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Abstract- The bandwidth of a klystron output cavity scales 
(approximately) as po 8 P o  2 ,  where p is the beam perveance 
and P is the beam power [l], [2]. For high-perveance (p > 
10 ppervs) high-power ( P  > 10 kW) electron beams, it is 
relatively straightforward to design a broad-band output cavity. 
However, the design of the input cavity of the broad-band 
klystron is in some ways more difficult. The purpose of the input 
cavity is to produce a velocity-modulated electron beam with 
a frequency-dependent modulation amplitude that will optimize 
the bandwidth of the entire klystron system, while providing a 
magnitude of velocity modulation large enough to minimize the 
length of the klystron. This paper shows how a multiplet (multiple 
cavity) buncher cavity can be designed to provide broad-band 
(>20%) operation while keeping short the drift section length of 
the klystron. 

NOMENCLATURE 

If 1 is the mode index and k is the cavity index, we can 
define the following quantities for future use (see Figs. 1 and 
2 for V&,(t) and Zgen): 

C Speed of light in vacuum ( d s ) .  
2 0  Impedance of free space (0). 
EO Permittivity of free space (F/m). 
Vbeam Static beam accelerating voltage (V). 
zbeam Static beam impedance (a). 
Vgen ( t )  Time-dependent generator voltage (V). 
Z g e n  Generator impedance (a). 
C l , k ( t )  Ith mode vector potential amplitude in the 

kth cavity. 
W l , k  lth mode cavity resonant frequency (rads, 

possibly complex) in the kth cavity. 
EI , I , (Z I , )  Spatial distribution of Zth electric field eigen- 

mode (V/m) in the kth cavity. 
Q k  Spatial region of kth cavity interior. 
sk loop Path of drive loop in the kth cavity. 
&,kloop Path integral of E l , k ( r c k )  over the section of 

the drive loop in the kth cavity (V). 
El,k(z,t) Electric field (Vlm) of Zth dnven mode in 

the kth cavity. 
JI,  loop (zk , t )  Time-dependent drive loop current density in 

the kth buncher gap (A/m2). 
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JI ,  (zk , t )  

D k  

k k  gap 

Gi,k 

Time-dependent electron beam current den- 
sity in the kth buncher gap (A/m2). 
Length of buncher gap in kth cavity (m). 
Path integral of €l,k(xk) over buncher gap in 
kth cavity (V). 
Gap gain, the ratio v , k g a p / v , k l o o p .  
The voltage induced across the buncher gap 
by the lth driven mode in the kth cavity (V). 
The z-component of the current density in 
the kth buncher gap (A/m2). 
The axial z distance measured from the input 
of the kth buncher gap (m). 

% , I ,  

Jz ,  (.k) 

z k  

I. INTRODUCTION 
NE POSSIBLE bandwidth-enhancing modification of a 
standard klystron buncher cavity is the multiplet config- 

uration, where N cavities are driven by the same generator 
(Fig. 1 is an example of a doublet cavity, N = 2), but where 
the bunching gaps are concatenated, so that the modulated 
beam emerging from the buncher gap of cavity k is input to 
the buncher gap of cavity k + 1. By having N cavities with 
different resonant frequencies and different voltage gains (to 
be defined later), we have many more degrees of freedom 
to tailor the velocity modulation of the buncher cavity as a 
function of the drive frequency, w .  Note that this method is 
related to that used in the clustered-cavityTM klystron [ 3 ] ,  in 
which the idler cavities are of multiplet form. Since one of the 
major objectives of our klystron design analysis is to maximize 
the bandwidth while minimizing the size of the device, we will 
try to avoid the use of idler cavities if at all possible, while 
maintaining broad bandwidth operation. 

11. MULTIPLET BUNCHER CAVITY ANALYSIS 
The analysis of the multiplet buncher cavity consists of two 

parts, one electromagnetic and one electronic. The electromag- 
netic parts of the system are the electric fields in the buncher 
cavity due to the current distributions of the electron beam 
and the drive loop (see Fig. l), and the effects of a realistic 
generator model (see Fig. 2) upon this field. The method used 
to calculate the cavity field is modal expansion of the vector 
potential. In this method the vector potential field, AI, (zk , t )  , 
(throughout this paper the index k denotes quantities specific 
to the kth cavity of the multiplet) driven by the beam and loop 
currents, is expanded in terms of the empty cavity eigenmodes, 
Al,k(xk) ,  with all mode time variation included in the mode 
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Fig. 1 .  Doublet buncber cavity. 

Fig. 2. Thevinin equivalent circuit for drive loop. 

coefficient, cl, IC ( t )  , so that 

Ak(Zk, t )  = Q , I C ( t ) d Z , C ( ~ C ) .  
1 

An integral representation for the gap voltage due to excitation 
of the lth mode of the lcth cavity is derived from the driven 
mode equation for the vector potential, with parameters that 
depend upon the cavity geometry, generator source impedance 
and voltage, and the electron beam current and voltage. The 
electronic parts of the system are the electron beam velocity 
and current fields. The method used to calculate these fields 
is to model the electron beam as a one-dimensional (1-D) 
fluid. This model gives a system of coupled partial differential 
equations in time and one space variable that are converted 
to a system of ordinary differential equations in space (1- 
D) and are driven by the axial electric field calculated in 
the electromagnetic part of the analysis. Taken altogether, the 
electromagnetic and electronic analyses of the multiplet cavity 
yield a system (three equations for each cavity) of coupled 
nonlinear integro-differential equations to be solved. 

A. Driven Mode Equations 

For a multiplet system (see Fig. 1 for a doublet system) the 
vector potential mode amplitude, c z , k ( t ) ,  of the Zth mode of the 
kth cavity in the multiplet, that is excited by the combination 
of a drive loop current density, JC loop(z~, t ) ,  and an electron 

beam current density, Jk (q , t ) ,  is a solution to [21 

C l , k ( t )  + w;ICCz,k(t) 

' Lk dVECh (xk) 
W , k  -- - - 

€ o ~ ; d V l ~ z , k ( z k ) 1 2  

. (Jkloop(Zk,t) + J k ( Q ? , t ) ) .  (2) 
If we assume that the loop current is filamentary, and that the 
drive loop is short compared to an operating wavelength, then 
the current in the drive loop will not vary as a function of 
position along the loop and (2) can be reduced to 

i . ' l , k ( t )  + W ? , , C l , k ( t )  

iWl ,k  -___ - - 

C O L k  dT.'l € E ,  IC (a) 12 

* ( ~ ~ k l o o r > ~ l o o p ~ t ~  + / H V q k ( 4  Jk(Zk,t) * 

RI, ) 
(3) 

For the remainder of this paper, we will consider only one 
mode to be excited in any of the N cavities and designate it 
the Zth mode. However, for very broadband systems, more than 
one mode in each cavity could be excited and would have to 
be included in the analysis. This complication will be treated 
in future publications. I I ~ ~ ~  is calculated by constructing the 
Thevinin equivalent circuit (see Fig. 2) of the cavity driver 
giving 

1 
hoop(t)  =- 

zgen  

(4) 

Since we are using a modal expansion of the vector poten- 
tial the cavity electric fields are calculated from the vector 
potential mode amplitudes by 

where the E l , k ( z k )  are electric field eigenmodes. I I ~ ~ ~  sim- 
plifies to 

(6) 
Substituting (6) into ( 3 )  gives 
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We now simplify (7) by assuming that all cavity drivers have 
a purely sinusoidal time-dependence, so that 

self-consistently solve the electron-beam fluid equations in 
each buncher gap. 

v g e n ( t )  V g e n e Z W t  (8) B. Fluid Equations for Buncher Gap 
Jk(xk, t )  = J k ( z k ) e z w t  

c l , k ( t )  = c l , k e z w t .  

(9) 
(10) 

The l-D fluid equations [4], [2] for a charged fluid with 
charge density, p, and flow velocity, U,, are 

To simplify the expressions for the cavity electric field define 
the bandwidth parameter 

(18) 
du, du, e 
- + uZ- = -Ez.  at d z  m (1 1) 

IK,kloop12 

Z g e n E O  .I, dV(El, k (zk) l 2  
h , k  = 

We shall use a first-order time harmonic expansion of the 
dependent variables ignoring terms of order higher than etwt 

(19) 

(21) 

and the frequency form factor function 
p(z,  t )  = p0(z)(l + 6(.z)eiWt) 

~ , ( z , t )  = J,“(I + J”(z)eZwt)). 

(12) U,(X,t) = u ! ( x ) ( l f  G(Z)e+t) (20) 
-iwAwl,k 

w 2  - iAwl,kw - wtk‘ f l , k ( “ - ’ )  

The driven-cavity modal electric field is given by (not includ- 
ing the eZWt time dependence) Substituting (19)-(21) into (16)-(18), we get 

El ,k  ( X k )  = f 1  , IC (W)EZ,k ( Z k )  Now make (22)-(24) specific to the lcth buncher gap (1 <_ k 5 
N )  while defining the normalized variables (except for angles 
all dimensionless quatities are denoted by use of a tilde) 

N 

b$, k loop 

z k  = Z k / D k  (25) 

For the case of a single (monoplet) cavity system with no 
electron beam current, the solution to (14) is trivial and the 
quantity A w l , k  is approximately equal to the bandwidth of the 
cavity. The next level of simplification is to assume that the 
buncher gap of each cavity is planar, so that the modal electric 

a gap voltage divided by a gap length. Additionally, it is 
assumed that the current density is not a function of T or Q in 

In terms of these variables, (23) becomes 

(J”k - f i k )  (31) 
O k  __ - - - i p  d j k  

field within the beam is constant and can be represented by d z k  C $ , ( z k )  

(24) becomes 

the buncher gap. For this approximation, E,,,, (zk) = v i , k / D k  

and F z l , h ( z ~ )  = K,,ga,/D~, simplifying (14) to 

- -  
In examining (15), we can see that the only unknown variables 
in the equation are the K,k’s and JZ,(zk) .  If &,(a) is 
determined, we have N equations in N unknowns and can 
solve for the %,k’s .  In order to determine J Z , ( z k ) ,  we must 

Equations (31)-(33), with boundary conditions Gl(0) = 
j l ( 0 )  = 0, make up the system that must be solved before 
we can determine the velocity modulation characteristics of 
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a multiplet buncher gap. First, consider what is included and 
what is not included in this system of equations. Beam loading 
is included through the current density integral in (33). RF 
space charge is not included, since only modal cavity fields are 
used to calculate the electric fields. Static space charge effects 
are included through the functions ii,Ok (&) . These functions 
are the solutions to the electron fluid velocity function for 
each static (time-independent) planar gap in the system, and 
can be determined from the evaluation of the roots of a 
cubic equation [ 5 ] .  The condition for ignoring space charge 
is G,Ok (&) = 1. Gap transit time effects are included through 
the parameter O k ,  which is the static (space charge fields are 
ignored) transit angle for an electron entering the kth buncher 
gap with velocity u : ~  (0) = d2-. We can solve this 
system iteratively by using a standard differential equation 
solver (Runge-Kutta) while varying the quantities 1; d& j k  
until a self-consistent solution is obtained. This procedure is 
currently under development. For the beam parameters and 
gaps currently of interest, &,eam is less than 5% of the gap's 
static limiting current and the analysis of the zero space charge 
case is sufficient for our needs. Please note that while the static 
space charge fields will be ignored in the following analysis, 
beam loading of the cavity is not ignored. 

C. Zero Space Charge Approximation 

multiplet cavity (1 5 k 5 N )  simplify to 
For zero space charge (i& (&) = l), (31) and (32) of the 

(34) 

(35) 

Equation (33) is unchanged by the zero space charge condition. 
Equations (33)-(35) form a set of linear integro-differential 
equations with constant coefficients. Because the system has 
constant coefficients, a closed-form algebraic solution (solu- 
tion of a linear algebraic system) can be constructed. First 
integrate (34) and (35) over each buncher gap to get 

To solve (34) and (35), use the standard formula for the solu- 
tion of a first-order differential equation of the form d y / d ~  + 
ay = F ( z ) .  The solution is y(z) = dz'F(z')e"" + 
~ ( 0 ) ) .  With this formula, the solution for (35) is 

Substituting (40) into (34) gives 

- d j k  + i f l k j k  = ( 1  - e - $ ' h e k ) G , k  + iOkiik(0)e-iek'k. (41) 
d,zk 

Using the standard. solution formula again produces the solu- 
tion to (41) for z",, = 1 

j k ( 1 )  == (i0,&(0) + Jk(0))e-i'k 

the equations descriibing the multiplet buncher become 

&(1) - U k i i k ( 0 )  - C&,k = o  (49) 
(50) j k ( 1 )  - b k i i k ( 0 )  - a k j k ( 0 )  - d k f i , k  = O  

+ y l , ,+ (&(~)  - &(o) + u k ( 1 )  - i i k ( 0 ) )  = 2el,kVgen. 

(51) 

For the specific case: of the multiplet cavity, the output of the 
k - 1 cavity is the input to cavity k .  This condition generates 
the additional boundary conditions 

Equation (33) becomes 
(54) 

(55)  
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TABLE I 
KLYSTRON PARAMETERS 

- x  + g l , k ( G k  - Gk-1  + Jk - J k - 1 )  = 2el,kVgen. (58)  Pbeam 20 kW 

v,,,, 5.25 kV 
When the initial conditions for the buncher cavity (60 = 0 S3beam 10 pperv 
and j o  = 0) are imposed, (54)-(58) become a linear system 
of 3N equations in 3N variables and can be solved with 
a standard linear algebra subroutine package. We will now 
examine the implications of the performance of such a system, Ibeam 3.8 A 

where N = 2 (doublet buncher). Rbeam 0.78 cm 

111. DOUBLET CAVITY STUDIES 

A, Implementation of Multiplet Analysis 
A Cf f  program has been written that takes as input 

all relevant multiplet buncher cavity parameters, and then 
calculates the coefficient matrices for (49)-(5 l), solves the 
linear system of equations, and plots the velocity modulation 
at the output of each cavity of the multiplet and the ballistic 
focusing distance (40) for the beam emerging from the Nth 
cavity of the multiplet. For N = 2, these operations take 
less than one second to evaluate the multiplet response at 
500 different frequencies (50-MHz 484 PC running under the 
Linux operating system). All the code is in the public domain 
(including the X-window plotting package VOGLE and the 
linear algebra class libraries) and is available from the author 
on request. 

B. Klystron Definition 

The klystron characteristics common to all configurations 
currently under investigation are shown in Table I. The two 
unusual characteristics (compared to conventional klystrons) 
are the beam perveance, which is much higher than in a 
conventional klystron, and the impedance of the RF driver, 
which is much lower than the typical value of 50 R. The 
treatment of the transport of a high-perveance beam in the drift 
regions of the klystron is outside the scope of this paper. (As 
an example, one might conceive of a multibeam configuration 
in the drift region, where the beamlets are transported in an 
array of isolated tubes, which drastically reduces the space 
charge fields, and allows for simple ballistic focusing.) The 
low RF generator impedance can easily be achieved by having 
parallel drive loops, equispaced around the circumference of 
the cavity, driven by an array of solid-state amplifiers. The 
high-perveance beam is required for the design of a broad- 
band output cavity. The low-impedance driver generator is 
required for a broad-band buncher cavity. 

Consider (1 l), but rewrite the modal drive loop voltage in 
terms of the modal gap voltage, &gap, and the gap gain, 
G l , k ,  to get 

f0 1 GHz 

The quantity Awl,k is, to first order, half the bandwidth 
of the kth cavity of the multiplet, not including the effects 
of beam loading. In order to design a broad-band buncher 
cavity, A w z , ~  must be comparable to the required system 
bandwidth divided by the order, N ,  of the multiplet cavity. 
If we wish to keep the order of the multiplet cavity to a 
reasonable value, say N = 2, then A w l , k  must be about half 
the required system bandwidth. The two parameters of (59) 
that we can exercise some reasonable control over are the 
generator impedance, Zgen, and the gap gain, Gl,k. The other 
terms in (59) depend purely upon the distribution of the cavity 
electric field eigenmode, and hence depend only upon the 
cavity dimensions. (It would help to keep the impedance of the 
transmission-line section of the resonator as high as practical 
to reduce the energy stored in the electric field.) In contrast, 
Zgen can be reduced by the use of parallel phase-locked RF 
drive generators, and el,& can be adjusted by placement of 
the drive loop in the cavity. 

Before calculating the buncher cavity response for specific 
cases, we must consider what is meant by a broad-band 
buncher cavity. One extreme answer would be a buncher with a 
flat (< 1 dB) velocity modulation response over a wide range of 
drive frequencies. Another extreme answer would be a buncher 
that produces a flat (< 1 dB) focusing distance response over 
a wide range of frequencies. The ballistic focusing distance 
(ignoring space-charge effects) in a drift region is given by 

Since xfocus is proportional to l l w ,  the buncher parameters 
that produce a flat focusing response will be very different 
from those that produce a flat velocity-modulation response. 
In reality, space-charge effects will modify the relationships 
among focusing distance, frequency, and velocity modulation 
amplitude to produce a result intermediate between simple 
ballistic focusing (60), and one where constant velocity mod- 
ulation as a function of frequency is required. Thus, if we can 
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f / f o - l  

P,,, = 20 w 

k 1 2 
f1 ,k  1.15 0.85 GHz 
G1,k 3.05 2.93 
Dk 0.34 0.34 cm 
Lk 6.0 7.9 cm 
R,,,, 1.40 1.95 cm 

Fig. 3. 
bandwidth. 

Ten-kilowatt doublet buncher cavity with 20% velocity modulation 

demonstrate that the doublet buncher cavity can be designed 
to produce a flat response for the two extreme cases, it should 
be possible to design the cavity to provide a flat response to 
a focusing function that includes space-charge effects. 

The method we employ to optimize a doublet buncher cavity 
is to program a solution to the system defined by (56)-(58), and 
to plot the magnitude of the velocity modulation at the outputs 
of cavity 1 and cavity 2. In addition, the modulation amplitude 
at the output of cavity 2 is used to calculate a ballistic focusing 
distance from (60), which is also plotted. The parameters that 
are varied to optimize the buncher cavity are the resonant 
frequency and gap gain of each cavity. The procedure is not 
automated, but iterated interactively. 

C. Optimization of Velocity Modulation 
In the first example, the system is specified to have a 

velocity modulation bandwidth of 20%. We begin the design 
process by choosing a reasonable driver generator power of 
20 W. Then G l , k  is chosen so that &dl,k/Wl,k M 0.1, and 
the system is interactively iterated by varying the center 
frequencies and gap gains of each cavity until the plotted 
output indicates that the velocity modulation bandwidth is 
approximately 20%. The result of several iterations is shown 
in Fig. 3. Fig. 3 plots the normalized velocity modulation at 
the output of each gap (see annotations on Fig. 3) and zfocus, 
the axial position of maximum beam bunching, as a function 
of normalized frequency, f/fo- 1. 

One critical element of Fig. 3 is that the separation of the 
resonant frequencies of the cavities (in this case 0.3 GHz) 
is significantly greater than the separation of the peaks of 
the velocity modulation curve (in this case <0.2 GHz). The 
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I I I n - 
-1  -0.5 0 0.5 1 
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P,,, = 50 w 

k 1 2 
f i , k  1.42 0.63 GHz 
Gl,k 1.93 1.80 

0.34 0.34 cm Dk 
11.0 cm L k  4.8 

Rmazk 1.40 1.95 cm 

Fig. 4. 
bandwidth. 

Ten-kilowatt doublet buncher cavity with 50% velocity modulation 

N 

0 - 

I I 

-1 - 0  5 0 0.5 1 

f / f o -  1 

P,,, = 50 W 

k 1 2 
f1,k 1.27 0.70 GHz 

Dk 0.34 0.34 cm 
Lk 5.4 9.8 cm 
Rmaz,, 1.40 1.95 cm 

Gi,k 2.02 2.25 

Fig. 5. 
bandwidth. 

Ten-kilowatt doublet buncher cavity with 50% focusing distance 

reason for this is that the first (high-frequency) cavity is 
generating significant velocity modulation at the entrance of 
the second (low-frequency) cavity, at frequencies above the 
resonant frequency of the second cavity. The premodulation 
in this frequency range (see IG;l(O)( in Fig. 3) significantly 
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enhances the second cavity’s ability to velocity modulate the 
electron beam. These effects in the two cavities are much 
more than additive. The next design goal is to increase the 
velocity modulation bandwidth to 50%. To do this we can 
decrease the gap gains to increase the bandwidth of each 
cavity, increase the separation of the resonant frequencies of 
the two cavities, and increase the drive generator power to 
regain velocity modulation amplitude lost though decreasing 
the gap gains. The results of the new design after several 
iterations are shown in Fig. 4. In the new design, the resonance 
separation has increased to 0.79 GHz, and the average gap gain 
has decreased to 1.9. The velocity modulation bandwidth of 
the new design is at least 50%. 

D. Optimization of Ballistic Focusing Distance 
As a final buncher cavity design exercise, we can take the 

design from Fig. 4 and modify it so that zfocus as a function of 
frequency is flat. The method used is to increase the gap gain 
of the low-frequency cavity until the focusing length in the 
low-frequency region is approximately equal to its minimum 
value in the high-frequency region. Then the cavity resonance 
separation is changed to reduce any peaks in the focusing 
response at frequencies between these regions. The result of 
iterating this process several times is shown in Fig. 5.  In the 
modified design, the resonance separation has decreased to 
0.57 GHz, and the average gap gain has increased to 2.17. 
The focusing distance bandwidth of the modified design is at 
least 50%. The focusing distance over the bandwidth of this 
design is 15 cm. This length is quite reasonable for the drift 
length of a 1-GHz klystron. 

IV. CONCLUSIONS 

We have shown, in the planar gap approximation and for 
a high-perveance multikilowatt electron beam, that using a 
doublet buncher cavity allows us to realize a 50% bandwidth 
cavity, either in velocity modulation or focusing distance. A 
simple computer code allows an interactive iterative method 
of designing such buncher cavities. Additionally, the ballistic 
focusing distances for the beams emerging from such cavities 
are of modest length and could lead to the construction of 
compact high-power klystron amplifiers. 
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