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Guided-Wave Intensity Modulators Using Amplitude- 
and-Phase Perturbations 

RICHARD A. SOREF, SENIOR MEMBER, IEEE, DONALD L. McDANIEL, JR.,  AND BRIAN R. BENNETT 

Abstract-A theoretical analysis of intensity modulation in coupled 
waveguides and Mach-Zehnder interferometers is reported. Simulta- 
neous phase and amplitude perturbations A n  + CA k are considered. 
Predictions are made about the performance of electrooptic GaAs and 
InP modulators controlled by the free-carrier effect ( A N )  or by the 
Franz-Keldysh effect ( A  E ). The phase-dominant condition A n  > 5A k 
is optimal. The predicted depth of modulation is greater than that of 
conventional loss-modulators over a range of A N  or A E .  

I .  INTRODUCTION 
ROUP IV and 111-V semiconductors exhibit carrier- G induced and field-induced electrooptic effects. The 

applied stimulus produces a simultaneous change in the 
semiconductor’s optical attenuation and phase retarda- 
tion. At certain wavelengths, the loss and phase compo- 
nents are comparable in size. These facts have been gen- 
erally ignored in the design of optical intensity 
modulators. This paper explores the use of combined am- 
plitude-and-phase modulation for enhanced intensity 
modulation. Coupled waveguides and Mach-Zehnder in- 
terferometers are examined. 

In the past, guided-wave intensity modulation has been 
obtained with either the Pockels effect or the Franz-Kel- 
dysh effect. Pockels devices are usually operated at an 
optical wavelength X far from the fundamental absorption 
edge of the material X,. There, phase effects are strong 
and the associated loss is negligible. By contrast, Franz- 
Keldysh devices are operated quite near the edge. For 
those modulators, device engineers have relied solely on 
the loss component and have chosen to overlook the rel- 
atively weak phase retardation. This paper deals with an 
intermediate spectral region, further from the edge, where 
the phase-and-amplitude variations have similar magni- 
tudes. Carrier-controlled and field-controlled devices are 
analyzed. We predict that the resulting modulators will 
have higher extinction ratios and lower insertion losses 
than conventional ‘‘straight through” loss modulators. 

Unlike conventional Franz-Keldysh modulators that 
have a background absorption of 25-50  cm-’, the mod- 
ulators proposed here have a static loss of less than 1 cm-’ 
which should allow monolithic integration of our modu- 
lators with other guided-wave components (including laser 
diodes) on the same wafer. 
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11. BACKGROUND DISCUSSION 
Van Eck and coworkers [l] studied the Franz-Keldysh 

effect in bulk GaAs and InP. They suggested that the loss- 
and-phase components could be combined in a bulk-optic 
Fabry-Perot resonator for improved modulation. We have 
applied their idea to two integrated-optic structures and 
have considered carrier control. 

Previously, researchers have employed four types of 
guided-wave devices to convert phase variations into in- 
tensity modulation: 1) interferometers, 2) coupled wave- 
guides, 3) mode extinction modulators, and 4) TE-to-TM 
mode converters. Here, we have generalized 1) and 2) to 
include optical “damping”. Modulators 3) and 4 )  are not 
treated in this paper, but are promising candidates for 
future study. 

In the analysis below, the complex mode-amplitude for 
the propagation-direction z is described by the expression 
A. exp i (ut - K Z ) .  If we include the effect of optical loss, 
then the complex wavenumber K is proportional to the 
complex index of refraction: K = 2n ( n  + ik)  / A ,  where 
the real part ( n )  is the conventional refractive index and 
the imaginary part ( k )  is the linear extinction coefficient. 
We define the propagation coefficient as p = 2 n n / X  and 
the optical power absorption coefficient as CY = 4nk/X.  
The units of both a and p are per centimeter. We are in- 
terested in electrooptic effects that produce a complex 
change in index: A n  = A n  + iAk.  This produces a mode 
perturbation of the form exp i ( A  0 + iA  CY/^ ) z ,  where 

A b  = 2nAn/X,  ACY = 4 a A k / h .  

The analysis below is quite simplified. For example, 
interfering modes are treated like plane waves. Also, we 
assume that the transverse index distribution A n  (x, y )  is 
uniform and fills the optical waveguide. The response of 
coupled three-dimensional (3-D) channel waveguides is 
deduced from the behavior of coupled two-dimensional 
(2-D) slab waveguides. 

111. MODULATOR STRUCTURES 

Fig. 1 illustrates the three single-mode channel wave- 
guide structures that are analyzed here: in Fig. l(a) a 
straight segment of waveguide with variable attenuation, 
in 1 (b) a Mach-Zehnder interferometer made from Y-cou- 
plers, and in l(c) a pair of parallel coupled channels with 
uncoupled input and output lead-in channels. In all three 
devices, electrical control is imposed upon an interaction 
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Fig. 1. Three types of electrooptic guided-wave modulators: (a) absorbing 
channel, (b) Mach-Zehnder interferometer, (c) coupled waveguides. 
Types (b) and ( c )  use simultaneous phase-and-amplitude perturbations. 

region of length L to produce a uniform perturbation of 
the waveguide A 0  + iAcy /2  over that length. Only one 
arm is perturbed in Fig. l(b) and (c). We assume that the 
guide pair is phase matched in the zero field case, when 
A b  = 0 and A a  = 0. This is the lossless initial state of 
the device in Fig. l(b) or (c). The final state is reached 
when the electrooptic effect gives a velocity mismatch A 0 
+ i A a / 2  between the guides. 

We shall compute the normalized optical output power 
Pout/Pin in the three cases. For the conventional Fig. l(a) 
modulator, it is clear that 

P ~ ~ ~ / P ~ ~  = e-*OiL. (1) 

A phase retardation exp ( i A  /3L ) is present but does not 
contribute to intensity change. Turning to the Fig. l(b) 
interferometer, we have Po,, - E, E:, where E, is the total 
optical field at the Y-combiner. Here, E, = A o / &  + 
(Ao/&‘) exp ( - A a L / 2 )  exp ( i A 0 L ) ;  thus 

pout = ( / l i p ) [  1 + e - A f f L / 2 e i A 4 L ] [  1 + e - A f f W e  - ;A@ I .  
( 2 )  

At zero perturbation, constructive interference occurs 
since the path length is the same in each arm. Then, the 
transmission is a maximum: 2Ai .  Taking Pin = 2 A i ,  we 
obtain from ( 2 )  the throughput of the interferometer: 

pout/pin = ( 1 / 4 ) [ 1  + e - A d  + 2epAf fL l2  cos APL]  . 

( 3 )  
Analogous equations with A cy and A 0 can be developed 
for Fabry-Perot and Michelson interferometers. 

Consider now the Fig. l(c) device. We shall analyze 
the case in which an optical amplitude A. is launched into 
the “feed” waveguide, while an amplitude Bo is launched 
into the “branch” waveguide. Output amplitudes A and 

B from feed and branch, respectively, are calculated. One 
has the option of inserting the electrooptic perturbation in 
either the feed or branch. (The reason for not putting iden- 
tical perturbations in feed and branch is given below). We 
shall label the inputs ports of the coupler as 1 and 2 ,  and 
designate the output ports as 3 and 4 .  The normalized out- 
put powers are: p3/pI = I A / A ~ ~ ~ ,  P,/P, = ( B / A , ~ ~ ,  
P3/P2 = ) A / B O l 2 ,  and P4/P2 = IB/BoI2. The initial 
condition Bo = 0 is assumed below. 

Coupled-mode equations for a uniform A 0-switch have 
been given in several textbooks such as Yariv and Yeh 
[ 2 ] .  Those equations were derived under the assumptions 
of weak coupling, phase-matched guides, slab wave- 
guides, and codirectional propagation. The uniform cou- 
pling coefficient is K per centimeter. 

To handle the combined phase and amplitude shift, we 
have substituted the complex quantity A 0  + iA cy/2 for 
A /3 everywhere in the standard coupled-mode equations 
(e.g., see [ 2 ,  sect. 6.4, eq. (30 )  and ( 3 1 ) ] )  with the fol- 
lowing result: 

p3/p, = e-AaL/’ lcos gL + i ( b / g )  sin gL12 ( 4 )  

P,/P, = l i ( K / g )  sin gL(’ ( 5 )  
where 

g 2  = b2 + K 2  

and 

b = k ( A p / 2  + i A a / 4 ) .  

The justification for this procedure is given in the recent 
work of Thompson [3 ]  who considered coupled guides that 
include gain or loss. In fact, Thompson’s result [ 3 ,  eq. 
(7)] connects with our result if we interpret his static gain/ 
loss parameter 2K6 as our “dynamic” amplitude pertur- 
bation A a / 4 ,  and his phase shift 2KA 0 as our phase mis- 
match A 0 / 2 .  

In ( 4 )  and (5) above, the plus sign in b denotes a per- 
turbation in the feed, while the minus sign indicates a 
branch perturbation. Note that g is complex. For this 
modulator, we shall select a value of KL that gives either 
an initial crossover of light (the “cross” state, with KL 
= a / 2 ,  3 n / 2 ,  5 a / 2 ,  * * * ) or an initial straight-through 
condition (the “bar” state, with KL = a, 2 a ,  3 a ,  - e ) .  

A key parameter in the present theory is the ratio 

(6)  p = A n / A k  = 2Ap/Acy .  

This p-parameter provides a measure of the relative 
strength of the phase versus the amplitude modulation at 
a given drive level. The A n / A k  ratio is also useful in 
assessing the amount of chirp in the modulator [ 4 ] .  The 
effect of p on Pout/Pi, is now determined. We have a 
choice of using either ACYL or A p L  as the independent 
variable. To be specific, if we put ( 6 )  into ( 3 )  we find the 
response of the Mach-Zehnder ( M - Z )  is: 

Po,,/Pi, = ( 1 / 4 ) [  1 + e - A n L  

+ 2e-A“L/2 COS ( p A c y L / 2 ) ] .  ( 7 )  
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Alternatively, we find 
-2AOLlp 

P o u t I P m  = ( 1 / 4 ) [ 1  + e 

+ 2ePABL/’ cos ( A p L ) ] .  ( 8 )  
Turning to the directional coupler (IC), we shall take KL 
= mK as the boundary condition and use (4) - (6)  to give 

p,/p, = e-AaL/’ [cos gL 

P,/P, = e - A a L / 2  I ( i m a / g ~ )  sin gLI 

f [ ( P  + i ) ( A o l L ) / ( 4 g L ) ]  singL12 (9) 

(10) 
where 

(&? = ( p  + i ? ( A c ~ L / 4 ) ~  + (mK?. 

Alternatively, we find: 

P ~ / P ,  = e-AOL/p (cos gL 

+_ [(i - ~ / ~ ) ( A P L ) / ( ~ ~ L ) I  sin gL12 ( 1 1 )  

P,/P, = e-APL/p ( ( i r n K / g L )  singL12 ( 1 2 )  
where 

(gL? = ( 1  + i / p ? ( A @ L / 2 ?  + ( m a ? .  

Feed and branch perturbations produce the same result for 
P4/Pl, according to (10) and (12 ) .  

It is possible to place a perturbation of length L in both 
guides in Fig. l(b) and l(c), which has been done in the 
past for Pockels-effect devices. Unlike push-pull Pockels 
devices that give + A 6  in one arm and - A @  in the other, 
the Franz-Keldysh and charge-controlled devices give the 
same sign of A p  in both arms. Hence, the phase-velocity 
mismatch will vanish in the voltage-on state. This implies 
that the phase terms will cancel in the above equations 
and that only the loss terms will remain. Thus, we find 
that the modulator with two active arms has a throughput 
of P,,,/P,, = exp ( - A C Y L )  in Fig. 1(b) and (c). 

In the sections below, we shall compare the complex 
modulators with both phase-sensitive and amplitude-sen- 
sitive devices. 

IV. COMPARISON WITH A @  DEVICES 
In the past, the coupler and the M-Z have been used 

with the Pockels effect, a “pure phase” perturbation. So, 
these structures can serve as phase-modulated references 
for the complex modulator in the limit of large p .  As p is 
increased, the mixed modulator must blend continuously 
into the phase modulator. The “blending” is shown 
graphically below. In the following computations, we 
shall assume that p is a constant. Fig. 2 is a plot (per (8)) 
of the M-Z output as a function of A p L  for p = 3, 10, 
and 5000 ( p -, 0 0 ) .  The familiar raised cosine result at 
p -+ 00 with perfect nulls at odd multiples of a is seen. 
The complex modulator has nonzero minima and nonun- 
ity maxima because, with increasing A k ,  the amplitude 
imbalance between the two arms washes out the peaks and 
valleys of the interference ‘‘pattern”. However, the in- 
tensity minima and maxima of the complex device occur 

0.6 

’. ..._ , ,,__.. ... ..__, 

0.0 
7[ 21t 311 

A B  L (radians) 

Fig. 2 .  Interferometer output as a function of electrooptic phase angle (real 
part of perturbation) for three values of A n / A k .  

at the same values of T ,  2 a ,  37r, etc. (slightly left-shifted 
at low p ) .  In the high-field limit (large A p L ) ,  the optical 
throughput of the mixed interferometer approaches the 
asymptote 1 / 4 .  This is explained as follows. In the limit 
of large APL,  assuming that A n  and A k  increase in uni- 
son, one arm of the interferometer becomes opaque, so 
half the power is lost. In addition, the large amplitude 
imbalance and phase imbalance of the optical signals en- 
tering the Y-combiner will cause half of the remaining 
power to be radiated into the substrate [5] .  

Fig. 3 shows the responses P3/P, and P4/P1 of a 2 x 
2 coupler switch (equations ( 1  1 )  and (12 ) )  as a function 
of A p L  for p = 5 ,  15, and 5000 with an initial cross state, 
KL = a / 2 .  For the upper drawing, the complex pertur- 
bation is in the feed. A companion plot, lower drawing, 
shows the effect of a branch perturbation. The p = 5000 
device reaches the bar state at the well-known value A p L  
= &a. The quasibar state of the A n  + iAk devices oc- 
curs at the same APL value, although the outputs differ 
from the ideal unity/zero values. 

Next, we considered the initial bar state, KL = K .  Fig. 
4 presents results for P3,/PI and P4/Pl versus A p L  for a 
feed perturbation (upper drawing) and for a branch per- 
turbation (lower drawing). Again, we examined p = 5 
(dotted line), 15 (dashed line), and 5000 (solid line). It is 
interesting that the p = 5000 device becomes a -3-dB 
coupler at APL = 2 a .  

Some insight into the mixed-modulator curves of Figs. 
3 and 4 can be gained from a consideration of the phase- 
only coupler. For example, if we plot P3/P, versus L for 
a phase-only coupler (as Thompson has done in [3, fig. 
5]), we find the usual raised cosine result at A b  = 0, with 
perfect ones and zeros that represent the bar and cross 
states. For the mismatched condition, the L-dependent 
output power oscillates between - 0.5 and unity when A 
- 4 K .  So, in the nonsynchronous condition, it is impos- 
sible to reach a perfect cross state, although any one of a 
series of bar states can be attained. We conclude that one 
can go from a perfect cross state at A @  = 0 to a perfect 
bar state at A @  # 0. But, a bar state at A @  = 0 will never 
lead to a perfect cross state at A @  # 0. Similar behavior 
holds for the phase-dominant mixed coupler shown in 
Figs. 3 and 4 .  In addition, the loss component A a  affects 
the coupled modes. One mode becomes more localized in 
the perturbed lossy guide, and its attenuation increases. 
The other mode becomes more localized in the transpar- 
ent unperturbed guide, and its attenuation diminishes [3]. 
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Fig. 3 .  Directional coupler output(s) as a function of electrooptic phase 
angle (real part of perturbation) for three values of A n / A k .  The cross 
state is the initial condition. 
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Fig. 4. Directional coupler output(s) as a function of electrooptic phase 
angle (real part of perturbation) for three values of A n / A k .  The bar state 
is the initial condition. 

In designing an intensity modulator, one selects the 
most highly damped output. That output is P 4 / P I  in Fig. 
3 (feed or branch perturbation) and P 3 / P 1  in Fig. 4 (feed 
perturbation). The collective action of A a and A is dif- 
ferent in these two situations. In Fig. 3, increasing A p  
drives P 4 / P 1  “downwards” towards the bar state at 
1 . 7 3 ~ .  This tendency is reinforced by the increased 
damping A a which attenuates the cross coupled optical 
power. The situation is reversed in Fig. 4. Here, the phase 
component A p  drives P , / P ,  to - 0.5 as A p L  approaches 
2n. Then, P 3 / P 1  is driven “upwards” to unity at A p L  = 
3 . 5 ~ .  But, the ACY component acts directly on P 3 / P l  and 
drives that power towards zero, thereby opposing the AB 
effect. So, the Aa-effect is diluted. For these reasons, the 
intensity modulation is more effective in Fig. 3 than in 
Fig. 4. 

V.  COMPARISON WITH A a  DEVICES 
The straight-through attenuator of Fig. l(a) is now used 

as a reference for Fig. l(b) and (c). In practice, the straight 

1 .o 

- 0.1 
a0 

device is always used with a complex A n  + iAk pertur 
bation because there is no such thing as a “pure loss’ 
perturbation. So, it is fair to compare Fig. l(a) with Fig 
l(b) and (c) because all three are complex. On the othe 
hand, the straight device is an inefficient modulator in thc 
sense that its A n-component does not contribute to inten 
sity modulation. The performance advantage of Fig. l(b 
and (c) over (a), shown below, is due to the concertec 
action of A n  and A k .  To facilitate the comparison, W I  

shall assume that the modulators are controlled by the var 
iable A a  L .  Starting with the M-Z, we have shown in Fig 
5 the predicted performance (equation (7)) versus A a2 
for p = 3, 5 ,  7, 10, and 15 in a semilog plot. For com 
panson, the response of the exp ( - A a L )  modulator i: 
shown by the dashed line. Note that the horizontal scalc 
is not in units of R. The conclusion drawn from Fig. 5 i! 
that the interferometer gives better extinction than thc 
conventional device when A CY L is kept below 1.65 for I 
= 5 ,  below 1.30 for p = 7, 0.95 for p = 10, and 0.6: 
for p = 15. When A a L  exceeds those critical values, thc 
M-Z has less depth-of-modulation than the in-line mod 
ulator. 

Fig. 6 illustrates the coupler behavior. This figure rep 
resents the theoretical performance (equation (9) and (10) 
versus A a L  for the case KL = n / 2  and p = 20. Thir 
mixed coupler is a 2 X 2 switch with unequal outputs ir 
the bar state. There is a deep minimum of P 4 / P l  (bai 
state) at ACYL = 0.54 which is 2& a / p .  

Fig. 7 and 8 are semilog plots of one output (equations 
(10) and (9), respectively) as a function of ACYL. Result: 
for p = 2,  5,  10, 15, and 20 are shown. Fig. 7 presents 
P 4 / P I  for KL = n / 2  (feed or branch perturbation), anc 
Fig. 8 shows P , / P ,  for KL = R (feed perturbation). Foi 
comparison, the response of the exp ( - A  a L )  absorptior 
modulator is shown by the dashed line. For p > 5 in Fig 
7, the curves are well below the dashed line, as desired 
We conclude from Fig. 7 that the phase-dominant condi- 
tion A n  > 5 A k  is well suited for efficient intensity mod- 
ulation. In Fig. 8, the output power oscillates about the 
dashed line and does not offer a significant improvemeni 
over the conventional loss modulator for reasons givep 
above. 

We have examined the loss-dominant regime, p = 0.5. 
and have found that the p = 0.5 curves (not shown) are 
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Fig. 7. Directional coupler output (branch waveguide) as a function of 
electrooptic amplitude angle (imaginary part of perturbation) for five val- 
ues of A n / A k .  The cross state is the initial condition. 
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Fig. 8. Directional coupler output (feed waveguide) as a function of elec- 
trooptic amplitude angle (imaginary part of perturbation) for five values 
of A n / A k .  The bar state is the initial condition. 

above the dashed line in Figs. 7 and 8, so we concrude 
that the loss-dominant regime is not favorable in the cou- 
pler. A similar conclusion applies to the M-Z. 

VI. ELECTROOPTIC EFFECTS 

In a 111-V semiconductor, the Pockels, Franz-Keldysh, 
and free-carrier electrooptic effects coexist over a range 
of wavelengths. However, it is possible to isolate one ef- 
fect, that is, to emphasize one and diminish the others. 
This can be done by choosing an appropriate crystallo- 
graphic orientation, electrical contact structure, doping, 
wavelength, etc. In order to gauge the individual impact 
of each effect upon modulation, we shall examine the 
Franz-Keldysh and charge effects separately. 

The optical influence of altered free-camer densities 
( A N )  in Ge, Si, GaAs, InP, InAs, etc., has been dis- 
cussed in the literature as the “plasma dispersion effect.” 
The real and imaginary parts of this effect are called car- 
rier refraction ( C R  ) and carrier absorption ( C A ) ,  respec- 
tively. For GaAs, InP, and Si, some experimental and 
theoretical results on A a and A 0 as a function of AN have 
been plotted in [6, figs. 2 and 31. The combined CR and 
CA effects, designated here as C ( R  + A )  are strongest 
away from the edge: X >> A,. 

The ratio p for C ( R  + A )  can be estimated using the 
simple Drude model cited in [7, eqs. (4) and ( 5 ) ] .  For one 
species of carrier, the model gives p = -2mm*p/eX,  
where m* is the conductivity effective mass, and p the 
carrier mobility. For most materials, experiments have 
verified a linear dependence of A 0  upon AN at “high” 
AN. However, Aa-measurements reveal that A a  is a 
nonlinear function of AN, although the deviation from 
linearity is small. Thus, in practice, p is not independent 
of AN, but the variation of p with AN is smaller than the 
1000-to-1 change of p with E in the Franz-Kelydsh effect. 
In the C ( R  + A )  effect, one has an opportunity to “tai- 
lor” p to a desired value by the proper choice of semi- 
conductor material, alloy composition, optical wave- 
length, maximum AN, and species of carrier (electrons or 
holes). However, p is constrained by the dispersion rela- 
tions [6]. The C(R + A )  effect is polarization-indepen- 
dent. 

To illustrate C ( R  + A ) ,  the example of hole-injection 
into GaAs will be given. From room-temperature GaAs 
at the 1.15-pm wavelength, Carenco and Menigaux [8] 
cite experimental absorption work by Garmire and Merz, 
and theoretical refractive index work by Stem. For free 
holes, they find that Aa(cm-‘ )  = 1.4 x 
1 0 - 1 7 ~ h ( c m - 3 )  and An = -9.9 X 10-22ANh(~m-3) ,  
which implies that AP(cm-’)  = -5.4 X 
10-’7ANh(cm-3). These results are plotted in Fig. 9 as 
a function of injected hole density. It is seen that the ratio 
p is constant at 7.7, although other data on GaAs suggests 
that p tends to decrease with increasing AN. (For elec- 
trons in InP or GaAs, p is typically greater than 10 in the 
near infrared). Generally, as AN is increased from 10l6 
to lOI9 c r K 3  in Si, Ge, GaAs, and InP, we expect p to 
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Fig. 9. Carrier-induced optical phase shift and induced optical absorption 
in GaAs produced by a modulation AN of the free-hole concentration ( X 
= 1.15 pm and X, = 0.88 pn) .  

decrease by a factor of five (approximately), tracking the 
decrease in mobility. 

The real and imaginary parts of the Franz-Keldysh ef- 
fect are called electrorefraction (ER) and electroabsorp- 
tion (EA), respectively. These effects were examined the- 
oretically for direct-gap 111-V materials by Bennett and 
Soref [9] and for an indirect-gap material (Si) in [7]. In 
the transparent region X > A,, it is found that the phase- 
part increases approximately quadratically with the exter- 
nal electric field, A b  = bE2 at low E,  while the electroab- 
sorption has a much stronger field-dependence: A a 0: E7 
at low fields, changing to =E5 and a E 3  with increasing 
field. The E ( R  + A )  effect peaks as the modulator wave- 
length X approaches the edge of the waveguide material 
A,, although one must not approach the edge too closely 
in order to minimize the zero-field extinction ko of the 
modulator. That loss arises from absorption-band tails. 

In the E ( R  + A )  effect, the relative size of A b  and A a  
can be adjusted by proper choice of: semiconductor ma- 
terial, X - X,, maximum E-field, crystallographic orien- 
tation, electrode placement, propagation direction, alloy 
composition, and layer thicknesses (in multiple-quantum- 
well samples). For the discussion below, we shall assume 
that the electrode placement and crystallographic orien- 
tation are chosen so that the Pockels effect is smaller than 
E (  R + A ) ,  although one can obtain comparable An-con- 
tributions from the linear and nonlinear electrooptic ef- 
fects, if desired. The E ( R  + A )  effect is polarization- 
dependent. 

Fig. 10 illustrates E ( R  + A )  for room-temperature InP 
material at the 0.984-pm wavelength. The quantities A n  
and A k have been plotted as a function of applied field in 
Fig. 10 (a log-log plot) using the theoretical curves of 
[9]. Here, the photon energy has been chosen to be 80 
meV less than the bandgap energy. The 80-meV choice is 
advantageous because it reduces the background extinc- 
tion at E = 0 to a low level: ko - 3 x lop6. For use in 
numerical examples below, the ratio 2 A b / A a  and the 
amplitude modulation A a  are plotted versus E in the 
semilog plot of Fig. 11. 

VII. PREDICTED PERFORMANCE 
Three examples of intensity modulation are given here: 

E ( R  + A )  in Fig. l(b) and (c), and C ( R  + A )  in Fig. 
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Fig. 10. Franz-Keldysh refractive-index perturbation and added optical 
extinction in InP induced by an external electric field ( X = 0.984 pm, 
and A,? = 0.925 pm). 
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Fig. 11. Field-induced optical absorption and the ratio A n / A k  in InP a: 
a function of applied field (curves derived from Fig. IO) .  

l(c). Applying the carrier effect in GaAs to the coupled 
waveguides of Fig. 7,  we note that p = 7.7 from Fig. 9. 
Then we select a practical value of A N ,  such as 5 X l O I 7  
cmP3, as a convenient starting point. Fig. 9 indicates that 
A a  = 7.0 cm-’ at this A N .  Next, we note from the Fig. 
7 result that the minimum value of P 4 / P I  for p = 7.7 
occurs at A CY L = 1.4 approximately. Thus, the required 
interaction length is 1.4/7.0,  that is, L = 0.20 cm. It also 
follows that the coupling coefficient is 7r/2(0.2) or 7.9 
cm-I. Next, we let A N  vary from zero to 7 X 1017 cmP3 
and determine the corresponding A a L values, which are 
inserted into (10) along with the fixed p value. This gives 
the modulation result shown in Fig. 12 as a function of 
the injected (or depleted) charge concentration. Also dis- 
played on the graph, for comparison, is a dashed-line 
curve that illustrates the response of the conventional ab- 
sorption modulator. 



SOREF et al.:  INTENSITY MODULATORS USING AMPLITUDE-AND-PHASE PERTURBATIONS 443 

-- - I= 1.15bIm 
(ho les )  5- 0.1 a* 

0.01 
0 1 2 3 4 5 6 7  

A N  (xlO" c N 3 )  

Fig. 12. Optical intensity modulation in coupled GaAs waveguides (per 
Fig. 7) versus carrier injection/depletion, as produced by the Fig. 9 elec- 
trooptic effect. Here, K = 7.9 cm-' and L = 0.200 cm. 

The second coupled-waveguide example makes use of 
the field-controlled E ( R  + A )  effect in InP at a photon 
energy 80 meV less than the bandgap energy, i.e., an op- 
erating wavelength of 0.984 pm. Again we take KL = 
n /2 .  It is estimated from Fig. 7 that when p = 15, the 
first minimum of P4/Pl occurs at A a L  = 0.7. (The 
choice p = 15 is one of several practical alternatives). 
Turning to Fig. 1 1, we then find that p = 15 occurs at a 
field strength of 66 kV/cm, where A a  = 3.0 cm-I also 
occurs. The required interaction length in this case is 
0.7/3.0,  that is, L = 0.233 cm. Hence, K = 6.7 cm-'. 
Now, we select an operating range of field values from 
zero to 100 kV/cm. At each E value, we determine from 
Fig. 11 the corresponding p-value and the corresponding 
A a L  value. The various p ( E )  and A a L ( E )  are then 
substituted into (10) for determination of the P4/P,-ver- 
sus-E modulation characteristic. The result is presented 
in Fig. 13. Again, for comparison, we show the through- 
put of the standard exp ( - A a L)  modulator by the dashed 
curve. 

The final example includes the response of the Mach- 
Zehnder interferometer to the E ( R  + A )  effect in InP at 
0.984 pm. Here, we turn to the result of Fig. 5 and find 
that the ratio p = 15 gives a low value of Pout/Pin at a 
relatively low value of A a L ,  namely at A a L = 0.4. From 
the InP result of Fig. 11, it is found that p = 15 corre- 
sponds to an electric field strength of 66 kV/cm. The ab- 
sorption perturbation A a  = 3.0 cm-' corresponds to that 
field. The interaction length needed is 0.4/3.0, or L = 
0.133 cm. Now we allow E to range from zero to 100 
kV/cm. At each E-value, we find from Fig. 11 the cor- 
responding p value and the A a L  value. Those numbers 
are substituted into (7) to give the optical throughput of 
the interfering guides. The result is presented as a func- 
tion of E in Fig. 14. As before, we compare the result 
with the transmission of a conventional loss modulator 
(dashed curve). 

Estimates of the optical insertion loss in each of the 
above three examples will now be made. The zero-field 
loss in decibels of the mixed modulator, either coupler or 
M-Z, is given approximately by -10 log [exp 
(-4rkoL/X)].  Taking ko = 3 X lop6 for InP at 0.984 
pm and ko I 1 x for GaAs at 1.15 pm, (extrapo- 
lated values from [lo]) together with the 0.200, 0.233-, 
and 0.133-cm interaction lengths, we find that the inser- 
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Fig. 13. Optical intensity modulation in coupled InP waveguides (per Fig. 
7) versus applied field, as produced by the Fig. 10 electrooptic effect. 
Here, K = 6.7 cm-' and L = 0.233 cm. 

0.001 
40 50 00 70 00 90 100 

ELECTRIC FIELD (kVlcm) 
Fig. 14. Optical intensity modulation in an InP interferometer (per Fig. 5) 

versus applied field, as produced by the Fig. 10 electrooptic effect. Here, 
L = 0.133 cm. 

tion losses are only 0.1,  0.4,  and 0.2 dB, respectively, 
for the Fig. 12-14 examples. 

VIII. DISCUSSION AND SUMMARY 
The coupler and the M-Z will give effective intensity 

modulation when the complex electrooptic effect has a 
large phase component: A n  > 5Ak .  Fig. 13 shows that 
the intensity falls to 0.0055 at 66 kV/cm (22.6-dB ex- 
tinction, compared to 1-dB extinction for the reference, 
and the modulation depth is far greater than that of the 
reference over the 0-to-90 kV/cm range. Similarly, Fig. 
12 reveals higher extinction than the reference over the 
A N  range from 0 to 7 X 1017 crnp3. In Fig. 14, the inter- 
ferometer has better extinction than the reference modu- 
lator over the E-range from 0 to 76 kV/cm. The results 
of Figs. 12-14 are based on approximations discussed 
earlier. The results give qualitative guidelines for device 
behavior. 

The Franz-Keldysh intensity modulator has a lumped- 
element equivalent electrical circuit, and driving the mod- 
ulator is much like charging and discharging a capacitor. 
Modulation depth is governed by the electric field strength 
in the waveguide material, which in turn is proportional 
to the "capacitor voltage" (the reverse bias applied to the 
p-i-n waveguide diode structure). As shown in Figs. 2-4, 
the same A p L  is used in the on-state of phase-dominant 
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and phase-only couplers (or interferometers). Thus, the 
switching power requirements are 
for mixed and pure-phase devices. 

tion in InP, GaAs, GaSb, InAs, and InSb,” IEEE J .  Quantum Elec- 
tron. ,  vol. QE-23, pp. 2159-2166, Dec. 1987. 

FL: Academic, 1985. 
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Ordinary absorption modulators (Fig. l(a)) tend to be 
operated in the loss-dominant regime where A n  z A k .  
According to Fig. 10, the A n  A k  condition requires 
higher field strengths and more switching energy than does 
the phase-dominant A n  L 5Ak  condition. However, the 
absorption modulator could be operated at a wavelength 
closer to A, than the mixed modulator. In that case, the 
conventional modulator might gain an advantage. In [9, 
figs. 8 and 91 it is shown that A n  A k  occurs at lower 
drive levels when X - A, shrinks. Hence, near A,, the 
switching power requirement of the absorption modulator 
might be one-half that of the mixed modulator, depending 
upon how small A - A, is. At the same time, however, 
the optical insertion loss of the absorption modulator 
would increase by several decibels because the back- 
ground extinction coefficient goes up significantly as X - 
A, is reduced. 

In summary, a theoretical analysis of intensity modu- 
lation is coupled waveguides and in Mach-Zehnder inter- 
ferometers has been made. Simultaneous phase and am- 
plitude perturbations A n  + iAk were considered. 
Performance predictions were made for electrooptic GaAs 
and InP modulators controlled by the free-carrier effect or 
by the Franz-Keldysh effect. The phase-dominant condi- 
tion A n  > 5Ak  was optimal. The predicted depth of mod- 
ulation was greater than that of conventional loss modu- 
lators over a prescribed range of charge densities or of 
field excursions. 
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