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The Moments of Matched and Mismatched Hidden 
Markov Models 

ROY L. STREIT, SENIOR MEMBER, IEEE 

Abstract-An algorithm for computing the moments of matched and 
mismatched hidden Markov models from their defining parameters is 
presented. The algorithm is of general interest because it is an exten- 
sion of the usual forward-hackward linear recursion. The algorithm 
computes the joint moments of the posterior likelihood functions (i.e., 
the scores) by a multilinear recursion involving the joint moments of 
the random variables associated with the hidden states of the Markov 
chain. Examples comparing the first two theoretical moments to sim- 
ulation results are presented. They are of independent interest because 
they indicate that the distribution of the posterior likelihood function 
scores for matched and mismatched models are asymptotically log-nor- 
mal in important special cases and, therefore, are characterized 
asymptotically by the first two moments alone. One example discusses 
the effect of a noisy discrete communication channel on a suboptimal 
classification method based on the distributions of scores rather than 
on maximum likelihood classification. 

I. INTRODUCTION 
IDDEN Markov models (HMM’s) are statistical H models that are developed in diverse applications to 

characterize different classes of nonstationary time series 
or signals. Subsequently, HMM’s are utilized for the au- 
tomatic classification of an unknown signal into one of 
these signal classes. In speech applications, they are used 
to characterize the time variation of the short-term spectra 
of spoken words. An example is the speaker-independent 
isolated word recognition (SIIWR) problem where 
HMM’s characterize the words (or parts of words) in a 
finite size vocabulary. Different words are characterized 
by different HMM’s [ 13. In target tracking applications, 
HMM’s are used to characterize the time variation of a 
target track measurement sequence. A specific example is 
the narrow-band fre,quency line tracking problem where 
HMM’s characterize possible target frequency shifts as 
well as noise in the measurement sequence for finite sig- 
nal-to-noise ratio (SNR). Different HMM’s characterize 
different target track dynamics and different SNR’s [8]. A 
brief description of the mathematical structure of HMM’s 
is given at the beginning of Section 11. 

An application-specific preprocessor is critical to the 
successful use of HMM’s in the application. This prepro- 
cessor maps (or transforms) an arbitrary input signal s ( t )  , 
t 1 0 into a discrete observation sequence { O(  t )  , t = 1, 
2, * * } . Reference [ l ,  pp. 1077-10781 gives a descrip- 
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tion of one such preprocessor for the SIIWR problem, and 
[8] describes one suitable for frequency line tracking. 
Throughout this paper, it is assumed that a satisfactory 
preprocessor is available, but no assumptions are made 
about its specific nature. The output of the preprocessor 
constitutes the observation sequence. In practice, this se- 
quence is truncated to have finite length T where T i s  se- 
lected according to the application needs. The truncated 
sequence is denoted by OT = { O ( t ) ,  t = 1, 2, * - - , 

The act of computing specific numerical values for the 
various parameters of an HMM is called “training.” 
Training takes place on the outputs of the preprocessor 
when it is given multiple realizations of a specific signal 
class. If the Baum-Welch reestimation algorithm is used 
for training, then training is equivalent to solving a math- 
ematical optimization problem to determine maximum 
likelihood estimates of the HMM parameters [ 2 ] .  In this 
paper, it is assumed that the training phase is completed 
and that the HMM’s developed are adequate models for 
each of the signal classes of interest (e.g., the vocabulary 
words in the SIIWR problem or the target/SNR charac- 
teristics in the tracking application). We denote by 
HMM ( i  ) the HMM parameter set defining the ith signal 
class. An important consequence of these training as- 
sumptions is that H M M ( i )  can be used as a synthetic 
signal source, that is, HMM ( i  ) can be used to simulate 
the output of the preprocessor when the ith signal is input 
to it. We use the notation 0, E HMM ( i  ) to mean that the 
observation sequence 0, is a realization of a random vec- 
tor whose statistical distribution is defined implicitly by 
H M M ( i ) .  

HMM’s are used for classification of an unknown ob- 
servation sequence 0, by exploiting a probability measure 
or posterior likelihood function, as depicted in Fig. 1. The 
posterior likelihood function is defined on the set of all 
truncated sequences { OT ] by utilizing the mathematical 
structure of HMM’s. Thus, the likelihood of a given 0, 
depends critically on the numerical values of the param- 
eters defining the underlying HMM. The ith HMM recog- 
nizer computes the posterior likelihood function J; ( OT ) . 
If HMM ( i  ) is a finite symbol HMM (see Section I1 be- 
low), thenJ; (0,) is equivalent to a probability, that is, 

T I .  

9 P -  ( 1 )  i =  1, e . .  A ( O T )  = Pr [oT(HMM(i)] ,  

The maximum of the computed likelihoods identifies or 
classifies the original signal s ( t )  that was input to the pre- 
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COMPUTE- 
ItlOTI = Pr[OTI HMMlll] 

CUSSIFICATION' 
SI11 = SIGNAL q. 
WHERE 

PREPROCESSOR 

q = A f f i M U ( 1 ~ l O ~ l l  
I I I S D  

COMPUTE 
fglOd = P ~ I O T  I HMMIDI] 

Fig. 1 .  Classification of unknown signal s( r )  as one o f p  signals for which 
trained HMM's are available. 

processor. It is well known that this classifier is optimum 
in the Neyman-Pearson sense; that is, for a specified 
probability of incorrect classification, the probability of 
correct classification is a maximum [3]. 

The fundamental problem studied in this paper is the 
determination of the probability density function (pdf) of 
the test statistic ( 0,) when 0, E HMM ( j ) . In other 
words, if 0, is a random vector generated by HMM ( j  ) , 
what is the pdf of the numerical values of the ith posterior 
likelihood function J; ( O,)? Note that the HMM's are 
matched if i = j and mismatched if i # j .  This paper 
presents an algorithm for computing explicitly the mo- 
ments of the desired pdf up to any required order directly 
from the underlying parameters of the HMM's involved, 
and presents examples that compare the first two theoret- 
ical moments to simulation results. The algorithm is of 
general interest because it is an extension of the usual for- 
ward-backward linear recursion [2] for HMM's. It com- 
putes the joint moments of the likelihood functionsJ; (0,) 
by a multilinear recursion involving the joint moments of 
the random (observation) variables uniquely associated 
with the hidden states of the HMM's. The examples are 
of independent interest as well. First, they indicate that 
the desired pdf is asymptotically log-normal in important 
special cases and, therefore, is completely characterized 
(asymptotically) by the first two moments alone. It is not 
obvious how the central limit theorem can be used to ac- 
count for this result. Second, the examples show that a 
suboptimal classification method using preset detection 
thresholds for the likelihood functions A (0,) may be 
useful in certain instances. This point is discussed at the 
end of this section. 

The distribution we seek is defined via its cumulative 
distribution function (cdf), denoted by Fl/ ( x )  . It is intu- 
itively appealing to attempt to define FiI ( x )  by setting 

F,/ (x) = Pr [ J ; ( O T )  < x and OT E HMM ( j ) ]  

where x is any real number; however, such a definition is 
ambiguous because the meaning of the probability mea- 
sure Pr [ * ] is unclear. Instead, for finite symbol HMM's, 
we define 

where the function H (  ) is defined by 

H ( x )  = 1 

H ( x )  = 0 

if x 2 0 

if.x < 0. 

From ( 2 ) ,  it is clear that Fij ( x )  is a cdf because it is a 
nonnegative increasing right-continuous function, and the 
limit of F, ( x )  is 0 as x goes to 0- and 1 a s x  goes to +W. 
For continuous symbol HMM's, the summation over 0, 
in (2) must be replaced by integration over 0,. Algo- 
rithms that calculate F, directly from the HMM parame- 
ters are not known. For later reference, note that, in gen- 
eral, F,, ( x )  # Fii ( x ) .  

The moments of dFiJ ( x )  are defined by the Riemann- 
Stieltjes integral 

Mu ( k ,  T )  = j:m x'dF!, ( x ) ,  k = 0, 1, 2 ,  * - . 

( 3 )  
If Fi, ( x )  is differentiable with derivative FI; ( x )  , then the 
moments can be written equivalently as the Riemann in- 
tegral 

M i / ( k ,  T )  = jm x " F I ; ( x )  dx. 

The moments depend on the length 7' of the observation 
sequence because Fji ( x )  depends on T ,  as seen from (2). 
They uniquely determine dF, ( x )  when they are all finite 
and the characteristic function of dF, ( x )  has a finite ra- 
dius of convergence 141. For finite symbol HMM's, it is 
clear from (1)  and ( 2 )  that dF, (x )  = 0 for x < 0 and x 
> 1 .  Thus, 

-m 

M , , ( k ,  7') = . ~ ' d F , ~ ( x )  I 1 

so that all the moments are finite. The series 

Sd 
m 

A/ ( w )  = c M,/ ( r ,  7') (iw)p 
1- = 0 

for the characteristic function of dFci (x) is absolutely 
convergent with an infinite radius of convergence be- 
cause, for fixed \vu # 0, each summand is bounded above 
in magnitude by I wo I " / I - ! ,  and thus the radius of conver- 
gence must be at least as large as 1 w0 1 . Consequently, for 
finite symbol HMM's, the moments of dFi, ( x )  uniquely 
determine dFi, ( x )  . A similar argument holds for contin- 
uous symbol HMM's, provided the likelihood functions 
A ( OT ) are bounded on the set of all sequences { 0, } . In 
this paper, we assume that the likelihood functions are 
bounded because such an assumption is not particularly 
restrictive for applications. 

Receiver-operator characteristic (ROC) curves [3] are 
commonly used in the radar and sonar communities to 
provide quantitative assessments of the correct and incor- 
rect classification rates for classification schemes based 
on likelihood functions. ROC curves can be used for the 
same purpose here. To develop a ROC curve for a given 
classification-related test statistic, say q,  under two hy- 
potheses Hi and H,,  the conditional pdf's (using the no- 
tation in [3]) 

~ ~ / i  H, ( Q  I HI ) and P~,I  H, ( Q I 4 ) 
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that define the test statistic q under the different hy- 
potheses H, and H,,  respectively, must be known. For 
each real number U, - 00 < U < + 00, we define the prob- 
ability 

P F ( u )  = S, PqIH,(QIH,)dQ 

W 

and the probability 
m 

PD(u) = S, P,iH,(QIH,)dQ. 

The ROC curve for q is simply the locus of points 
( P ,  ( U )  , PD ( U)) parameterized by U. The parameter U is 
usually treated as a decision threshold in applications. 
Suppose the decision threshold Uthresh is selected. Then if 
q I Uthresh, the classifier decides H,. The probability of 
this decision being correct is Po, and the probability that 
it is incorrect is PF.  PF and 1 - PD are usually referred 
to as the false alarm and false dismissal probabilities, re- 
spectively. Analogous remarks pertain if q < Uthresh. Note 
that the ROC curve for U = -UJ goes through the point 
(1 ,  1 ) a n d f o r u  = +ooitgoesthroughthepoint(O,O). 

The ROC curve of the optimum classifier depicted in 
Fig. 1, under the hypotheses OTE H M M ( i )  and OT€ 
HMM ( j ) , is determined for the likelihood ratio test sta- 
tistic 

qopt = & ( O T ) / L ( O T ) .  

The required conditional pdf for qopt is defined by the cdf 

No recursion for L,, (x) is known, so the only way to eval- 
uate it is by doing the summation; however, this is im- 
practical because the number of terms in the summation 
grows exponentially in T. Simulation is probably the best 
method for estimating the ROC curves for the optimal test 
statistic qopt. In any event, a decision threshold U,, must 
be set to enable classification to proceed. The “natural” 
threshold to set is urJ = 1 for all i and j ,  for then the 
maximum likelihood determines the classification, the 
classification decision is unique (except for ties) and the 
classifier depicted in Fig. 1 is obtained. However, in gen- 
eral, it is not necessary to make the natural choice. The 
best choice depends on the false alarm and false dismissal 
requirements for each pair of hypotheses OT€ H M M ( i )  
and OT€ HMM ( j  ) in the application. 

The ROC curve of the suboptimal classifier, under the 
hypotheses HMM ( i  ) and HMM ( j  ) , is determined for 
the test statistic 

qsubopt = fJ ( OT) 

The required conditional pdf‘s for q\ubopt are given by 
dF,, ( x )  and dF,, (x), respectively. As shown in Section 
11, the moments of dF,, (x) and dF,, (x)  can be computed 
to any desired order; hence, the ROC curve for q\ubopt can, 
in principle, be approximated to any required accuracy 

cision threshold U/, for each pair of hypotheses OT€ 
H M M ( i )  and OTt H M M ( j )  is not available. Instead, 
the thresholds must be set by direct examination of the 
ROC curves. 

The test statistic qsubopt is identical to qopt in one impor- 
tant special case. If HMM ( i  ) is such that ( OT ) in the 
denominator of qopt is a constant function of OT, then 
qsubopt can be scaled so that qsubopt = qopt. A situation that 
might require such an HMM ( i  ) is one in which white 
noise is being modeled, for then one might anticipate that 
all observation sequences at the output of the preprocessor 
are equally likely. The classification statistic is more ap- 
propriately referred to as a “detection” statistic in this 
instance. Thus, a ROC curve for the optimum detection 
statistic can be developed from the moments computed by 
the algorithm given in Section 11. 

The use of qsubopt in preference to qopt is appropriate 
only if the associated conditional pdf‘s for the ROC curves 
are “well separated” from each other, and if the appli- 
cation places great emphasis on control of the false alarm 
or false dismissal probabilities. In this situation, both qopt 
and qsuhopt are very likely to perform well; however, es- 
timated ROC curves for qopt would have to be obtained 
from very large simulations, especially if very small false 
alarm probabilities or false dismissal probabilities are re- 
quired in the application. On the other hand, ROC curves 
for qsubopt can be obtained reliably without simulation. In 
any event, classification performance using qFubopt should 
bound the classification performance using qopt. 

11. THE MOMENT ALGORITHM 

Every HMM is comprised of two basic parts: a Markov 
chain and a set of random variables. The Markov chain 
has a finite number of states, and each state is uniquely 
associated with one of the random variables. The state 
sequence generated by the chain is not observable, i.e., 
the Markov chain is “hidden.” At each time t = 0, 1, 2 ,  
. * .  , the Markov chain is assumed to be in some state; 
it transitions to another state at time t + 1 according to 
its transition probability matrix. At each time t ,  one ob- 
servation is generated by the random variable associated 
with the state of the Markov chain at time t .  The obser- 
vations are referred to as symbols. If the random variables 
assume only a finite set values, the HMM is referred to 
as a finite symbol HMM. If the random variables assume 
a continuum of values, the HMM is called a continuous 
symbol HMM. The full parameter set defining an HMM 
is comprised of the initial state probability density func- 
tion of the Markov chain at time t = 0, the Markov chain 
state transition probability matrix, and the pdf‘s of each 
of the random observation variables. 

The reader is referred to [2] for further discussion of 
HMM’s and the basic algorithms related to them. Of par- 
ticular importance is the fonvard-backward algorithm that 
is used extensively in this section. It is not necessary to 
read the remainder of this section to understand the ex- 

without resorting to simulation. A natural choice of de- amples presented in Section 111. 
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The algorithm is presented separately for finite and con- 
tinuous symbol HMM’s in Section 11-A and 11-B, respec- 
tively. Since the presentation uses only the forward part 
of the forward-backward algorithm, the algorithm may be 
named the forward moment algorithm. Section 11-C con- 
tains a statement of the backward moment algorithm and 
an identity that is analogous to the Baum identity of the 
usual forward-backward algorithm. 

A .  Finite Symbol HMM’s 
Let HMM(u)  be a hidden Markov chain with n ( v )  

states, v = 1 ,  . . . . Subscripted indexes will always be 
written as functions of their subscripts (for instance, n ( v )  
is used instead of n u )  to avoid the later use of subscripted 
subscripts. Let the state transition probability matrix of 
HMM( v )  be denoted as A” = [ u ~ ( ~ , , . , ~ , , ) ]  for i( v ) ,  j (  v )  
= 1 ,  . . . , n ( v )  . Let the initial state probability vector 
of HMM(v)  be denoted as x u  = [ T ; ( , ) ]  for i ( v )  = 1,  

We first restrict attention to finite symbol HMM’s, that 
is, we suppose that every observation sequence OT = 
{ O ( t ) ,  t = 1,  . - .  , T }  is such that 

9 n ( v ) .  . . .  

O ( r )  E v = { v1, . . * , v,,,} 
where V is the set of all possible output symbols of the 
preprocessor. The true nature of the symbols in Vis of no 
importance here. HMM’s assume that O ( r )  is a random 
variable whose probability density function depends on 
the current state of the Markov chain. Let the discrete 
probability density function for HMM ( v )  when it is in 
state i (  v )  be denoted as B,”,,,  for i (  v )  = 1 ,  * * . , n ( v ) .  
Thus, each B:,, ,  is a row vector of length m. Stacking 
these row vectors gives the n ( v )  X m symbol probability 
matrix 

I R , ”  I 

Note that 

b:,”, ( b o , )  = b:(”,.,c”l 

where we define 

by(u)(O(t))  = Pr [ O ( t ) ( H M M ( v )  and state = i (v) ] .  

The assumption that the training phase is completed means 
that the parameters HMM ( v )  = ( x u ,  A ” ,  B ” )  are known. 

For finite symbol HMM’s, F,, ( x )  has a finite number 
of jump discontinuities. Let X I ,  denote the set of all values 
of x for which F,, ( x )  is discontinuous. Definition (2) im- 
plies that the discontinuities of F,, ( x )  occur precisely at 
the different possible values ofA (0,). Define the subset 
SI ( x )  of the set of all observation sequences { OT } by 

S, = { 0,:~; (0,) 1 . r } .  

The sets SI ( x )  and SI ( y )  are disjoint if x # y. Also, the 
union of SI ( x )  over all x in X,, is the set { OT } of all 
observation sequences. Now, from definition (2), it fol- 
lows that 

dFI, (x) = Fl, ( x + )  - F8, ( x - )  

Substituting (4) into (3) gives 

= Pr [oTIHMM(i) ] ’Pr  [ O T ( H M M ( j ) ]  
0 7  

( 5 )  
where, in the last equation, we have used (1) .  It is clear 
from ( 5 )  that MI, ( k ,  T )  # M,, ( k ,  T )  , in general, for k 
> 1. Fork  = 1, however, we have MI, ( 1 ,  T )  = M,, ( 1 ,  
T )  for all i ,  j ,  and T. 

The expression in ( 5 )  is computable directly from the 
parameters of HMM ( i  ) and HMM ( j  ) ; however, such a 
calculation is not practical except for small T because the 
computational effort increases exponentially in T.  To see 
this, note that the forward-backward algorithm [2] cal- 
culates Pr [ 0, l HMM ( v ) ]  using n 2  ( v )  T multiplica- 
tions. Thus, each summand in ( 5 )  requires [ n ( i )  
n (  j ) ]  T’ multiplications. There are m T  different possi- 
ble observation sequences OT = { O (  r )  , t = 1 ,  . - * , T } 
because each O ( t )  can be any one of the m output sym- 
bols in V .  Thus, direct calculation of ( 5 )  requires a total 
of n ( i n ( j 1 ’ T’ m multiplications. 

We now derive a recursion for ( 5 )  that requires com- 
putational effort that grows only linearly with T. The re- 
cursion is derived for a more general expression that con- 
tains ( 5 )  as a special case. For k = 1 ,  2, . * * , define 

I, 

R ( k ,  T )  = c p r [ o ~ ( H M M ( v ) ] .  ( 6 )  

The application of (6) to compute moments is straightfor- 
ward; for example, R ( k  + 1 ,  T )  equals M21 ( k ,  T )  when 
HMM(2)  = * = HMM(k + 1 ) .  Note that R ( k ,  T )  
can be interpreted as a joint moment of HMM’s, that is, 
as a joint moment of the likelihood functions A (0,) of 
the HMM’s. 

The derivation of the recursion for R ( k ,  T )  proceeds 
as follows. The forward recursion portion of the forward- 
backward algorithm gives the expression 

0 7  u = I  

l I ( U l  

pr [O,(HMM(V)] = a ; ( j < v > )  (7 )  
, ( U ) =  I 

where, for 2 I t 5 T ,  

( 8 )  

11(1’ l  

d ( j C 4 )  = c c 4 - l ( + ) ) 4 1 j )  , ( I , )  r ,(”I= I 
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and well as the indexes i ( v )  , and because of (1 l) ,  we have 

a ; ( j < v > )  = b;(u)(O(l)). ( 9 )  P t ( j ( 1 L  * * d k ) )  
Substitute (7) into (6) to obtain = r ( j ( i ) ,  . . . , j ( k ) )  

R ( k ,  T )  = c a ; ( j ( v ) )  
j ( v ) = l  Or U =  I 

where we define, for t = 1, * 9 T,  
k 

P I ( j ( l ) ,  * * , j ( k ) )  = rI a : ( j < v > > .  (11) 
0, u = l  

One interpretation of p T  is that it equals R ( k ,  T )  given 
that HMM(v)  must end in s t a t e j ( v ) ,  v = 1, - - , k .  
We seek a recursion for p T .  First suppose that 2 5 t 5 
T. Then, substituting (8) into (1 1) gives 

P r ( m 9  * * * 9 . w )  

m k  

= n bj”,,) ( V , ) .  (13) 
s = l  v = l  

Note that r is the joint moment of the random observation 
variables uniquely associated with the state j (  v )  of 
HMM(v) .  

Equation (12) is the desired recursion for 2 5 t 5 T. 
For t = 1, substituting (9) into (1 1) gives 

P l ( j ( l ) 9  - * A k ) )  
k 

= c n ay;( j (v ) )  
O(1)  u = l  

k 

= (h, GV)) O ( I )  u = l  rI b;(”) ( O ( 1 ) )  

k 

= F ( j ( l ) ,  * , j ( k ) )  U =  I (14) 

Let k = 1. From the definition, it is clear that R ( 1, T )  
= 1 for all T,  regardless of HMM ( 1 ) because the sum in 
(6) is over all OT. To check independently the recursion 
(12)-(13), note that, from (13), 

n ( v )  

= I ( u ) =  ’ 1 [ i l  
, . k  

[z [i~ v = l  . . .  

m 

r ( j ( 1 ) )  = bi ( I ) (Vs)  = 1, 1 5 t 5 T. 
s =  1 

From (14), we have 
Because aytV-, ( i (  v)) does not depend on the last symbol 

, 
O ( t ) } ,  we have 
O (  t )  in the observation sequence 0, = { O(  1 ) , . . 

P l ( A  1) 3 * * 9 j ( k ) )  

P l ( j < l > )  = “;(I). 

R(1, 1 )  = c “;(I) = 1. 

Hence, from ( lo) ,  we obtain 
n ( l )  

J ( 1 )  
n(u) J ( 1 ) = 1  

= 1 ( v ) =  ’ I [ i1 u ’ ( ’ ) , J ( v ) ]  I.., [’ U =  I The recursion is verified for T = 1. For T = 2, from (12), 
we have u = l :  . . k  

n ( 1 )  

PLZ(j( )) = r ( l ) = l  e 1.11 ( i <  1) ‘ : ( ! ) . J ( I )  

Because the sum over O(  t )  is independent of the obser- 
vation sequence 0,-1 = { O ( I ) ,  , O ( t  - l ) } ,  as - 
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so that, from (lo),  

= 1  

and the recursion is verified for T = 2. 
The first nontrivial special case is k = 2. In this case, 

R ( 2 ,  T )  is identically the first moment M12( 1 ,  T ) .  From 
(12), we have for 2 I t 5 T 

PCl,(Al) 9 j ( 2 ) )  

= r ( j ( l ) * j ( 2 ) )  
n ( l )  n ( 2 )  

r ( l ) = l  r ( 2 ) = 1  
* c P I - l ( W 9  ~ ( 2 ) ) ~ ~ ( l ) , , ( l ) ~ ~ ( * , , , ~ * )  

and, from (14), 

PI ( A  1 ), j ( 2 ) )  = r ( j (  1 1 3 j ( 2  )) ..:( I ) XJ:2) 

where, from (1 3) ,  
m 

r ( j ( W ( 2 ) )  = s =  c 1 q ( l ) ( K )  bJ:2)(1/F). 

From (lo), then, we have 
n(l) n ( 2 )  

J ( I ) = I  J ( 2 ) = 1  
R(2 ,  T )  = c c P T ( j ( l ) , j ( 2 ) ) .  

Computation of R ( 2 ,  T )  = MI2(  1, T )  is therefore not 
excessively laborious. 

The evaluation of R (k,  T )  using the recursion (12) is 
properly broken into two parts. The first is the precalcu- 
lation of r ( j ( 1 ) , * * * , j ( k )  ) for every possible value 
of the indexes j (  v )  . This requires ( k  - 1 ) m N k  multi- 
plications and N “  storage locations, where 

r r  

is the geometric mean of the number of different states in 
the various HMM’s and is not necesarily an integer. If N 
= 8 and if there are m = 16 different observation sym- 
bols, then computing and storing r for k = 16 requires 
262 144 storage locations and 2.1 X lo7 multiplications. 
Storage is clearly more crucial an issue than multiplica- 
tions. 

It is possible in some cases to utilize the underlying 
symmetries of r to reduce both storage and computational 
effort. For example, if H M M ( 2 )  = * . = HMM(k + 
1 ) , then 

r ( j ( I ) , J ( 2 ) ,  * * * , j ( k  + 1 ) )  

= r ( j ( 1 ) .  a ( j ( 2 ) ) ,  . . . , a ( j ( k  + 1 ) ) )  (16) 

for every permutation U of the k integers j ( 2 ) ,  . . * , j ( k  
+ 1 ) . The proof of (16) follows easily from (13) because 
multiplication is commutative. Thus, one only need con- 
sider indexes that satisfy 

1 I j ( 1 )  I n (  1) and 

1 I j ( 2 )  I j ( 3 )  I * .  5 j ( k  + 1 )  I n ( 2 ) .  

The number of ordered index sets ( j ( 2  ) , , j (k + 
1 ) )  is equal to the number of combinations of n ( 2 )  letters 
taken k at a time, when each letter may be repeated any 
number of times up to k. Storage is therefore proportional 
to 

. . 

N k +  I 

) n(1)  
n ( 2 ) ( n ( 2 )  + 1 )  * .  * ( n ( 2 )  + k - 1 )  = (  k !  

which is significantly smaller than the [ n ( 2  ) ] ‘ n  ( 1 ) stor- 
age that would otherwise be necessary. The total multi- 
plication count is also reduced proportionately. 

Once r has been computed and stored for a given value 
of k, the recursion (12) can be computed for any length T 
of the observation sequence. For each of the N k  sets of 
indexes { j(v)} in (12), the sum over all N k  indexes 
{ i( v ) }  must be undertaken. This sum appears to require 
kNk multiplications; however, by using the nested form, 

it is possible to use approximately 

instead. If lower order terms are neglected, computing one 
iteration of (12) requires about N2k multiplications. For 
an observation sequence of length T ,  computing pT re- 
quires on the order of N2h T multiplications. If N = 8 and 
T = 32, then 2 . 2  X 10l2 multiplications are required for 
k = 6. Assuming a multiplication takes 1 p s ,  the calcu- 
lation requires 61 1 h and is clearly impractical. 

Significant reduction in computational effort is possible 
in some cases by utilizing the underlying symmetries in 
p,. For example, if H M M ( 2 )  = * = HMM(k + l ) ,  
then 

P , ( j ( 1 ) > j ( 2 ) ,  * .  , j ( k  + 1))  

= P I ( m ?  u ( j ( 2 ) ) ,  * * * * a(Ak + 1 ) ) )  (17) 
for every permutation (T of the k integers j ( 2 )  , . . . , j (k 
+ 1 ) . The proof of ( 1  7) follows easily by induction from 
(12) because multiplication is commutative and because 
r satisfies the same symmetry property (16) in this case. 
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Thus, the recursion (12) need be computed for only Nk + I 

sets of indexes. The total multiplication count is reduced 
to 4 N i +  I T, which is significantly smaller than the N 2 k  T 
multiplications that would otherwise be needed. For the 
above example requiring 611 h, if N = n (  1 )  = n ( 2 )  = 
8 and if the symmetry (17) is utilized, the calculation 
would be reduced to roughly a 96 min calculation. Utiliz- 
ing symmetry is clearly significant in that it can turn an 
impractical long calculation into a feasible shorter one. 

Underflow is potentially a problem when the recursion 
(12) is computed. It can be easily overcome in exactly the 
same manner as pointed out in [2] for preventing numer- 
ical underAow during the calculation of the forward- 
backward algorithm. Specifically, let p, be computed ac- 
cording to (12) and then multiplied by a scale factor c, 
defined by 

Then use the scaled values of p, in the recursion (12) to 
compute p, + I ,  which is in turn scaled as shown in (18). 
If we continue in this fashion and recall the expression in 
(lo), it follows that 

Because the product cannot be evaluated without under- 
flow, we compute instead 

T 

log R ( k ,  T )  = - C log c,. (20)  
, = I  

Any convenient scale factor can be used instead of ( 1  8). 
A potentially useful one might be to take C, = N k .  Using 
C, would eliminate the effort of computing the sum in (1 8) 
before scaling. 

B. Continuous Symbol HMM’s 
The objective of this section is to show that the moment 

algorithm for discrete symbol HMM’s can be carried over 
essentially unchanged to continuous symbol HMM’s. In 
fact, it holds also for continuous vector symbol HMM’s; 
however, only the continuous symbol HMM’s are treated 
here for simplicity. 

Throughout this section, it is assumed that each output 
symbol O (  t )  is a real random variable defined on some 
underlying event space I/. The probability density func- 
tion of O ( t )  is uniquely defined for each state i( v )  = 1 ,  
. . .  , n ( v )  of each H M M ( v ) ,  v = 1 ,  2 ,  . . . , and is 
denoted as b:,,, (x) . Thus, for real numbers CY and 0 with 
CY < 0, we have 

j: b : ( ” ) ( x )  dx = Pr [ a  I O ( t )  I 0lHMM(v)  

and state = i( v)] . (21 1 
An observation sequence OT = {x,, t = 1 ,  2 ,  * * * , T }  
is a sequence of real numbers x,, with x, being a realiza- 

tion of the random variable O(  t )  . The posterior likeli- 
hood function f, ( OT ) is a probability density function for 
continuous symbol HMM’s, as opposed to a simple prob- 
ability [see ( l ) ]  for_discrete syqbol HMM’s. Thus, for 
real vectors d and 0 with d < p ,  we have 

S& f,(OT)dOT = Pr [ Z  5 OT 5 p’(HMM(v)] 

( 2 2 )  
where doT  = dxI 

For continuous symbol HMM’s, the functions FQ (x) 
are defined just as in (2), but with a T-fold integral over 
OT replacing the T-fold sum over OT. Thus, we have the 
differential 

* dxT. 

d ~ i j  (x) j 6 ( x  - A ( 0 , ) ) ~  (0,) ~ o T  
Or 

where 6 (  - ) denotes the Dirac delta function. From (3), 
the moments are given by 

m 

M i j ( k ,  T )  = s xkdFQ(x) 
-m 

which is the continuous analog of (5 ) .  It is clear from (23) 
that Mu ( k ,  T )  = Mjj  ( k ,  T ) in general only for the special 
case k = 1. The analog of (6) for continuous symbol 
HMM’s is 

m m k  

R ( k ,  T )  = S * . .  IT f ,(OT)dOT. (24)  
-m v = l  L 

T-fold 

The forward-backward algorithm for computing the 
posterior likelihood function for continuous symbol 
HMM’s is modified [5] as follows: 

n ( v )  

f ” ( O T )  = , c G ( j ( v ) )  (25)  
J ( Y ) ’  I 

where CY > ( j ( v)) is computed exactly as given by the re- 
cursion (8) and (9), with the only difference being that 
bj’[,, (0( t ) )  in (8) is now interpreted as the probability 
density function implicit in (2 1). Consequently, (10) still 
holds exactly if we define 

P f ( . m 3  . * 3 . w )  

m m k  

= Lm * * * S_, ” = I  d ( j ( v ) ) d O ,  (26)  

t-fold 
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as the analog of ( 1  1). Proceeding as before with r-fold 
integrals replacing t-fold summations gives exactly the re- 
cursion (12), but with the one-dimensional integral 

o a k  

r ( j (  1 1 ,  * * , j ( k ) )  = j rI b!(")(X) dx (27) 
-a, I , = I  

in place of (13). 
The remarks in the preceding section concerning stor- 

age, multiplication counts, and symmetry properties all 
apply for continuous symbol HMM's. The primary dif- 
ference is that (27) requires an integral evaluation instead 
of a finite sum as in (13). This evaluation increases the 
initial computational overhead, but once (27) is com- 
puted, the algorithm (12) proceeds exactly as before. 

C. The Forward-Backward Moment Algorithm 
The moment algorithm presented above in this section 

used the forward probabilities defined by (8)-(9). It is 
equally feasible to use the backward probabilities for the 
same purpose. They are defined by 

P T ( j ( 4 )  = 1 

and, for T - 1 2 t 2 1,  by 
I l ( W )  

P , ( j ( V ) )  = I ( Y )  = 1 a,,w,,l(w,bl(w,(O(t + l > ) P , + l ( i ( 4 ) .  

7 , ( j ( l ) >  * * d k ) )  = c 0, " = I  P / ( j W )  

The backward moment algorithm computes, for 1 I t 5 
T - 1, the function 

I 

where 0, = ( O ( t  + I ) ,  
recursion is given by 

* * , O (  T )  }. The backward 

T T ( j ( l ) ,  . . *  , j ( k ) )  = 1 

and, for T - 1 2 t 2 I ,  by 

7 , ( j ( %  . * .  , J ( k ) )  
1 

y = l  , . . .  .I; 

. ~ , + ~ ( i ( l ) ,  * , i ( k ) ) r ( i ( l ) ,  . . . , i ( k ) ) .  

The derivation of this recursion is similar to that of (12)- 

It is straightforward to show that for any t ,  1 I t I T ,  
(13). 

R ( k ,  T )  = p , ( j (  I ) ,  * - , j ( k ) )  
j ( w j  = I 

& , = I  . . .  1 ,I; 

. 7 / ( j ( l ) ,  . . * , j ( k ) ) .  

Note that the case t = Tis ( IO) .  This identity is the analog 
for R ( k ,  T )  of the well-known Baum identity [2] for like- 
lihood functions, i.e.,  

n l v )  

i ( " )  = I 
fU(O,) = % ( i ( V ) ) P t ( i ( V ) ) .  

111. COMPARISON OF THEORETICAL MOMENTS TO 

SIMULATION 
Ergodic Markov chains are those for which it is possi- 

ble to transition from every state to every other state, al- 
though not necessarily in one step. Left-to-right Markov 
chains are those for which transitions to lower numbered 
states are not allowed, that is, have probability zero. 
These two types of chains are sufficiently different that 
they are considered separately in the examples. 

One interpretation is that ergodic HMM's are models 
of quasi-stationary signals, while left-to-right HMM's are 
models of transient signals that ultimately become sta- 
tionary (because the highest numbered state is not exited 
once it is entered). One might therefore expect these two 
types of HMM's to affect classification performance in 
different ways. The three examples given in this section 
support this expectation. 

Using the above interpretation, the examples may be 
described as follows. The first example shows that clas- 
sification using the suboptimal statistic q,"bC,pt reliably dis- 
tinguishes between sufficiently long quasi-stationary sig- 
nals with a reasonable amount of computational effort. 
The second example shows that short quasi-stationary and 
transient signals look significantly different to the HMM 
transient recognizer, but not to the HMM recognizer based 
on the quasi-stationary signal. The third example shows 
that noisy observations of transient signals adversely af- 
fect classification performance by making the transient 
signal appear to have a stationary component, which is 
then misclassified by the HMM transient recognizer. 

A. Two Ergodic HMM's 
HMM ( 1 ) and HMM ( 2 )  are five-state, eight-symbol 

ergodic models whose parameters are given (rounded to 
three significant decimals) in Tables I and 11, respec- 
tively. HMM ( 1 ) clearly generates observation sequences 
of uniformly distributed symbols. HMM ( 2  ) is more com- 
plex in structure, but every symbol can be generated in 
every state. The fundamental question of interest here is 
the following. How long must an observation sequence 
be to guarantee that the suboptimal classification statistic 
qsubopt is highly reliable (say, 99% correct) and has a low 
false dismissal rate (say, of 0.5%)? We will give what 
may best be described as a semiempirical answer to this 
question. 

Because of the nature of HMM ( 1 ), it is easy to see that 

fl(O,) = Pr[O,(HMM(I) ]  = 8-'. 

In other words, the posterior likelihood function based on 
HMM ( 1 ) is constant because all observation sequences 
are equally likely if OT E HMM ( 1 ). In particular, fl  ( 0,) 
cannot distinguish OT. E HMM ( 1 ) from OT E HMM ( 2  ) 
and thus is useless for classification. 

The posterior likelihood function based on HMM ( 2 ) ,  
instead of HMM ( 1 ), is useful for classification. Ten- 
thousand observation sequences 0, of each HMM were 
generated, and the posterior likelihood fi (0,) was com- 
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TABLE I 
PARAMETERS OF HMM ( 1 ) 

NUMBER OF MARKOV STATES = 5 

NUMBER OF SYMBOLS PER STATE = 8 

INITIAL STATE PROBABILITY VECTOR: 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 

TRANSITION PROBABILITY MATRIX: 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 
2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 

SYMBOL PROBABILITY MATRIX (TRANSPOSED): 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1 .Z5E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1 . m - 0 1  
1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 

TABLE 11 
PARAMETERS OF HMM ( 2 ) .  ROUNDED TO THREE SIGNIFICANT DIGITS 

NUMBER OF MARKOV STATES = 5 

NUMBER OF SYMBOLS PER STATE = 8 

INITIAL STATE PROBABILITY VECTOR: 
1.00E+00 0.00E+00 O.OOE+OO 0.00E+00 O.OOE+OO 

TRANSITION PROBABILITY MATRIX: 
1.40E-01 2.35E-01 3.OBE-01 1.24E-01 1.94E-01 
1.40E-01 1.14E-01 2.99E-01 2.13E-01 2.34E-01 
4.37E-02 3.20E-01 1.72E-01 1.27E-01 3.38E-01 
9.73E-02 4.97E-01 1.53E-02 1.15E-01 2.75E-01 
2.36E-01 2.49E-02 4.27E-01 2.82E-01 2.98E-02 

SYMBOL PROBABILITY M A T R I X  (TRANSPOSED): 
1.81E-01 1.22E-01 7.89E-03 1.48E-01 7.04E-02 
1.39E-01 8.2BE-02 3.23E-02 9.13E-02 1.33E-01 
2.67E-02 1.60E-01 5.87E-02 1.08E-01 2.34E-01 
1.79E-01 1 .b6E-01 2.1BE-01 1.30E-01 5.97E-02 
1.56E-01 1.5BE-01 2.15E-01 2.09E-01 2.35E-01 
1.19E-01 5.75E-02 1 . l lE-01 1.02E-01 1.03E-01 
1.76E-01 1.32E-01 2.40E-01 6.blE-02 1.76E-02 
2.37E-02 1.22E-01 1.17E-01 1.46E-01 1.47E-01 

puted using the forward-backward algorithm. Fig. 2 
shows a histogram of the natural logarithm of dF22 (x) for 
T = 25. The observation sequences are thus matched to 
the posterior likelihood function. Fig. 3 shows a histo- 
gram of log dF2, (x) for T = 25. In Fig. 3, then, OT is 
mismatched to the likelihood function. As is clear from 
Figs. 2 and 3 ,  the difference between the mean values of 
the log likelihood functions is about 1.4 standard devia- 
tions. Thus, the potential exists for using log d F 2 2 ( x )  to 
classify observation sequences; however, T = 25 is not 
long enough to classify with a high probability of detec- 
tion (i.e.,  P o )  and a low false alarm probability (i.e.,  
PF).  

A useful observation drawn from Figs. 2 and 3 is that 
the probability density function of log dFzj (x) is nicely 
approximated by the normal distribution. Let plj and ulj 
denote the mean and standard deviation of log dF, ( x ) .  
Then, if dF, (x) is log-normal, it is easy to show that p I j  

E p1 

Fig. 2 .  Histogram of 10 000 values of log d F Z Z ( x )  for T = 25 .  (The nor- 
mal curve has the sample mean and variance given in Table 111.) 

Fig. 3 .  Histogram of 10 000 values of log dF,, ( x )  for T = 25.  (The nor- 
mal curve has the sample mean and variance given in Table 111.) 

and aij are related to the moments Mij ( k ,  T )  by the for- 
mulas 

pi = 2 1 0 g M i j ( l ,  T )  - (1/2)10gMij(2, T )  (28) 

= logMij(2, T )  - 210gMij( l ,  T ) .  

It is stressed that (28) and (29) hold exactly if and only if 
dF,] (x )  is truly log-normal. For finite symbol HMM’s, 
dF, (x)  is necessarily discrete, so that both (28) and (29) 
must be viewed as approximations. Sufficient conditions 
under which it may be proved that dF, ( x )  is, in some 
sense, approximately log-normal are unknown. Although 
the central limit theorem is surely responsible for this log- 
normal behavior, it is not clear how to apply it in this 
setting. 

Table I11 gives a comparison between the mean and 
standard deviations of log dF2j (x)  estimated from 10 000 
observation sequences OT and those calculated from (28) 
and (29). This table shows good agreement between the 
approximations of (28) and (29) and the sample means 
and variances. It also establishes that observation se- 
quences of length T = 400 are long enough to distinguish 
between OT E HMM( 1 )  and OT E HMM(2)  with high 
reliability. That is, the difference between the mean value 
of log dF2, (x) and the mean value of log dFz2 (x) is about 
5.2 standard deviations. Assuming log dF2, (x )  and log 
d F 2 2 ( x )  are normally distributed, as they appear to be, 
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TABLE 111 
C O M P A R I S O ~  OF Two ESTIMATES FOR T H E  M F A N  ANI1  S T A 1 I ) A R D  DEVIATION 

or  log dFZ,  (a) FOR j = I ,  2 

Mean V a l u e  S t a n d a r d  D e v i a t i o n  
T S a m p l e  Eq. 28  Sample Eq. 29 

- 1 0 . 8  -10.6 0 . 9 5  0 .71  
1 0  -21.3 - 2 1 . 2  1 .11  0 . 9 2  

- 3 1 . 9  -31 .S 1 . 2 4  1 . 1 0  
- 4 2 . 4  -42.4 1 . 3 5  1 . 2 5  20 

25 -53.0 -52.9 1.47 1 . 3 8  
50 - 1 0 5 . 8  -105.8 1 . 9 3  1 .91  

j = ’  l: 

j = 2  

100  - 2 1 1 . 4  -211.5 2.62 2.67 
200 -422.  b -423 .O 3.60 3 . 1 6  
4 0 0  - 8 4 5 . 0  -845.8 5 .09  5.30 

5 -10.1 -10.1 0 . 6 9  0.59 
1 0  - 2 0 . 3  -20.3 0 . 9 0  0 . 8 4  
1 5  - 3 0 . 6  -30.5 1 . 0 8  1 . 0 3  
20  -40.8 -40.8 1 . 2 3  1 . 2 0  
25 -51 .O -51 .O 1.37 1 . 3 4  
50 -102.1 -102.1 1 . 9 2  1 . 9 0  

100  - 2 0 4 . 4  -204.4 2.66 2 .b9  
200 - 4 0 8 . 9  -409.0 3.77 3.80 
400 - 8 1 8 . 0  -818.1 5.33 5.37 

TABLE IV 
PARAMETERS OF H M M ( 3 )  

NUMBER OF MARKOV STATES = 5 

NUMBER OF SYMBOLS PER STATE = 8 

I N I T I A L  STATE P R O B A B I L I T Y  VECTOR: 
l .OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 

T R A N S I T I O N  P R O B A B I L I T Y  MATRIX :  
6 .00E-01  4 . 0 0 E - 0 1  O.OOE+OO O.OOE+OO 
O.OOE+OO 7 . 0 0 E - 0 1  2 .00E-01  1 . 0 0 E - 0 1  
O.OOE+OO O.OOE+OO 6 . 0 0 E - 0 1  4 . 0 0 E - 0 1  
O.OOE+OO O.OOE+OO O.OOE+OO 7 . 0 0 E - 0 1  
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 

SYMBOL P R O B A B I L I T Y  M A T R I X  (TRANSPOSED): 
9 . 0 0 E - 0 1  1 . 0 0 E - 0 1  O.OOE+OO O.OOE+OO 
1 . 0 0 E - 0 1  b . 0 0 E - 0 1  O.OOE+OO O.OOE+OO 
O.OOE+OO 2 .00E-01  3 .00E-01  O.OOE+OO 
O.OOE+OO 1 . 0 0 E - 0 1  6 .00E-01  1 . 0 0 E - 0 1  
O.OOE+OO O.OOE+OO 1 . 0 0 E - 0 1  2 .00E-01  
O.OOE+OO O.OOE+OO O.OOE+OO 4 . 0 0 E - 0 1  
O.OOE+OO O.OOE+OO O.OOE+OO 3 . 0 0 E - 0 1  
0 . 0 0 E c 0 0  O.OOE+OO O.OOE+OO O.OOE+OO 

O.OOE+OO 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
3 . 0 0 E - 0 1  
l.OOE+OO 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
1 . 0 0 E - 0 1  
6 . 0 0 E - 0 1  
3 . 0 0 E - 0 1  

then classification using q\ubopt has a probability of correct 
classification of 99% for a false alarm rate of 0.5 %. 

Computing the posterior likelihood function f i  ( 0,) for 
T = 400 requires n2T = 10 000 multiplications; thus, 
computational requirements forf, ( 0400) are small enough 
for practical application. Furthermore, the forward-back- 
ward algorithm for computing f2 ( 0,) is mathematically 
equivalent to a nested sequence of matrix-vector multi- 
plications. Consequently, it is possible to reduce total 
computation time by the design of a “black box” to ex- 
ploit this special structure in hardware. 

B. Mixed Ergodic and Le@-to-Right HMM’s 

HMM ( 3 )  is a five-state, eight-symbol left-to-right 
model whose parameters are given in Table IV. It has a 
structure that might conceivably arise in the SIIWR prob- 
lem. Note that HMM ( 3  ) never leaves the fifth state once 
it is entered. Consequently, all sufficiently long observa- 
tion sequences ultimately contain only the three symbols 
V,, V,, and V,. Note also that the symbol V8 occurs if and 
only if the fifth state has been entered. It follows that an 
observation sequence OT containing the symbol V, and 
subsequently containing any of the five symbols V I ,  V,, 
V 3 ,  V,, or V, must have posterior likelihood zero, i.e.,  
f3 ( 0,) = 0. Other forbidden symbol sequences may also 
be noticed. It will be seen that these facts make f, ( 0,) a 
powerful discriminator against ergodic observation se- 
quences. To summarize briefly, this example will show 
that short observation sequences of quasi-stationary and 
transient HMM’s look very different to the transient HMM 
recognizer. On the other hand, all observation sequences 
look somewhat alike to ergodic HMM recognizers. 

When HMM(3)  enters its fifth state, it becomes sta- 
tionary and, consequently, significantly less interesting. 
Insight into the length of the transient portion of HMM ( 3 ) 
observation sequences is gained by estimating the first 
passage time of HMM ( 3 )  into its fifth state, that is, the 
number of transitions in the Markov chain before its fifth 
state is entered. The mean and variance of first passage 

times may be computed explicitly [ 6 ] ;  however, simula- 
tion was used here instead. In 10 000 observation se- 
quences generated for HMM ( 3 ) ,  it was found that the 
mean and standard deviation of the first passage time was 
10.9 and 4.8, respectively. The least first passage time 
was three transitions, and the largest first passage time 
was 43 transitions. Thus, observation sequences for prac- 
tical purposes become stationary for t 1 50. 

Fig. 4 and Table V clearly show that dF3, ( x )  is a “well- 
behaved” distribution, even though HMM ( 3 )  is not er- 
godic. However, dF, , (x)  is not as closely approximated 
by a log-normal distribution as are dF,, ( x )  and dF2, ( x ) ,  
as evidenced by the discrepancy in Table V between the 
sample statistics and the statistics that would hold if 
dF,, ( x )  were truly log-normal. 

Ten-thousand observation sequences of HMM ( 1 ) and 
HMM ( 2 )  were generated and the posterior likelihood 
f, ( 0,) was computed using the forward-backward algo- 
rithm. The observation sequences are thus mismatched to 
the posterior likelihood function. Table VI gives the num- 
ber of sequences for whichf, ( 0,) = 0. Better than 99% 
rejection of the simulated ergodic HMM observations was 
attained when T = 10, that is, when the observation se- 
quences were about as long as the mean first passage time 
of HMM( 3 )  into state 5 .  Total rejection of the 10 000 
ergodic observations occurred for T = 20. 

The ability of f3( 0,) to reject observations of 0, E 
HMM ( 2  ) is much more impressive than the f2 ( 0,) re- 
jection of OT E HMM(3) .  The lack of symmetry Fv ( x )  
# F,; ( x )  is striking in this instance. Table VI1 gives es- 
timates of the mean and standard deviation of log dF2, ( x ) ,  
and Fig. 5 is a histogram of the case T = 25. The mean 
values of the 10 000 samples and those predicted by ( 2 8 )  
agree very well; however, dF,, ( x )  is not as well approx- 
imated by a log-normal as dF22 ( x )  and dF,  I ( x ) ,  as seen 
from the discrepancy in the sample versus the predicted 
standard deviations. In any event, it is clear by comparing 
Table VI1 to the lower half of Table I11 thatfi ( 0,) cannot 
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Fig. 4. Histogram of 10 000 values of log dF, , (x )  for T = 25. (The nor- 
mal curve has the sample mean and variance given in Table V . )  

TABLE V 
COMPARISON OF TWO ESTIMATES FOR THE MEAN A N D  STANDARD DEVIATION 

OF log dFz,(x) 

Mean Value Standard Deviation 
T Sample Eq. 28 Sample Eq.  29 

5 - 5.6 - 4.9 1.92 1 .13 
10 -12.8 -11.8 2.30 1.91 
15 -18.6 -18.2 2.72 2.33 
20 -23.5 -22.6 3.22 2.29 
25 -28.1 -26.3 3.bl 2.15 
50 -50.5 -41.2 4.59 2.75 

TABLE VI 
NUMBER OF 0, E HMM ( i  ) FOR WHICHfl(0,) = 0, i = 1 ,  2 

T HMM( 1 ) HMM(2) 

5 9389 
10 9937 
15 9997 
20 10000 

9172 
9918 
9988 
10000 

TABLE VI1 
COMPARISON OF TWO ESTIMATES FOR THE MEAN A N D  STANDARD DEVIATION 

OF log d F m ( x )  

Mean Value Standard Deviation 
T Sample Eq. 28 Sample Eq.  29 

5 - 10.8 -10.8 0.51 0.60 
10 - 21.4 -21.4 0.91 0.89 
15 - 32.0 -32.0 1.02 1.04 
20 - 42.6 -42.1 1.04 1 .15 
25 - 53.2 -53.5 1.05 1.12 
50 -106.4 -10b.8 1 .ll 1.43 

reliably distinguish OT E HMM ( 3  ) from OT E HMM ( 2 )  
when T = 50. However, since the first passage time of 
HMM ( 3  ) is almost certainly less than T = 50, increasing 
the observation sequence length to improve reliability is 
not appropriate if the underlying intent is the classifica- 
tion of the transient portion of HMM ( 3 ) .  

C. Left-to-Right HMM with Noise 
In this example, the effect of noise on the reliability of 

the qsubopt classifier is assessed for the left-to-right model 
HMM ( 3 ) .  The right way to study noise in finite symbol 
HMM’s is to add the noise to the original time series s ( t )  
and then analyze the particular preprocessor under con- 

Fig. 5 .  Histogram of 10 000 values of log d F , , ( x )  for T = 25. (The nor- 
mal curve has the sample mean and variance given in Table VII.) 

sideration to determine the noisy symbol sequence. How- 
ever, no particular preprocessor is proposed here, and so 
we resort to modeling noise in much the same way that 
Shannon modeled noisy discrete memoryless channels [7]. 
This approach can give an indication of the successful 
classification rate as a function of the probable number of 
incorrect symbols in an observation sequence, but it can- 
not provide an assessment of the effect of signal-to-noise 
ratio on classification because such an assessment re- 
quires knowledge of the preprocessor. 

Denote by hkJ the probability that the observation sym- 
bol V, is altered to symbol VJ by the noise mechanism and 
define the m X m noise probability matrix H = [ h k J ] .  It 
is assumed that H is independent of the state of the Mar- 
kov chain and of time t .  Consequently, the output of a 
given HMM corrupted by noise is equivalent to another 
HMM that is noiseless. If X = ( T ,  A ,  B )  are the param- 
eters of a given HMM with noise matrix H ,  the parame- 
ters of the equivalent noiseless HMM are = ( T ,  A ,  
B H ) .  The proof is straightforward: the product bfkhkJ is 
the probability that the state of the Markov chain is i and 
that symbol j is produced, given that symbol k was the 
output of the given HMM. The sum over k of bfkhkJ gives 
the component GfJ of the equivalent noiseless HMM sym- 
bol probability matrix B .  Clearly, gfJ equals the ( i ,  j )  
component of the product B H ,  so that B = BH. 

The noise probability matrix H must be row stochastic, 
that is, every row sum must equal one. The HMM-gen- 
erated symbol V, is altered by noise to one of the available 
symbols, so that row k must sum to one. 

Because H has row sums equal to one, the matrix B is 
a valid symbol probability matrix for the equivalent noise- 
less HMM, that is, each row of B = BH sums to one. We 
have 

m m m  

C Go = C C bikhkj 
j =  I j = l  k = l  

m m 

= C bik C hkj 
k = l  j = l  

= C bik 
k =  I 

= 1  



STREIT. MOMENTS OF MATCHED A N D  MlSMATCHED HMM'S 

The worst case noise probability matrix, denoted H o ,  
has the constant entry h! = l / m  for all i and j .  In this 
case, 

tn . in 
I I 6 =  c b - h  = -  b r k = - .  rk kj m k = i  m k =  I 

Consequently, HMM's with noise probability matrix H o  
are indistinguishable. In fact, H o  makes all HMM's sta- 
tistically equivalent to the ergodic HMM ( 1 ) given in Ta- 
ble I. 

Let Pr[ V , ]  be the relative frequency of occurrence of 
the symbol V, in observation sequences of length T before 
the addition of noise. Thus, we have C Pr [ V I ]  = 1. After 
alteration by noise, the probability of correct occurrences 
of VI in OT is then Pr [ VI ] h,, . The probability that the sym- 
bol O (  t )  E OT is correct is 

m 

DT = c Pr[ V I ]  h,, (30) 
I =  I 

and the probability that O (  t )  is incorrect is 

ET = 1 - Dp (31) 

For the examples here, given a specific value of ET, we 
choose the simple noise probability matrix H defined by 

h,, = 1 - E ,  all 1 

TABLE VI11 
NUMBER OF 0, E H M M  ( 3 ) + NOISF FOR  WHICH^? ( 0, ) = 0 A T  V A R I O ~  5 

VALLt5 OF E ,  

ET 

T 0.1 0.01 0.001 0.0001 

5 21 94 236 23 1 
10 3906 443 31 1 
15 5305 651 64 11 
20 6625 986 103 1 3  
25  7643 1303 121 11  
50 9643 2684 345 34 

TABLE 1X 
PARAMETERS OF HMM (4 ) ,  ROUNDEDTO THREE SICNIFICAUT DIGITS 

NUMBER OF MARKOV STATES = 5 

NUMBER OF SYMBOLS PER STATE = E 

INITIAL STATE PROBABILITY VECTOR: 
1.00E+00 O.OOE+OO O.OOE+OO 0.00€+00 O.OOE+OO 

TRANSITION PROBABILITY MATRIX: 
6.00E-01 4.00E-01 0.00Et00 0.00E+00 O.OOE+OO 
0 . 0 0 E 4 0  7.00E-01 2.00E-01 1.00E-01 O.OOE+OO 
O.OOE+OO O.OOE+OO 6.00E-01 4.00E-01 O.OOE+OO 
O.OOE+OO O.OOE+OO O.OOE+OO 7.00E-01 3.00E-01 
O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO l.OOE+OO 

SYMBOL PROBABILITY MATRIX (TRANSPOSED): 
B.99E-01 1.00E-01 1.43E-04 1.43E-04 
1.00E-01 5.99E-01 1.43E-04 1.43E-04 
1.43E-04 2.00E-01 3.00E-01 1.43E-04 
1.43E-04 1.00E-01 5.99E-01 1.00E-01 
1 .43E-04 1.43E-04 1.00E-01 2.00E-01 
1.43E-04 1.43E-04 1.43E-04 4.00E-01 
1.43E-04 1.43E-04 1.43E-04 3.00E-01 
1.43E-04 1.43E-04 1.43E-04 1.43E-04 

1.43E-04 
1.43E-04 
1.43E-04 
1.43E-04 
1.43E-04 
1 .00E-01 
5.99E-01 
3.00E-01 

For this choice of H ,  DT is independent of the actual val- 
ues of Pr[ V , ] ,  as is clear from (30) and the fact that 
CPr[Vi] = 1. 

Noise tends to make observations of all HMM's look 
like observations of HMM ( 1 ), and ergodic observation 
sequences tend to have forbidden symbol sequences for 
the left-to-right HMM ( 3) .  The first natural issue is there- 
fore to determine how many forbidden symbol sequences 
occur as a function of the incorrect symbol probability ET. 
Table VI11 gives the results for various values of T and 
ET, based on simulations of 10 000 observation se- 
quences. It shows that forbidden symbol sequences are 
less likely for small T than for large T. This table also 
shows that noisy observations of HMM ( 3  ) do not have 
as high a proportion of forbidden symbol sequences as 
observations of HMM ( 1 ) and HMM ( 2 ) ,  even for ET = 
l o % ,  as can be seen by comparing Tables VI and VIII. 
One may conclude from Table VI11 that ET must be small 
and T must be short to minimize misclassification due to 
forbidden symbol sequences. For instance, if T = 25 and 
ET = 0.001, the false dismissal probability is apparently 
at least 1.2 1 % . Shorter T ,  however, causes smaller shifts 
in the statistics in the likelihood function, and thus in- 
creases the misclassification rate. consequently, a trade- 
off exists between short T and long T. 

The total false dismissal probability can be expressed 
as the sum of the false dismissal probability due to for- 
bidden symbol sequences and the false dismissal proba- 
bility due to noise-induced shift in the statistics of the 
nonzero values of the posterior likelihood function. We 

examine the total false dismissal probability for 
HMM(4) ,  which is the HMM equivalent to HMM(3)  
with the noise matrix H given by (32) with ET = 0.001. 
The parameters of HMM ( 4 )  are given explicitly in Table 
IX. 

Denote by Fe (x) the cumulative distribution function 

Ten-thousand observation sequences OT were generated 
from HMM(4)  for T = 25. As given in Table VIII, 121 
sequences resulted in zero posterior likelihood function 
values (that is, ( 0,) = 0)  and the remaining 9879 non- 
zero values of f3 (0,) give the histogram shown in Fig. 
6.  By comparison to Fig. 4 ,  it is clear that no significant 
difference between log &&(x) and log d F , , ( x )  is evi- 
dent. Therefore, the misclassification rate due to noise- 
induced shifts in the statistics of d F & ( x )  is very small. 
The suboptimal classifier &bop[ for HMM ( 3  ) thus gives 
98.8% correct classification and a 1.2% false dismissal 
probability when used with noisy observations character- 
ized by OT E HMM(4).  

Because ET = 0.001 in this example, each observation 
sequence O,, has probability 0.025 of having at least one 
incorrect symbol. Of 10 000 observation sequences, the 
expected numberwith at least one incorrect symbol is 250. 
Nearly half ( 12 1 ) contained forbidden symbol sequences 
and caused the only significant misclassification problem. 
The other half apparantly made no contribution to the 
probability of false dismissal. 
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31 n : 5 -46 

Fig. 6 .  Histogram of 9879 samples of log d F & ( x )  for T = 25. (The nor- 
mal curve has the sample mean = -28.156 and the variance = 3.6167.) 

It would be desirable to be able to compute the mo- 
ments of F;  ( x )  instead of FiJ ( x ) .  Alternatively, it would 
be desirable to be able to compute the amplitude of the 
impulse (delta function) in dF,, ( x )  that seems to be pre- 
sent in the left-to-right HMM’s considered here. In other 
words, if we write 

dF,, ( x )  = A o 6 ( x )  + d F i  (x) (34) 
then an algorithm to compute A ,  directly would be worth- 
while. Knowing A ,  and the moments of FfJ gives the mo- 
ments of F;  ( x ) .  However, developing such an algorithm 
requires further work, 

IV. CONCLUDING REMARKS 
If the distribution dF, (x) is approximately log-normal, 

the first two moments MI, (1 ,  T )  and MfJ (2 ,  T )  can be 
used to develop a continuous approximation to dF,J ( x ) .  
Simulations suggest that dF, ( x )  is approximately log- 
normal whenever HMM ( i  ) and HMM ( j ) are ergodic 
and nontrivial. (A “trivial” HMM is an HMM whose 
likelihood function f (  0,) is constant.) A proof of ap- 
proximate log-normality that relies on the central limit 
theorem is not obvious in the present context. If the dis- 
tribution dF, ( x )  is not approximately log-normal, the 
higher order moments MfJ ( k ,  T )  are needed to develop 
reasonable continuous approximations to dF,J ( x ) .  The 
forward-backward moment algorithm presented in this 
paper computes these moments explicitly from the defin- 
ing HMM parameter sets. 

The use of the suboptimal classification statistic q\ubopt 
in preference to the optimum statistic qopt is probably not 
appropriate in many speech applications because of the 
ready availability of both likelihoods needed to form the 
likelihood ratio qopt. Unfortunately, simulations are re- 
quired to determine the ROC curves for qopt. Conse- 
quently, for applications that require small incorrect clas- 
sification probability and high probability of correct 
classification, very large simulations are necessary to con- 

fidently establish the required performance. An alterna- 
tive in this case is to use the suboptimal statistic q\”bopt 
because the ROC curves can be approximated in principle 
to any required accuracy without simulations. 

The suboptimal statistic qsubopt is identical (to within a 
constant scale factor) to the optimal statistic qopt when the 
problem is more akin to detection than to classification. 
That is, if the application is that of distinguishing the 
presence of a signal embedded in noise from the presence 
of noise alone, and if the HMM noise model is a “trivial” 
model as defined above, then the optimal detection statis- 
tic and qsubopt are identical. As a result, in this case, the 
moments of the optimal detection statistic can be com- 
puted using the forward-backward moment algorithm, and 
the ROC curves for the optimal detection statistic can be 
approximated to any required accuracy. 
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