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Abstract—Volume-of-interest (VOI) extraction for radionuclide
and anatomical measurements requires correct identification and
delineation of the anatomical feature being studied. We have
developed a toolset for specifying three-dimensional (3-D) VOI’s
on a multislice positron emission tomography (PET) dataset.
The software is particularly suited for specifying cerebral cortex
VOI’s which represent a particular gyrus or deep brain structure.
A registered 3-D magnetic resonance image (MRI) dataset is
used to provide high-resolution anatomical information, both as
oblique two-dimensional (2-D) sections and as volume renderings
of a segmented cortical surface. VOI’s are specified indirectly in
two dimensions by drawing a stack of 2-D regions on the MRI
data. The regions are tiled together to form closed triangular
mesh surface models, which are subsequently transformed into
the observation space of the PET scanner. Quantification by this
method allows calculation of radionuclide activity in the VOI’s,
as well as their statistical uncertainties and correlations. The
methodology for this type of analysis and validation results are
presented.

Index Terms—Brain, multimodality, positron emission tomog-
raphy, volume-of-interest.

I. INTRODUCTION

QUANTITATIVE analysis of multislice positron emission
tomography (PET) datasets using regions of interest
(ROI’s) is a standard technique for studying brain func-

tion. A significant aspect of this technique is the process by
which one identifies a desired portion of anatomy and then
specifies its boundaries as a ROI on a single slice, or a
volume of interest (VOI) on a stack of slices. In particular, the
availability of multislice scanners with true three-dimensional
(3-D) imaging capabilities poses new challenges for 3-D
data analysis. Numerous issues related to this process exist
which could skew quantitative results if not addressed prop-
erly. Because PET data represent functional, not necessarily
anatomical information, data from a PET scanner are not al-
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ways appropriate for specifying regions. Functional boundaries
seen on PET may not correlate with anatomical boundaries,
hence, relying on these boundaries while specifying ROI’s
could easily introduce quantification biases. Even where func-
tional boundaries correspond to anatomical boundaries, the
resolution obtained from the highest resolution PET scanners
is often inadequate to confidently identify desired anatomical
boundaries. For these reasons, many researchers have relied
upon other modalities, such as magnetic resonance imaging
(MRI), to identify anatomy [1]–[3]. However, even with this
multimodality approach, the problem is not completely solved.
Typical MRI datasets consist of 256256 96 voxels and are
usually displayed as 256256 pixel images, one slice at a
time. Trying to identify a region of anatomy, for example a
particular gyrus in the cortex, from this slice-based data can
be quite difficult even for experienced clinicians. Additional
information is required to aid the 3-D navigational task and to
convey appropriate cues about the 3-D nature of the anatomy.

In this paper, we describe a methodology for specifying
meaningful 3-D VOI’s on PET datasets. The methodology is
particularly suited for calculation of radiotracer activity and
statistical uncertainty in cerebral cortex VOI’s representing
particular gyri or deep brain structures. The approach addresses
two problems that have plagued the specification of such
regions in the past. First is the proper identification of a desired
anatomical object from a functional PET image. Second is the
specification of a true 3-D boundary around that object once it
is identified using conventional X-Windows interfaces. Unique
in the approach is the method by which the regions can be used
to accurately model statistical uncertainty of quantified activity
in a 3-D acquisition environment.

II. M ETHODS

The procedure for obtaining quantitative PET VOI values
can be summarized as follows. Three-dimensional ROI’s are
identified and specified using the high-resolution anatomical
data from MRI. The MRI data are registered to multislice PET
data using a sequence of manual and automated techniques.
VOI boundaries are specified on the MRI dataset by drawing
two-dimensional (2-D) regions on a set of parallel image
planes. The parallel set of planes may be chosen at any oblique
slicing orientation through the MRI volume such that cross
sections most clearly show features of the desired anatomical
object. Two-dimensional regions are specified on these planes
by drawing a freehand polygon or by laying out points which
are then connected as a continuous cubic spline. Region
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drawing on this set of planes is facilitated by the display of a
“3-D cursor,” which shows the position not only on the current
drawing plane, but also on a number of slices orthogonal to
the parallel planes, and on one or more volume renderings
of a segmented cortical surface. Further feedback is provided
by displaying the intersections of selected regions with these
orthogonal slices.

Three-dimensional VOI’s are formed by tiling each set
of parallel 2-D regions into a closed triangular mesh sur-
face model. A 4 4 matrix is calculated which describes
the transformation in homogeneous coordinates between the
registered MRI and PET, as well as between the original and
obliquely resliced MRI. This matrix is used to transform the
surface model from the resliced MRI coordinate system into
the coordinate system of the PET gantry. Once transformed,
the VOI surface models may be used to calculate the activity
within a 3-D volume within the PET gantry. In our application,
the surface models are currently projected onto the originally
acquired PET slices, resulting in a series of labeled 2-D
regions. Quantification of activity within these 2-D regions
and their uncertainty is achieved by projecting the regions into
tomographic sinogram (i.e., Radon or projection) space, and
then directly evaluating the counts in this space. Because the
full region covariance matrix is available after this calculation,
the 2-D region values can be added together, giving an activity
value and uncertainty for each PET VOI.

Data referenced in this paper were acquired using a
CTI/Siemens ECAT EXACT HR PET scanner [4] and a
1-m bore 0.5-T Oxford MRI magnet with a spectrometer built
at our laboratory [5]. MRI volumes comprised a 3-D data set
of T1-weighted images (voxel size 11 2 mm, volume size
256 256 96 voxels) acquired using a 3-D gradient recalled
echo sequence (TE 14.3 ms, TR 30.0 ms). PET data
were obtained using the 47-slice scanner in 2-D acquisition
mode imaging the radiotracer, -fluorodeoxyglucose (FDG).
An angular compression factor of two was used producing
336 bin 196 angle sinograms with 1.65-mm bin width
and 3.125-mm slice separation. The data were reconstructed
for use in the segmentation and registration process using
standard 2-D filtered backprojection techniques (voxel size
2.4 2.4 3.1 mm, volume size 128 128 47 voxels) and
a Hanning filter with 0.4 cycle/pixel cutoff, corresponding to
5.5-mm transaxial resolution in the center. To correct for
the effects of attenuation, data using aGe rod source
in a 20-min transmission scan and a 60-min blank scan
were combined to produce appropriate correction factors.
Rod windowing was used during transmission and blank
acquisition. A normalization file was used to correct each
emission, transmission, and blank sinogram on a bin-by-bin
basis.

A. Segmentation/Registration

In order to relate MRI-based regions to PET measurements,
it is necessary to spatially register the two datasets. Automated
methods for this process exist but most require that the brain
be segmented from nonbrain regions in the MRI data [6],
[7]. Some have claimed success using completely automated
methods to perform this segmentation [8], however, such tech-

Fig. 1. Manual segmentation. FDG PET data are quickly registered to
the MRI dataset using this manual interface. The registered PET data are
thresholded and used as a binary mask to automatically segment the brain
from nonbrain structures in the MRI. Once the segmentation is obtained, the
registration is refined using automated techniques.

niques require special pulse sequences or complex clustering
algorithms. In our experiences, finely tuning parameters to
obtain a successful segmentation via completely automated
results can be quite tedious. We take a simpler approach
relying on the facts that in FDG PET images, the outer
cortex can be easily segmented from the background using
image thresholding, and that the PET and MRI datasets can
be approximately registered relatively quickly using manual
techniques. As suggested by Pietrzyk [9], the registered and
segmented PET data are used to mask the MRI and perform
an automatic MRI segmentation. Once the segmented MRI is
obtained, it is used to refine the PET registration via automatic
techniques. Hence, the bulk of manual interaction that is
required for the segmentation and registration exists solely
in the “approximate” manual registration step. Note that this
technique requires that the brain is entirely within the field of
view of the PET scanner.

Fig. 1 shows the interface used to obtain a manual registra-
tion. Transverse, sagittal and coronal views of each dataset
are simultaneously presented to a user, who is allowed to
manipulate translation and rotation parameters. The amount of
misregistration can be judged via an interactive cursor showing
corresponding points in the six views, or via an edge mask of
either dataset which may be overlaid on the other set.

Once an approximate registration is found, the PET data
are resliced at the sampling resolution of the MRI volume
and are thresholded to form a binary mask. To prevent slight
misregistration from masking away brain regions in the MRI,
the PET mask is usually dilated using a morphological operator
[10]. Further, to prevent masking the inner portions of the MRI
brain, the outer boundaries of the PET mask are filled using
a 2-D filling operation. The resulting masked MRI dataset is
a nearly complete segmentation; however, because the PET
mask generally includes some portions of the outer tissue,
a 3-D region growing operation seeded from the interior of
the cortex is used to obtain the final result. A final step in
obtaining an accurate registration is the use of the segmented
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MRI dataset in an automated minimum variance of ratios
registration technique [7].

After registration and segmentation, an orientation file is
stored which describes the registration parameters (six pa-
rameters for rigid transformation without scaling). A 44
transformation matrix can be calculated from this orientation
file, and it may be used to relate voxel positions in one volume
to their corresponding positions in the resliced registered
volume.

B. Volume of Interest Construction

Region Drawing Environment:Rather than attempting to
create a sophisticated virtual reality environment for directly
sculpting 3-D VOI’s, our approach uses conventional 2-D X-
Windows interfaces which indirectly specify surfaces through
a sequence of 2-D operations. That is, VOI’s are constructed
by drawing stacks of 2-D regions. The region drawing environ-
ment makes use of two main principles to carry out this task.
First, because the cross-sectional 2-D geometry of an object
boundary can usually be simplified just by reslicing along a
different orientation, we allow the user to select a set of parallel
slicing planes at an angle different from the original acquisition
planes. For cortical regions, the typical reslicing orientation is
the coronal view of a transaxially acquired MRI. However,
in general, these reslice orientations can be at any oblique
angle with respect to the original acquisition orientation.
Second, to aid in the 3-D navigational task, simultaneous views
of data are provided in different formats: volume rendered
surfaces, orthogonal slices or registered PET slices, on which
corresponding points can be visually related.

Fig. 2 shows an example of the region drawing environ-
ment. Structured around the VIDA software package [11], a
main window [Fig. 2(a)], hereafter called the drawing plane,
is provided for the user to draw 2-D regions. Regions may be
drawn using freehand polygons, laying out points connected
via a cubic spline algorithm, or a number of other techniques.
Auxiliary viewing planes sliced at orthogonal angles (e.g.,
sagittal and transverse when the drawing plane is coronal)
can be seen as well. A 3-D cursor, reflecting the position
of the drawing cursor, is projected on these views using a
parallel projection technique. At any time, a key may be hit
while in the drawing plane to update the auxiliary views and
display the orthogonal slices intersecting the current main
cursor position at that orientation. As a stack of 2-D regions
are drawn, their position with respect to one another may
be displayed by showing the intersection with the auxiliary
orthogonal planes [Fig. 2(b)]. Additionally, to provide guiding
points while drawing regions on the drawing plane, curves may
be drawn on the auxiliary views and their intersection with the
drawing plane will be displayed.

For specifying cortical regions, probably the most useful
visual cue is a rendering of the cortical surface. Historically,
rendering techniques have been grouped into two subclasses;
surface rendering and volume rendering. In surface rendering,
a vector model is extracted from the underlying volumetric
data and displayed as a set of shaded polygons. This technique
has the advantage that it can make use of commonly available

Fig. 2. Region drawing environment. (a) A main drawing window is used to
draw 2-D regions. The main window cursor position is mirrored in real-time
on auxiliary views (b) and (c) as a projected 3-D cross-hair cursor aids
visualization of the 3-D anatomy (cursor size is enlarged here for emphasis).
Intersections of selected region stacks with the auxiliary planes (b) give the
user intuition of the 3-D shape of the resulting VOI.

graphics hardware for real-time user interaction. It has the
disadvantage that the process of extracting the polyhedral
model can be extremely computationally intensive, and the
model requires considerable storage to adequately describe
a surface with enough detail. Volume renderings, on the
other hand, are directly calculated from volume data and
generally result in a single static image from one perspective
of the shaded surface. An advantage is that high-quality
volume renderings can be calculated quickly; however, once
calculated, little interaction is possible if the depth map is not
saved because most of the 3-D information has been lost.

We calculate volume renderings using a parallel projection
gradient shaded technique on the segmented MRI data. Be-
cause a depth map calculated during the rendering is retained
along with the corresponding transformation matrix, the 3-D
position of each point in the rendered surface can be calculated.
Therefore, visual cues may be provided in two ways. First, a
3-D polyline may be drawn on the rendered brain surface, and
its intersections with the 2-D drawing plane will be shown
(Fig. 3). This technique is useful for following a specific
cortical gyrus through subsequent 2-D slices. A second method
provides real-time feedback between the drawing cursor and
the volume rendering. As the cursor is moved in the drawing
plane, its position in the rendering may be displayed as the
projection of the cursor position along the line of sight used
to obtain the rendering. Therefore, as the cursor is moved
along the outer boundary of the cortex in the drawing plane, its
correct position is seen on the volume rendering of the cortical
surface, permitting accurate identification of the cortical gyrus.

In practice, our clinicians find that two orthogonal views
(sagittal and transverse for a coronal drawing plane) and
one or two volume renderings are adequate for localization
of cortical anatomy. Also, though the software is capable
of defining VOI’s drawn on a number of different oblique
slicing orientations, a single slicing direction parallel to the
coronal plane is usually chosen for most cortical VOI’s. A
typical set of 2-D contours drawn for a brain dataset is
seen in Fig. 4(a). The contours are tiled together using the
NUAGES [12] algorithm to produce a triangular mesh surface
model [Fig. 4(b)]. The surface model is integrated into an
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Fig. 3. Volume rendering-based navigation. Three-dimensional positional
information is recorded for each pixel in (b) the volume rendering, allowing
an interface tying together (a) 2-D sectional with rendered information.
Intersections of a polyline drawn on the rendering are shown as crosses on the
2-D view. Position of the cursor in the 2-D view is reflected in the rendering
in real time.

Fig. 4. VOI’s. Three-dimensional VOI’s are created by tiling stacks of 2-D
contours. Contours in (a) are overlaid on the resulting VOI surfaces. A typical
set of VOI’s drawn for a brain study is seen in (b) in a schematic rendering
of the cortical surface.

Inventor toolkit 3-D graphical display environment [13]. In
this environment, the user may visualize the resulting 3-D
region set and perform a number of arbitrary manipulations on
them including scaling, translation and rotation, subdivision,
selection, and deletion. VOI’s may also be edited by modifying
the 2-D contours using spline-based moves, additions or
deletions of contour vertices in the 2-D drawing environment.

C. PET Quantification

Statistical Quantification:Quantification of PET activity
could take place directly without construction of VOI surface
models by reslicing calibrated PET data into the voxel space
of the MRI data and summing voxels contained within the
boundaries of the 2-D regions. Of course, care must be taken
to properly scale calibration factors in accord with the new
voxel size of the resliced PET data and to suitably treat
voxels on the border of the region. This is the approach, for
example, taken by Resnick and coworkers [14]. Besides the
possible errors induced from summing edge voxels, there is
one main disadvantage to this technique: the uncertainty of the
activity data can no longer be accurately characterized; only
an approximation is possible [15]. If an accurate estimate of
the activity within the regionand its uncertainty are desired,
calculations are easier in the projection, or sinogram space
of the tomograph, where the statistical properties are well
established [16].

Our approach resembles the formulation of Votaw [17],
which generalized Huesman’s 2-D ROI algorithm [16]. Define

, , , and as the projection values at bin
, angle , and slice for the emission, transmission, blank,

and normalization sinograms, respectively. A normalization
factor for each slice, , incorporates correction for deadtime,
radiotracer decay, and scan duration and is used to convert
reconstructed units into calibrated PET counts/s. Attenuation
factors, , are calculated as

(1)

where is a 3-D Gaussian smoothing kernel of length
9 and sigma 1.5 bins in all three directions. The corrected
projection bin value is then defined by

(2)

A voxel in the image space of a reconstructed PET volume
is given by

(3)

where are the 2-D backprojection factors, is the
voxel at location , is the convolutional kernel,
are the arc correction rebinning factors, and are the
projection data. VOI activity in this voxelized space is then
given by

(4)

where denotes the intersection of the VOI indicated by
and the transverse section indicated by. Changing the order
of summation and rearranging as in [16] we obtain

(5)

where

(6)

In going from (3) to (5), we note that though the convolution
kernel, is symmetric in and , the sparse rebinning
matrix, , is not symmetric in and so that its transpose,

, must be used.
To obtain a suitable description of each processed VOI in

projection space, that is, a set of sinograms containing the
factors , the VOI is first transformed into the image space
of the PET scanner using the 44 transformation matrix
calculated during the PET-MRI registration and during the
MRI reslicing processes. The 2-D intersection of the VOI
surface model with each acquisition plane is next calculated,
resulting in another set of 2-D regions described as closed
polygons. Note that at this point the regions are not linked



KLEIN et al.: SPECIFYING PET VOI’S USING MULTIMODALITY TECHNIQUES 409

to the voxel space of a reconstructed PET volume at all,
but instead are real-valued coordinate descriptions in the
space of PET scanner. As was suggested by Huesman [16],
the forward projection of a given region in this description
becomes a continuous integral over the uniformly weighted
interior of the polygons

(7)

where denotes an indicator function for the ray in
projection space at bin and angle . In practice, this integral
can be quickly calculated by taking each polygon line segment
in turn and summing the signed area of the trapezoidal region
defined by the boundaries of line segment and the projection
bins, as seen in Fig. 5(a). Therefore, (6) becomes

(8)

so that reference to any pixel size is unnecessary. Fig. 5(b)
summarizes the overall calculation.

We assume that each individual bin in the sinograms is an
independent random variable modeled as a Poisson counting
process and make the approximation that the normalization and
smoothed attenuation factors are without statistical variation.
The emission sinogram values are collected as

where and are the emission prompt
and random values, respectively. To estimate the number
of random coincidences in each projection bin, , total
random events, are recorded for each 2-D sinogram so
that where and are the dimensions
of the 2-D sinogram. The variance of a single corrected bin
is thus,

var (9)

so that for two regions on the same slice, the covariance is
given by

cov var (10)

Regions on different slices are uncorrelated so that the covari-
ance for two multislice VOI’s is

cov cov (11)

Note that in this exposition, we have not yet implemented
a correction for scatter. The factory-supplied software for our
scanner uses a spatially invariant deconvolution to correct for
this effect [4], as suggested by King [18] and Bergstrom [19].
Therefore, this correction can easily be added to the VOI
calculation by including an additional convolution operation
in (6), which models the scatter distribution.

Calculation of VOI activity by this method has a number of
other advantages besides the capability of obtaining statistical
properties. Since the high-resolution anatomical data were
used to define the VOI boundaries, the PET data do not
need to be greatly smoothed to obtain suitable visual image
quality. Only a ramp filter is used, preserving spatial resolution

(a)

(b)

Fig. 5. Projection of a uniform polygonal region. (a) The uniformly weighted
interior of a 2-D polygonal region is computed by calculating the signed
area of the trapezoids formed by each line segment of the polygon and the
projection bins. A simple polygon is shown in this figure to convey the idea.
This procedure is carried out for each projection angle, then rebinned and
convolved to obtain a sinogram representing the VOI mask in projection space
(b). In practice, the 2-D regions are defined by numerous short line segments
so that the region boundaries approximate a smooth boundary.

during quantification. Also, because the technique effectively
performs a fast reconstruction and summing of the data,
reconstruction of a PET image volume is required only to
register the data. For dynamic PET acquisitions, it is therefore
unnecessary to reconstruct every time point in the data acqui-
sition (although one may wish to do so for other reasons, such
as correction for patient motion). Finally, a third advantage
is that calculation of VOI values for a 3-D PET acquisition
without septa would proceed in a straight-forward manner.
In this case, a 2-D forward projection of each VOI would
be required at each projection angle, followed by convolution
and calculation of the vector inner product. Extending the 2-D
projection operation to three dimensions, the signed volume
defined by each triangular face and the projection plane
can be efficiently computed and binned into the appropriate
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locations. Because the geometry of conventional cylindrical
scanners prevents complete measurement of sinograms at
oblique angles, the 3-D extension of this algorithm differs
from the 2-D case in that it requires techniques to properly
deal with truncated measured datasets. Defriseet al. discuss
this in [20]. Computational load and memory requirements
grow considerably in the case of 3-D analysis, however, so
the overall task of quantifying 3-D data would not be trivial.
For example, each VOI mask requires storage space equivalent
to a floating point representation of a complete 3-D sinogram
(about 300 MB for the ECAT EXACT HR). Obviously, the
masks for such a set of VOI’s could not reside in the memory
of conventional workstations. It is perhaps for this reason that
very little has appeared in the literature regarding evaluation of
arbitrary VOI’s on true 3-D PET datasets. On the other hand,
techniques such as additional angular compression, which is
routinely used on the ECAT EXACT HR to reduce the 300-MB
3-D dataset to 24 MB, may make this aspect of the problem
more manageable.

III. V ALIDATION

While specifying a set of VOI’s on a PET dataset, a number
of decisions and image processing operations are carried out
which could potentially affect the final quantitative results.
The accuracy of registration, choice of slice spacing and
orientation, and operator criteria for drawing regions are all
such factors. Two groups of studies were performed to evaluate
the magnitude of quantitative differences due to these factors.
The first group used data from a MRI scan obtained from a
normal subject. These data were used to evaluate the effects of
reslicing the data at different orientations. In the second group,
data acquired from two patients were used to evaluate various
factors for sets of typical physiologically meaningful VOI’s
that are drawn manually using the multimodality techniques
described in this paper.

A. Slicing Orientation

Because the tiling of 2-D contours into a closed triangu-
lar mesh surface model is not a well-posed problem with
a unique solution, it is important to demonstrate that the
direction of slicing and subsequent 2-D region drawing will
not dramatically affect the resulting 3-D shape of a VOI. For
our application, an important criterion is that the shape of the
resulting 2-D intersections of a VOI with the acquisition planes
of the PET scanner are consistent regardless of the slicing
orientation of the MRI volume used for drawing the VOI. To
test this procedure, shape consistency measures were computed
for a VOI automatically specified on segmented MRI data
resliced at a number of different orientations. We segmented
the cortex from the MRI data using techniques described
in the paper. These data were then further segmented to
produce a 64 72 12 voxel rectangular subvolume obtained
from the temporal cortex. All nonbrain matter within this
subvolume was set to zero. Starting with this dataset as the
base volume, the orientation of a reslicing plane was rotated
about the axis at 90, 60 , 45 , 30 , 0 , 30 , 45 , and

60 to produce eight 100 100 70 voxel derived datasets.

Fig. 6. Reslicing validation study. (a) A slice from the reslicing phantom
data set and the contour of an automatically determined 2-D region. (b) Tiling
the 2-D region results in a VOI shape typical of ones drawn by clinicians on
brain datasets. VOI differences for automatically determined contours from
the 0� and 60� slicing orientations displayed via (c) a 2-D slice through the
data and (d) overlaid renderings of the VOI’s.

Standard trilinear interpolation was used to obtain the resliced
volumes. An automatic region-following program was used
to obtain a VOI encasing the segmented cortex subvolume
in the derived dataset. The automatic technique was used to
avoid any operator-induced biases which could occur if manual
drawing techniques were used. As seen in a typical slice and
volume rendering from the 0slicing orientation [Fig. 6(a),
(b)], the resulting region shape is fairly complex due to the
convolutions of the cortex and is representative of typical
manually drawn regions.

As is done in the analysis of PET data, a 3-D VOI was
constructed from each set of 2-D regions, and then transformed
back onto the original 64 72 12 voxel subvolume as a
new set of 2-D regions. Ideally, each set of transformed 2-
D regions should be identical, however, because of tiling and
interpolation differences during reslicing, slight variations are
seen between the region sets. Fig. 6(c) gives an example of the
differences seen between contours on a slice of the 0slicing
orientation versus the 60slicing orientation, and Fig. 6(d)
shows the corresponding VOI renderings for the two slicing
orientations.

Three measures were used to characterize the shape dif-
ference of the regions. For each measure, the mean difference
and standard deviation were calculated for the shape difference
measure between the VOI’s obtained on the seven resliced
datasets and the VOI obtained on the 0dataset. First, as
a simple measure, total volume is computed by summing
voxels whose center was contained within the boundaries of
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the transformed 2-D regions. Over the eight region sets, the
coefficient of variation for VOI volume was 2.3%. However,
total enclosed volume gives only a first-order indication of
shape consistency. A more meaningful measure of shape
difference is the fractional volume difference of each VOI
set with respect to a reference, here chosen as the 0slicing
orientation. We define the fractional volume difference as

vol
vol

(12)

where and are two VOI sets, vol is the volume
contained within , and is the reference VOI. indicates
the union operator and indicates the intersection operator.
More simply, the fractional volume difference is just the total
volume which is enclosed by one VOI, but not the other,
normalized by the total volume of the reference VOI. The
mean fractional volume difference for these regions was 13.5

2.9%. Here, and in subsequent portions of this paper, the
term refers to the sample standard deviation of the measures.
Another important shape measure giving an indication of the
locally worst-case shape difference is the maximum Hausdorff
distance [21], defined as

(13)

where

(14)

The Hausdorff distance, thus, gives the worst-case minimum
distance that a point in is from any point in . A related
measure, the median Hausdorff distance gives the median
minimum distance that all points in are from any point
in . Again using the 0 slicing orientation as the reference
VOI set, the average maximum Hausdorff distance for these
VOI’s is 4.8 mm 0.5 mm, and the average median Hausdorff
distance is 0.54 mm 0.02 mm. In other words, the VOI
surface boundaries were mostly within nearly 0.5 mm of each
other in these datasets, with occasional outliers up to about
5 mm.

All three shape measures indicate that the area within a
desired anatomical region does not depend greatly on the
reslicing orientation used to specify the VOI. For the highly
convoluted object used in this test, the fractional volume
difference was most affected. For objects like these where the
surface area to volume ratio is relatively high, small changes
in surface boundaries can produce fairly large fractional vol-
ume differences. Also note that this measure is particularly
sensitive to translation errors, since a small translation error
between two identically shaped VOI’s results in voxels on both
sides of the VOI’s in the direction parallel to the translation
contributing to the error. A more indicative measure for these
data are the Hausdorff measures, which show that there is a
small spatial distance between points included in the volume
difference and the intersection of the two VOI sets.

B. PET Quantification Consistency

PET and MRI data from two patients were studied to investi-
gate the consistency of resulting calculated PET VOI activity

with respect to operator region drawing criteria, MRI slice
spacing, and MRI-PET registration errors. Six VOI’s were
drawn in each hemisphere of each patient, using predefined
criteria for these regions (dorsolateral frontal cortex, orbital
frontal cortex, anterior temporal cortex, posterior temporal
cortex, amygdala, and hippocampus). VOI size ranged from
a minimum of 1.1 cm for the amygdala to a maximum of
13.3 cm for the dorsolateral frontal cortex. Two different
operators, each trained in neuroanatomy, drew these regions
independently on MRI data which had been resliced into a
coronal plane (perpendicular to the line passing through the
anterior and posterior commissures) using slices either every
1 mm or every 3 mm. The MRI and PET data were aligned
using the technique discussed in Section II-A. VOI’s were
constructed from each set of 2-D regions and transformed
into the PET coordinate space. Subsequently, PET activity for
each VOI was calculated in our usual manner by projecting the
transformed VOI’s into the sinogram space of the PET scanner.
Calculated VOI activity concentrations were combined with
an arterial input function and known rate constants to obtain
regional cerebral metabolic rates for glucose (rCMRglc) via
standard methods [22], [23].

Interoperator variance was calculated using the mean dif-
ference of ratios over all paired regions drawn by each
operator on the 1-mm and 3-mm slices. The difference between
operators on the 1-mm slices was 3.43.0%, with a range
between 0.0%–11.0%. The difference between operators on the
3-mm slices was 4.1 3.1%, ranging between 0.0%–14.5%.
The greatest differences were found to be in the metabolic
rates for the hippocampus, presumably because this structure
is very difficult to confidently identify even on oblique slices
orthogonal to its central axis.

Possible variation due to MRI slice separation was in-
vestigated by using the 1-mm separation as a baseline, and
subsampling these regions to produce a less dense region set
drawn with coronal slice separations of 2, 3, 5, 7, 9, and 11
mm. Percent difference of ratios with respect to the 1-mm
baseline from the two operators’ regions averaged over all 48
regions (i.e., 12 regions/brain, two brains, two operators) is
seen in Fig. 7. As seen from the graph, variation increases
slowly as the slice spacing increases (from 0.6% to 2.2%).
However, the maximum difference increases quite steeply as
the slice separation increases beyond 7 mm.

PET-MRI registration is another factor that can affect quan-
titative accuracy. Using the coordinates obtained from our
registration procedure as a baseline, the mean percent differ-
ence of ratios was investigated as translation (along the axes of
the MRI coronal volume coordinate system) was added to the
transformation matrix. Again, all 48 VOI’s drawn on the 1-mm
slice separation datasets were used to calculate the statistics.
Translation magnitude ranged from 1 mm to 7 mm. Results
are presented in Fig. 8(a), (b), (c).

Table I summarizes the overall results. To put these vari-
ations in perspective, a baseline region set was drawn to
determine statistical variability of PET measurements as they
relate to region size. A set of seven square single-slice regions
was drawn on six slices in the original transverse PET slices
on the two subjects. Region size ranged from 0.024 cmto
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Fig. 7. Quantification consistency—MRI slice spacing. Mean, and maximum
difference of ratios in rCMRglc for 24 brain VOI’s using the region set drawn
on the 1-mm resliced data as a reference. Little difference is seen in this dataset
until the MRI slice separation exceeds 7 mm.

TABLE I
VOI VALIDATION SUMMARY

Difference Measure

Reslicing direction
(volume difference coef. of variation)

(fractional difference volume)
(median Hausdorff distance)

2.3%
13.5 ±2.9%

0.54 mm± 0.02 mm
Interoperator

(mean difference of ratios)
(max difference of ratios)

3.4±3.0%
11.0%

Slice separation: 1–7 mm
(mean difference of ratios)
(max difference of ratios)

0.6� 1.4%
2.8� 4.2%

Slice separation: 9 mm
(mean difference of ratios)
(max difference of ratios)

2.3%
9.2%

Registration error @ 2 mm
(mean difference of ratios)
(max difference of ratios)

1.9� 4.1%
6.6� 14.1%

Registration error @ 7 mm
(mean difference of ratios)
(max difference of ratios)

5.3� 14.8%
14.1� 141.9%

PET statistical uncertainty
(1 cm3 VOI coef. of variation) 1.8%

1.03 cm , in other words, from roughly 1 to 57 reconstructed
voxels. Using the rCMRglc values and uncertainty calculated
for each region, the mean coefficient of variation over the 12
total sets of seven regions was computed. Results are seen
in Fig. 9. These values show that uncertainty due to PET
statistics decreases as the region size increases. The coefficient
for the 1.03-cm region is less than 2%, indicating that for VOI
sizes used in the previous results, the uncertainty due to the
statistics of the tomograph plays a small role in the overall
uncertainty. Of course, these values are subject to the total
isotope injected, tomograph sensitivity and scanning time, as
well as other factors affecting overall the signal-to-noise ratio
of the resulting PET images.

IV. DISCUSSION

This paper has described several related aspects of PET VOI
quantification. We have described an approach which allows

(a)

(b)

(c)

Fig. 8. Misregistration effects on quantification. Translation errors between
the PET and MRI datasets of just a few millimeters can significantly change
the calculated rCMRglc value for a particular VOI.

reasonably fast manual drawing of 3-D VOI’s suitable for
subsequent calculation of PET activity, uncertainties, and VOI
correlations. The approach makes the implicit assumption that
using MRI anatomical information is desirable while obtaining
VOI’s. We recognize, however, that there are other PET
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Fig. 9. PET statistical quality versus region size. Statistical uncertainty due
to PET acquisition statistics is reduced with increasing region size. The
coefficient of variation for regions the size of typical brain VOI is quite small.

analysis applications where use of this anatomical information
may not be warranted. Region placement approaches can be
classified roughly into one of two groups: anatomy based and
physiology based. Anatomy-based approaches, like the one
described in this paper, rely on either coregistered computed
tomography (CT) or MRI data on which regions are placed, or
on standardized region templates which are typically stretched
or warped in some manner to best fit the current PET data
[24]. Physiology-based approaches rely only on the PET data,
typically drawing regions around or automatically detecting
areas of peak activity via subtraction or statistical techniques
on parametric images which can be derived without anatomical
information [25], [26]. Nevertheless, anatomical information
is often desirable and even necessary for some forms of data
analysis, including dynamic studies, neuroreceptor studies, and
testing specific anatomically driven neuroscience hypotheses.

An issue that exists once a structure has been confidently
identified is the strategy for sampling PET data from that
region. Due to the limited resolution of the PET scanner,
activity seen at a given point in a PET image is the spatial
convolution of activity in the neighborhood of that point. For
example, in typical VOI’s of cortical grey matter, there is
both spill out of grey matter activity within the borders of the
region as well as spill in from the activity of nearby grey and
white matter. One approach to dealing with this problem is to
define regions well within the anatomical borders to avoid the
spillover effects on the boundaries [27], [28]. Indeed as was
seen in Fig. 9, PET regions do not have to be very large to
obtain a good statistical estimate of activity. For the reported
FDG acquisitions, reasonable estimates of rCMRglc could
be obtained from regions containing only one or two recon-
structed voxels (0.024 cm). However, this strategy may not be
adequate because PET activity is seldom uniform throughout
an anatomical structure and, thus, sampling throughout the en-
tire structure is usually desired to characterize it. An alternate
region placement approach that deals with both the spillover
effects and the uniform sampling requirement is a partial
volume correction technique. These techniques define a region
along the anatomical borders and model the spatial convolution

using prior knowledge of cerebro spinal fluid (CSF) and brain
matter distributions. Partial volume correction approaches have
been described by Meltzer and others [29]–[31]. In view
of these partial volume issues, VOI’s specified along true
anatomical boundaries should, therefore, be thought of as a
starting point for VOI analysis. For accurate quantification of
tissue within these boundaries, the VOI’s can be uniformly
“shrunk” or eroded to avoid spillover, or corrected using prior
information for partial volume effects.

This paper is concerned with how to obtain the actual 3-
D boundaries of anatomical structures. One approach is to
use a standard region template manipulated in some way to
best fit the anatomy, another is to manually draw the regions
individually on each dataset. An obvious advantage to using
templates is its simplicity. Manually drawing 3-D regions can
be a time consuming process. We find that 1–2 h is typically
required to manually draw a set of 48 VOI’s on a brain dataset.
The manual technique also has the potential for inducing
operator biases, though as shown in the validation section,
these biases are fairly small when using anatomical landmarks
from MRI data. The biases may be more troublesome if
regions were drawn directly on PET data. A disadvantage to
using fixed templates is that it may be difficult to suitably
warp a standard region set to fit a particular patient’s data.
There is considerable variation in the shape and position
of structures in the brain and it is still an open question
whether an elastic transformation always exists to suitably
transform every study into a standard space. Though a template
may attempt to more completely and uniformly describe a
given anatomical region set, unsuitable elastic transformations
could produce unacceptable position errors for some regions.
This is a problem in analysis of brain data from patients
with significant anatomical variability due to cerebral atrophy,
infarction, or tumors. It is for this reason that we have chosen
the manual technique.

Our validation studies indicate that fairly consistent results
can be expected using manual drawing techniques. For most
regions, differences due to slicing orientation or operator
criteria are under 5%. Slice spacing also appears to have
a negligible effect as long as the chosen spacing is less
than 7 mm. In practice, our clinicians typically use 3-mm
slice spacing. Reported results do not include a correction
for partial volume, which is beyond the scope of this paper.
Most likely, the effect of slicing orientation, slice spacing, and
small operator region discrepancies is to change the relative
proportion of activity due to the grey matter in that VOI.
Correction for partial volume would reduce this variance.
Partial volume correction, however, would not correct for
registration errors.

Woods [7] reported that registration accuracy of2 mm
could be expected using their automatic algorithm for PET
and MRI datasets, and since this is the last step in our
semiautomatic registration process, we should expect compa-
rable accuracy. The results from Section III show that mean
rCMRglc differences within this range of translation are all
within 5% for registration errors of 1 or 2 mm. However, the
nearly linear increase in quantification error with registration
offset underscores the importance of an accurate registration.
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V. CONCLUDING REMARKS

The reported technique for specifying and analyzing VOI’s
on PET datasets demonstrates an approach for analyzing com-
plex 3-D datasets using common 2-D interfaces. Navigation
through the dataset to find a desired anatomical structure
can be greatly simplified using a registered MRI anatomical
volume showing multiple simultaneous oblique sections and
volume renderings of the data. Because most clinicians can
readily identify specific sulci from high-quality renderings of
the cortical surface, a crucial step in quickly identifying sulci in
2-D sectional data is providing a feedback mechanism between
the renderings and the sectional data. Once identified, 3-D
VOI’s may be specified on the anatomical datasets efficiently
in an X-Windows environment by drawing a stack of 2-D
regions subsequently tiled together to form a VOI surface
model. The voxel-independent description of the VOI’s allows
a quantitative analysis in the observation space of the PET
scanner for characterization of both VOI radiotracer activity
and statistical properties.

Results obtained from typical brain analyses indicate that
the stack of regions defining a VOI may be drawn on slices
oriented at the oblique slicing direction which best allows
visualization of the cross section for a desired structure. A
3-mm to 7-mm slicing separation appears sufficient to capture
the salient shape features of regions in the cortex. VOI’s drawn
using a finer slice separation produced similar quantitative
results at the cost of increased manual intervention.

The registration and segmentation steps are seen to be
crucial preprocessing steps in the VOI analysis. An accurate
segmentation of brain from nonbrain structures is needed for
high-quality surface renderings and for automated registration
routines. Validation results imply that registration between
PET and MRI datasets must be achieved to an accuracy better
than 2 mm. Our experiences show that this level of accuracy
is difficult to obtain quickly using purely manual techniques.
However, by combining manual with automated registration
techniques, we are able to obtain reliable registration with
minimal manual burden. The manual portion of the segmenta-
tion and registration process has the additional advantage that
quality control can be visually verified by a trained clinician.
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