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Determination of the Threshold for Instability in 
Four-Wave Mixing Mediated by 

Brillouin Scattering 
D. E. WATKINS, ANDREW M. SCOTT, AND KEVIN D. RIDLEY 

Absfmct-The threshold for instability in Brillouin-enhanced four- pump =pump 
wave mixing has been experimentally determined as a function of both 
the phase mismatch and the ratio of the pump beam intensities, and is 
shown to agree with theoretical modeling. The effective input noise in- 
tensity for four-wave mixing in the unstable regime is compared to the 
noise in a stimulated Brillouin scattering amplifier and is found to be 
higher by a factor of three in the forward direction. Competition be- 
tween two input signals has been investigated and it is shown that the 
signal which arrives first dominates the interaction in the unstable re- 
gime. 
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Fig. l. Diagram of four-wave mixing interaction. In our experiments, the 
angle between the pump beams and the signal beam was < 3 mrad, So 
the interaction was essentially colinear. 

INTRODUCTION 
OUR-WAVE mixing mediated by Brillouin scattering F has been shown to result in very high reflectivity phase 

conjugation. This results from an instability in Brillouin- 
enhanced four-wave mixing (BEFWM), which causes 
both the transmitted signal and the phase conjugate beam 
to grow rapidly until pump depletion sets in [1]-[7]. The 
instability occurs when the pump beams exceed a thresh- 
old intensity that depends on the ratio of the two pump 
beam intensities and on the phase mismatch. In this paper, 
we present results of experimental studies confirming the- 
oretical predictions for the dependence of the threshold 
intensity in BEFWM on both the phase mismatch and the 
ratio of the pump beam intensities. We also discuss the 
competition between the signal and noise, and between 
two signals, in BEFWM. 

REVIEW OF THEORY 
Theoretical analysis of BEFWM has been treated pre- 

viously [2], [6], [8]. We will briefly review the theory in 
a simplified form following the analysis given in [6]. In 
conventional stimulated Brillouin scattering, an acoustic 
wave is driven by electrostriction in the moving interfer- 
ence field formed by a pump beam and its Stokes wave. 
In BEFWM there are two interference terms that drive an 
acoustic wave, the first is the interference between one 
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pump beam and its Stokes beam, and the second is be- 
tween the other pump beam and its anti-Stokes beam (as- 
suming that any frequency difference that exists between 
the pump beams is not resonant with the Brillouin me- 
dium, or is decoupled from the SBS medium through op- 
posite polarization of the pump beams). We will consider 
the case of a signal which is Stokes-shifted with respect 
to the stronger pump beam [5 ]  rather than anti-Stokes 
shifted [1]-[4], [6], [7] (see Fig. 1). The acoustic wave 
is described by the solution of the equation 

(1  + i x )u  + -- 1 au = -p{EFE3 + EIE,*exp (iAkz)} 
6wo at 

( 1 )  
where El is the field of the stronger pump beam, E2 is the 
field of the weaker pump beam, E4 is the field of the Stokes 
beam, and E3 is the field of the anti-Stokes beam. In the 
case of an anti-Stokes signal, the input boundary condi- 
tion is given by E3 ( z  = 0, t), while in the case of a Stokes 
signal the input is given by E4(z = L, t). In either case 
an acoustic wave is formed which travels counter to the 
weaker pump beam. The stronger pump beam is Stokes 
scattered into E4 while the weaker beam is anti-Stokes 
scattered into E3. The notation used here is that of [6]. 
The only difference is that we now solve for a Stokes in- 
put signal instead of an anti-Stokes input. In ( l ) ,  f l  is the 
electrostrictive coupling parameter, and x = 6 w / 6 w o  is 
the normalized detuning of the signal wave from reso- 
nance, where 60 = wI - w4 - ws, w, is the Brillouin 
resonance frequency, 6wo = 1 / 2 T B ,  and 78 is the phonon 
lifetime. We use the usual definition of the phonon life- 
time as the decay of the acoustic intensity [9] rather than 
the acoustic amplitude [lo]. Note that the frequencies of 
the four waves are related by energy conservation in the 
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four-wave mixing process, w3 = w1 + w2 - w4. The phase 
mismatch is A k = k, - k2 - k3 + k4 in the nearly colinear 
geometry used here. 

Assuming undepleted pump beams, the equations for 
the electric fields are given by 

_ -  aE3 g 
az 26 

aE4 g 
az 2 p  

- - E ~ u  

- = - Elu* exp ( i A k z ) .  

In these equations, g is the Brillouin gain coefficient. 
These equations can be solved to find a steady-state re- 

flectivity by setting the time derivative in (1) to zero [ 1 11. 
However, above the threshold for instability, this steady- 
state solution is not valid. In the unstable regime, the 
acoustic wave will grow rapidly in time until pump de- 
pletion occurs. The reflectivities obtained in this regime 

2131 

where 

gswo h =  
2 { s  + 6wo(l  + ix)} 

These equations can be decoupled into linear second-or- 
der equations and solved. Assuming that the Stokes signal 
is a step function at t = 0, the boundary conditions are 

and 

E,(o,  t )  = o * E,(O,  s)  = 0. ( 5 )  

Here, L is the length of the interaction zone. This leads 
to a solution for the output phase conjugate and amplified 
signal of the form 

- -2hElE2E& exp ( iAkL)  
r -7- s) = , 

LF1J s* ( h [  I E2 l 2  - 1 El 1’1 + iAk + x coth 

xE:o exp {I hL [ I  E ,  1’ + I E2 1’1 + i F] {sinh [$]]-I 

s* { h [  1 E2 l 2  - I E, 1’1 + iAk + x coth [$I] E4*(0, s)  = 

can be much greater than those predicted by the steady 
state solution. 

To analyze the transient behavior we assume that the 
pump beams are constant throughout the interaction, and 
that the input signal beam is a step function in time. 
Clearly such an approach cannot be used to predict the 
reflectivity after pump depletion sets in. However, useful 
information about the threshold for the instability and the 
rate of growth of the instability can be found. Taking La- 
place transforms of (1) and (2) gives 

- U =  -pswO { E t E 3  + EIE: exp ( i A k z ) }  
[ s  + 6 w o ( l  + i.)] 

( 3 4  
where the bar denotes the Laplace transform, and s is the 
Laplace transform conjugate variable of t. Substituting 
from (3c) into (3a) and (3b) gives 

- ai?, = -h [ lEZl2E3  + E,E,E,* exp ( i A k z ) ]  
az 

where the complex variable 

x 2  = { h [  I El 1’ + IE212] - i A k ) 2  + 4ihAkl & I 2 .  
We note that both h and x are functions of s. The time 
dependence is then given through the inverse transforms 
of (6). 

In general, the inverse Laplace transform does not lead 
to an analytic expression for E3 ( L ,  t). However, (6a) and 
(6b) provide useful information about the behavior of the 
BEFWM process. Both fields are functions of the com- 
plex variable s and these functions have a common series 
of poles; one for s = 0 and an infinite number associated 
with the cyclic nature of the complex hyperbolic cotan- 
gent function. We denote these poles as spn. Applying the 
residue theorem, each pole will contribute to the inverse 
transform of the Stokes and anti-Stokes fields, leading to 
solutions of the form 

m 

E 3 ( L ,  t )  = c a, exp (sprit) + b (7a) 

E,(O, t )  = c c, exp (sprit) + d (7b) 

where the a, and c, are associated with the coth function, 
and b and d correspond to s = 0. 

If the real part of any of the poles is positive, exponen- 
tial growth of the waves E3 and E4 will result. The con- 

n =  -m 

m 

n =  -m 

- 
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ditions for which this applies can be ascertained by ex- 
amining the nature of the poles in (6a) and (6b). The 
behavior of the output fields given in (7a) and (7b) will 
be dominated by one or two poles which have real parts 
significantly larger than the others. The imaginary part of 
the pole corresponds to a frequency shift in the scattered 
light. In [2] it is shown that the pole with the largest 
growth rate will also be the pole with a frequency shift 
that brings the interaction closest to resonance. 

The poles spn depend on the following five variables: 
the Brillouin linewidth 6wo; the sum of the normalized 
pump intensities M = MI + M 2 ;  the ratio of the pump 
intensities a; the phase mismatch A kL; and the normal- 
ized detuning x. Here, we have introduced the dimension- 
less variables 

M2 
MI 

and a = - 

For fixed values of A kL and a ,  the poles s of (6) and (7) 

the relation 
correspond to fixed values of h ( spn ) I El I 4" . This leads to 

Re ( spn)  = 6wo - - 
[ l n ,  l 1  

where Merit is the critical or threshold intensity for expo- 
nential growth for the pole, and depends only on a and 
A kL. The corresponding imaginary part is 

M 
Im ( spn)  = - Im (s,) + 6wo 

M c r i t  

where Im (s,) is the imaginary part of the pole at the crit- 
ical intensity. 

The critical intensity can be obtained for given values 
of a and AkL by 1) selecting an arbitrary value of M ,  2) 
using M ,  a, and A kL to find the zeros spn for the denom- 
inators of (6), and 3) using (9) to determine M,,,,. Such 
calculations were presented in [2] and [6]. From these ref- 
erences, there appears to be no limit to the size of the 
phase mismatch. Indeed, a limitation on phase mismatch 
does exist, but is so large as to be inconsequential. To 
determine this limit, we note that there are two sets of 
interference fringes with wave vectors k,, = kl - k4 and 
ks2 = k, - k2,  We have assumed that the acoustic waves 
with these wave vectors have the same acoustic fre- 
quency. This is clearly valid only when 1 k Y l  U, - ks2 U ,  I 
< 6w, or equivalently AkL < L / a s ,  where a, is the 
acoustic decay length. This still allows for very large 
phase mismatches ( A k L  < lo4 to lo5) for realistic ge- 
ometries. The principle of conservation of momentum is 
not violated, since the phonons are continually decaying 
and in the overall process both energy and momentum are 
transferred from the optical beams into the bulk of the 
nonlinear medium. 

The presence of some phase mismatch appears to be a 
necessary feature of the instability. The FWM process 
provides a feedback mechanism into the acoustic wave 
throughout the interaction length. If the process were sim- 

ply the Stokes scattering of one beam and the anti-Stokes 
scattering of another beam with perfect phase matching, 
then the feedback of the anti-Stokes process would be 
negative (that is removing power from the acoustic wave) 
and no instability would develop. However, in the pres- 
ence of a large enough phase mismatch the anti-Stokes 
process can provide positive feedback and the instability 
will develop. This happens at the cost of reduced anti- 
Stokes output intensity [2]. We note that even in the case 
of zero applied phase mismatch, the instability can de- 
velop because the frequency offset in the transient re- 
sponse [see (9b)l creates the required phase mismatch. 

In the remainder of this paper, our objective is to com- 
pare our experimental measurements to the theoretical re- 
sults of [2] and [6]. 

EXPERIMENTAL APPROACH 

A diagram of our experiment is given in Fig. 2. The 
basic four-wave mixing arrangement consists of two 
counterpropagating pump beams, both circularly polar- 
ized with the same handedness in the interaction region. 
The signal beam E4 was injected at an angle of < 3 mrad 
to the axis, but with opposite handedness to the pump 
beams, and so interacts in the Brillouin medium with the 
counterpropagating pump beam El. The second pump 
beam E2 was scattered to form the phase conjugate wave 
E3. The use of circularly-polarized light in the Brillouin 
interaction facilitated the separation of the signal beams 
from the pump beams. The pump beam El was obtained 
directly from the amplified laser output and so was at the 
frequency w1 = wL. The other pump beam E2, was gen- 
erated by SBS from the first pump beam in cell 2, and had 
a frequency determined by the Brillouin medium in this 
cell, w2 = wL - w s B s 2 .  The signal beam was obtained by 
Brillouin scattering in cell 4, and had a frequency w4 = 
wL - WSBS4. The frequencies of the pump beam 2 and the 
signal beam 4 were tuned either by changing the temper- 
ature of the Brillouin medium for small-frequency tuning 
(for most liquids, A u / A T  = 10 MHz/"C, see [lo]), or 
by changing the Brillouin medium for larger tuning. In 
SBS cell 2, we used mixtures of CS2 and CC14 in various 
proportions to obtain frequency shifts over the range of 
2.7 to 3.7 GHz. The four-wave mixing medium was 
TiC14, which has a frequency shift of 3.07 GHz. This ma- 
terial was also used to generate the signal beam 4. We 
measured a temperature tuning coefficient of 9.6 MHz/ "C 
for this material, so that a -20" temperature change re- 
sults in a tuning of almost the full linewidth of 200 MHz. 

The intensity of the pump beam 1 was varied by using 
a X/2 plate between two polarizers. This gave a dynamic 
range of > 200 : 1 in intensity. The relative intensity of 
pump beam 2 to pump beam 1 was set by adjusting the 
X / 4  wave plate before SBS cell 2 for a specific value of 
a = Z2/Z1. Since SBS in this cell was highly saturated, 
the ratio stayed fixed as the intensity of pump beam 1 is 
varied. 
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Fig. 2 .  Schematic diagram of the experimental arrangement. Fresnel 
rhombs were used to generate circularly polarized pump and signal beams 
in the four-wave-mixing (FWM) cell. This facilitates separation of the 
beams. Pump beam 1 enters the FWM cell from the left, and is phase- 
conjugated in a simple lens plus SBS cell (SBS2) to generate pump beam 
2.  The signal beam 4 is derived through SBS in cell SBS4, and injected 
into the FWM cell from the right at an angle of < 3 mrad to the pump. 
TiCI, was used in the FWM and SBS4 cells, while mixtures of CS2 and 
CCI, were used in the SBS2 cell. Signals were monitored by photodiodes 
PD1-5. 

EXPERIMENTAL RESULTS 
Initially, we characterized the SBS interaction by mea- 

suring the gain for a resonant signal as a function of the 
intensity of pump beam 1 (blocking pump beam 2 ) .  We 
calibrated the photodiode monitoring pump beam 1 by 
measuring the energy through a 0.9 mm diameter pinhole 
as a function of the integrated photodiode signal. The ra- 
tio of the integrated photodiode signal to the peak signal 
gave an effective laser pulse duration for calculating peak 
intensities. In our case, this value was 24 ns, which was 
also the full width at half maximum for our pulse. The 
amplified signal as a function of pump intensity for SBS 
in TiC14 is shown in Fig. 3. The slope of this curve is 
equal to the gain coefficient g times the length of the in- 
teraction medium L ,  giving g = 0.015 cm/MW. This 
agrees with the value given in [9]. Also shown in Fig. 3 
is the amplification of the signal with both pump beams 
present. Below the threshold for the instability, the pres- 
ence of the second pump beam has only a slight effect on 
the output signal. The threshold for the instability is seen 
as the slight increase in output at the highest intensities. 
When the pump intensity was increased above this point, 
the output signal went off scale in this plot. 

For the data of Fig. 3, the second pump beam was ob- 
tained using a mixture of 80% CS2: 20% CC14 with a 
measured frequency shift relative to TiC14 of 430 MHz. 
We determined all the frequency shifts by constructing a 
modified Michelson interferometer, where the retrore- 
flecting mirrors were the Brillouin cells [lo]. This same 
approach was used to determine the temperature depen- 
dence of the frequency shift in TiC14. By observing the 
beat frequency in the output of the interferometer, a direct 
measurement of the frequency shift is obtained. 

The phase mismatch for BEFWM is a function of the 
frequency of pump beam 2 and the cell length, and can 
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Fig. 3 .  Forward signal gain as a function of pump intensity in the presence 
of one (squares) and two (circles) pump beams. The threshold intensity 
for the instability occurs when the amplified signal with two pump beams 
is significantly greater than the amplified signal with one pump beam. 
The theoretical value for the threshold is labeled Icrit. 

be written as 

where n = 1.57 is the index of refraction of the four-wave 
mixing medium. Measurements of the threshold for the 
instability were carried out using four mixtures in SBS 
cell 2 ,  and using different FWM-cell lengths. The com- 
bined results are shown in Fig. 4.  This figure also shows 
a theoretical curve for the threshold intensity as a function 
of phase mismatch (see [ 2 ] ,  [ 5 ] ,  and [6]). Note that each 
pole spa has an associated threshold intensity. This plot 
gives the minimum threshold intensity for a given value 
of A kL. Thus the maxima correspond to points where two 
poles have the same critical intensity. 

For a given cell length, the relative critical intensity as 
a function of A kL can be determined to within 5 % . The 
absolute critical intensities depend on accurate calibration 
of the pump intensity, which could be determined to 
within 10%. The experimental points are displaced from 
the theoretical curve by a constant factor of 1.3. This is 
the result of the finite duration of our laser pulse, which 
requires that the rate of growth be fast enough so that the 
effect of the instability appears before the pump pulse falls 
below the critical intensity. The amplification of the sig- 
nal intensity due to the instability is given by 

where tp is the pulse length. The amplification of the input 
signal by pump beam 1 alone is simply 
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Fig. 4. Comparison of experimentally determined normalized threshold 

intensity (M,,,,) with theoretical model. The solid curve is the model for 
a step function input, and the dashed curve is simply a factor of 1.3 times 
the solid curve (see text). The data were taken in three different cell 
lengths: 20 cm (open circles), 19.6 cm (squares), and 29.6 cm (filled 
circles). For each cell length the phase mismatch AkL was vaned by 
changing the SBS medium for pump beam 2.  

for steady-state amplification. (Steady state will be 
reached in a time t = @ f B  = 7 . 5  ns, which is shorter 
than our 24 ns FWHM pump pulse.) In our experiments 
we measured gZ, L = 10. We expect the amplification due 
to the instability to be observable only when 
( $ / T ~ )  (MIM,,, - 1)  > 10. For our pulse duration, 
t p / 7 B  = 33, so the instability is observed for M > 

We also measured the threshold intensity as a function 
of the ratio of the intensity of pump beam 1 to pump beam 
2 for constant phase mismatch ( A  kL = 5.7 ). This is plot- 
ted in Fig. 5 .  The critical intensity has a broad minimum 
in the vicinity of a = 0.1, and grows rapidly as a is de- 
creased. Our experimental value for the threshold inten- 
sity is again a factor of 1.3 times the theoretical prediction 
over a large range in pump beam ratio. 

We commented above that the peaks in the theoretical 
curves of Fig. 4 occur when two poles of (6) have the 
same real parts. This implies that both poles will have the 
same growth rate and contribute equally to the amplified 
signal and phase conjugate. However, the two poles will 
generally have different imaginary parts, and therefore dif- 
ferent frequency shifts during the transient growth of the 
amplified signal. This difference in frequency shift results 
in intensity modulation. Computer modeling suggests that 
this modulation will continue from the transient growth 
phase into the saturation regime [6]. We observed mod- 
ulation in the amplified signal for phase mismatch near 
the maximum in Fig. 4. In Fig. 6(a), we show a typical 
pulse shape for the amplified signal. In Fig. 6(b), we show 
the pulse shape observed for AkL = 8.9 (open circle in 
Fig. 4). Similar shapes were observed for the point in Fig. 

1.3Mc,. 

15 L . 

Fig. 5 .  Experimental and theoretical normalized instability threshold in- 
tensity (M,,,,) as a function of pump intensity ratio, a = M , / M , .  The 
dashed curve is once again a factor of 1.3 times the solid curve, which 
is determined for a step function input. . 

AkL = 7.7 i 
AkL = 8.9 ,! 0 r 

p10m 

Time 
Fig. 6 .  (a) Typical output signal pulse for phase mismatch far from a max- 

imum on the M,,,, versus AkL curve (Fig. 4). (b) Modulated output pulse 
shape for AkL = 8.9,  near the maximum in Fig. 4. (c) Output pulse 
shape given by computer model simulating experimental conditions. 

4 at AkL = 8.7 (square in Fig. 4), but not at AkL = 8.5 
(filled circle in Fig. 4). This pulse consists of two peaks 
separated by 7.1 ns with a modulation depth of more than 
50 % . We have used our computer model to predict the 
pulse shape of the amplified beam using the experimental 
parameters corresponding to Fig. 6(b). The result is shown 
in Fig. 6(c). This pulse is qualitatively similar to that in 
Fig. 6(b), with two main peaks separated by 6.4 ns. There 
were no free parameters in this model. The model predicts 
that some modulation should be seen within a range of 
(AkL),,,,, - 0.5 c AkL c (AkL), , ,  + 0.5, where 
( A  kL),,, is the value of the phase mismatch at the max- 
imum. This range depends somewhat on the amount the 
pump intensity exceeds the threshold intensity for insta- 
bility. We did not observe such a broad feature. However, 
there is some uncertainty in our determination of AkL, 
which depends primarily on the determination of the fre- 
quency of the second pump beam (see above). We esti- 
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mate this uncertainty to be - 15 % , which might explain 
why the modulation was not seen for the AkL = 8.5 case. 
It should also be noted that as AkL is changed and the 
signal intensity varied, the theory (and model) predicts 
that the depth of modulation will change but the modu- 
lation frequency remains the same to within 10%. 

NOISE CHARACTERISTICS 

’l’he issue of noise in Brillouin amplifiers and four-wave 
mixing systems has been treated by Bespalov er al. [5] 
and Matveev [12]. In a Brillouin amplifier, the noise re- 
sults from spontaneously scattered pump radiation. This 
scattered radiation is amplified by essentially the same 
factor as an external signal. Thus the noise signal mea- 
sured by detector PD4 in Fig. l with only pump beam l 
present is the gain G times an equivalent input noise in- 
tensity. This equivalent input noise intensity is deter- 
mined by the number of thermally-excited acoustic pho- 
nons which can spontaneously scatter the pump beam into 
the detector’s field of view, and can be estimated using a 
semiclassical argument. There will be kT/hv, phonons per 
transverse mode within a frequency bandwidth AV; and 
?re2 /4h2 is the number of transverse phonon modes which 
can scatter light from the pump beam into the aperture of 
the photodetector. Each thermal phonon which scatters 
light into the signal path is equivalent to a noise photon 
so the equivalent noise power for an amplifier is [5], [ 121 

In this expression, k is the Boltzman constant and Tis the 
temperature, so kT = 4 X lo-” J; the ratio of the Stokes 
frequency to the acoustic frequency is - 10’; AV = 200 
MHz is the Brillouin linewidth; 0 = 1.8 mrad is the angle 
subtended by the aperture of photodiode 4; and h = 1 pm 
is the optical wavelength. Experimental determinations of 
the noise intensity agree with this estimate to within an 
order of magnitude [5], [13]. The measurement of the 
noise is sensitive to the precise determination of the gain. 
In our experiments, these measurements could generally 
be made only at high gain, G = lo8. This requires gIL 
= 19. Thus a 10% uncertainty in pump intensity or g will 
result in factors of -7 in the gain G, and hence in the 
determination of the effective input noise from the noise 
measured by PD 1 .  

The noise in BEFWM results fundamentally from the 
same source. However, two additional factors are pres- 
ent. First, the instability causes the noise to grow in time 
at the same rate as a signal, until pump depletion sets in. 
Second, the scattering of pump beam 2 to generate the 
phase conjugate occurs with a relative efficiency deter- 
mined by the phase mismatch and ratio of pump beam 
intensities. Thus the right-hand side of (11) should be 
multiplied by a correction factor of 4 ( A  k ,  a )  = 1 for our 
experimental conditions appears (see [5], [12], [14]). A 
detailed derivation of the parameter 4 is outside of the 

scope of this paper, but its existence cannot be neglected. 
Physically, 4 is dependent upon the relative scattering ef- 
ficiency for the two pump beams, and describes the de- 
gree of correlation and the localization of the noise source. 
When 4 = 1 the system behaves as if there were a single 
noise source localized in a small region of space, in the 
same way as conventional SBS can be regarded as a high- 
gain amplifier with a noise source at one end (the treat- 
ment we used above for noise in an SBS amplifier). In 
this case, the effective noise can be predicted by semi- 
classical arguments based on the energy density of ther- 
mally excited phonons, the bandwidth, and the number of 
modes which can scatter light into the relevant solid an- 
gle. The extra mathematical complexity of assuming dis- 
tributed and uncorrelated noise sources does not influence 
the result. In addition, the scattering efficiencies for the 
Stokes and anti-Stokes processes are approximately equal. 
However, when 4 < 1 the uncorrelated and distributed 
nature of the noise source does effect the scattering pro- 
cess, and the intensity component of the acoustic noise 
which contributes to the output is smaller (by a factor of 
4)  than one would predict using the semiclassical argu- 
ment. This occurs only for small phase mismatch, AkL 
< ?r, and large pump beam intensity ratios, a > 0.2. In 
our experiments 6 = 1.  

We have measured the noise in BEFWM using CS2 to 
generate pump beam 2 (so A kL = 8 . 7 ) .  Without pump 
beam 2 present, we set pump beam 1 to give a gain of G 
= 6 x lo7, and injected a signal to obtain a signal-to- 
noise ratio of S /N  = 15. With pump beam 2 present, the 
signal to noise measured at detector 4 was S /N  = 5, or 
a factor of -3  worse. The phase conjugate had S /N  = 
1 .  Clearly the presence of two pump beams resulted in a 
degradation of the signal-to-noise. Theoretically we pre- 
dict the fundamental noise level to be the same for the 
Brillouin amplifier and for both amplification and conju- 
gation by FWM through SBS, and we do observe that they 
are equal within a factor of 15. Bespalov er al. [5] ob- 
served a slightly better signal-to-noise ratio for SBS FWM 
than for amplification. The differences between these re- 
sults are due to slight differences in the experimental ge- 
ometry and approach rather than any fundamental incon- 
sistency. In both our work and that of Bespalov [5] the 
measured noise levels are as much as an order of magni- 
tude greater than predicted by theory (the same is true for 

The source of the additional noise in our experiment 
may be the second pump beam itself. Light from this 
source may be added to the signal through imperfect po- 
larization decoupling. We have measured the gain of a 
signal generated in CS2 and amplified using TiC14. The 
difference in frequency shift for these two media is 670 
MHz, much greater than the 100 MHz half width of the 
Tic& Brillouin shift. For a Lorentzian line, one would 
expect the gain to scale as g (  v )  = g o / (  1 + Av2/Av; )  = 
go/46. Thus at our maximum pump intensity, where goIL 
= 20, one would expect gIL = 0.43 and G = 1.5. Ex- 

~ 5 1 ) .  
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perimentally, gains of G = 2 are observed, and the output 
signal is modulated at the beat frequency between the two 
SBS media, 670 MHz. Thus it appears that some of the 
additional noise in our BEFWM experiment may derive 
from the SBS cell used to generate pump beam 2, and that 
some of this noise is near resonance for the four-wave 
mixing process. 

Additional sources of system noise have been identi- 
fied. For example, imperfections in optics allow some of 
the pump beams to leak through polarizers, which com- 
bined with weak forward scattering (by dust, etc.) can 
superimpose unwanted light onto the path of the signal or 
conjugate beams resulting in increased system noise [ 151, 
[16]. A noise source which must be avoided is parasitic 
oscillation between surfaces at either end of the SBS FWM 
cell [17]. 

In BEFWM there is a direct competition between the 
noise and an input signal, which is not necessarily the 
case in a Brillouin amplifier. This is because the instabil- 
ity in BEFWM drives the process to saturation of the pump 
beams independent of the signal strength, whereas a Bril- 
louin amplifier can be operated in a small signal regime 
without pump depletion. The presence of pump depletion 
means that the noise can be suppressed in the presence of 
a strong signal. This has been observed experimentally. 
The degree of suppression is related to the strength of the 
input signal and the arrival time of the signal [3]. It also 
depends on the ratio of the pump intensity to the critical 
intensity, which determines the degree of pump deple- 
tion. 

COMPETITION BETWEEN Two SIGNALS 
In [6] the response of BEFWM to sudden changes in 

the phase of the input signal was investigated through 
computer modeling. This model showed that once the in- 
stability was established, it was self-sustaining and im- 
pervious to changes in the phase of the input signal. The 
phase conjugate pulse was affected only when the phase 
shift occurred within a narrow time window during the 
growth of the instability. We have extended this computer 
modeling to investigate the effect of changes in the signal 
intensity. These results predict that, once the instability 
is established, the output does not respond to changes in 
the input signal intensity. Even switching the input signal 
to zero had no effect, and the conjugate intensity contin- 
ued to grow until the pumps were depleted. 

To investigate the response of BEFWM to a change in 
input signal, we injected a second signal into the four- 
wave mixing cell. This signal was delayed relative to the 
first signal by about 8 ns, and separated from the other 
signal and the pump by a small angle. The output inten- 
sity of the second signal was determined in the absence 
of the first signal. Then the intensity of the first signal was 
adjusted without the second signal present so that the out- 
put intensity equaled that observed for the second signal. 
When both signals were injected, the intensity of the sec- 
ond output signal was reduced by a factor of 5 relative to 

that observed without the first signal, whereas the inten- 
sity of the first signal was unaltered. This experiment was 
carried out just above threshold for the instability, where 
only - 1 % of the pump beam was coupled into the signal. 
This ensured that noise did not build up to a significant 
level before the second signal arrived, and also minimized 
the effect of pump depletion by the first signal. Clearly, 
the instability in BEFWM favors the first acoustic wave 
that is established. Although this experiment does not di- 
rectly confirm the predictions of computer modeling, it 
lends support to the concept that, once established, the 
acoustic wave does not adapt to changes in the input sig- 
nal. 

CONCLUSIONS 
We have measured the threshold for instability in 

BEFWM as a function of both the ratio of the pump beam 
intensities and the phase mismatch. The measured thresh- 
olds agree with theoretical modeling. Measurements of 
noise in BEFWM have also been made. The noise ob- 
served in BEFWM shows a factor-of-three increase over 
the noise observed in a simple amplifier operating under 
similar conditions. This increase is thought to be related 
to amplification of the second pump beam by the first 
pump beam. Competition between two signals with a rel- 
ative time delay has also been investigated, and indicates 
that once the instability in the four-wave mixing process 
is established, it is self-sustaining and will not respond to 
changes in the input signal. 
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