewed. Similar techniques using pores
instead of minutiae will be presented in Sections V-B and
V-C. In addition, throughout Section V, practical matching
algorithm issues will be introduced and their influence on
uniqueness estimates addressed.

The uniqueness of a set of minutiae or pores is defined as
the probability of occurrence of the set. Therefore, the prob-

ability of an imposter match is directly related to the unique-
ness. The more unique a set of features, the less likely
an imposter is to match the set. Obviously, increasing the
number of features used to represent the print will increase
the uniqueness of the feature set, but the frequency of occur-
rence of a particular arrangement of features also will vary.

A key issue in evaluating the uniqueness of a set of
features is whether the features are independent. Another
issue is the feature distribution, for features may be reg-
ularly spaced or the feature density (features per mm)
may be nonuniform over the fingerprint. Addressing these
issues is essential in determining the theoretical FAR of the
system. For example, a particular combination of minutiae
(such as the two end points of a ridge island) may occur
frequently. In this case, an imposter is more likely to match
both minutia points because of their close association, or
dependence, than he would be to match two independent
features. Therefore, features that exhibit dependence are
less valuable than independent features.

In Section V-A, a review of research for a minutiae-
configuration study that assumes independent minutiae will
be given. A method for studying minutia dependencies is
summarized in Section VIII-A. For pores, the dependence
issue will be handled with a distinction between intraridge
and interridge pores.
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Fig. 7. Scale and relative sizes used for fingerprint analysis.
Inside the broad outline, the minutia end and branch points are
marked with O’s and X’s, respectively.

A. Minutia Configurations

In this section, the methods used by Osterburget al. [9]
to determine the uniqueness of a set or configuration of
minutiae will be reviewed. The (configuration of features)
defines the uniqueness of a configuration of minutiae in a
given area of print, which is equivalent to the probability of
two different print segments’ matching. Osterburget al.’s
results can be used to estimate the FAR of a minutia-based
matching technique, although their model does not include
some very important parameters inherent to automated
matching systems such as feature reliability, detection er-
rors, and search-area variability. Therefore, the Osterburg
et al. model is just a starting point for determining the
theoretical performance (which includes both FAR and FRR
estimates) of practical fingerprint-matching systems.

By examining 1 mm 1 mm segments, or cells, of
a fingerprint (see Fig. 7 for a perspective on scales used
in fingerprint processing), Osterburget al. determined the
frequency of occurrence of 13 possible outcomes based
on Galton fingerprint features. The results are provided in
Table 1 in Appendix III. The set of Galton features includes
ridge endings, bifurcations, islands, dots, bridges, spurs,
enclosures, double bifurcations, deltas, and trifurcations.
Osterburget al. included three other outcomes: a broken
ridge, an empty cell, or some other multiple combination
of features.

The underlying assumption made by Osterburg is that the
content of each cell is a random variable that is independent
of all other cells. The implication is that any configuration
of the same set of features has the same probability of
occurrence, meaning, for instance, that a tightly clustered
pack of minutia is just as likely as the same set of minutiae’s
being distributed uniformly over the print. Although the
Osterburget al.study gives meaningful results, empirically,
the independence assumption is not valid because some
configurations of Galton features are much less likely than
others.

(a) (b) (c) (d) (e) (f)

Fig. 8. Osterburg minutia model and matching issues. In the Os-
terburg model, any configuration of the same set of features has the
same probability of occurrence. The probability of configuration
(a) or (b), four end points and 12 blank grids in an area of 25
mm2, is 1.78� 10�7. In a configuration, the relative position of
the features is known as well as the type and orientation of the
features. Note that the orientation of the minutia points is not the
same in configurations (a) and (c), and although the configurations
have the same probability of occurrence, they do not match. A
common matching technique is to discard the type information.
Therefore, configuration (a) matches (d) but the two have different
probabilities of occurrence. Depending on the defined origin or
reference point of the print, configurations (a) and (e) may match.
Last, the resolution at which feature locations are measured (or the
degree of allowed deviation in detected feature position) means that
configurations (a) and (f) have a different probability of occurrence
even though the minutiae are exactly the same (configuration
uniqueness is a function of resolution).

Based on the independence assumption, the individual
feature probabilities are combined to yield the probability
of a feature configuration

configuration of Galton features

(3)

where (for ) is the probability that a given
type of Galton feature will occur in a cell and is the
number of cells in which the feature occurs. The’s add
up to , the number of cells.

As an example, the 7 by 7 mm block of data inside the
broad box shown in Fig. 7 has four cells containing one end
point only, eight cells containing one branch point only,
two cells containing both a branch and an end point, and
35 empty cells (where only branch and end points have
been considered for simplicity). Therefore, the probability
of this configuration of ten bifurcations and six end points
(16 minutiae) in 49 mm of print is

configuration

Fig. 8 demonstrates the need to expand the Osterburg
et al. model in order to determine practical values for the
probability of matching. In Fig. 8, (a) and (b) are two print
segments that have the same set of features but different
configurations. These two prints would not match but would
have the same probability of occurrence under the auspices
of the Osterburget al. model

1st configuration 2nd configuration

end point

empty cell

(4)
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For this example, there are

Combination

different configurations possible for a set of four end points
in 25 cells, each having the same probability of occurrence.

A comparison of (a) and (c) in Fig. 8 shows that although
the feature types and locations match, the orientation of
each feature is also crucial to the uniqueness of a con-
figuration. The orientation is determined by the ridge-flow
direction and the number of different orientations is
arbitrary (eight, for instance). Whereas the probability of
both configurations is the same under the Osterburget al.
model, the different orientations actually distinguish the two
configurations. Thus

configuration with orientation

configuration without regard to orientation

(5)

where is the number of points in the configuration for
which the orientation is determined.

In Fig. 8, (d) demonstrates a situation where the location
of all the features match (a) yet the feature types do not
match. These two configurations have different probabilities
and do not match under the Osterburget al. model but will
match for a routine that keys on geometry but is invariant
with respect to type. The effect of translation is noted in (a)
and (e). Even though these configurations are different by
definition, they may match depending on the choice of the
reference point used to measure the minutia locations. Last,
the effect of the measurement accuracy (or resolution) can
be seen by comparing (a) with (f). Even though the relative
minutia positions and orientations are exactly the same, the
cell size (feature area) is different, resulting in a different
probability of occurrence for the two configurations.

B. Pore Configurations

1) Pore Distribution: To describe the spatial regularity
of pores, a deterministic model for pore distribution was
proposed in Section IV-A in which neighboring pores are
separated by a constant distanceand are arranged in a
lattice formation (see Fig. 5). Thisrepresents the average
distance between neighboring pores, where it is assumed
that the pores are located in the center of a region containing
only one sweat gland. The value of is thus calculated
from a live-scan image as

area of ridgesnumber of pores (6)

For this extreme case, matching two images consists of
simply lining up any pore on both images, since the rest
of the pores would align themselves accordingly. The
remaining pores in the image contribute no additional
information, that is

all pores match one pore matches

The model is made stochastic by assuming that each
pore position can deviate by a small random amount.

The methods used in the next several sections to model
intraridge pores are closely tied to the lattice model. The
intraridge models represent a single ridge, whereas the
lattice model can be thought of as being composed of
multiple independent ridges covering an area.

C. Intraridge Pore Configurations

1) Ashbaugh Model:In this section, a model describing
fingerprint pores presented by R. Ashbaugh of the Royal
Canadian Mounted Police will be examined. Ashbaugh
presented his work and reviews of prior work by E. Locard
(circa 1912) in a series of articles on ridgeology, edgeology,
and poroscopy [17].

According to Ashbaugh, fingerprints begin forming on
the fetus around the thirteenth week of development. Bumps
that form on the surface of the skin fuse together as they
grow, creating the ridges. The bumps, or pore pods, each
contain one pore, which originates from a sweat gland in
the dermis. The pods are approximately equal in width and
length (0.48 mm), resulting in a frequency of about 20.8
pores/cm of ridge. The pores are unique in shape, vary in
size (88–220 m), and change only in size due to growth
of the skin.

Locard proposed independent poroscopy-based identifi-
cation and used this technique successfully to convict crim-
inals in the early 1900’s. In contrast, Ashbaugh claimed that
pore and ridge comparisons should be used in conjunction
with appropriate weighting depending on the available data.
Generally, the quality of the inked or latent print determines
the usefulness of pore comparisons in law-enforcement ap-
plications. According to Ashbaugh, the reliability of pores
and their shape varies in inked and latent prints. It should
be noted that the consistency of pore features acquired
from live-scan devices will differ from that resulting from
inked or latent developing techniques (see Table 5 in
Appendix VII). As a result of his concern over pore-feature
inconsistency, Ashbaugh promotes the comparison of pore
locations only and states that shape and size should not be
used in general.

Ashbaugh further contends that pore pods occur regu-
larly, but the position of the pore within the pod is a random
variable. In addition, he assumes independence between
pore pods. In his model, each pod is divided into five
general areas in which a pore may occur (as seen in Fig. 9).
The probability of a pore’s occurring in any of the five
regions— or —of the pore pod is

pore in pore in pore in

pore in pore in

Under the assumption that the pods are independent

a sequence of intraridge pores
(7)

given a sequence of pores on the same ridge and
assuming that each pore can occur in one of five equally
likely states with probability .

Ashbaugh provides numerical examples for the unique-
ness of a sequence of intraridge pores. Based on his

1398 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 9, SEPTEMBER 1997



Fig. 9. Models used to represent pore occurrence along a single
ridge. These models can be used to predict the probability of
occurrence of a sequence ofN pores on the ridge, whered is
the average distance between intraridge pores andr is the average
ridge width.

assumptions, the probability that two consecutive intraridge
pores have the same relative position as two other pores
is 0.04, and the probability of occurrence of a particular
arrangement of 20 consecutive pores is

a sequence of 20 intraridge pores

(8)

In addition, Ashbaugh supports the claim made by Locard
that matching between 20 and 40 pores is sufficient to
identify an individual. The implication of this statement
is demonstrated in Fig. 10, in which a small area of print
is sufficient for identification. Since there are about 20
pores per cm of ridge and a typical live-scan fingerprint
usually contains over 50 cm of ridge, the amount of
pore information required for identification is just a small
fraction of the available data.

2) Distribution of Distances Between Sequential Intraridge
Pores: In this section, a procedure for estimating the
uniqueness of a sequence of pores based on measurements
of real fingerprint data is summarized. To accomplish this
task, pore locations along the ridges of live-scan prints were
detected manually. Then, the distance between successive
intraridge pores was calculated for individual prints. The
plots of intraridge distance for individual fingerprints
generally produced bimodal distributions with a dominant
peak and an inferior peak resulting from missing or skipped
pores. When all the data were combined, however, 3748
distance measurements resulted in a smoothed single-mode
distribution [ 0.377 mm (16.955 pixels), 0.1820

mm (8.1680 pixels)] with a significant upper tail, as seen
in Fig. 11.

The tail of the distribution begins at about 0.69 mm
(30 pixels) and tapers off at 2.40 mm (104 pixels), the
maximum observed distance between intraridge pores. The
frequency value peaked at 0.30 mm (13 pixels), with a
probability of occurrence of 0.0645 (at a measurement
resolution of one pixel at 1100 ppi). This distance is defined
as and its probability of occurrence is . In Fig. 11,
there are 104 bins represented, which is the maximum
observed spacing between pores, meaning that each bin is
the size of a pixel.

Given this distribution, the probability of occurrence of
any sequence of intraridge pores can be calculated by
assuming that the pores are independent. For this case,
the only parameter of interest is the distance between
consecutive pores. In addition, a lower bound for the
uniqueness can be calculated by assuming that all the
pores in a sequence are spaced by (the most likely
separation). Then, any sequence of the same number of
pores is guaranteed to be at least as unique as this bound.

Table 2 in Appendix IV summarizes the uniqueness of
sequences of intraridge pores with varying resolution. In
this table, the results depend on the number of pores in the
sequence and also on the measurement accuracy, or reso-
lution, of a pore’s position. As the measurement accuracy
is decreased (fewer bins in the histogram), there are fewer
distances possible between pores but the area under the
distance probability density function (pdf) remains constant,
resulting in distances with higher probabilities. Therefore,

may not change but will increase. The new
values for were determined by accumulating area of
the normalized histogram around symmetrically. From
this table, with a resolution setting of , the upper
bound on the probability of occurrence is

a sequence of 20 intraridge pores

(9)

for a sequence of 20 pores, which is in close agreement
with Ashbaugh’s results in (8).

A setting of three for the resolution parameter is
reasonable based on the fact that a typical pore has a
diameter (assuming a circular shape) of about 5 pixels
(115.5 m) and the adjusted average spacing (compensating
for skipped pores) between intraridge pores is 13 pixels
(300.3 m). Thus, setting to three is equivalent to an
allowed displacement of size 3 pixels (69.3m) in which
to detect the pore. Therefore, the pore’s position can vary
slightly from its expected value but too much variation will
cause a mismatch. In addition, the “search area” is only
big enough so that one pore is likely to be present and
an adjacent pore is unlikely to overlap in this area. Fig. 12
demonstrates how resolution and the number of pores affect
the probability of occurrence.

3) Intraridge Pore Distribution from Models:In Ash-
baugh’s treatment, pore pods are divided into five regions
in which the occurrence of the pore is equally likely. In
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(a) (b)

Fig. 10. Sufficient information for identification. (a) Scanned at a resolution of 800 dots per inch
(dpi). The small segment outlined with a dark box and expanded in (b) represents about 5 mm2 of
fingerprint area and contains more than 20 pores. According to Locard or Ashbaugh, the segment
is sufficient to identify its owner based on the relative position of the pores alone (without even
including shape or size descriptions). Note that sufficient information would exist for a minutia match
by doubling the size of the rectangular region (about 12 minutia could be enclosed). Although any
segment for which there are at least 20 pores may be used for identification, it is unlikely that
sufficient minutia information would be present in such a small area.

Fig. 11. Plot of consecutive intraridge pore separation. The most
frequent occurring separation is 13 pixels (0.3 mm).

reality, the desired measurement accuracy determines the
number of regions. In addition, dividing a pore pod into
five distinct regions is not convenient for an automated
system. Therefore, a similar but improved model for the
pore placement will be discussed next, which will be used
to establish the distribution of intraridge pore spacing. The
results that the model generates can be compared to the
measured data to determine the accuracy of the model.

Assume that an individual pore occupies a unit area,
or cell. Unit cells are bounded on the edge by the ridge
border, and their length is defined as the average distance
between intraridge pores. Unlike Ashbaugh’s model, unit
cells are not a physiological feature; they are simply defined

as the average area of print associated with a single pore.
The location of the pore within a unit cell is a random
variable and, therefore, a sequence of intraridge pores is
represented by a random vector for which the elements are
independent and identically distributed. In addition, there is
a finite probability of a pore’s not occurring in a unit cell
(an empty unit cell). This condition is used to explain the
occurrence of relatively long segments of ridge that have
no pores.

As shown in Fig. 9(b), the unit cells are divided into
nine subregions for a given unit cell . For this
analysis, two models will be examined. In the first, Model 1,
the position of the pore is uniformly randomly distributed
over the entire unit cell. This assumption eliminates the
need for the nine subregions. In the second, Model 2, the
probability that a pore occurs in the center of the unit cell,
or ridge, is greater than that for the edge of the ridge. For
this case, the pore can be located anywhere within the
subdivision of the unit cell with equal probability. Note
that the intraridge pore models essentially represent one
column (or row) of the stochastic modified lattice pore
model described in Section IV-A.

The distribution of distances between consecutive
intraridge pores in a sequence can be simulated using
these two models, and the results can be compared to the
distribution obtained using the actual measured data in
Section V-C2.

a) Ashbaugh model:Ashbaugh’s critical assumptions
about the “pore pod” are that it is symmetric in shape
(width height), a series of pore pods form a ridge, and
the pore can be located anywhere within the pod with equal
probability. By generating uniformly distributed random
vectors of length approximately equal to the number of
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Fig. 12. Plot of probability of a sequence of intraridge pores as a function of varying resolution.
They-axis shows the negative log probability. The highest resolution and greatest number of pores
yield the lowest probability of occurrence.

Fig. 13. Distribution of intraridge pore spacing according to
Ashbaugh’s assumptions.

pores measured in Section V-C1, a string of pores was mod-
eled and the distance between consecutive pores calculated.
The resulting distribution is roughly triangular in shape. A
simulation is shown in Fig. 13.

Comparing Fig. 14(a), the distribution of the measured
data, with Fig. 13, it is evident that these two distributions
do not match. Therefore, modifications to the Ashbaugh
assumptions are required to model the distribution more
accurately.

b) Model 1: Model 1 is an extension of the Ashbaugh
model. The assumption of randomly located pores within a
unit cell is similar to the assumption of randomly located
pores within pods. The difference is that Model 1 incor-
porates unit cells with rectangular dimensions instead of
squares, with the width corresponding to the average width
of a ridge and the length being the average adjusted spacing
between intraridge pores (derived from measured data). In

addition, the provision of a unit cell with no pore present
(skipped pores) in Model 1 is used to account for the long
tail of the distribution of the real data. The probability of a
skipped pore is estimated using the distribution of distances
derived from measured data and is approximated as 8.3%.
Last, Model 1 limits the minimum possible spacing between
pores so that simulated pore positions are not unreasonably
close together. The distribution of a set of simulated pore
positions based on Model 1 is shown in Fig. 14(c) and is
very similar to the distribution measured from real data.

c) Model 2: Model 2 is an extension of Model 1 and
is meant to account for the fact that in real fingerprints,
the pores tend to be located on the center of the ridge.
The assumptions used in Model 2 are the same as those
used in Model 1 except that the probability of the pore’s
being located in the center of the ridge is higher than the
probability of a pore’s occurring on the edge of the ridge. It
is seen from Fig. 14(d) that Model 2 simulates the real data
distribution closely, but there is not a significant difference
between simulations of Models 1 and 2.

D. Ridge-Independent Pore Configurations

Knowing the probability of occurrence of a sequence
of intraridge pores is of value for proving the efficacy
of using pores for identification. In practice, however, it
may be unnecessary or too difficult (for example, with
very noisy images) to associate pores with specific ridges.
In these cases, extracting only the pore information while
disregarding their ridge association is preferable. In this
section, the value of ridge-independent configurations of
pores will be examined. For this analysis, the configurations
are made up of pores that exist in a local region of the
fingerprint but may reside on several different ridges.

1) Binomial Distribution of Pores:The technique used
by Osterburget al., outlined in Section V-A, for determin-
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(a) (b)

(c) (d)

Fig. 14. Distribution of intraridge pores. The measured distribution of spacing between consecutive
intraridge pores is shown in (a) (� = 16:96; � = 8:16) (where distance is measured in units of
pixels). Ashbaugh’s model for pore distribution generates the dashed curve in (b). Model 1 is an
extension of the Ashbaugh model that includes nonsquare unit cells and also a minimum allowed
separation of pores and is represented by the dotted graph in (b). Model 1 also has a provision
for missing pores, which can be used to account for the tail of the real data distribution, as shown
in the solid curve in (b). For Model 1, the unit cell size was 21 pixels wide by 13 pixels long,
the fraction of skipped pores was 0.083, and the minimum allowed pore separation was 1 pixel
(m = 16:7 and s = 6:5 for model 1 with 50 000 samples). (c) shows the close fit between the
real data and the Model 1 simulation. The second model, Model 2, includes the ability to force
pores to be located on the center of the ridge with a higher probability than on the edges. With the
probability of a pore’s occurring in the middle one-third of the ridge increased, the distribution is
plotted in (d) along with the real data distribution for comparison.
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ing the uniqueness of a configuration of minutiae can be
extended for use with pores. For this purpose, 67 different
prints of varying quality were analyzed on a 5 5 pixel
scale (see Fig. 7 to get a feel for this size segment). Each
image was divided into 5 5 pixel segments and the
number of pores per segment was counted. In such a
small area, there is little chance that more than one pore
will occur; therefore, a binomial distribution should result.
From the data, 93.3% of search areas contained no pores
and 6.7% contained one pore.

Defining

one pore in a pixel cell

and

no pores in the cell

and assuming that pores are independent, the probability of
occurrence of a configuration of pores in a region of

cells is given by

(11)

where there are

(12)

different configurations possible when pores are
present.

Assuming independence among the pores, the binomial
distribution can be used to yield the probability that any
particular configuration of pores will occur in any area of
print. For example, a section of fingerprint that measures
20 20 pixels (0.462 mm 0.462 mm) consists of an
array of 16 grids of size 5 5 pixels each. Therefore, the
probability of occurrence of a configuration with between
zero and 16 pores in that area can be calculated. Table 3
in Appendix V summarizes the results for this analysis.
From the table, the most likely configuration of pores in
a 20 20 pixel region has a single pore. The probability
of occurrence of a certain configuration with one pore is
0.0237, and since there are 16 configurations of one pore
possible, the likelihood that one pore is present (regardless
of the configuration) is 0.379.

In practice, a larger segment of fingerprint is desirable.
The results for a 40 40 pixel (0.924 mm 0.924
mm) area, four times the area of the 20 20 pixel
segment, are discussed next. For this case, the segment
consists of 64 grids of size 5 5 pixels (see Fig. 15 for
a typical example). A segment this size is large enough
to contain significant ridge structure while not exhibiting
the distortion due to finger plasticity sometimes present in
larger areas of print. As seen in Table 4, the most likely
number of pores in this area is four, with a probability
of 20.0%. (Fig. 29 shows the relationship between the
number of possible configurations for a given number of
pores, the probability of any particular configuration of a
given number of pores, and the overall probability of a
given number of pores’ occurring.) As an example, any

Fig. 15. A possible pore configuration. Using a 5� 5 pixel grid
(equivalent to 0.115� 0.115 mm area of print), a binomial pdf
can be generated from the probability of a pore’s being present or
absent in the 5� 5 cell. With an analysis area of size 40� 40
pixels, which is 0.92� 0.92 mm, there are 8� 8 grids of size 5�
5 pixels. The probability of this configuration (or any configuration
of four pores) is 3.14� 10�7.

configuration of four pores, like the one shown in Fig. 15,
has a probability of occurrence of 3.14 10 , and there
will be 6.35 10 different configurations of four pores in
a 64-grid area. For comparison, from the table, it is noted
that the most likely configuration is the one with no pores,
which occurs with a probability of 1.18%. For perspective,
assuming that the most likely sequence of pores occurs in
a 40 40 pixel segment, the probability of a different
fingerprint’s matching is 0.0118 based on a comparison
of pore location only with a resolution (or measurement
accuracy) of 5 5 pixels.

To compare the results for intraridge sequences to ridge-
independent configurations, assume that 20 pores occur in
an area of size 4 mm. This is a good approximation based
on the density of pores’ being about 5 pores/mm. Again
using cells of size 5 5 pixels, the area consists of 300
cells. Given this area, the probability of occurrence of a
configuration of 20 ridge independent pores would be

a configuration of 20 ridge independent pores

(13)

which is 1.06 10 times smaller than the probabil-
ity of an intraridge sequence with the same number of
pores (assuming all pores are spaced by the most likely
separation).

2) Measuring Configuration Probabilities:In the previ-
ous discussions, the underlying assumption of independence
makes uniqueness calculations possible. In reality, though,
the independence assumption is not accurate. There appears
to be a definite influence on a pore’s position depending
on the relative positions of the neighboring pores. If the
independence assumption is not valid, then the assumption
that all possible configurations of pores are equally likely
also is not valid. In this case, it is desirable to determine
the exact probability of occurrence of each possible
configuration of pores by finding the histogram or pdf of
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Fig. 16. Measured density of pores (pores/mm2) in a 40� 40
pixel area of print.

the configurations. This information could be used by the
processing routine to ignore highly likely configurations and
to search for very distinctive pore configurations providing
interclass separability. The expected outcome is a reduction
in the number of false accept errors.

As alluded to previously, a segment with an area of 1–4
mm should be optimal for processing pores. For this size
area, the number of pixels (at 1100 ppi 43.3 ppmm
scanning resolution) is approximately 40 40 (1600) to
80 80 (6400). The resolution is effectively reduced by
analyzing 5 5 pixel segments, leading to areas of 8
8 (64) or 16 16 (256) cells. In fact, to determine the
histogram of all possible configurations is unreasonable
even for the simplest case of low resolution and smaller
area. There are 2 possible configurations for the smaller
area with low resolution and 2 configurations at high
resolution and larger area. As an interesting note, about
4000 by 4000 km of print area would be needed to fill
each of the histogram bins with only one entry. Even
with the enticement of free doughnuts, it is unlikely that
the researchers could have gathered sufficient subjects to
accumulate the data for this experiment.

These numbers are actually exaggerated, since only a
small subset of the total number of theoretical configura-
tions is really possible. Based on measurements, there were
never more than 12 pores detected in a print area of size 40

40 pixels, and this event had the remote probability of
0.03%. The most probable number of pores to occur in this
area was four, with a probability of 22.3%. The complete
distribution of measured data is shown in Fig. 16. Even by
applying such a realistic constraint on the pore density, the
number of configurations is still enormous.

Fig. 17. Ridge-independent pore model. For example, in a 76
� 76 pixel area (Level 2), the code is 1111, at higher resolution
(Level 1), and each 38� 38 pixel block has at least one pore
present, giving a code of 1111. At the Level 0 analysis, the exact
distribution of the number of pores present is known within a 19�

19 pixel area. For this example, assume that each Level 1 segment
contains five pores (one in each of three blocks and two in the
remaining block). Then the probability of this particular occurrence
of 20 pores is 5.186� 10�8.

3) Measuring Configuration Code Probabilities:Even
though the actual probability of a particular configuration
cannot be determined, valuable information can still be
gained by analyzing ridge-independent configurations of
pores within realistic-sized regions. The next two sections
will outline an analysis whereby a binary code method
was used to represent pore configurations. Implementing a
binary code (1 pore, 0 no pore) in a four-cell area
of analysis to describe a configuration yields 16 different
possibilities within those four cells .
As mentioned, executing a high-area (many cells) or high-
resolution analysis is not practical. Therefore, using a
pyramid paradigm, a low-resolution and small-area analysis
was performed first, and “tiers” of analysis areas were built
around this basic unit. Once the accuracy of the information
gathered from the small-area, low-resolution study was
established, a higher resolution study was conducted. Sixty-
seven different images of varying print quality were used
for this analysis.

a) Low-resolution configuration code study:The exact
size of the basic unit of analysis was determined using the
average pore density in a print, where

size of analysis unit

total number in pixels/total number of pores)

pixels

This square analysis area is the “Level 0” unit of a
three-tiered construct (see Fig. 17); within this level, the
distribution of the number of pores present was determined.
The most frequent occurrence was one pore in a Level 0
analysis area, which happened in 48% of the units. The
frequency of pores per analysis unit is shown in Fig. 18.

Two higher levels are used to formulate the binary code
discussed earlier. The next tier is composed of four units
of the Level 0 area of analysis (38 38 pixels). Within
each Level 0 unit, a “1” represents the existence of at least
one pore, and a “0” indicates that no pores are present
in that area. The binary digits from these four blocks
generate a four-digit code that can be analyzed to determine
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Fig. 18. Measured density of pores in a 19� 19 pixel unit cell.

which codes occur the most or least frequently. This model
precludes establishing the exact pixel location of each pore.

The probability of one pore’s existing in a Level 0 unit
is significantly different from the probability of five pores’
residing in a unit. Thus, these probabilities, in combination
with the probabilities of the four-digit codes or Level 1
configurations, contribute to the overall probability of an
actual pore configuration at Level 1. For Level 1, the
most frequently occurring code was 1111, which occurred
28% of the time. The code frequencies are shown in
Fig. 19, where the next most frequently occurring codes
were those containing three ones and a zero; each of these
occurred about 10% of the time. The least frequent (and
therefore the most valuable) code was 0000, which occurred
with a frequency of 1.5% (this number actually matches
closely the result established in Section V-D1, in which
the calculated probability of no pores is 1.18%).

The probability of a specific configuration’s occur-
ring—for example, 1111—at Level 1 with corresponding
densities in the Level 0 units of 1, 2, 3, and 1 pores is thus

configuration

code 1111 at Level 1 density

density density density

which is the probability of a configuration of seven pores
in an area of 38 38 pixels.

Four Level 1 units can be combined to make up the third
tier (Level 2), which is simply an extension of the Level
1 analysis. Each Level 1 unit contains a zero if none of
its Level 0 units have any pores in it, and the Level 1 unit
contains a one if any of its Level 0 units contain at least one
pore. The four digits from these Level 1 units, four of which

Fig. 19. Measured frequencies of “codes” occurring in a 38� 38
pixel area, where a binary “1” indicates the presence of at least one
pore in a 19� 19 pixel area and a “0” indicates an absence of any
pores. The codes are comprised of these 1’s and 0’s to represent
configurations of pores.

make up Level 2, generate another four-digit binary code,
the different possibilities of which are analyzed similarly
to the codes generated by the Level 0 units. The Level
2 analysis generated codes of 1111 with a frequency of
about 95%, which is evident in Fig. 20. Because the Level
2 analysis is at such a low resolution (low measurement
accuracy), many of the codes, especially those containing
mostly zeros, never occurred. Using an example with 20
pores (see Fig. 17 for details), the probability of a particular
configuration is determined to be

a configuration of 20 ridge independent pores

(14)

The codes generated at Levels 1 and 2 and the various
local pore densities of Level 0 generate three different
sets of probabilities, all of them combining to give the
overall probability of pore configurations in an image. This
analysis, however, is performed at a very low effective
resolution, and though it provides actual configuration
information, a higher resolution analysis will yield more
valuable results.

b) High-resolution configuration code study—binomial
distribution: The previous analysis was repeated at a higher
resolution. For this case, instead of using individual codes,
such as 1101, the number of ones in the code were summed
(i.e., ones). This limited analysis was necessary
because the number of possible codes for a reasonable
area of print is exceedingly large. The exact configuration
information is lost when the codes are condensed in this
way, and the codes simply represent the number of pores
in a given area. The result is a histogram of the number
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Fig. 20. Measured frequencies of “codes” occurring in a 76� 76
pixel area, where a binary “1” indicates the presence of at least one
pore in a 38� 38 pixel area and a “0” indicates an absence of any
pores. The codes are comprised of these 1’s and 0’s to represent
configurations of pores.

of pores in a given area of print, which can be compared
to the results achieved assuming independent cells with a
binomial distribution, as was done in Section V-D1.

Instead of the 19 19 pixel area (Level 0 analysis),
which was analyzed in Section V-D3a, a 55 pixel cell
was used. As stated, a binomial distribution results with
93.3% of the search areas empty and 6.7% containing one
pore. The actual probabilities of the condensed codes were
found by analyzing an area 4 cells by 4 cells (2020
pixels) and then an area 8 cells by 8 cells (4040 pixels).
These analyses yield the distribution of either 16 (small
area) or 64 (large area) possible “condensed codes.” Similar
to Level 1 of the low-resolution study, ones and zeros were
assigned to blocks according to whether or not pores were
present.

Theoretically, a similar distribution could be derived
by extrapolating the binomial distribution (the probability
of one or zero pores). This was done in Section V-D
using Osterburget al.’s method. This method, however,
assumes independence. Section VIII of this paper explores
the concept of dependence among pores and demonstrates
why extrapolating a distribution from the binomial is not
as accurate as measuring the pore density directly.

VI. RELIABILITY —FRR ANALYSIS

Many factors that determine the FAR of a system were
discussed in the previous sections; Section VI is devoted to
factors that can affect the FRR. Whereas the FAR analysis
centers on the differences between an impostor and an
authorized user, the FRR focuses on variability that occurs

within an authorized user’s fingerprints over time. These
variations can be studied to determine the feature reliability
with regard to physiology and algorithm.

To ensure authentication of an individual with 100%
accuracy, either the individual’s live-scan fingerprint must
be exactly the same as the enrolled print or, in the presence
of noise and distortions, the features of the live-scan
print corresponding to the enrolled print must be extracted
without error. In the real world, noise and distortions are
always present, and no automated process is perfect. In
addition, the physiological reliability of pores falls short of
100%. Therefore, the inherent and algorithm (or processing)
reliability warrant further study.

A. Inherent Reliability

The physiological reliability of pores (or inherent reliabil-
ity, ) depends on environmental factors: temperature and
skin condition can conspire to alter or suppress altogether
the physical appearance of a given pore. Individual pores
from 516 images of ten different fingerprints were analyzed
to determine with respect to both pore visibility (or
detection) and size (both absolute and relative to other
pores in the image). Clarity of the pore, image quality, skin
condition, and pore density were also recorded. The results
can be seen in Table 6 of Appendix VII. It should be noted
that all of these data were collected manually (by eye) to
prevent introducing algorithm errors.

The specific pores studied were visible on average in
91% of the images . The least reliable pore
was visible in only 75% of the fingerprint images. In this
case, the reason for the low reliability is that during capture
of these images, the individual altered his prints through
a variety of means, i.e., gripping a cold soda can prior
to image capture. Therefore, 75% can be estimated as a
lower bound for . Although pore size and shape are of
significance, the most important aspect of is whether
or not the pore is actually present (detectable). It is also
important to remember that although the lower bound for
detection is 75%, that lower bound is for one pore, not a
configuration of pores. If 20 pores are used to match prints,
the 75% refers to the reliability of only one pore out of
the 20.

Although the characteristic skin condition, image quality,
size, and shape consistency varied somewhat among the
individuals’ prints, there were several correlations between
categories. For instance, the more neutral prints (with regard
to skin condition) had the highest image quality. Further-
more, prints of lower image quality tended to correspond
to a dry skin condition, and their pores were less consistent
in shape. Last, circular pores proved to be the most reliable
with regard to shape.

B. Algorithm Reliability

The reliability of the algorithm also was examined.
Using high-quality prints, the prevalence of missed detects
and false detects was recorded, and the causes for both types
of errors were assessed. The detection algorithm missed
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11% of the pores present and had a false
detect occurrence of 1%. It was found that the predominant
source of missed detections was the thresholding stage used
in preprocessing to convert gray-scale images to binary.
These processing errors occurred in 4.8% of the detections.
On the other side of the coin, most of the false detects were
caused when the algorithm detected a pore in the middle of
the valley. This physically impossible situation may have
resulted when the curvature of the ridge implied that a pore
was present on the edge of the ridge. The algorithm might
interpret such a structure as a pore. A description of the
events causing missed detects and false detects can be found
in Table 7 in Appendix VII.

These reliability statistics apply to a single pore in a
configuration. The probability of the algorithm’s missing
a given pore is 11% but the probability of missing a
configuration of many pores is orders of magnitude smaller.

In further discussions, will be defined as the probabil-
ity of a feature’s appearing in a fingerprint image and
will be the probability that the feature is properly detected
by the algorithm. Therefore, (total reliability) is defined
as the probability that a feature appears and is properly
detected.

VII. PERFORMANCE

Section V examined the uniqueness of configurations of
features and Section VI addressed feature reliability. In
this section, uniqueness and reliability are conjoined to
establish performance, which is defined in terms of the
number of false reject and false accept errors the system
produces. The number of false accept errors is related to
the uniqueness of a configuration, while the number of
false reject errors depends on the reliability of the features.
Some parameters that contribute to uniqueness have been
discussed earlier: number of features, density of features,
and feature area. Parameters critical to the reliability are
the inherent feature reliability and the efficiency of the
feature-detection algorithm.

Consider comparing two fingerprint segments of equal
size. Segment 1 is the enrolled segment and segment 2
is a subsequent live scan that originated from either the
same user or a different user. The comparison is based on
feature location only. Segment 1 containsfeatures, while
segment 2 contains features. Assume that there were
no errors in detecting features during enrollment (all real
and no false features were detected). For the two possible
sources of segment 2, it is necessary to determine the pdf
for the feature matching score.

Note that prior to this section, all references to probability
of matching or uniqueness of a set of features related to the
entire set of features. Every feature was required to match
for the entire set to match. In this section, a more realistic
approach is taken in which the number of features in both
segments as well as the number that actually match are
taken into account. A matching score provides the degree of
matching between two segments with a range of a complete
nonmatch to a complete match.

Fig. 21. Matching the enrolled segment (segment 1) to the
live-scan segment (segment 2). Features a and b in segment 1
match features d and e in segment 2. If both segments originate
from the same finger, then features d and e are either reliable
features that were correctly detected or they are false detections
and a and b were unreliable. Features f and g are false detects
and feature c is an unreliable feature. If the segments originated
from different fingers, then features d, e, f, and g are randomly
positioned and can be either real features or false detects.

Some relevant parameters needed for the matching prob-
lem are:

• —number of cells or feature areas within the seg-
ment of print being analyzed;

• —true number of features in segment 1, the enrolled
segment;

• —number of features detected in segment 2, the
live-scan segment;

• —number of matching features;

• —number of features falsely detected;

• —probability that a valid feature is not detected;

• —probability that a valid feature
is correctly detected;

• —probability of detecting an invalid, or false, fea-
ture at any location;

• —probability that a feature is not
detected in an invalid location.

If segment 2 originates from the same user as segment 1,
then reliability must be addressed:

• —reliability;

• —inherent reliability of the feature;

• —algorithm detection reliability;

•

In addition, two sources contribute to the number of match-
ing features:

• ;

• —the number of correct (valid feature) matches;

• —the number of false detects (invalid features)
that match real features.

Fig. 21 describes some of the relevant parameters required
for performance analysis.

Reliability is defined as the probability of detecting a
valid feature in the correct position. can range from
zero (totally unreliable features) to 1.0 (no missed detects).
When segment 2 is from an impostor print,is considered
to be zero and is set equal to the measured value for the
probability of a pore in a grid cell. This situation simulates a
randomly located set of independent features in segment 2.
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A feature match is defined as the detection of a feature
in the live-scan segment at a valid (or enrolled) feature
location. A feature mismatch is defined as any feature in
the live scan that does not match an enrolled feature. It
is possible to make a false detection at the location of a
valid feature that is unreliable. This situation results in an
incorrect (false) match but is not a mismatch.

Define the feature matching score to be

(15)

where is the maximum number of features allowed
in segment 2.

The range of is , where a score of
corresponds to the case where and .
This is the worst possible match; no features match and
segment 2 contains the maximum number of detected
features allowed. A score of results when

, a perfect match with no mismatching features.
Given and , the probability

of pores’ matching can be determined by calculating the
probability of the score resulting from each variation of the
input parameters and then accumulating the probability of
like scores. The result is the pdf of the matching score,,
which can be used to calculate false accept and false reject
error rates.

First assume that the two fingerprint segments originate
from different fingers. Furthermore, for simplicity, assume
that the features are independent. Given an enrolled feature
set, the number of features in segment 2 and their positions
are random. Therefore, the number of matching features is
a random variable. Whether features detected in segment 2
are real or result from detection errors is transparent since
the only concern is how many features match. Given
and , the probability of matching features between
segment 1 and segment 2 is

(16)

where the product terms are valid for , or by defining

(16a)

The first term in (16) or (16a) is , the probability
that features from segment 1 match in segment 2.
The second term is , the probability that there are
features in segment 2, where, which was determined in
Section V-D1, is the probability that there is a feature in a
cell. In this situation, the second term incorporatesinto

and reliability is not an issue since the print segments
originate from different fingers.

As an example, assume that for a given
and , there are matching features.

The probability of ’s having 25 features is 0.0457, and
the probability that ten of them match those in segment 1
is 2.5175 10 giving an overall probability of 1.1505

10 of this situation’s occurring. The corresponding
match score from (15) is 0.45, assuming that
is equal to .

Next, assume that the two print segments originate from
the same finger. Furthermore, the rotation and positioning
of the segments are assumed to be known exactly. In this
case, the feature reliability and the number of false detects
are of critical importance. A feature may or may not be
correctly detected in the live-scan segment depending on its
reliability, leading to a reduction in the number of features
matched. In addition, there are random false detection
errors in the live-scan image segment, which, depending on
their position, will match (improve the score) or mismatch
(reduce the matching score). The probability of matching

features is

(17)

where

(18)

is the probability of matches corresponding to real
features that were correctly detected, as shown in (19) at the
bottom of the page, where is the probability of
matches, which are matches of falsely detected features in
the live-scan segment randomly occurring at valid feature
locations.

And , the probability that there are features in
segment 2, is given as

(20)

In (20), is used instead of , which was used in (16).
In (17), by setting is 1 and .

Therefore, and . In addition, if
is set equal to which was determined in Section V-
D1, then (17) reduces to (16). This situation corresponds
to totally unreliable features and a false detection rate that
provides the same feature density as the measured feature
density. The result is that segment 2 is equivalent to an
imposter print segment.

If no false detects are allowed, then is zero for (17),
, and . Therefore, . For

(19)
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this case, (19) and (20) reduce to one and the result is

(21)

which is just the probability that features are reliable
given features to start.

If the reliability is 100%, then , (18) and (19)
both reduce to one, and (20) becomes

(22)

which represents the probability of falsely detected
features in segment 2 given that there are correctly
detected .

Equations (17)–(20) are used to determine the expected
performance of a system. The parameters—such as the
number of features enrolled, the accuracy of measurement
(feature area), the feature reliability, and the algorithm
efficiency—can all be evaluated. The plots in Fig. 22 show
how variations in the critical system parameters affect
performance.

VIII. D EPENDENCE

The models describing feature position discussed in ear-
lier sections were based on an assumption of independence
between the features (either minutiae or pores). Although
this assumption is attractive because it simplifies calcula-
tions, it does not accurately describe actual feature place-
ment. As alluded to in previous discussions of physiology
and pore-placement models, the placement of a feature
depends in some way on the relative position of neighboring
features.

A. Sclove’s Model of Dependence Between
Galton Features (Minutiae)

The idea of dependence of minutia placement on the
location of other minutiae is not a new one. In 1979, S.
Sclove, a member of the Osterburg team, published a paper
proposing that minutia occurrence could be described by
a Markov-type model [10]. He asserted that the presence
of minutiae in a given cell is influenced by the presence
of minutiae in the adjacent cells. This study supplanted the
model assuming independent cells with one incorporating
dependence between cells.

To summarize Sclove’s theory: For a three cell by three
cell area, the cell under scrutiny is the center one or the fifth
in a linear ordering. The number of cells in this ordering
containing a Galton feature is represented by, the number
of adjacencies, which ranges between zero and four (in a
linear ordering, only the cells preceding the fifth cell will
affect that cell). For a random vector describing the
outcome of the th cell, Sclove’s probability of a set of
Galton features is represented as

(23)

For simplicity, the four preceding adjacent cells
are referred to as matrix , where the conditional

probability of (23) is reduced to

(24)

Assuming that the cells in exert influence over
cell , the probability of feature occurrence involves the
number of adjacencies as well as the different types of
features ; if a cell is occupied, there are still 12 different
event possibilities (using data from Table 1 in Appendix
III). Sclove’s probability of a minutia (or Galton feature)
occurrence in a cell is then

(25)

where is the number of empty cells with
adjacencies, is the number of cells containing the
probability of minutia type is the probability of an
event’s occurring, and is the number of occupied cells
with adjacencies. Sclove found that as(the number of
adjacencies) increases, the probability of the central cell’s
being occupied increases monotonically. Therefore, clus-
tering of minutiae happens more frequently than uniformly
spaced minutia configurations. Thus is born the concept of
dependence among minutiae. This dependence would be
evident in a pdf as a nonuniform distribution, whereas the
equally likely configurations associated with independence
give rise to a uniform pdf.

1) Dependence of Pores—Intraridge:Although Sclove
dealt exclusively with Galton features, his idea of feature
dependence also can be applied to pores, although pores are
features with properties differing from minutiae. Minutiae,
on one hand, are considered “accidental”; their spatial
distribution serves no apparent purpose. In contrast, pores
transfer heat, so they must have a spatial distribution that
can support this function. Whereas minutiae are expected to
cluster, pores are expected to be spread out over the finger.

Two events are independent if “the probability of either
one is unaffected by the occurrence of the other” [6]. An
event is the placement of a pore at a given position, thus

(26)

where and are the pdf’s of the independent
random variables.

If pores were indeed placed independently of each other,
what would the frequency distribution of intraridge dis-
tances look like? To plot such a distribution, a vector of
zeroes was used to represent a one-dimensional “ridge.”
3370 “pores” (ones) were substituted for zeroes at random
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(a) (b)

(c) (d)

Fig. 22. (a) Error rate plots for variation in enrolled feature density. The parameters used in this
simulation werenc = 300; R = 0:8 (for FRR andR = 0 for the FAR plots),pfd = 0:067; n2
ranges from[0; 60]; andn1 is set to 5, 20, or 40. The equal error rate (EER) is 2.43� 10�2 for
n1 = 5; 6.2� 10�4 for n1 = 20; and 3.2� 10�4 for n1 = 40.

(b) Variation in feature detection error rate (fingerprint noise level). The parameters used in this
simulation werenc = 300; R = 0:8 (for FRR andR = 0 for the FAR plots),n1 = 20; n2
ranges from[0; 300]; andpfd is set to 0.05, 0.2, or 0.4. For a lower detection error rate (cleaner
fingerprint image), an enrolled user will gain access more often (the FRR error rate curve is steeper
and more toward the right). For high detection error rates (noisy images), an imposter will have a
higher feature density and will have a greater chance of gaining access. The EER is 7.2� 10�4

for pfd = 0:2 and 9� 10�3 for pfd = 0:4.
(c) Error rate plots for variation in feature reliability. AsR decreases, the performance of the

system degrades. A FAR plot is shown for comparison of actual system performance as a function
of the feature reliability. The parameters used in this simulation werenc = 300; n1 = 20;
pfd = 0:067; n2 ranges from[0; 60]; andR ranges from 0 to 1.0 in 0.1 increments (R = 0 for
the FAR plot).

(d) Resolution or measurement accuracy curves. Parameters for� curves arenc = 300; n1 = 20;
R = 0:8 (for FRR),pfd = 0:067; andn2 ranges from[0; 60]. For� curves,nc = 200; n1 = 20;
R = 0:8 (for FRR), pfd = 0:1; andn2 ranges from[0; 60]. Both sets of parameters simulate a
comparison of two segments with the same area and detection error rates. The� curves simulate
a system using a more precise feature-position determination and corresponding smaller search
area than the� curves. Higher resolution will tend to make it more difficult for both a valid user
and an imposter to match (but the EER may be the same as for lower resolution settings), as
seen from the curves.
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Fig. 23. Distribution of distance measured between consecutive
intraridge pores. This data was simulated using a model for which
the pores are assumed to be independent and occurring at a random
position on a one-dimensional axis. Therefore, there is no constraint
on the placement of any particular pore and no influence on the
position of a pore from its neighboring pores. The distribution
decreases monotonically with distance and there are numerous
pores that are close together.

intervals along the ridge, simulating a situation where the
placement of one pore was entirely independent of the
placement of other pores. The distances between pores were
calculated and the frequency of these distances was plotted
(Fig. 23).

To prove that pore placement is a dependent phenome-
non, this calculated distance distribution should be com-
pared to a measurement of actual intraridge distances.
Intraridge positions, however, would have to be measured
in the one-dimensional longitudinal direction only. Unfor-
tunately, the intraridge distances obtained in this study were
of a two-dimensional nature and cannot be used justifiably
in a comparison.

Had the data been obtained in a manner suitable to
comparison, independence could be proven or disproved
by virtue of a chi square analysis. The chi square statistic
is defined by Lapin as

(27)

where are the actual intraridge distance frequencies
obtained and are the calculated distance frequencies.

The simulated distribution obtained in Fig. 23 demon-
strates a preponderance of small distances between pores. If
a transverse variation were allowed to be added to the ridges
in the analysis (simulating a two-dimensional process), it is
surmised that many of the distance measurements between
pores would increase, thereby changing the shape of the
distribution.

Although most of the discussion thus far has concerned
pore distribution along a given ridge, the discussion of
dependence bids us to look at the spatial distribution of
pores across ridges. In addition to an expected distance
between nearest neighbor intraridge pores, there also exists

Fig. 24. Spatial dependence.Intraridge: If the positions of in-
traridge pores were independent random variables, then their
spacing would differ from the regularity observed in real finger-
prints. Interridge: The location of porep32 would depend on the
location of all the surrounding pores if pore positions were not
independent random variables.p32 depends on the position ofp31
andp33 but may also depend onp21; p22; p23 andp41; p42; p43.

Fig. 25. Dependence—pores on adjacent ridges demonstrate a
high degree of alignment.

an expected linear relationship between the interridge pores.
As shown in Figs. 24 and 25, pores on adjacent ridges ex-
hibit some degree of alignment. Inherent in this relationship
is a linear deviation that measures the difference between
the expected linear relationship and the actual pore pattern
on the print. If pores were generated independently of each
other, large ’s would result and no visible linear pattern
would be evident.

B. Degree of Alignment of Interridge Pores

Data from live-scanned fingerprints were examined to
study alignment of adjacent pores across ridges. Frequency
distributions of the alignment between nearest neighbor
pores on three consecutive ridges and three alternating
ridges were obtained (where ridges two and four are
skipped). The degree of alignment may indicate a measure
of dependence. The data are presented in Fig. 26. Here,
the plots for both three consecutive ridges and three
alternating ridges are compared to a simulation in which
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Fig. 26. Frequency of degree of interridge deviations from align-
ment. These plots demonstrate that most deviations from alignment
are between zero and ten pixels (0.22 mm), evincing dependence.

pores are constrained to occur at random positions in sweat-
gland units. The model includes the possibility of empty
sweat-gland units.

All three plots show a maximum frequency of occurrence
for deviations close to zero. As the degree of deviation
increases, there is a marked decrease in probability of
occurrence for all three plots. The plot of frequency of
deviations for three alternating ridges, however, follows the
simulation more closely than the plot for three consecutive
ridges. This can be attributed to a greater degree of align-
ment among pores on three consecutive ridges; the more
proximal the ridges, the greater the degree of alignment
between the pores across those ridges.

C. Dependence Determination: Ridge-Independent
Distributions

The effect of dependence among pores also is evident
in the ridge-independent configuration studies discussed in
Sections V-D3a and V-D3b. Here, the probability of pore
occurrence in a 5 by 5 pixel area was found (the binomial
distribution discussed in Section V-D1) as well as the pore
density for a 20 by 20 pixel area (Fig. 27).

If the occurrence of each pore were a phenomenon
independent of other pores, the density for a larger area
could be determined by using the data obtained from the
binomial probability alone

When this extrapolation is attempted for a 20 by 20 pixel
area, however, the resulting pdf shows a higher incidence
of empty cells than was detected in the actual density. This
increase in empty cells is compensated by a reduction in
the number of cells that contain one pore (Fig. 28).

Fig. 27. Measured density of pores in a 20 by 20 pixel area. This
distribution was obtained from actual data. The number of pores
in a 20� 20 pixel area was tallied and the frequencies of the
individual densities were plotted.

Fig. 28. The binomial distribution discussed in Section V-D1
was extrapolated to produce this plot, which shows a theoretical
frequency distribution of pore densities, assuming that pores occur
independently of each other.

The independence assumption does not account for phe-
nomena that determine the actual spatial distribution of
pores; ridge flow is one such factor. Perhaps the ridge flow
in a print constricts the spatial distribution so that there
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(a) (b)

(c)

Fig. 29. These figures relate to a 40� 40 pixel area divided into 64 grids of area 5� 5 pixels
each. For this situation, the probability that a grid contains one pore is 0.067 and the probability
that the grid is empty is 0.933. (a) A plot of the number of possible configurations of pores as a
function of the total number of pores. (b) A plot of the probability of a particular configuration of
n pores. (c) A plot of (a) multiplied by (b), which is the probability of a given number of pores
n occurring inside the 40� 40 pixel area (binomial distribution).

are fewer possible empty cells; this would account for the
disparity between Figs. 27 and 28.

Interestingly enough, when the density of pores in a 40
by 40 pixel area is determined and compared to an extrap-
olation from the binomial distribution, the real density is
similar to the extrapolation. It is proposed that the degree
to which dependence affects pores is higher for smaller

areas, much like it is greater in an interridge capacity for
more proximal ridges.

IX. CONCLUSION

Recognition errors in automated fingerprint-recognition
systems, like other biometric systems, can be grouped into
two classifications: false accepts and false rejects. When
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(a) (b)

(c)

Fig. 30. Distribution of the area of pores (measured in units of pixels, where the resolution was
1100 pixels/in and one pixel has dimensions 23.1� 23.1 �m). For plots (a) and (b), no pores
smaller than three pixels in area were allowed in order to reduce noise effects. Pores were extracted
and measured automatically. (a) Forty images (13 197 pores with� = 17:4; � = 13:6; and
max = 141). (b) The variation in pore area between three different people’s fingers: small pores
(� = 10:2; � = 7:3); medium pores(� = 18:8; � = 11:0); and large pores(� = 35:4;
� = 19:6). (c) Variation in the distribution of pore sizes for different live-scan images of the
same finger (reliability of pore size): plot of size for ten images together(� = 11:0; � = 9:2);
live scan when pores are relatively large(� = 14:8; � = 10:2); and distribution when pores are
relatively small (� = 8:4; � = 6:7).

addressing the problem of a false accept, the question
is: How does one differentiate an authorized user from
an unauthorized user? The uniqueness analyses in this
study provide answers to this question: Given a certain
number of pores along a ridge or a number of pores in

a constellation, the probability of someone else’s having
an identical configuration is sufficiently low to preclude a
false accept.

Still, false accepts persist. The value of the uniqueness of
a configuration is reduced when using an automated system,
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(a) (b) (c)

Fig. 31. Reliability of pores. The fingerprints have a very low detectable pore density. For these
prints, the use of poroscopy may not be reliable. (a) and (b) Images of the same finger showing
a large disparity in pore density. (c) A print that also has a very low pore density, although the
algorithm was able to find at least 84 pores.

for many parameters that were designed to decrease the
number of false rejects actually increase the probability of
a false accept. For example, automated matching requires
accommodation of phenomena such as plasticity and distor-
tion; therefore, parameters such as search areas are built in
to allow a degree of flexibility in feature detection. Thus,
the possibility exists that features in an impostor’s print
may be falsely detected as matching features in an enrolled
user’s print.

On the other side of the coin, however, is the question
of false rejects. The problem that must be addressed in this
case is: How does one recognize an authorized user as such,
regardless of changes that have occurred since the enroll-
ment procedure? These changes can include differences in
location, orientation, and shape or size of respective features
due to distortion or plasticity. Errors can occur as a result
of the processing and feature-detection stage or as a result
of some features’ being physiologically unreliable.

Performance is defined by these error rates. In this paper,
a model for an automated matching system was developed,
which incorporates the parameters determining the error
rates. From this model, performance of a generic automated
fingerprint-recognition system can be predicted.

APPENDIX I

GLOSSARY

Attribute: a subfeature; the position, shape, and size are
attributes of a pore.

Authentication:confirmation of proper identity.

Dependence:the ability of a feature to affect the at-
tributes of another feature; cellular or biological depen-
dence may produce a measured dependence of the pore
positions.

Dermis: the layer of skin directly beneath the epidermis;
contains living elements such as sweat glands, nerves,
and blood vessels.

Distribution (probability): the pdf of a random variable.

Distribution (spatial): the way that a set of points is
positioned in space or in an image.

dpi: refers to scanning resolution measured in dots (pix-
els) per inch.

EER: equal error rate; the value at which the FAR and
FRR are equal.

Epidermis:the outermost layer of skin; acts as a protec-
tive layer for the dermis.

FAR: false accept (imposter) error rate; fraction of at-
tempts for which the system allows access to an imposter
or invalid user.

FRR: false reject (valid user) error rate; fraction of
attempts for which a fingerprint system denies access to
a valid user.

Feature: a characteristic; pores and minutia points are
fingerprint features.

Feature area:search area; the area assigned to an in-
dividual feature in which no other feature is assumed
to exist. A small area of fingerprint surrounding the
feature location in which the feature’s exact position is
not important. Related to resolution and search area.

Feature characteristic (subfeature):attributes of features
such as shape, size, and location for pores; type, orien-
tation, and position for minutiae.

Feature configuration:a feature set for which the specific
arrangement of the features within the area occupied by
the set is known.

Feature density:the number of features per unit area
(features/mm).

Feature position or location:defined as the center of
mass of a pore or the center of the ridge at the point
at which it ends (for end points) or branches (for bifur-
cations).
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Feature set: ; a group of features associated
with a specified area of fingerprint.

Galton feature:any of a set of ten distinct fingerprint
features that include minutiae (branches and ends) as well
as special ridge structures, such as ridge islands, dots,
bridges, spurs, enclosures, double bifurcations, deltas,
and trifurcations.

Homogeneous:uniformly spatially distributed; the den-
sity of pores (or sweat glands) is constant over the entire
area of print.

Identification:a scenario in which the identity of the user
who presents a live-scan image to the system is unknown.
The system must determine who the unknown user is
from a database of valid users.

Inked fingerprint:an image of the fingerprint resulting
from applying ink to the surface of the finger and then
rolling the finger on paper; results in a rolled fingerprint
impression unlike a live-scan fingerprint.

Interridge pores:pores that are not on the same ridge.

Intraridge pores:pores that are on the same ridge.

Intraridge separation:measured value of separation be-
tween sequential pores on the same ridge.

Intraridge separation (adjusted):intraridge separation
corrected for missing pores.

Isotropic: having the same properties independent of
direction or orientation.

Latent: the fingerprint impression left on an object’s
surface resulting from contact with a finger.

Live scan:an image of the fingerprint acquired using an
electronic scanner for the purpose of real-time fingerprint
processing or matching. A live scan represents a pressed
finger as opposed to a rolled print.

Match (of a feature):a feature represented in the enrolled
template (or fingerprint) corresponds to a feature from
the live-scan fingerprint.

Mismatch (of a feature):a feature represented in the
enrolled template (or fingerprint) does not correspond to
a feature from the live-scan fingerprint, or a feature from
the live-scan print does not correspond to a feature in
the enrolled template.

Minutia: a ridge structure that differs from the usual
(normal) continuous and nondiverging flow; examples are
ridge branches (bifurcations) and ridge ends.

M N pixels: an area of fingerprint pixels in width
and pixels in height.

Measurement accuracy:the accuracy of determined lo-
cations of features; higher resolution allows more precise
estimation of an actual feature’s position, shape, and size.

Performance:measure of FRR and FAR for a given
system; match time and cost should also be considered
but are not addressed in this paper.

Pixel: can be used as a unit of length or area; mag-
nitude is established by the magnification of the input

Table 1 Osterburg Probability of Feature Occurrence

image and the dimensions of the image produced by the
framegrabber.

Pore: opening of a sweat gland that is visible on the
surface of the finger ridges.

ppi: refers to scanning resolution measured in pixels per
inch of fingerprint.

ppmm:refers to scanning resolution measured in pixels
per millimeter of fingerprint.

Regular distribution:uniform distribution of objects in
space.

Reliability (inherent):key to FRR; the probability that
a given feature (a pore, for example) will be visible in
different images of the same fingerprint.

Reliability (algorithm): key to FRR; the probability that
the algorithm will correctly detect a visible (real) finger-
print feature.

Resolution of database images:1100 ppi where one pixel
corresponds to 23.1 microns.

Resolution scanning:number of samples per unit length
(or area) determined by the degree of magnification of the
fingerprint image on the charge-coupled device (CCD)
sensor.

Resolution sensor:defined as the number of active pixels
on the CCD imaging sensor in a video camera (some-
times quoted without regard to CCD dimensions).

Scanned area:the area of fingerprint incident on the
active area of the CCD sensor device and represented
in the fingerprint image.

Search area:a small area in which a feature is searched
for; designed to account for detected feature position de-
viations due to noise, plasticity, distortion, or processing
variations. Increasing the search area is equivalent to
reducing the scanning resolution, reducing the accuracy
of detection of the feature position.

Subfeature:an attribute of a fingerprint feature.

Subcutaneous layer:the layer of skin beneath the dermis;
contains fat.

Sweat gland:a structure within the dermis that produces
sweat. Composed of a coil, which secretes the sweat,
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Table 2 Probabilistic Values of Intraridge Pore Configurations

Table 3 Calculated Probability ofn Pores
Occurring in a 4� 4 Grid Area

and a duct, which carries sweat to the surface. The duct
opening on the skin surface comprises a pore.

Template:a set of data that is extracted from a fingerprint
and then used to represent that finger. Fingerprints are

matched against templates or templates are matched
against templates.

Uniform distribution:defining the position of a feature as
a random variable, a uniform pdf means that the feature
has an equally likely probability of occurring anywhere
in image (flat two-dimensional pdf in ). In one model
of pore distribution, if there are pores per fingerprint,
then each pore’s position is assumed to be a uniformly
distributed random variable.

Uniform distribution of objects:a homogeneous spatial
distribution.

Uniqueness:key to FAR; probability of occurrence of a
configuration of features.

Verification:a scenario in which a user claims an identity
(enters a personal identification number) and the system
then authenticates the user’s claim by matching his live-
scan print against the template corresponding to his
claimed identity.

APPENDIX II

VITAL STATISTICS OF FINGERPRINT FEATURES

Pore density: there are approximately 2700–3350
pores/in (4.19–5.19 pores/mm).
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Table 4 Calculated Probability ofn Pores
Occurring in an 8� 8 Grid Area

Intraridge pore density:the average separation of pores
on a ridge is 0.39 mm ( 0.207 mm). There are 25.6
pores/cm of ridge on average.

Table 5 Pore Reliability for Various Parameters

Features:

Placement

Pores are found on the ridge only.

The pore’s exact position on the ridge is random.

The position is defined as the center of mass of the
pore.

Size

Pores are generally less than 220m across.

The average diameter of a pore is 109m, assum-
ing a circular pore shape.

The fraction of print area occupied by pores is
3.9%.

Shape

The shape of each pore is unique.

There is a lot of variation in the general shape of
pores ranging from square to circular.

Pore reliability: pore reliability is a function of the sub-
feature type (position, shape, and size), capture method,
and skin condition.

Ridge width:the average width of a ridge is 0.48 mm for
males and shorter for females.

Galton feature density:the density of Galton features is
approximately 0.234 features/mm.

Minutia (branch and end point) density:the density of
minutia is approximately 0.241 minutiae/mm.

Ridge (Galton) feature placement:the placement of Gal-
ton features is random.

Ridge (Galton) feature reliability:the reliability of Galton
features is relatively high and depends on the quality
of the print, skin condition, and capture method. With
respect to minutiae, sometimes it is difficult to distinguish
between ridge bifurcations and ends.

APPENDIX III

See Table 1.

APPENDIX IV
RESOLUTION AND INTRARIDGE PORE CONFIGURATIONS

See Table 2.
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Table 6 Observed Inherent Reliability of Pores

Table 7 Algorithm Reliability

APPENDIX V
RIDGE-INDEPENDENT PORE CONFIGURATIONS

By assuming that pores occur independently of each
other, in a way similar to the treatment of minutiae, the
probability of a configuration of pores can be calculated.
For a given area of fingerprint and a defined “cell size,”
there will be cells or grid divisions in the print. In each
cell, there can be either one pore or no pores present. For
an area of print about 0.46 0.46 mm, the number of
cells is 16. The number of configurations possible (using
pores), the probability of a given configuration ofpores,
and the probability of pores in the total analysis area are
provided in Table 3.

For an area of print about 0.92 0.92 mm, the number
of cells is 64. The number of configurations possible (using

pores), the probability of a given configuration ofpores
and the probability of pores in the total analysis area are
provided in Table 4. The entries in the tables are plotted in

Fig. 29 for a more insightful description of the underlying
process of configuration probabilities.

APPENDIX VI
SIZE OF PORES

The size of an individual pore may vary from one scan to
the next, leading to a relatively unreliable pore subfeature.
In addition, there is a large variation in the size of pores
between individuals. In some cases, the range of pore sizes
for different prints of the same finger will vary significantly.
Fig. 30 shows the general trend of a decreasing number of
pores as pore size increases. The caption in Fig. 30 provides
details of the nature of pore size.

APPENDIX VII
TABLES AND IMAGES OF RELIABILITY OF PORES

Table 5 shows pore reliability for various parameters. In
Table 6, “visibility” is the fraction of instances in which a
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given pore was detectable by eye. “Absolute size” is the
observed size of a pore. “Relative size” is the size of the
pore in relation to all other pores in that image. “Shape”
is the fraction of occurrences for which the pore’s shape
is consistent. For clarity, “clear” means that the pore is
in focus and high contrast; “fuzzy” denotes an out-of-focus
pore. “Shadowy” describes pores that were mostly clear but
parts were fuzzy. “Image” quality (range [1,5], where five
is high quality) is determined by the amount of noise and
degradation in the image, whereas “print” quality (range

, wet-neutral-dry) is a measure of the condition of the
skin. “Density” is the relative number of pores per image.
Fig. 31 shows fingerprint images illustrating the reliability
of pores.

Table 7 demonstrates the percentage of algorithm-
detection errors attributable to various causes in eight
prints of varying quality. The total error rate (missed
detects plus false detects) is the sum of each row. In
Table 7, “quality” is the image quality. “# pores” is the
number of true pores detected in the image accounting
for missed and false detected pores (errors). “Processing”
represents the percentage of pores erroneously discarded
during the process of converting the image from gray level
to binary. “Flow” represents the percentage of pores that
are so large that they appear as a break in the normal flow
of the ridge. “NN” is the percentage of close but separated
pores for which only one pore is detected. “Nonisolated”
is the percentage of pores on the edge of a ridge that
are not detected. “Flow nonisolated” is the percentage of
missed detected pores that occur on the center of a ridge
but appear to touch the edge of the ridge because of noise.
“2 as 1” represents the number of pairs of connected pores
incorrectly detected as a single pore. “Midvalley” is the
percentage of instances in which the algorithm falsely
detected a pore in the middle of a valley. “Bridge” is the
percentage of falsely detected pores occurring at breaks
in a ridge. “Noise” represents the percentage of instances
in which noise was classified as a pore. “Washed out”
represents a different noise process that causes low contrast
areas in the image.
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