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Head to head domain wall structures in thin magnetic strips 
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Abstract-We present calculations of head to head domain 
wall structuresin magnetic strips ofNisoFezo with widths, w, ran- 
ging from 75 nm to 500 nm and thicknesses, t ,  from 1 nm to 64 
nm. Neglecting magnetocrystalline and magnetostrictive aniso- 
tropy energies, minimization of exchange and magnetostatic en- 
ergy leads to one of two types of domain wall structures: ‘trans- 
verse’ walls with magnetization at the center of the wall directed 
transverse to the strip axis and ‘vortex’ walls where the magnet- 
ization forms a vortex at the center of the wall. Calculation of the 
domain wall energies leads to a proposed phase diagram for head 
to head domain walls where transverse walls have lower energy 
when dimensions are less than tcritwcrit z 130A/poM; .  

I. INTRODUCTION 

In recent years, the ability to fabricate submicron features in 
magnetic films has opened a new field of experimental micro- 
magnetics, with considerable interest in submicron magnetic 
strips [ 11, [2]. A carefully calculated phase diagram of domain 
wall structures in thin magnetic strips has been published by 
Ramstock et al. describing the low-energy domain wall config- 
urations for domain walls running parallel to the length of the 
strip [3]. In that calculation, the magnetization was constrained 
to be uniform along the length of the strip. 

The lowest energy state in an infinitely long magnetic strip 
is a uniformly magnetized state. The next highest energy stable 
state will be a configuration having two semi-infinite uniform 
domains and a localized head-to-head domain wall with an as- 
sociated finite total energy. In contrast, a two-domain state with 
a 1 SOo domain wall running parallel to the strip edges will have 
infinite energy, due to the finite energy per unit length of the do- 
main wall. 

From a practical standpoint, head-to-head domain walls play 
a role in magnetization reversal in thin strips where the reman- 
ent state has domain structures at the ends of the strip [4]-[7], 
and magnetization switches through propagation of head-to- 
head domain structures from the ends through the sample [l], 
[61. 

In this paper we calculate head-to-head domain structures 
that form at the boundary between two oppositely directed, 
semi-infinite domains in magnetic strips. 
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11. CALCULATION METHOD 

Our calculation involves solution of Brown’s equations by 
finite-differences on a 2D square grid. At the grid points, the 
magnetization is represented by 3D vectors, mi, having unit 
length. Only the magnetostatic energy and the exchange en- 
ergy are taken into account. Other anisotropy terms (magneto- 
crystalline, magnetostrictive, etc.) are set to zero for simpli- 
city. Because only magnetostatic and exchange energy terms 
are considered, the relevant length scales that are involved in 
the problem are the the thickness, t ,  of the film, the width, w, 
of the patterned strip of film, and the magnetostatic exchange 
length, 6 = ( A / , U ~ M : ) ~ / ~ ,  which is the relevant length scale 
for vortex cores. 

A general solution to this problem would be best described 
in terms of the dimensionless variables w/6 and t / 6 .  However, 
for concreteness, the calculations were performed using para- 
meters appropriate for NisoFezo, A = 1.3 x 10-l1J/m and 
M,  = 8.0 x 105A/m, giving6 = 4.0 nm. 

We discretize the infinite strip using a square grid over a re- 
gion with a length, 1 = 4w, as illustrated in Fig. 1. Inside the 
discretized region, the magnetization is constrained to be uni- 
form through the thickness of the film. Outside the gridded re- 
gion, the magnetization is constrained to lie along the length of 
the strip, directed inward towards the gridded region. The mag- 
netostatic fields of the semi-infinite strip ends are replaced by 
fields due to plates of positive magnetostatic charge at each end 
of the gridded region. 

This discretization scheme has a range of validity that is lim- 
ited by the requirement that the energy of vortices in the thin 
film strips be calculated correctly. Therefore, the discretization 
must be fine enough that vortex cores can be resolved. This 
limitation is felt most strongly in calculations of wide strips, 
where a large number of cells is needed, and calculations pro- 
ceed very slowly. An additional limitation is that having uni- 

Fig. 1.  Schematic of discretization scheme for head-to-head domain walls in an 
infinite strip. The shaded area represents a ribbon of magnetostatic charge used 
to represent the magnetostatic effects of the infinitely long ends of the strip. 
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form magnetization through the strip thickness must not be an 
overly restrictive assumption. While a full 3D model would be 
needed to confirm this assumption, the results of the 2D cal- 
culation, to be shown below, contain NCel-like transitions, and 
symmetric NCel walls have been shown to possess only weak 
z-dependence of the magnetization [3].  

Minimization of the energy is achieved by following heavily 
damped Landau-Lifshitz-Gilbert equations of motion, 

dm - eff) - yXrn x (m x H,ff). (1) 
dt 

This ODE is solved numerically using a second order predictor- 
corrector technique, The step size, dt, is adjusted as necessary 
to insure that the total energy decreases at each step. The itera- 
tion is continued until the maximum torque over all of the spins 
in the system is below a threshold value. At this point, as a sta- 
bility check, the spins are given random 2’ perturbations, and 
the ODE iteration is restarted. The process of perturbation and 
ODE solving is repeated until successive solutions yield ener- 
gies within a given tolerance. 

Magnetostatic fields are calculated separately for fields in the 
2-y plane of the sample and for fields directed out of the plane 
of the sample in the z direction. For fields in the x-y plane, 
H&, we calculate the magnetostatic charge, p = -V . M, 
assuming constant p over grid cells [SI. The magnetostatic po- 
tential due to a single cell with unit charge is calculated by 
numerical integration and the potential is then calculated over 
the whole grid with a fast Fourier transform convolution tech- 
nique. To isolate the calculation region from periodic ‘images’ 
(induced by the cyclic nature of FFT-based convolution), the 
‘sample’ grid is embedded in a zero-padded 2 x 2 larger grid 
[9]. Finally, H$, ,, is determined by numerical differentiation 
of the magnetostatic potential [SI. 

The x-component of the magnetostatic field, I€:, is calcu- 
lated directly from the values of m, on the grid. The field due 
to surface charges on a single block of z-directed magnetization 
is integrated numerically and a zero-padded Fourier transform 
convolution is used to determine H: throughout the grid. 

The exchange energy was calculated using equal magnitude 
dot-product interactions with spins at the eight nearest neighbor 
sites [lo]. This form of the exchange energy is equivalent to 
assuming that the magnetization in a cell is determined from 
the values of m on grid points at the corners of the cell through 
a bilinear interpolation. 

111. RESULTS 

We used two basic initial states in the calculations, an abrupt 
head-to-head transition and one with a block of out-of-plane 
spins in the transition region. Both of these states included ran- 
dom perturbations of 2O for each spin. In almost all cases, these 
initial conditions led to one of two types of head-to-head do- 
main walls: a ‘transverse’ wall, illustrated in Fig. 2a, or a ‘vor- 
tex’ wall illustrated in Fig. 2b. 

The transverse wall has a reflection symmetry about a line 
perpendicular to the strip axis. Note that in Fig. 2a, the wall 
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Fig. 2 .  a) ‘Transverse’ domain structure for a head-to-head wall calculated in a 
2 nm thick, 250 nm wide strip of Ni80 Feao, and b) ‘vortex’ domain structure for 
a head-to-headwall calculated in a 32 nm thick, 250nm wide strip of Niso Fezo. 
Each m o w  represents the magnetization of a subsample from a 4x4 cell block. 

appears wider at the top edge of the strip than at the bottom 
edge. This asymmetry is quite prominent in the wider strips, 
where the transverse wall appears as a triangular, transversely 
oriented domain bounded on two sides by a “V” configuration 
of 45’ N6el walls oriented diagonally to the strip axis. 

The vortex structure has a two-fold rotational symmetry 
about its center point, and bears a striking resemblance to the 
structure observed experimentally in a cobalt strip [ 11. In the 
the wider strips, the dominant feature of the vortex wall is a 
N&el wall running diagonally across the strip, with a vortex at 
its center. For the thickest films, and depending on initial condi- 
tions, we have occasionally observed two vortices and a cross- 
tie wall in the central region of the vortex wall. 

In some instances, the system obtained a lower energy by 
sliding the domain wall to one end of the gridded region. To 
prevent this, the domain walls were stabilized by the applica- 
tion of a field of amplitude O . l l W ,  to a few spins in the cent- 
ral region of the sample, either transverse or perpendicular to 
the strip for transverse or vortex wall calculations, respectively. 
This stabilization field contributed less than 0.5% to the total 
wall energy. 

We have calculated domain wall energy for the two types 
of walls as a function of film thickness for a number of strip 
widths, and the results are presented in Fig. 3. For each type 
of wall, calculations were carried out as a function of t  for w = 
75 nm, 125 nm, 250 nm, and 500 nm. The final state for each 
thickness was used as an initial condition for the next value oft. 
Calculations of vortex wall energies started at large t with ini- 
tial out-of-plane transitions, and calculations of transverse wall 
energies started at low t with initial abrupt transitions. For each 
strip width there is a considerable range of thickness for dual 
stability, but it is not clear how much of this range is due to our 
use of a stabilization field as described above. 

As apartial phase diagram for head to head walls in thin mag- 
netic strips, the crossover points in Fig. 3 are plotted in Fig. 4 in 
terms of the dimensionless strip thickness t / S  and width w/S. 
Transverse domain walls have lower energy than vortex walls 
for low values of t  and w, and the crossover critical dimensions 
suggest a phase boundary of the form 
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Fig. 3. Domain wall energy as a function of film thickness for head-to-head 
walls with transverse (open symbols) and vortex structures (filled symbols) in 
strips of Ni80Feao with widths of 75 nm, 125 nm, 250 nm, and 500 nm. 
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Fig. 4. Partial phase diagram of head to head domain wall structures in thin 
magnetic strips. 6 is the magnetostatic exchange length. 

The dashed line in Fig. 4 corresponds to C = 128 

IV. DISCUSSION 

The energy associated with both the transverse and vortex 
walls comes predominantly from magnetostatics, but in a vor- 
tex domain wall the exchange energy contribution is more sig- 
nificant. For example, in a w=250 nm, t=8 nm strip, where the 
total energies are very nearly equal, the transverse wall energy 
is 93% magnetostatic and 7% exchange, while the vortex wall 
energy is 78% magnetostatic and 22% exchange. 

The phase boundary can be estimated by considering the dif- 
ferences in the exchange and magnetostatic energies of features 
that appear in the calculated domain patterns. An estimate of 
the exchange energy difference is the energy of a vortex, which 
appears in the vortex wall but not in the transverse wall: 

where r,,, is the outer radius of the vortex, on the order of a 
NCel wall width or the strip width, and rmin is the radius of the 
vortex core, on the order of 6. 

An estimate of the magnetostatic energy difference is the 
magnetostatic energy associated with magnetization oriented 

perpendicular to the strip edge, which occurs in transverse 
walls, and to a much lesser degree in vortex walls. For M per- 
pendicular to the strip edge, the resulting magnetostatic field 
has a maximum magnitude of i M s  at the edge, and falls to 
+Ads at a distance of t / 2  from the edge. Taking this half- 
maximum value of the field as an average value in the region 
within a distance t of the edge, and integrating over a volume 
with a length z w, The magnetostatic energy from edge direc- 
ted magnetization is then estimated to be 

2 2  M - poH . M M - -poM8 t w. 
8 (Evortex - Etrans)ms 

(4) 
To find the phase boundary, the sum of the exchange and 

magnetostatic energy differences given in (3) and (4) is set 
equal to zero. The resulting expression for the phase boundary 
is 

wt = l6nln (5) S 2 .  (5 )  

The maximum and minimum dimensions of the vortex, rmaX 
and T,,,, are determined by the material parameters and per- 
haps by sample geometry. Taking Tm,, = w/2 and rmin = 6 
with w/S m 40 gives C = 150. Given the weak logarithmic 
dependence on rmax and r,,,, and the approximationsin (3) and 
(4), the agreement with the computational results in (2) is quite 
good. 
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