
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 12, DECEMBER 1989 1267 

Design and Application of an Optimizing XROM 
Silicon Compiler 

RICHARD w .  LINDERMAN, MEMBER, IEEE, PAUL C. ROSSBACH, MEMBER, IEEE, 
AND DAVID M. GALLAGHER 

Abstract-This paper demonstrates that optimization techniques in- 
corporated within a silicon compiler for read-only memories (ROM’s) 
can achieve significant yield, power, and speed improvements by min- 
imizing the number of transistors, drains, and metal interconnections 
in the ROM. Transistor minimization adopts a heuristic solution to the 
NP-complete graph partitioning problem with a powerful technique 
applicable to various ROM design styles and technologies. If diffusion 
mask personalization is permitted, the design can be further improved 
by solving the traveling salesman problem to minimize transistor 
source/drain regions. In table look-up ROM’s compiled for 3- and 1.2- 
pm CMOS with diffusion mask programming, the compiler eliminated 
over 45 percent of the transistors and drains. Tested results show 3- 
pm CMOS ROM’s have access times between 50 and 70 ns. ROM’s 
with 1.2-pm features achieve simulated access times below 20 ns. A 
simple interface allows the optimizing compiler to easily work with 
other CAD tools such as microcode assemblers. 

I. INTRODUCTION 
EAD-ONLY MEMORIES (ROM’s) provide non- R volatile storage of information on VLSI chips and are 

commonly used for microcode stores and table look-up. 
ROM’s can be implemented on separate chips or as 
macrocells of larger processors. Constructing ROM’s of 
any appreciable size requires a silicon compiler to assure 
design correctness. A silicon compiler also provides rapid 
turnaround on the ROM design. This is especially valu- 
able when the ROM contents are subject to change during 
the chip design process, as is the case when microcode 
development proceeds in parallel with chip design. Fi- 
nally, a compiler improves designer productivity by rais- 
ing work to a higher level of abstraction. 

This paper discusses a compiler that was initially tar- 
geted just to perform automatic layout, but later grew to 

Manuscript received October 25, 1988. This work was supported in part 
by the Defense Advanced Research Projects Agency and by the Air Force 
Office of Scientific Research. This paper was recommended by Associate 
Editor M. R. Lightner. 

R. W. Linderman was with the Department of Electrical and Computer 
Engineering, Air Force Institute of Technology, Wright-Patterson Air 
Force Base, OH. He is now with the Rome Air Development Center, Grif- 
fiss Air Force Base, NY 13441. 

P. C. Rossbach was with the Department of Electrical and Computer 
Engineering, Air Force Institute of Technology, Wright-Patterson Air 
Force Base, OH. He is now with Motorola’s Microprocessor Products Di- 
vision, Austin, TX 78749. 

D.  M. Gallagher was with the Department of Electrical and Computer 
Engineering, Air Force Institute of Technology, Wright-Patterson Air 
Force Base, OH. He is now with the Air Force Operational Test and Eval- 
uation Center, Kirtland Air Force Base, NM 871 17. 

IEEE Log Number 8930756. 

also optimize the ROM to reduce the number of transis- 
tors, drains, and metal interconnections required. Oppor- 
tunities for optimization derive from the regularity of a 
ROM which affords the designer several degrees of free- 
dom. If the ROM address decoder is realized as the AND 

plane of a programmable logic array (PLA), the rows of 
the ROM can be arranged in any desired order. Similarly, 
the ROM outputs can be scrambled in any order, and 
flipped around the vertical axis if desired. Finally, the as- 
signment of address lines to the decoders is flexible. The 
compiler accounts for all these possibilities, within con- 
straints imposed by the user, and places the bits at the 
proper positions in the scrambled array. 

Several optimization criteria are available. To obtain 
speed, power, and yield improvements, minimizing the 
number of transistors physically within, or connected 
within, the ROM is given top priority. If diffusion pro- 
gramming is allowed, only the necessary transistors will 
be placed within the ROM. If metal or contact personal- 
ization is used, the ROM can be reprogrammed later in 
the fabrication sequence, but a transistor must be fabri- 
cated for each ROM bit. In the latter case, we would min- 
imize the number of “connected” transistors rather than 
the number of fabricated transistors. In either case, criti- 
cal wordline and bitline capacitances are removed. 

The number of transistors is minimized by applying 
“sign bits” to each row and column. For any given group 
of bits, the associated sign bit will be set if more than half 
of the bits in the group are ones. This ensures that in the 
worst case, at most half of the bits are one, thereby re- 
ducing the number of transistors in the XROM array. In 
this case, the XROM compiler computes eight sign bits 
for each wordline and one sign bit per output column. 
While, eight words are stored on each wordline, the sign 
bits are not assigned to individual words. Instead, the N 
columns are partitioned into 4 subarrays where the N/4 
columns within each group are highly correlated to each 
other. This maximizes the effectiveness of the two sign 
bits which are applied to each group. The block diagram 
in Fig. 1 indicates the four subarrays. Two “sign bit” 
cells are indicated. Each contains four sign bits per row, 
two for each of the abutting subarrays. Optimally dividing 
the output columns into four groups is an instance of the 
graph partitioning problem which is in the class of com- 
putationally intensive NP-complete problems [ 11. 

U.S. Government work not protected by U.S.  copyright 



1268 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 12, DECEMBER 1989 

SENSE AMPLIFIERS AND MULTIPLEXORS 

S S 
D 
E XROM XROM XROM XROM 

SUBARRAY SUBARRAY SUBARRAY SUBARRAY 

E I I 

S S 
A0 COLUMN DRIVERS A0 - 

PAE-A 

r 
D 

E 
0 
E 

Techniques to reduce the number of transistors by 
scrambling addresses, adding column sign bits, and re- 
ducing column depth have been investigated in the past 
[3]. However, the row sign bits coupled with the opti- 
mization programs are the most effective methods to min- 
imize transistors. 

Following transistor minimization, the number of drains 
is minimized by exactly ordering the rows and columns 
within the ROM, abiding by the grouping constraints de- 
fined for transistor minimization. This is an instance of 
the NP-complete traveling salesman problem. 

As the ROM is laid out, vertical metal lines are trimmed 
above and below the locations they are last needed. The 
layout program juxtapositions the XROM arrays with the 
wordline decoder PLA’s, sense amplifiers, and other pe- 
ripheral circuits. The PLA’s and sense amplifiers are au- 
tomatically personalized to reflect the final ordering of 
rows and columns dictated by the solutions of the opti- 
mization problems. 

This paper discusses the basic structure of the XROM, 
the optimization routines, the layout program, and the user 
interface. Several compiler applications are discussed and 
testing results from fabricated XROM’s are presented. 
The compiler can be retargeted to handle XROM cell li- 
braries for a variety of fabrication processes. In this pa- 
per, we use examples from 3- and 1.2-pm CMOS tech- 
nologies supported by the MOS implementation service 
MOSIS [ 5 ] .  

11. XROM STRUCTURE AND OPERATION 
The XROM floorplan, shown in Fig. 1, resembles many 

other memory macrocells. Of the N address lines, AO, 
A l ,  and A 2 ,  are used by the “column decode,” the rest 
enter the “row decoder.” Wordlines run horizontally 
across the ROM in polysilicon and also, on occasion, in 
second metal. The second metal shunts to the polysilicon 
after each of four subarrays to reduce the wordline series 
resistance, allowing the wordlines to be driven faster. Row 
decoders must be placed on each side of the XROM to 
match the small vertical pitch afforded by the XROM cell 
(typically 6 to 8 lambda). 

Bitlines run vertically into the 4 to 1 column multiplex- 
ors and sense amplifiers atop the ROM. These multiplex- 
ors are controlled by address lines A 1  and A 2 .  The A 0  
address line is fed in from the bottom of the array on lines 
interspersed with the bitlines, as shown in Fig. 2. 

‘Lambda is a scalable size parameter generally equal to half the min- 
imum gate length. For a 3-pm CMOS process, lambda equals 1.5 pm. 

Fig. 2 .  XROM cell schematic. 

The name “XROM” comes from the “X” shape of the 
transistors attached to the bitline. The four-way sharing 
of drains results in lower parasitic capacitance and dense 
cell layout. The presence of a transistor denotes a “1” 
bit; if the transistor is missing, a “0” is stored [15]. 

We have fabricated XROM’s both with and without 
constraining the designs to use only 90” angles. Fig. 3(a) 
shows the non-Manhattan, arbitrary angle design, where 
the basic storage cell requires only 12 lambda by 12 
lambda. The Manhattan version, Fig. 3(b), requires 13 
lambda by 16 lambda but affords the advantages of run- 
ning second metal over the polysilicon wordlines to re- 
duce resistance, and allowing Manhattan circuit extrac- 
tors to mods1 the switch level behavior of the XROM. 
While in theory, either cell type will function correctly, 
the aggressive, non-Manhattan design should be closely 
coordinated with a particular fabrication process. One at- 
tempt to fabricate the XROM was unsuccessful due to 
problems with the non-Manhattan design. We chose to 
continue development with the Manhattan cell set. How- 
ever, given a target process, a non-Manhattan transistor 
extractor and a low resistance polysilicide, the deficien- 
cies of the non-Manhattan approach are overcome, mak- 
ing its superior density most attractive. 

The XROM cells are personalized by placing diffusion 
strips to form transistors where “1’s” are to be stored. 
This provides high density at the expense of flexibility 
compared to a second metal programmable ROM. The 
compiler discussed in this paper uses diffusion program- 
ming for three other reasons as well. First, the ROM’s 
were fabricated through the MOSIS, negating any advan- 
tage of metal or contact level programming. Second, the 
ROM information was well defined by the end of the chip 
design cycle through simulation and placing any “vola- 
tile” information in a laser programmable ROM [ 141. Fi- 
nally, diffusion programming permits further optimiza- 
tions to improve speed, power, and yield. 

Fig. 4 shows a portion of a Manhattan XROM array. 
Note the trimming of the A 0  columns and the widening 
of the wordlines where drains have been removed. This 
example, taken from a microcode XROM, demonstrates 
the large number of ROM features that can be removed if 
diffusion programming is permitted. 

The XROM structure doubles the storage density 
through precharging. During precharge, the A 0 input col- 
umns are driven to 5 V and the bitlines are pulled high 
through n-channel transistors. Depending on the pass 



1269 LINDERMAN er al. : OPTIMIZING XROM SILICON COMPILER 

(b) 
Fig. 3.  3-@m CMOS XROM photos. (a) Non-Manhattan cell set. (b) Man- 

hattan cell set. 

Fig. 4. XROM array section 

transistor voltage drop, the precharged voltage is some- 
where between and 3 and 3.5 V for vdd = 5 V. 

Also, during the precharge period, the new address is 
decoded by the PLA row decoder to select the new word 

line. A NAND decoder avoids the static power dissipation 
problems of the NOR decoder approach and is fast enough 
to resolve the new wordline while the arrays are precharg- 
ing. Both decoder approaches can be implemented in a 
PLA which allows the rows to be arranged in any desired 
order, thus providing a degree of optimization not readily 
available with a custom logic decoder. 

When the precharge signal drops, either PRE + A0 or 
PRE + a will follow, giving an opportunity to pull bit- 
lines low. The bits in the word at addresses with A 0  = 1 
are stored to the right of the bitline in Fig. 2. Fighting 
will occur if both the A 0  and a transistors are present. 
The resolved voltage will be less than 2.5  V which the 
sense amplifier will correctly interpret as a logic “0.” 

Since for every wordline, each bitline has both an A0 
bit and an bit, the four bitlines input to each 4 to 1 
multiplexor collectively store eight bits of information for 
each wordline. These bits are referred to as a “column 
byte.” During each access, on the selected wordline, one 
bit of the column byte is read out, depending on the values 
of AO, A l ,  and A 2 .  Fig. 3(b) indicates the width of a 
column byte. Note that second metal runs directly atop 
polysilicon and the two are shunted at the edge of each 
subarray. 

The column multiplexing and sense amplifier circuitry 
is shown in Fig. 5 .  The four bitlines are multiplexed into 
each sense amplifier through series n-transistors con- 
trolled by the decoded A 1, A 2 address lines. The multi- 
plexor output is precharged to vd, through a p-transistor. 
An additional p-transistor provides a small resistive pull- 
up to improve noise immunity and support single step op- 
eration. 

The output of the sense amplifier can be inverted if the 
sign bit associated with the word read from the XROM is 
a “1 .” Also, every bit in the column can be inverted again 
by exchanging the WORD and WORD control lines to the 
transmission gates. This will be done if the column sign 
bit is a “1.” 

Precharging the bitlines to approximately 3.3 V while 
the sense amplifier is precharged to 5 V accelerates the 
sensing of a low going bitline. Shortly after the n device 
in the XROM array starts to pull down, the sense amp 
input will move from 5 to 3.3 V. The sense amp inverter 
is set to trigger at approximately 4 V. 

The XROM compiler constructs the design up to and 
including the sense amplifiers but does not finalize the 
output circuitry since this varies greatly between appli- 
cations. Typical output structures include simple buffers, 
tri-state bus drivers providing an additional level of mul- 
tiplexing, or a pipeline register cell followed by buffers. 
Regardless of which output structure is selected, once the 
output bus is hooked up, the designer may want to con- 
strain the optimizer on future runs to preserve the original 
column ordering, thereby avoiding rewiring following 
changes in the ROM contents. Therefore, the compiler 
supports a LOCK COLUMN option to support this need. 
The user can also lock columns on the initial compilation 
if a particular ordering of output columns is desired. 



1270 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 12. DECEMBER 1989 

MUX 
SELECT 

XROM COLUMN BYTE 

Fig. 5 .  Sense amplifier and multiplexor for column sign = 0 

The access time of the XROM is divided into two por- 
tions. While PRECHARGE is high, the bitlines and 
A O / m  lines are pulled up. Concurrently, the new ad- 
dress enters the row and column decoders and begins to 
propagate through to drive the new wordline. When PRE- 
CHARGE goes low the reading begins by pulling low the 
A 0  or a line followed by the bitline and the sense am- 
plifier (assuming a one is read). The sign bit is read out 
in parallel with the data bit and is gated to control the 
output of the sense amplifiers. 

111. TRANSISTOR MINIMIZATION 
The regular structure of the XROM layout provides 

several unconstrained orderings which can be exploited to 
optimize the XROM. If the total number of devices or 
“1’s” in the XROM can be significantly reduced, the 
yield, power dissipation, and speed of the XROM will be 
improved [ 121. The yield of CMOS circuits is inversely 
proportional to the area of diffusions and channels on the 
chip [lo], both of which are reduced by removing tran- 
sistors. Power in CMOS circuits is proportional to the ca- 
pacitance that is repetitively charged and discharged [2], 
thus power will also decrease as gates and drains are re- 
moved. The duration of PRECHARGE = 1 can be re- 
duced by removing capacitance from the worst-case bit- 
line and A O / a  lines, and by reducing the number of 
transistors on the slowest wordline. Sensing during PRE- 
CHARGE = 0 also benefits from reducing capacitance on 
the vertical lines. 

If the XROM used no sign bits and did not invert the 
state of any row or column, the worst case would be an 
XROM full of “1’s.” On average, however, the ROM 
contents will be half ones. If a single sign bit is used for 
the entire ROM and there are originally more than N/2  
ones, everything in the ROM is inverted and the sign bit 
is set. This guarantees a worst case of N/2 transistors, 
but the average case is still near to N / 2  transistors. 

Taking the sign bit technique to the extreme of provid- 
ing one sign bit for each XROM bit, we can generate an 

TABLE I 
CORRELATION VALUE METRIC 

XROM array with all zeroes. Unfortunately, the sign bit 
array duplicates the original XROM contents so nothing 
is gained. The use of one sign bit for each data word seems 
appealing since it would be applied to a small number of 
bits which perhaps exhibit some “correlation” to each 
other. This correlation could be in terms of sign exten- 
sions on two’s complement numbers of small magnitude, 
or seldom used fields in microcode words which contain 
all zeros or all ones. 

Fig. 1 shows two special columns within the XROM 
arrays set aside for storing word sign bi tLEach of the 
four subarrays has an A 0 sign bit and an A 0 sign bit for 
each row. For example, given 12 sense amplifiers in a 
subarray, there will be 48 bits under control of the A 0  
sign bit and 48 bits under the a sign bit on each row. 
Since there are four subarrays, there are a total of eight 
sign bits per row. 

The area penalty for incorporating sign bits is less than 
1/N, where N is the number of XROM output columns 
and sense amplifiers. So for N = 50, there is less than a 
2-percent area penalty in XROM size. 

In addition to these word sign bits, the optimizer also 
uses column sign bits. If more than half of the bits in any 
column are ones, then the bits in the column are inverted 
and the polarity of the WORD SIGN control lines to the 
transmission gates in the sense amplifier are flipped. 
Therefore, column sign bits do not incur any additional 
area penalty; they are “hardwired” into the ROM sense 
amplifier cell design. 

Column sign bits are particularly effective in ROM mi- 
crocode stores where the default pattern for a microcode 
field contains ones. Default fields are used so frequently 
that nearly all the bits in these columns will be ones con- 
verted to zeros when the column sign bit is set. 

The effectiveness of the XROM’s word sign bits can be 
improved by rearranging the column bytes prior to appli- 
cation of sign bits such that strongly correlated bytes are 
grouped together. This maximizes the effectiveness of the 
sign bits and minimizes transistor count. For purposes of 
calculating the “similarity” between two columns, the 
correlation metric given in Table I has been adopted. - 

Each column byte consists of four A 0 bits and four A 0 
bits. The number of ones ranges from 0 to 4. We wish to 
group column bytes under a sign bit such that the number 
of ones is either very low or very high (in which case we 
will set the sign bit). By offsetting the number of ones in 
a column in a column byte by -2, the problem is trans- 
formed into maximizing the sum of the magnitudes. Each 
column byte is viewed as a complex value, with its real 
coordinate equal to the number of A 0  ones minus two, 



LINDERMAN et al. : OPTIMIZING XROM SILICON COMPILER 1271 

and its imaginary coordinate equal to the number of a 
ones minus two. The correlation between two columns, x 
and y, is then the sum of magnitudes of the sum of each 
pair of complex values which can be written as 

ROWS - 1 

C1.y = 2 J R e  (4  + Y , )  I + Jpm (4  + Y J  1 .  
1=0  

Once the correlation between all pairs of column has been 
calculated, we have a symmetric, fully connected graph 
with the columns as vertices and the correlations as the 
edge weights. The problem is to break the graph of N 
vertices into four graphs of N/4 vertices by removing 
edges with the least total correlation. This is the classical 
graph partitioning problem. 

We adapted the graph partitioning heuristic of Ker- 
nighan and Lin to solve this NP complete problem [7 ] .  
The algorithm divides the graph in half, then it subdivides 
each half into quarters. A local minimum is found each 
time the algorithm is run. Repeated application of the al- 
gorithm from randomly selected initial guesses consist- 
ently produces an optimum or near optimum solution [ 121. 

The effectiveness of the sign bits depends on which ad- 
dress bits are chosen for the roles of AO, A l ,  and A 2 .  
Therefore, scrambling of input address bits is allowed in 
order to obtain the best possible solution, even if the 
LOCK COLUMN option is used. If the ROM size is a 
power of two, then all address inputs are candidates for 
these positions. If the ROM size is not a power of two, 
some of the most significant address bits will be ineligi- 
ble. The optimizer determines the number of address bits 
to consider for these roles and solves the graph partition- 
ing problem for each possible arrangement. The best so- 
lution is saved for subsequent processing. If A 0, A l ,  and 
A 2  are chosen from amongst N address lines, then the 
optimizer examines N (  N - 1 ) ( N  - 2 ) / 2  arrangements. 
Fortunately, N is generally small because large ROM's 
are partitioned to avoid long wordline and bitline delays. 
As a worst case, consider a 1K X 64 bit partition, N = 
10, giving 360 arrangements to consider. 

In most cases compiled to date, the optimal selection of 
address lines has been some minor variation of what were 
already the least significant address bits. This is a reaffir- 
mation of the principle of spatial locality. 

A flowchart summarizing the device minimization pro- 
cedure is depicted in Fig. 6. All possible selections of 
AO, A 1 ,  and A 2  choices are examined. Column sign bits 
can be set either before or after the graph partitioning. 
Both options are investigated. 

The device minimization results are presented in Fig. 
7. This shows the number of ones in the XROM arrays 
successively reduced through the following steps: 

1) no sign bits; 
2) one sign bit; 
3) word and column sign bits; 
4) check all A 0, A 1,  A 2  choices; 
5) solve graph partitioning. 

ADDRESS DEVICE 

Fig. 6. Device minimization procedure. 

Transistors Probability 
Of '1 's  

28000 

26000 

24000 

22000 

20000 

18000 

16000 

0.5 

RANDOM 

0.4 

WFTl7 
WFT15 

14000 

12000 I I I 
NONE 1 WC ALL ADD K-L 

SIGN BIT TECHNIQUE 
Fig. 7. Device minimization results (54K XROM's). 

The data are taken from five ROM data test cases with 
sizes adjusted to each require 54K bits of information, and 
the averaged results from 50 random data test cases. The 
use of word sign bits and the application of the graph par- 
titioning algorithm both netted substantial reductions in 
the number of transistors. As expected, the gains were not 
nearly as great for the random data cases, since by defi- 
nition the data should be uncorrelated. However, in cases 
where there is correlation, the graph partitioning algo- 
rithm is highly successful. 

For applications employing a further 4 to 1 multiplexor 
after the sense amplifiers, such as the WFT16 address ta- 
ble look-up, the graph partitioning routine finds the cor- 
relation between the corresponding bits in each of the four 
subfields and places these columns together under control 
of the same sign bit. In general, the optimizer finds and 
capitalizes upon these built-in correlations. 

The sign bit approach, combined with graph partition- 
ing, greatly reduces the worst-case number of transistors 
on any wordline, thereby improving speed. For the 
WFT16, before optimization and sign bits, the worst case 
was 256 transistors on a wordline for a particular selection 
of AO, A 1,  and A 2 .  After optimization, the worst-case 
loading was 134 transistors. This savings reduced the 



1272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 12, DECEMBER 1989 

simulated risetime on the worst-case wordline from 5.4 to 
3.0 ns. For the WFT17, the worst case was reduced from 
241 to 169 transistors loading a wordline. 

The user governs the number of times graph partition- 
ing is solved from a random starting point for each pos- 
sible selection of AO, A 1, and A 2 .  Experiments with be- 
tween 2 and 500 random starting points indicate that the 
law of diminished marginal returns applies. Choosing 5 
initial starting points has consistently delivered a solution 
within 2 percent of the solution obtained with 500 starting 
points. The random number generator is seeded to ensure 
that more starting points can only further improve upon 
solutions already found. 

IV. DRAIN REMOVAL 
If programming at the diffusion mask level is permitted, 

further optimizations can be performed following transis- 
tor minimization to reduce the number of sourceldrain dif- 
fusion areas required within the ROM array. 

Without performing any transistor optimization, there 
is a probability of Pt = 1/16 that a drain on the input 
columns or on the bitlines has none of the four transistor 
referenced in Fig. 2. In this case, the drain could be re- 
moved entirely, reducing parasitic capacitance. Further, 
this allows the polysilicon wordlines to be widened, re- 
ducing series resistance. Above the last transistor on an 
A 0  column and below the lowest transistor on a bitline, 
the vertical metal lines can also be removed. Fig. 8 de- 
picts the three varieties of A 0  column cells and bitline 
cells for the Manhattan cell set. 

If we assume transistor optimization reduces the prob- 
ability of “ones” to 0.33, then 20 percent of the drains 
should be able to be removed. If the probability of “ones” 
is 0.25, 32 percent of the drains should be unnecessary. 
For some microcode ROM stores, the device optimizer 
succeeded in reducing the probability of ones to 0.125, 
allowing 59 percent of the drains to be removed. Drains 
removed by this method could be identified simply by 
scanning through the data arrays after graph partitioning 
has been completed. However, by rearranging columns 
within the four subarrays and by arranging the rows in a 
particular order, the number of drains can be further re- 
duced by optimization. 

The problem of optimally arranging columns and rows 
to maximally cluster groups of four zeroes around A 0 and 
bitline drains is solved with a two step approach. First, 
columns within each subarray are rearranged to obtain the 
largest possible number of “zero pairs” which are adja- 
cent zeroes on the wordlines. Then the rows are arranged 
to group zero pairs into clusters of four zeroes, thereby 
allowing drain removal. In the optimization process, it is 
the total number of bitline and A 0  drains which is opti- 
mized. 

Within each column byte there are four bitlines, two A 0 
input columns, and t w o a  input columns (see Fig. 3(b)). 
There are four legal arrangements of these columns, all 
of which are tested by the drains optimizer to maximize 

- 1 .  

__I - - 
A0 WITH DRAIN A0 mTHouT DRAIN NO A0 LINE 

- - - _  I 

i ‘  
: i  

1- -1 
BITLINE WITH DRAIN BITLINE WITHOUT DRAIN NO BlTLlNE 

Fig. 8.  Manhattan XROM cell types. 

the number of zero pairs within the column. Then the N / 4  
column bytes within each subarray are optimally ordered, 
again to maximize zero pairs. The optimizer allows col- 
umn bytes to be mirrored about the y-axis if this improves 
the number of zero pairs on the boundaries. 

This is the traveling salesman problem for N/4  cities. 
The distance between cities is the number of nonzero 
pairs, and the objective is to minimize the distance the 
salesman must walk to visit each city exactly once. This 
will maximize the number of zero pairs. 

After ordering the columns within each subarray, the 
rows are optimally ordered to maximize the number of 
locations with four zeros, where a drain can be removed. 
At this point, each even numbered row will match A 0  
pairs with the row above and bitline pairs with the rows 
below and vice versa for the odd rows. 

The traveling salesman problem is also NP-complete. 
We used the heuristic of Lin and Kernighan which resem- 
bles their solution to the graph partitioning problem [SI. 
A minor variation is required to handle the possibility of 
mirrored column bytes. The time required by their heu- 
ristic solution grows slightly faster than N2.  It employs 
backtracking, but does not require large amounts of mem- 
ory. In practical cases, N may get as large as 256 because 
of the number of rows. We have found that such large 
problems may require one to two hours of 6 MIP CPU 
time. However, the investment pays off. Fig. 9 shows that 
solving the traveling salesman problem achieves signifi- 
cant additional reductions in the number of drains com- 
pared with simply removing them from a device opti- 
mized XROM (approximately PA removals.) These data 
were gathered from cases normalized to 54K bits, with 
drains for the sign bit locations not counted. Following 
actual layout, where the true sizes were used and the sign 
bit drains counted, the distribution of bitline and A 0  cell 
types given in Table I1 were obtained. 

Note the extensive removal of drains from the micro- 
code XROM’s resulting from the paucity of transistors. 
The percentage of drains removed significantly exceeds 
Pi in all but the last case where the probability of a one 
was reduced to 0.076. Bitline trimming was very suc- 



LINDERMAN et al. : OPTIMIZING XROM SILICON COMPILER 1273 

DRAINS 
28000 

PROBABILITY OF A DRAIN ner cells are placed to route power, precharge, input, and 
output signals to the perimeter of the ROM. The user has 
only to route these signals to appropriate points on the rest 
of the chip. In most cases, an application specific output 
structure is placed on top of the sense amplifiers. Master- 
slave registers, tri-state drivers, and buffers have been 
created for this role. 

VI. USER INTERFACE 
ROM contents are passed to the compiler in a simple 

ASCII file of unsigned integer values. Each ROM word 
NO DEVICE DRAIN is broken into four integers so that ROM widths up to 128 

bits can be supported. Above this width, the designer 
should split the information into separately compiled 
ROM’s. This also avoids slowing the ROM access time. 

The simple data input format allows the XROM opti- 
mizer to be easily interfaced to other CAD tools such as 
a microcode assembler tool, (e.g., GMAT [4]), and the 
VHSIC Hardware Description Language [6]. 

The user interface to the XROM optimizer is provided 
through the USER-PARAM.h header file. The user spec- 
ifies the name of the input file containing the XROM data, 
the number of words in the input file, the number of bits 
per word, and the number of address bits. If the number 

- 

16000 

14000 

12000 

10000 

OPT OPT OPT 

Fig. 9. Drain minimization results (54K XROM’s). 

TABLE I1 
DISTRIBUTION OF DRAIN CELL TYPES 

CELL TYPE 

cessful in the microcode examples as expected. However, 
it was also very successful in the WFT16 because some 
unanticipated correlation was found and exploited by both 
optimizers . 

V. AUTOMATIC LAYOUT 
Arranging columns within column bytes, ordering of 

rows and columns, selecting sign bits, and permuting ad- 
dress lines must all be unscrambled by the silicon com- 
piler to yield a correct layout. The compiler also handles 
the flipping, mirroring, and aligning of the XROM com- 
ponents. The compiler produces a set of files in the magic 
format [l 11, which can be translated to the cif, caesar, 
and calma representations. 

The layout portion of the compiler determines where 
bitlines and A 0  columns can be trimmed. This technique, 
while not of great benefit in denser ROM’s such as the 
WFT17, can lead to large reductions in metal line capac- 
itance when ROM personalizations are sparse following 
optimization. This is demonstrated in Table I1 by the suc- 
cess of column trimming in the microcode stores. 

In some cases, there are no transistors left under a sense 
amplifier following optimization. Here the output is solely 
determined by the word and column sign bits. The sense 
amplifier can be removed, reducing power dissipation and 
capacitive load on the precharge line. 

The compiler places and personalizes the NAND PLA 
decoders with the selected row ordering and labels the 
address line inputs to indicate their scrambling. The sign 
bits are placed inside the XROM as shown in Fig. 1. The 
sense amplifiers are placed on top of the XROM with la- 
bels indicating the scrambling of columns. The A 0  col- 
umn drivers are placed below the XROM arrays and cor- 

of words in the input file is not divisible by 64, the data 
will be padded with zeros. This ensures an even number 
of rows in the XROM. In the header file, the user defines 
optimization parameters which determine the number of 
iterations the graph partitioning and traveling salesman 
optimization routines will be run from random starting 
points. The user may also specify that a previously deter- 
mined column ordering be used by engaging the LOCK- 
COL option in the header file. 

Once this header file has been set up, the source code 
of the main routine must be recompiled with the new pa- 
rameters. As the compiler executes, each of the three main 
sections of the program, device minimization, drain min- 
imization, and layout, create a file of statistics describ- 
ing optimization results, worst-case wordline loading, 
distribution of cell types employed, row and column or- 
derings, etc. This information can be used to create ac- 
curate SPICE models to simulate the actual worst-case de- 
lay path through the ROM. 

The layout section of the compiler contains a reverse 
compiler which unscrambles the data bits just prior to lay- 
out to regenerate a copy of the input file. This provides a 
quick check of compiler correctness through the minimi- 
zation routines. 

The entire system, including layout, was validated by 
switch-level simulation using ESIM [13]. This tool, how- 
ever, had some difficulty in simulating certain nodes 
where “fighting” takes place. This problem was circum- 
vented by modifying the ESIM input file using the 
FIXROM tool developed at AFIT. For example, the cir- 
cuit in Fig. 2 must be modified because transistors short 
together the A0 and a lines through the bitline. In this 
case, the XROM wants to pull the bit line low when pre- 
charge drops, independent of the value of AO. If this 



1214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 12, DECEMBER 1989 

XROM SIZE 

12K bit 
24K hit  
48K hit  
72K bit 

wordline is selected, “fighting” will occur on the node 
and the bitline will be pulled down. To simulate this cir- 
cuit, the FIXROM tool searches the input file for two 
XROM cell transistors sharing a common drain. It then 
replaces them with two series transistors which allows 
ESIM to accurately simulate this circuit. ESIM also has 
trouble with an inverter which uses a static n-transistor 
resistive pulldown. FIXROM finds and replaces these with 
a standard inverters. Using these modifications, ESIM was 
able to fully simulate the XROM and verify the contents. 
A counter is usually attached to the XROM and cycled 
through all possible addresses to verify the XROM con- 
tents. 

VII. APPLICATION RESULTS 
The diffusion programmed style of the XROM inher- 

ently provides excellent density due to the number of 
masks which may be involved in the personalization of 
the XROM. By reducing parasitics and providing a fast 
sense amplifier, fast access times are also available. The 
optimizations can further enhance speed, while decreas- 
ing power and increasing yield. The success of the tran- 
sistor and drain optimization programs will be propor- 
tional to the amount of correlation in the data. The 
compiled ROM’s have been the chosen alternative in sev- 
eral application areas. 

A.  XROM Test Chip Results 
To measure the size versus speed tradeoff, the 3-pm 

CMOS XROM test chip shown in Fig. 10 was designed. 
The chip contains 12, 24, 48, and 72K XROM’s storing 
table look-up evaluations for 1 /x, sine, cosine, and square 
root. Thirty-seven percent of the transistor sites were oc- 
cupied, a higher percentage than the nonrandom test cases 
shown in Fig. 7. This indicates that less correlation was 
found in the table look-up data than was extracted from 
the microcode and Fourier transform coefficients. In this 
regard, the optimization results provide a measure of in- 
put data randomness. 

The testing results given in Table I11 indicate that the 
minimum time required for precharging the XROM’s was 
approximately 22 ns, independent of size. However, the 
minimum time required to read information from the 
XROM’s following the fall of the PRECHARGE signal 
(i.e., the sense time) increased with the size of the ROM, 
as expected. For each XROM size, the minimum duration 
of PRECHARGE = 0 vaned from column to column de- 
pending on the number of drains loading the respective 
bitlines. The access times include delay through output 
circuitry which includes 8 to 1 multiplexors, interconnect, 
and pad drivers. 

In this case, the relatively high percentage of occupied 
transistor sites caused worst-case bitline loadings to ap- 
proach N/2. Here, the optimized ROM’s provide smaller 
speed improvements proportional to the worst-case bitline 
loading in the unoptimized ROM. Speedups are greater 
for the table look-up and microcode stores where the data 
were more highly correlated. 

PRECHARGE TIME SENSE TIME ACCESS CYC1.E TIME 
(WORST CASE) 

21 4 ns 33-42 “ 5  64 ns 
21 7 ns 36-45 ns 67 ns 
21 7 ”6 41-50 ns 7? “S 

21 3 “ 6  -5 ns 77 os 

Fig. 10. XROM test chip. 

B. Table Look-Up XROM’s 
The WFT15, WFT16, and WFT17 54K XROM’s, store 

addressing sequences to avoid complex computations [9]. 
Reducing the number of transistors on the WFT16 to 
13 979 and the number of drains to 12 576 cut the power 
dissipation by 50 percent. Almost all of the power dissi- 
pation relates to charging and discharging capacitance on 
lines since only one pseudo-NMOS NAND gate in the de- 
coder is active [12]. However, if source/drain leakage 
current is a significant component of power dissipation for 
a particular process, this too will be greatly reduced by 
the transistor and drains optimizations. 

Optimization and layout program run times varies from 
less than 5 min on 12K bit ROM with two random starting 
points on each optimization problem, to 36 h or CPU time 
when running 96K XROMs with 50 random starting 
points. These runtime statistics were gathered on an Elxsi 
6400 (6 MIP) CPU. On a 12 MIP CPU, the final WFT16 
XROM was compiled from 500 device minimization 
starting points, and 10 starting points for drains minimi- 
zation in 3 of CPU time. The optimizer requires relatively 
little main memory to run (typically 200-500Kbytes). 

SPICE simulations for the WFT16 XROM using 1.2- 
pm CMOS models indicate 9 ns is required to precharge 
the array, decode the new address, and drive the word- 
line. Device optimization reduced the rise/fall time on the 
worst-case wordline from 5.4 to 3.0 ns. Sensing the in- 
formation after precharge requires 5 ns. Allowing an ad- 
ditional 5 ns for propagation through the user defined out- 
put circuitry, XROM’s of this size (54K bits) should have 



LINDERMAN er al. : OPTIMIZING XROM SILICON COMPILER 1275 

access times of 20 ns. This speed supports single cycle 
access up to 50 MHz. 

C. XROM Microcode Stores 
Following optimization, XROM’s for microcode stor- 

age typically require transistors at 5-15 percent of the 
sites. The reduction caused by device minimization de- 
pends heavily on the definition of defaults for the fields 
of the microword. If all the defaults are already zeroes, 
the input to the compiler will already be predominately 
zeroes and application of sign bits will not make a sub- 
stantial reduction. However, if default fields contain ones, 
the column and row sign bits will be quite effective since 
a high degree of correlation will be present. In either case, 
the drains minimization and column trimming techniques 
perform well, as the examples in Table I1 demonstrate, 
because the arrays are sparsely populated. 

When a microcode field with a default value of “1” is 
inverted by a column sign bit, the worst-case speed of the 
ROM is significantly improved. Where nearly every lo- 
cation would have required a transistor, now only those 
places deviating from the default value require a transis- 
tor. 

Testing results from a 3-pm CMOS Manhattan version 
of a 16K bit microcode store included as part of a larger 
microprocessor have indicated maximum access time less 
than 50 ns. This agrees with SPICE simulation results for 
that technology and ROM size, and is consistent with the 
results from the XROM test chip. 

VIII. CONCLUSIONS 
Optimization techniques can be applied to the silicon 

compilation of dense ROM’s to net significant improve- 
ments in the speed, yield, and power dissipation. The de- 
vice minimization procedure applies to a variety of ROM 
design methodologies. If the ROM is diffusion pro- 
grammed, further optimization can be performed to sig- 
nificantly reduce the number of source/drain regions. 
Compiled XROM’s have been fabricated and test results 
show performance consistent with simulation results. A 
simple interface allows the compiler to interface to a va- 
riety of higher level CAD tools. The XROM optimizing 
compiler can provide timely and correct designs for ar- 
chitectures requiring table look-up or microcode storage. 

ACKNOWLEDGMENT 
The Generic Microcode Assembler Tool (GMAT) writ- 

ten by Lt. R. Scott Hauser, greatly speeds the transition 
from microcode into an XROM design in a flexible and 
error free manner. His initiative in developing this collat- 
eral CAD tool is greatly appreciated. 

REFERENCES 
[l] A. V. Aho, J .  E. Hopcroft, and J .  D. Ullman, The Design and Anal- 

ysis of Computer Algorithms. Reading, MA: Addison-Wesley, 1974. 
[2] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of 

VLSI Circuits. 
[3] K. M. Guttag, “Compressing control ROM for VLSI micropro- 

grammed microprocessors,” IEEE Micro., vol. 13, pp. 115-121, 

Reading, MA: Addison-Wesley, 1985. 

R. S .  Hauser, “Design and implementation of a VLSI prime factor 
algorithm processor,” Sch. Engineering, Air Force Instit. Tech., 
Wright-Patterson AFB, OH, Dec. 1987. 
MOSIS User Manual, Information Sciences Institute, Univ. Southern 
Calif., Marina Del Rey, CA, 1988. 
VHDL Language Reference Manual, Intermetrics, Inc., AFWALI 
AAD, Wright-Patterson AFB, OH, Aug. 1985. 
B. W. Kernighan and S .  Lin, “An efficient heuristic procedure for 
partitioning graphs,” Bell Sysr. Tech. J . ,  vol. 49, no. 2,  pp. 291- 
307, 1970. 
S .  Lin and B. W. Kernighan, “An effective heuristic algorithm for 
the traveling salesman problem,” Oper. Res., vol. 21, pp. 498-516, 
1973. 
R. W. Linderman, C. G. Shephard, K. Taylor, P. W. Coutee, P. C. 
Rossbach, J .  M. Collins, and R. S .  Hauser, “A 70-MHz 1.2-pm 
CMOS 16-point DFT processor,” IEEE J .  Solid-Stare Circuits, vol. 
23, pp. 343-350, Apr. 1988. 
D. G. Ong, Modern MOS Technology: Processes, Devices, and De- 
sign. New York: McGraw-Hill, 1984. 
J .  K. Ousterhout, “Corner stitching: A data-structuring technique for 
VLSI layout tools,” IEEE Trans. Computer-Aided Design, vol. CAD- 
3 ,  pp. 87-100, Jan. 1984. 
P. C. Rossbach, “Control circuitry for high speed VLSI winograd 
Fourier transform processors,” M.S. thesis, AFITIGEIENGI85D-35, 
Sch. of Eng., Air Force Instit. Tech., Wright-Patterson AFB, OH, 
Dec. 1985. 
C. Terman, “Esim: An event driven switch level simulator,” in 1986 
Berkeley CAD Tools UserS Manual, 1986. 
J. J. Tillie, “Laser programmable read-only memories,” M.S. thesis, 
AFITIGEIENGI88D-4, Sch. Eng., Air Force Instit. Tech., Wright- 
Patterson AFB, OH, Dec. 1988. 

1151 D. R. Wilson and P R Schroeder, “A lOOns 150mW 64K bit ROM,” 
in Proc 1978 Int. Solrd-State Crrcurts Conf , pp 152-153, 273, Feb , 
1978 * 

Richard W. Linderman (S’8 1 -M’84) received 
the B S E E , M Eng , and Ph D degrees from 
Cornell University, Ithaca, NY, in 1980, 1981, 
and 1984, respectively 

He was assigned as an Assistant Professor of 
Electrical and Computer Engineering dt the Air 
Force Institute of Technology, Wright-Patterson 
Air Force Base, OH, where he taught graduate- 
level courses in computer architecture and VLSI 
He is currently assigned to the Rome Air Devel- 
opment Center, Griffiss Air Force Base, NY, 

working in the area of space based real-time signal processing He is also 
an adjunct associate professor with the Air Force Institute of Technology 
His research interests include VLSI architecture and design. computer sys- 
tems architecture, digital signal processing, and submicrometer VLSI de- 
vice fabrication. 

Captain Linderman is a member of Tau Beta Pi and Eta Kappa Nu 

* 
Paul C. Rossbach (M’86) received the B S de- 
gree from the United States Military Academy, 
West Point, NY, in 1980, and the M S E.E de- 
gree from the Air Force Institute of Technology, 
Wnght-Patterson Air Force Base, Ohio, in 1985 

He is currently with Motorola’s Microproces- 
sor Products Division in Austin, TX 

Mr Rossbach is a member of Phi Kappa Phi, 
Tau Beta PI, and Eta Kappa Nu 

* 
David M. Gallagher received the B.S.E.E. de- 
gree from the U.S. Air Force Academy, Colorado 
Springs, CO, in 1978, and the M.S.E.E. degree 
from the Air Force Institute of Technology, 
Wright-Patterson Air Force Base, OH, in 1987. 

He is currently a Major assigned to the Air 
Force Operational Test and Evaluation Center, 
Kirtland Air Force Base, NM, where he is in- 
volved in testing electronic warfare systems. 

Major Gallagher is a member of Tau Beta Pi 
and Eta Kanna Nu. 

_. 
r r -  Nov. 1980. - .- . ._ 


