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Absstmct-Images reconstructed by Bayesian and maximum- 
likelihood (ML) using a Gibbs prior with prior weight p were 
compared with images produced by filtered backprojection (FBP) 
from sinogram data simulated with different counts and image 
configurations. Bayesian images were generated by the OSL 
algorithm accelerated by an overrelaxation parameter. For rela- 
tively low p, Bayesian images can yield an overall improvement 
to the images compared to ML reconstruction. However, for 
larger p, Bayesian images degrade from the standpoint of noise 
and quantitation. Compared to FBP, the ML images were supe- 
rior in a mean-square error sense in regions of low activity level 
and for small structures. At a comparable noise level to FBP, 
Bayesian reconstruction can be used to effectively recover higher 
resolution images. The overall performance is dependent on the 
image structure and the weight of the Bayesian prior. 

I. INTRODUCTION 

TATISTICAL methods for image reconstruction have S the potential of improving the quality of images com- 
pared to the filtered backprojection reconstruction. The 
reconstruction problem for emission tomography can ef- 
fectively be described by a linear-Poisson (linear map, 
multi-variate Poisson) model from image space to projec- 
tion space. This model provides a framework for incorpo- 
rating the physical and non-stationary statistical proper- 
ties of tomographic image reconstruction. For example, 
the intrinsic detector response and attenuation can be 
directly accounted for without employing correction 
schemes. The introduction of expectation-maximization 
algorithms by Shepp and Vardi [9] and Lange and Carson 
[4], have led to the development of feasible maximum- 
likelihood (ML) reconstruction algorithms. Since image 
reconstruction is ill-conditioned, regularization can im- 
prove the quality of the reconstructed images. Many dif- 
ferent regularization methods have been proposed for ML 
reconstruction. 
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A feasibility stopping criterion was introduced by Vek- 
lerov and Llacer [lll. Snyder and Miller proposed sup- 
pressing the edge and noise artifacts of ML-based recon- 
struction through the use of Gaussian sieve regularization 
[lo]. Alternatively, Bayesian methods using a “smooth- 
ness” prior have the potential advantage of preserving 
edges. 

Because these techniques are non-linear, the perfor- 
mance of each is dependent on several factors including 
the size, shape and activity of structures in the phantom. 
Liow and Strothers [7], [8] have studied ML reconstruc- 
tion with Gaussian sieves. Lalush and Tsui [3] evaluated 
Bayesian reconstruction with Gibbs priors and the effects 
of the prior strength and iterations. However, no attempt 
was made at studying the noise and resolution systemati- 
cally. Characterizing the performance of different recon- 
struction algorithms will be important for evaluating cur- 
rent and future research. In this paper, we examine the 
noise properties, resolution and quantitation of Bayesian 
ML reconstruction with Gibbs priors for multiple image 
configurations. 

11. BAYESIAN RECONSTRUCTION 
Bayesian methods use an image before reweight the 

probability of certain image configurations, Geman and 
Geman [l] suggested using Gibbs priors for Bayesian 
image estimation. An energy function for an image se- 
quence Ai, j = 1 ... n where n denotes the number of 
pixels, can be defined as 

i ,  i k 

where 4 is some potential function defined on pixel pairs 
or individual pixels. Increasing “roughness,” results in 
increasing energy. It can be shown that the probability 
density function for a Markov random field can be ex- 
pressed by the Gibbs distribution, 

where ,f3 is the prior weight and 2 is the normalizing 
partition function, 
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The Bayesian estimate can now be found by maximizing 
the following log posterior function 

(4) 

Geman and McClure [ 11 proposed using maximum-likeli- 
hood to estimate p through an iterative technique. The 
drawback of their suggested approach is the very high 
computational cost. Furthermore, the iterative technique 
does not yield a closed-form solution. 

A direct analytical solution to the ML p estimation 
problem exists for the class of generalized Gaussian po- 
tential functions as suggested by K .  Lange ([51 and per- 
sonal communication). Let 

S(A) = L ( h )  - p U ( A )  - lOgZ. 

+ ( r )  = [r ia ,  a > 1. 

In this case, we find that 

p U ( A )  = U ( P a A ) .  (6) 

Applying a change of variable and substituting (6) into (3) 
we find that 

z = p - " / " j R e x p [ - ~ ( ~ ) ~ d ~  (7) 

where integration is over the n dimensional (number of) 
pixel space. Substituting (7) into (4) results in a log poste- 
rior function 

n 
L ( h )  - p U ( A )  + - log p. (8) 

Therefore, the maximum likelihood estimate of p given A 
can be solved for directly which yields 

a 

n 
b M L  = (9) 

Following the analysis of Lalush and Tsui [3], the 
derivative of the generalized Gaussian is given by 

Thus for 1 < (Y I 2, the behavior is similar to the 
log-cosh potential of Green [2], smoothing out all differ- 
ences above a certain r.  The parameter a determines the 
cutoff level. 

111. SIMULATION METHOD 

The high-low activity ratio was 4:l for phantoms 1 and 3, 
and was 2:1, 3:l and 4:l in phantom 2. For each phantom, 
L = 40 independent trials were simulated for both high 
(200 K) and low (10 K) count conditions. 

The bias can be estimated for each pixel from 

b(j) = mean [i,] - A,, (11) 

where, 

1 L  
mean [ i,] = C i,(/). 

1=1 

The estimated variance is given by 

(12) 

The bias and variance for each pixel reported in this 
paper are normalized against the true (known) pixel value 
and are referred to in the figures as the normalized bias 
and normalized variance. The effective global Gaussian 
resolution (EGGR) [7] can be defined as follows. Let 
G(FWHM) = true image * Gaussian(FWHM) where ' * ' 
denotes the convolution operator. Then the EGGR is the 
FWHM that maximizes the spatial correlation function of 
the reconstructed image and G(FWHM). 

The OSL algorithm [2] with an acceleration factor y 
was used to reconstruct the Bayesian images. To stabilize 
acceleration, the OSL iteration sequence was dampened 
by a simple averaging technique. The OSL iterations were 
executed in multiples of three with the last two iterations 
averaged. Damping reduced the acceleration noise arti- 
facts for ML reconstruction ( p = 0) as shown in Fig. 1. 

For each phantom data set, the reference reconstruc- 
tion method was filtered backprojection (FBP) using the 
following filters with cutoff (F,) expressed in 7r radians: 
a) ramp 1.0, b) Shepp-Logan 1.0, c) Shepp-Logan 0.8, 
d) Shepp-Logan 0.6, e) Hanning 1.0, and f) Hanning 0.8. 
The Bayesian images were reconstructed using the gener- 
alized Gaussian potential function described earlier with 
a = 1.01 and E = 1.0. This particular choice of a leads to 
a relatively flat d + ( r ) / d r  function and will tend not to 
preserve edge information in the reconstructed image. 
The OSL reconstruction kernel was chosen to be 0.75 cm 
FWHM to maximize resolution recovery. For the cylinder 
phantoms, 12 accelerated OSL iterations were used. For 

with a detector resolution of 0.75 cm full width at half 
maximum (FWHM) and Poisson noise. The simulation set 
consisted of the Hoffman brain phantom and 3 cylinder 
phantom. The Hoffman brain phantom had a 4:l activity 
ratio between gray and white matter. The background for 
each cylinder phantom was a low activity cylinder of 
radius 7 cm. Three high-activity cylinders ( r  = 2 cm) were 
symmetrically placed in phantom 1 and 2. The high-activ- 
ity cylinders in phantom 3 had radii of 0.5, 1.0 and 2.0 cm. 

IV. RESULTS AND DISCUSSION 
A. Noise Structure 

Fig. 2 shows the mean, variance and bias images of the 
brain phantom at 200 K total counts reconstructed by ML 
and FBP using a Shepp-Logan filter with cutoff frequency 
F, = 0.8 of the Nyquist frequency FN. In the case of 
ML-based methods, the variance is proportionally related 
to the underlying image structure. Fig. 3 better illustrates 
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DAMPED OSL VS. UNDAMPED OSL 
BIAS-VARIANCE: PHANTOM 1 - 200K 
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Fig. 1. Bias versus variance of images reconstructed from accelerated 
OSL algorithm with and without damping. Shown are the results for ML 
and Bayesian reconstruction for different high and low activity ROI in 
phantom 1 at 200 K. 
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Fig. 2. Top Row (left to right): The mean, variance and bias images 
produced from ML reconstruction for the Hoffman brain phantom. 
Bottom Row (left to right): The mean, variance and bias images pro- 
duced from FBP using a Shepp-Logan filter with cutoff 0.8 of the 
Nyquist frequency. Note that for ML images, the noise is dependent on 
the image structure. 

this relationship for Bayesian-ML versus FBP. Shown in 
this figure is a pixel by pixel scatter plot of the mean 
versus variance for ML, Bayesian with p = 0.0002 and 
FBP Shepp-Logan F,. = 0.8. The image variance reflects 
the same properties of the Poisson noise. In contrast, FBP 
distributes the noise energy uniformly over the image 
support. This result is consistent with the observation that 
the ML approach has superior mean-square error perfor- 
mance compared to FBP in low activity regions. 

B. Noise uersus Quantitation 

The normalized bias and normalized variance were 
computed from the average pixel values of different re- 
gion of interests (ROI). The results are shown in Fig. 4. 
High activity ROI's consisted of 2 by 2 pixel blocks 
positioned near the center of high activity structures-high 
activity cylinders in the cylinder phantom and gray matter 
for the brain phantom. The low activity ROI's consisted of 

Fig. 3. The mean versus variance on a pixel by pixel basis of (top) ML 
reconstruction, (middle) Bayesian reconstruction p = 0.0001, and (bot- 
tom) FBP Shepp-Logan F, = 0.8 of the Hoffman brain phantom. 

the average of ten 2 by 2 pixel blocks randomly scattered 
within the large, low-activity cylinder for the cylinder 
phantom and white matter for the brain phantom. This 
provided a representative sample of the low activity re- 
gions for each phantom. 

In the low activity region, the ML-Bayesian images 
have lower noise variance compared to FBP images for all 
image configurations. Within high-activity regions of the 
cylinder phantoms, the ML images have variance compa- 
rable to FBP Shepp-Logan with F, = 0.6. As a result, the 
absolute bias of ML images is better than the FBP ramp 
F, = 1.0 in the high-activity regions of the brain phantom. 
Also unlike the cylinder phantoms, the variance of ML 
images is higher than the FBP ramp F, = 1.0. Applying 
Bayesian smoothing does not yield improvements in the 
bias of high activity structures. Since the high activity 
ROI's are chosen within the center of structures (cylin- 
ders in the cylinder phantom and 'rims' in the brain 
phantom), the effect of the Bayesian prior on the over- 
shoot at the rims is not shown directly in the bias-variance 
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Fig. 4. Bias versus variance of images produced from the OSL algo- 
rithm. Shown are the results for the (top) Hoffman brain phantom and 
(bottom) cylinder phantom 3 each at 200 K total counts. The images 
were reconstructed with varying prior strength p where 0.0 corresponds 
to the ML case. Also shown are the results of images produced by FBP 
with a ramp (R1.0), Hanning (H1.O, H0.8) and Shepp-Logan filters (S1.0, 
etc. ... with various cutoff frequencies expressed as a fraction of the 
Nyquist frequency. 

graph of Fig. 4. In the center of the high activity struc- 
tures, we find that the smoothing effect of the Gibbs 
priors tends to increase the negative bias. However, 
smoothing reduces the noise variance to a level compara- 
ble in range to that of FBP Shepp-Logan F, = 1.0 at 200 
K total counts. 

The effect of varying the prior weight p on the bias- 
variance of the images is illustrated in Fig. 5. In general, a 
small p improves the quantitation of ML reconstruction. 
For increasing p, the image variance is also reduced, 
until p passes some critical value, at which point the 
reconstruction begins to deteriorate. The critical /3 is 
shown in Fig. 5. Table I lists the MLE p values for each 
configuration. These values were calculated using (9) based 
on the true image configuration. In each case, we see that 
the MLE p exceeds the critical p where Bayesian images 
breakdown and the image bias-variance is no longer opti- 
mal. 

C. Noise us. Resolution 
The EGGR results are shown in Fig. 6 for the brain 

phantom and cylinder phantom 3 at 200 K counts. Below 
the critical p, the MI-Bayesian images have better (lower 
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Fig. 5. The effects of increasing /3 in Bayesian reconstruction. Shown 
is the bias versus variance of the (top) brain phantom and (bottom) 
cylinder phantom 1 for increasing p in a low and high activity ROI. 

TABLE I 
MLE PRIOR WEIGHT 

Low 10 K High 200 K 

Phantom 1 0.084 0.0041 
Phantom 2 0.089 0.0043 
Phantom 3 0.087 0.0042 
Brain 0.046 0.0022 

MLE p for each image configuration used in 
this study. 

EGGR) resolution compared with the FBP ramp F, = 1.0. 
For the brain phantom, the critical p produces images 
with FWHM less than the value of the intrinsic resolu- 
tion. However, stopping the accelerated OSL at 12 itera- 
tions produced images near the intrinsic resolution, sug- 
gesting that for low resolution recovery, fewer iterations 
of an ML algorithm may be preferred over Bayesian 
reconstruction. 

V. CONCLUSIONS 
Bayesian reconstruction using a Gibbs prior can im- 

prove the bias and variance of ML images at the sacrifice 
of resolution. For simple configurations it can produce 
images with superior quantitation, resolution and noise 
compared to conventional filtered backprojection. For 
more complex configurations, Bayesian methods can pro- 
duce higher resolution images at a given noise level com- 
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EGGR VS. VARIANCE BRAIN - 200K 
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Fig. 6. Variance versus effective global Gaussian resolution (EGGR) 
from images produced by Bayesian reconstruction. The top graph shows 
the results for the Hoffman brain phantom at 200 K. The bottom graph 
shows the results for cylinder phantom 3 at 200 K. Images were pro- 
duced with p set from 0.0 to 0.01. For phantom 3, 12, iterations were 
used while 60 iterations were used for the brain phantom. Images 
reconstructed by filtered backprojection using a ramp (R) and 
Shepp-Logan filters with F, at 1.0, 0.8, and 0.6 are also shown. 

pared to filtered backprojection. Also the image noise 
variance of Bayesian ML images is proportional to the 
mean value, implying that the noise energy in high activity 
regions does not spread into adjacent low activity regions 
as it occurs with images reconstructed by filtered backpro- 

jection. We also demonstrated that the ML prior weight /3 
for the generalized Gaussian potential function, does not 
necessarily yield the optimal image in terms of bias and 
variance. Alternative techniques for selecting the weight 
p and the number of iterations are needed. 
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