

Towards a smart and efficient telecom infrastructure

meeting current and future industry needs (TIMING SP-2)
(Ref. TSI-063000-2021-148)

Deliverable D1.1

Year 1 report on component

development, integration, testing

and validation

Editor S. Spadaro (UPC)

Contributors ELI, IKL, SED, UPC, ABB, Telefonica

Version 1.5

Date 31 Jan-2024

Distribution PUBLIC (PU)

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

DISCLAIMER

This document contains information, which is proprietary to the TIMING (Towards a smart and
efficient telecom infrastructure meeting current and future industry needs) consortium
members.

Neither this document nor the information contained herein shall be used, copied, duplicated,
reproduced, modified, or communicated by any means to any third party, in whole or in parts,
except with prior written consent of the TIMING consortium members. In such case, an
acknowledgement of the authors of the document and all applicable portions of the copyright
notice must be clearly referenced. In the event of infringement, the consortium members
reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view. Neither the TIMING consortium members as a
whole, nor a certain TIMING consortium member warrant that the information contained in this
document is suitable for use, nor that the use of the information is accurate or free from risk,

and accepts no liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

REVISION HISTORY

Revision Date Responsible Comment

1.0 July, 14, 2023 UPC Tentative Table of

Contents

1.1 December, 12, 2023 UPC Responsible Sections

assignment

1.2 January, 19, 2024 UPC Integrated version

1.3 January, 25, 2024 UPC 2nd Integrated version

1.4 January, 30, 2024 UPC Revised version

1.5 January, 31, 2024 UPC Final Version

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

LIST OF AUTHORS

Partner ACRONYM Partner FULL NAME Name & Surname

UPC Universitat Politècnica de

Catalunya

S. Spadaro, L. Velasco, F. Agraz, M. Ruiz,

J. Comellas, D. Careglio, M. Cabrera, J.

Villares, J. Vidal, O. Muñoz

IKL Ikerlan G. Ros, R. Torrego

ELI E-Lighthouse J. Moreno, P. Pavón Mariño, E. Férnandez

Sánchez

SED Safran Electronics &

Defense

C. Arias, J. Sánchez

TID Telefónica I+D L. M. Contreras, M. Blanco, J. Folgueira

ABB Asea Brown Bovery L. Gonzalez

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

GLOSSARY

Abbreviations/Acronym Description

AGV Automated Guided Vehicle

AP Access Point

API Application Programming Interface

CAN Controller Area Network

CM Connectivity Manager

CNC Central Network Controller

DT Digital Twin

KPI Key Performance Indicator

JSON JavaScript Object Notation

LIDAR Light Detection and Ranging

MCS Modulation Coding Scheme

NBI NorthBound Interface

OFDM Orthogonal Frequency-Division Multiplexing

PTP Precision Time Protocol

SBI SouthBound Interface

STA Station in a Wi-Fi network

TSN Time Sensitive Networks

VHDL Wi-Fi TSN Node Hardware

WFS Wi-Fi Scheduler

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

EXECUTIVE SUMMARY
The aim of this deliverable is to report about the status of the different components/modules

of the overall TIMING architecture in support of E2E services, defined in the framework of SP1

project. In particular, it reports the status of the prototyping of the Wi-Fi and Ethernet TSN

nodes, the TSN controller, the TSN Connectivity Manager, the scheduling algorithms for the Wi-

Fi node, TSN models to be used by the Digital Twin (DT) to estimate the KPIs, metro network

solution, and the industrial application.

Moreover, this deliverable contains a preliminary version of the operational workflow for the

service provisioning over the E2E infrastructure, putting emphasis on the interactions among

the different components to materialize the required resources configuration to support the E2E

services with the required KPIs.

Finally, this deliverable also contains the preliminary integration tests conducted so far, with

special emphasis on the data plane interconnection tests between TSN Wi-Fi node and the TSN

Ethernet node.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 TIMING ARCHITECTURE COMPONENTS ... 2

2.1 TSN Wi-Fi node .. 2

2.1.1 Description .. 2

2.1.2 Report on the Current Status ... 3

2.2 Scheduling algorithms for Wi-Fi TSN.. 6

2.2.1 Description .. 6

2.2.2 APIs design to integrate the scheduler in the Wi-Fi Node 7

2.2.3 Report on the Current Status ... 12

2.2.4 Report on the stand-alone preliminary tests ... 12

2.3 Ethernet TSN nodes including software... 15

2.3.1 Report on the current status ... 15

2.4 SDN-TSN CONTROLLER .. 31

2.4.1 Description .. 31

2.4.2 Report on the Current Status ... 33

2.5 CONNECTIVITY MANAGER ... 37

2.5.1 Description .. 37

2.5.2 Report on the Current Status ... 39

2.5.3 NorthBound Interface Implementation ... 39

2.5.4 Stand-alone preliminary tests .. 52

2.6 TSN models/DT .. 68

2.6.1 Description .. 68

2.6.2 Traffic Profiles .. 69

2.6.3 REST API Interface.. 70

2.6.4 Report on Current Status ... 73

2.6.5 Stand-alone preliminary tests .. 73

2.7 Metro SDN Controller .. 75

2.8 INDUSTRIAL APPLICATIONS ... 76

2.8.1 Description .. 76

2.8.2 Report on the Current Status ... 78

3 Operational Workflow for E2E service provisioning .. 83

4 PRELIMINARY INTEGRATIONS .. 85

4.1 Preliminary Data plane interconnection tests ... 85

4.1.1 PTP Synchronization tests .. 85

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

5 CONCLUSIONS ... 91

6 REFERENCES .. 92

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

1

1 INTRODUCTION

This deliverable reports, firstly, the ongoing status of implementation of the different

components/modules that have been defined in the architecture design, reported in the SP-1

deliverables. More details about the overall architecture can be found in deliverable D1.2 [1]

and D1.3 [2]. The implementation of the different modules as well as their evaluation represents

the required step prior to their integration to materialize the TIMING architecture properly

designed to support E2E service provisioning. The different components that compose the

architecture can be listed as:

• Wi-Fi-based TSN nodes

• Scheduling algorithms for Wi-Fi TSN

• Ethernet TSN nodes

• TSN SDN controller

• Connectivity Manager

• TSN models/DT

• Optical transport/metro SDN Controller

• Industrial application.

For each component, this deliverable reports the current status of the development, as well

some stand-alone tests to validate the implementation. Additionally, this deliverable also

reports some preliminary integration tests, mostly at the data plane level, that is, related to data

plane connectivity between the Wi-Fi node and the Ethernet TSN node.

The overall integration tests will be reported in the upcoming deliverable D1.2 of SP2 project.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

2

2 TIMING ARCHITECTURE COMPONENTS

2.1 TSN WI-FI NODE

2.1.1 Description

The SW/HW architecture of the WI-FI TSN Node can be divided in three sections as shown
Figure 2-1.

• Wi-Fi TSN Node's hardware (VHDL), including key components such as physical
communications interfaces (Ethernet TSN and Wi-Fi TSN), a PTP Hardware clock, and a
RT traffic translation entity. The Ethernet TSN features at least one physical port,
supporting IEEE 802.1 standards such as IEEE 802.11AS for PTP and IEEE 802.1Qbv for
scheduled and mixed-critical traffic. The Wi-Fi TSN modem employs a w-SHARP
implementation, incorporating time-sensitive communication and synchronization
techniques as in the Wired TSN interface.

• The main processor who operates a general-purpose operating system, hosting the
primary control application, hardware and control access drivers, a TCP/IP network
stack, and various applications for Wi-Fi TSN node operation. These applications consist
of a PTP stack for IEEE 802.1AS compliance, a controller interface for external TSN
controller communication, and a scheduling algorithm interface for wireless scheduling
methods.

• The real-time co-processor who hosts the Wi-Fi TSN modem driver, RT software
program, and components governing precise-time operations of the Wi-Fi TSN modem.
The Wireless TSN driver facilitates frame communication with the Wi-Fi TSN modem,
offering a control interface for the scheduling algorithm and TSN controller.

Figure 2-1: Block diagram of the Wi-Fi TSN node HW/SW architecture.

With respect to the status reported in SP1 D1.3 [2], work has been done specially in two main
topics:

• Provide fast reconfiguration of the Wi-Fi-TSN nodes: Every time the SDN-TSN controller
or the Wireless Flow Scheduler demands a change in the configuration, the capability to

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

3

receive the new specific TSN configuration and be able to forward it to the connected
STAs and apply it as fast as possible.

• Provide statistics/telemetry/capabilities to the SDN-TSN controller and the Wireless
Flow Scheduler.

Along with these, the first integration tests between Ikerlan’s WiFi-TSN nodes and Safran’s TSN
switches are also reported in section 5.

2.1.2 Report on the Current Status

2.1.2.1 Current status of the implementation

SP1 derivable D1.3 [2], section 2.2.1 defined three stages for the development of the new

control software:

• A first stage where the different features (publications of statistics, reception of
configuration and propagation of configuration) will be implemented through
configuration files. The remote access either from the SDN-TSN Controller or the
Wireless Flow Scheduler to change the configuration files or read statistics will be done
via FTP or SSH connection. The retransmission of the new configuration from the AP to
the STAs is also done via SSH and FTP.

• A second stage, where the configuration files from the SDN-TSN Controller and the
Wireless Flow Scheduler are received, and the gathered statistics are offered via an API
based in an IP/Socket protocol. Besides, the retransmission of the new configuration
from the AP to the STAs will be included in the beacon, at the beginning of each super-
frame, thus speeding un the reconfiguration process.

• A third stage, where the information to/from the SDN-TSN Controller will continue being
received/sent via an API based in a IP/Socket protocol, but where the Wireless Flow
Scheduler will be integrated in the real-time software of the TSN Wi-Fi node.

At this point, the first stage is practically completed, and the second stage is ongoing.

On the one hand, from the fast reconfiguration of the WiFi-TSN nodes point of view, the

development of two APIs, with the aim of receiving the configuration information, is ongoing.

One API would be aimed for the SDN-TSN controller, and the other one for the Wireless Flow

Scheduler. The API being developed for the SDN-TSN controller is a Flask based solution as its

reconfiguration speed requisites are not very demanding. For the Wireless Flow Scheduler an

IP/socket based solutions is being developed and tested in order to achieve the highest possible

speed.

In addition, some software modifications addressing the possibility of transmitting this

configuration information from the AP to the STAs in the beacon are being implemented. In this

way, the configuration information would be transmitted at the beginning of each super-frame,

offering a higher reconfiguration speed compared to FTP/SSH based transmissions. The new

information being sent in the beacon frame can be seen in Figure 2-2.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

4

Figure 2-2: New beacon data structure, adding the super-frame configuration.

Regarding the provision of statistics/telemetry/capabilities to other devices in the TIMING

architecture, some changes are being done in the control software of both processors of the Wi-

Fi TSN Node. Most of the statistics are collected in the RT processor so it has been necessary to

enable the transmission of this information from this processor to the general processor by using

the inter-processor communication module (remoteproc) as shown in Figure 2-3. Once

transmitted to the general-purpose processor, they are compiled in a file so that they can be

consumed from the API for the Wireless Scheduler and the SDN-TSN Controller.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

5

Figure 2-3: First version of the task of transmitting statistics from the RT processor to the general task processor.

2.1.2.2 Stand-alone preliminary tests performed

In order to evaluate the current reconfiguration speed, the time between the application of the

new configuration to an AP and the reconfiguration of both AP and STA has been measured.

The measured time is around 20 seconds.

Actions Time

Detect new TSN configuration file 1 ms

Transmit/Receive TSN configuration File 500 ms

Apply new TSN configuration File 15s

Syncronize to transmit again 5s

TOTAL ≈ 20s

Currently the run-time reconfiguration capability of the Wi-Fi TSN Node is limited due to the

model based in configuration files and transmission of the configuration via FTP/SSH protocols

between AP and STA. Most of the time is taken applying the new configuration file, due to the

need to parse the file from the general-purpose processor to the RT processor, and from there,

to the HW.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

6

2.2 SCHEDULING ALGORITHMS FOR WI-FI TSN

2.2.1 Description

The Wi-Fi scheduler (WFS) interacts with the Wi-Fi TSN node at regular superframe intervals. On

one hand, the Wi-Fi TSN node reports details about the active flows, including comprehensive

information such as traffic characteristics, priority type, direction (uplink or downlink), queue

size for asynchronous traffic and bit rate for isochronous traffic. Additionally, the Wi-Fi TSN node

provides environmental information, particularly regarding the state of the channel. Provided

with this information, the scheduler is tasked with making decisions about the structure of Wi-

Fi frames. The global scheduler algorithm, integrated into the TSN Wi-Fi node, encompasses

several modules, as depicted in Figure 2-4 and summarized below:

• TSN Wi-Fi Windows Designer. At the TSN Wi-Fi node, each isochronous TSN flow is

allocated into a periodic time window by the connectivity manager, considering the

required throughput and the worst-case channel state. The WFS, depending on the

channel state, optimizes the pre-assigned time window in the Wi-Fi link, reducing the

size of the time window assigned to the isochronous flows if the channel state allows it

and thus freeing slots that can be reused by other non-isochronous and lower priority

flows. In this sense, the advanced window designs described in D1.4 (SP1) will not be

implemented in SP2 for the sake of compatibility with the Wi-Fi node hardware and the

regular TSN architecture adopted in Timing, instead, the TSN traffic corresponding to a

single flow is transmitted in the pre-allocated time window at the maximum speed

allowed by the channel, which is equivalent to reducing the pre-allocated window to the

here named Wi-Fi window.

● DL/UL Splitter for UL and DL distribution of the slots not devoted to isochronous traffic.

It computes dynamically the number of slots assigned to DL and UL by applying a

reinforcement learning based algorithm which takes decisions depending on the

aggregated DL and UL queues sizes.

● DL Asynchronous Traffic Scheduler: Determines the flows served in the DL prioritizing

first the asynchronous traffic with quality of service over the BE traffic without QoS.

● UL Asynchronous Traffic Scheduler: Analogously to the DL scheduler, it decides the flows

to be served in the uplink considering the established priorities.

● Frame Builder: It builds the frame based on the designed TSN Wi-Fi windows for

isochronous traffic and on the DL&UL scheduler decisions.

The flow chart that completely encompasses the scheduler is shown in Figure 2-4.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

7

Figure 2-4: WiFi Scheduler (WFS) flowchart

Figure 2-5 shows an example in which in the downlink part of the frame, flows have been

allocated into the different slots. The Wi-Fi time windows assigned to isochronous traffic are

symbolized in yellow.

Figure 2-5: Frame Design Example

2.2.2 APIs design to integrate the scheduler in the Wi-Fi Node

In the API design to integrate the WFS into the TSN Wi-Fi Node some steps have to be defined

or planned previously, as listed below.

1. API Design: To integrate the WFS into the TSN node, an API will be designed to manage

the interface between both. Progress in programming the API will be carried out in three

successive stages.

a. In the first stage a socket in Matlab will be programmed. In the first integration

test a basic configuration and communications block will work in Matlab

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

8

dynamically providing a frame design every 5 sec. approximately, which is

determined by the limitations of the Matlab socket.

b. In the second stage, the same development will be carried out but programming

in C, expecting to obtain a higher periodicity in the frame structure updating

process.

c. In the most advanced level (third stage), the C-programmed API will be compiled

into the Linux program, embedding the API locally within the SHARP Wi-Fi TSN

card. This approach is intended to achieve the fastest speed in the periodicity of

frame design.

The parameters that will be exchanged through the implemented API are those given in tables I

and II in deliverable SP-1 D1.3, specifically in Section 2.3.1.

2. Wi-Fi time window design for isochronous traffic: Regarding the isochronous flows, the

connectivity manager will orchestrate the route as well as the time window assigned for

its transmission in each of the network elements. Based on this design, the TSN Wi-Fi

node will inform the WFS of the periodicity and the start and end time stamps of the

assigned window, initially designed to support the lowest MCS (channel state worst-

case). In the initial phase of the scheduling algorithm, if the channel state is better than

the worst-case scenario, the MCS will be increased and the time windows for the Wi-Fi

segment will be adjusted. This involves allocating the corresponding flow into a smaller

time interval than the initial one, and as a result it will be possible to opportunistically

accommodate lower-priority and asynchronous traffic in the free time intervals.

The WFS will define the assigned time interval in slots (OFDM symbols), serving as the

temporal granularity unit within the Wi-Fi segment.

In any case, it must be guaranteed that the transmission of the assigned flows, in each

bridge, does not exceed the time windows assigned by the connectivity manager. If

necessary, while Wi-Fi windows are prepared, the information can be buffered in the

STA devices (UL) or the AP (DL) without violating the previous condition.

3. Real-Time DL/UL split: The Real-Time DL/UL splitter will compute the size of the

aggregated DL queue, i.e. the summation of the sizes of all the asynchronous DL queues

(traffic with service quality and BE if there are), considering different levels of priority

and the size of the aggregated UL queue. Then it will also compute the number of free

slots in the frame, once isochronous flows have been allocated in the frame, and by

applying a RL based decision it will deliver the number of slots allocated for

asynchronous traffic in RT-DL and the number of slots allocated for asynchronous traffic

in RT-UL. Alternatively, it will decide the frontier of the RT-DL and RT-UL subframes.

4. Scheduler for Real-Time DL frame [DOWNLINK]: The Real-Time DL scheduler allocates

slots among the Downlink (DL) flows associated with quality of service using a largest-

weighted-delayed-first scheduler (LWDF) algorithm. This algorithm leverages channel

state information and buffers occupation to determine the number and specific slots

assigned to each flow. If there are remaining free slots, they are then distributed among

Best Effort (BE) flows using a straightforward Round-Robin algorithm.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

9

5. Scheduler for Real-Time UL frame [UPLINK]: In UL, the same scheduler is used, as in DL,

but in this case a guard time and a preamble must be inserted before the slots

corresponding to the different users or STAs.

6. Channel modeling: The channel model for scheduler design and simulation has to be

validated providing models for pathloss in terms of distances, pathloss exponent and

average received power and for fading profile in terms of PDP, Delay spread, Rayleigh or

Rice Line of Sight, Doppler spread and coherence time.

7. SHARP Frame definition (RT subframe): RT frame definition for scheduler design and

simulation has to be validated, providing values for bandwidth, OFDM symbol length,

slot time, number of carriers for data, MCS modes, inter-symbol spacing, and PHY&MAC

overhead in UL and in DL.

Table 1 shows the input/output variables associated to the different blocks that make up the

scheduler and

Model Parameter Value

Channel Pathloss Distance TBD

Exponent TBD

Average received power TBD

Multipath Fading Delay Spread (rms) 89 ns (Ch1) - 29 ns (Ch2)

NLOS Yes/No

Doppler spectrum TBD

Coherence Time 30 msec.

Frame Structure Bandwidth 20 MHz

OFDM symbol length 4 s (0.8 s + 3.2 s)

Slot Time OFDM symbol

Number of data subcarriers 48

MCS 0…7

PHY overhead (DL) 20 s

PHY overhead (UL) 4 s

MAC overhead (DL) TBD

MAC overhead (UL) TBD

IFS (Interframe Spacing) TBD

Table 2 shows the different parameters needed for both integration and simulation purposes.

Block Inputs Outputs

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

10

1 Wi-Fi time window design

for isochronous traffic

Global Information:

● Number of

isochronous flows.

Information per

flow:

● Channel State

(Channel Impulse

Response CIR and

Received Signal

Strength Indicator

RSSI)

● Pre-assigned Time

window (Initial and

final time stamps)

● Direction (UL or DL)

● STA identifier or ID

● Periodicity of

packets

● Maximum PER

Information per flow:

● MCS

● Assigned slots

2 Real-Time DL/UL split Global Information:

● Number of free slots

in the frame.

● Number of

asynchronous flows.

Information per

flow:

● Direction (UL or DL)

● Queue size

Global Information:

● Number of slots

assigned to

asynchronous flows

in the DL.

● Number of slots

assigned to

asynchronous flows

in the UL.

3 Scheduler for Real-Time DL

frame

Global Information:

● Number of slots

assigned to

asynchronous flows

in the DL.

● Number of

asynchronous DL

flows.

Information per DL

flow:

● Channel State (CIR

and RSSI)

● STA

● Maximum PER

● Maximum latency

Information per flow:

● MCS

● Assigned slots

4 Scheduler for Real-Time UL

frame

Global Information: Information per flow:

● MCS

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

11

● Number of slots

assigned to

asynchronous flows

in the UL.

● Number of

asynchronous UL

flows.

Information per UL

flow:

● Channel State (CIR

and RSSI)

● STA

● Maximum PER

● Maximum latency

● Assigned slots

5 Frame Builder Global Information:

● Number of flows

Information per

flow:

● MCS

● Assigned slots

Global Information:

● Frame structure

Table 1: Input and output variables at the WFS functional blocks

Model Parameter Value

Channel Pathloss Distance TBD

Exponent TBD

Average received power TBD

Multipath Fading Delay Spread (rms) 89 ns (Ch1) - 29 ns (Ch2)

NLOS Yes/No

Doppler spectrum TBD

Coherence Time 30 msec.

Frame Structure Bandwidth 20 MHz

OFDM symbol length 4 s (0.8 s + 3.2 s)

Slot Time OFDM symbol

Number of data subcarriers 48

MCS 0…7

PHY overhead (DL) 20 s

PHY overhead (UL) 4 s

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

12

MAC overhead (DL) TBD

MAC overhead (UL) TBD

IFS (Interframe Spacing) TBD

Table 2: Parameter definition for simulation and integration purposes

2.2.3 Report on the Current Status

As explained in D1.3 (SP-1) a simplified version of the WFS component has been programmed in

Matlab in order to carry out the first WFS integration test scheduled for the end of February

2024. Recently, some functionalities regarding blocks 1 and 2 in Table 1 have been updated and

integrated in the Matlab script. Moreover, blocks 3 and 4 are now only concerned with

asynchronous traffic since block 1 is responsible for isochronous traffic allocation. This Matlab

script will be used to build the first step of the API to intercommunicate the WFS with the TSN

Wi-Fi node as reported in section 2.2.2. Table 3 shows the designed Matlab functions devoted

to the different WFS blocks.

Function Input Variables Output Variables

1 WindowsDesigner_ISO_TIMING ● FlowList

● SystemPars
● SuperFrame_ISO

2 DLULResourceAllocation_TIMING ● FlowList

● SystemPars

● SlotsDL

3 SchedulerDL_ASYN_TIMING ● FlowList

● MS

● ServiceClass

● selectedFlowsDL_ASYN

● selectedFlowsDL_capacities

_ASYN

4 SchedulerUL_ASYN_TIMING ● FlowList

● MS

● ServiceClass

● selectedFlowsUL_ASYN

● selectedFlowsUL_capacities

_ASYN

5 FrameBuilder_TIMING ● SlotsDL

● SuperFrame_ISO

● selectedFlowsDL_ASYN

● selectedFlowsDL_capacit

ies_ASYN

● selectedFlowsUL_ASYN

● selectedFlowsUL_capacit

ies_ASYN

● SystemPars

● FlowList

● SuperFrame

Table 3: Matlab functions included in the script for first integration test

2.2.4 Report on the stand-alone preliminary tests

The stand-alone preliminary test performed to validate the implementation of the simplified

WFS that will be integrated in the first integration test was described in SP-1 D1.3, section 2.3.3.

For example, the test was executed in a scenario including 5 DL flows and 3 UL flows (1 packet

per flow) of different classes (ISO, ASYN and BE) and were scheduled in one superframe.

The input variables definition was as follows:

Nusers=8; % number of users (STAs)

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

13

Nflows=Nusers; % number of flows (we consider 1 flow per user)
Nbuffers=Nflows; % number of buffers
PacketLength=1500; % fixed packet length in bits
BufferSize=1000; % buffer size in packets
SystemPars.NumSlots=73; % number of slot per superframe (DL+UL) (INPUT)
DataCarriers=234; % from 802.11ax (Table 27-79)
OFDMSymbolperSlot=1; % 1 slot = 1 OFDM symbol
SystemPars.ChannelUsesperSlot=DataCarriers*OFDMSymbolperSlot; % channel use =

DataCarriers*OFDMSymbolsperSlot (INPUT)

for n=1:Nbuffers
 buffer_struct(n).BufferSize=BufferSize; %% Number of elements in the

buffer
 buffer_struct(n).LastBufferElement = 1; %% Position of the last

element in the buffer
 buffer_struct(n).FirstBufferElement = 1; %% Position of the first

element in the buffer
 buffer_struct(n).NumPackets= 1; %% # of packets in buffer
 buffer_struct(n).PendingBits = PacketLength*buffer_struct(n).NumPackets;

%% Bits pending to be sent (INPUT)
 for jj=1:BufferSize
 buffer_struct(n).Buffer(jj).SizeOfElement = PacketLength; % Number of

bits of a buffer element (packets size)
 buffer_struct(n).Buffer(jj).BitsYetTransmitted = 0; % Bits

transmitted in previous frames
 buffer_struct(n).Buffer(jj).GenerationTime = 0; % Packet

arrival time in seconds (INPUT: not used yet)
 end
end

% DL FLOWS
% Class 1 flows (ISO)
FlowList(1).Direction=1; % 1: DL; 2: UL (INPUT)
FlowList(1).ConnexionIdentifier.MS=1; % STA generating/receiving the flow

(INPUT)
FlowList(1).ServiceClassIdentifier=1; % Flow class (INPUT)
FlowList(1).FlowBuffer=buffer_struct(1); % Buffer storing the packets of this

flow
FlowList(1).Periodicity=1; % flow periodicity in superframes (integer number)

(INPUT)
FlowList(1).FirstSlotTXWindow=10; % Slot of the DL frame at which

transmission starts (INPUT)
% Class 2 flows (ASYN)
for n=2:3
 FlowList(n).Direction=1;
 FlowList(n).ConnexionIdentifier.MS=n;
 FlowList(n).ServiceClassIdentifier=2;
 FlowList(n).FlowBuffer=buffer_struct(n);
end
% Class 3 flows (BE)
for n=4:5
 FlowList(n).Direction=1;

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

14

 FlowList(n).ConnexionIdentifier.MS=n;
 FlowList(n).ServiceClassIdentifier=3;
 FlowList(n).FlowBuffer=buffer_struct(n);
end
% UL FLOWS
% Class 1 flows (ISO)
FlowList(6).Direction=2;
FlowList(6).ConnexionIdentifier.MS=6;
FlowList(6).ServiceClassIdentifier=1;
FlowList(6).FlowBuffer=buffer_struct(6);
FlowList(6).Periodicity=1;
FlowList(6).FirstSlotTXWindow=65;
% Class 2 flows (ASYN)
FlowList(7).Direction=2;
FlowList(7).ConnexionIdentifier.MS=7;
FlowList(7).ServiceClassIdentifier=2;
FlowList(7).FlowBuffer=buffer_struct(7);
% Class 3 flows (BE)
FlowList(8).Direction=2;
FlowList(8).ConnexionIdentifier.MS=8;
FlowList(8).ServiceClassIdentifier=3;
FlowList(8).FlowBuffer=buffer_struct(8);

% STA Capacity (bits per channel use = bps/Hz = MCS spectral efficiency)
MS(1).Capacity=6*3/4; % MCS=6 (WiFi6) --> 1053 bits/slot
MS(2).Capacity=2*3/4; % MCS=2 (WiFi6) --> 351 bits/slot
MS(3).Capacity=8*5/6; % MCS=9 (WiFi6)
MS(4).Capacity=1*1/2; % MCS=0 (WiFi6) --> 117 bits/slot
MS(5).Capacity=8*5/6; % MCS=9 (WiFi6) --> 1560 bits/slot
MS(6).Capacity=2*3/4; % MCS=2 (WiFi6)
MS(7).Capacity=2*3/4; % MCS=2 (WiFi6)
MS(8).Capacity=1*1/2; % MCS=0 (WiFi6)

% ISO traffic
% ServiceClass(1).Name='ISO';
ServiceClass(1).ToleratedJitter=1e-6; % TBD (INPUT: not used yet)
ServiceClass(1).MaximumLatency=1e-3; % TBD (INPUT: not used yet)
ServiceClass(1).MaximumPacketErrorRatio=1e-4; % TBD (INPUT: not used yet)
% ASYN traffic
% ServiceClass(2).Name='ASYN';
ServiceClass(2).ToleratedJitter=1e-4;
ServiceClass(2).MinimumRate=0; % TBD (INPUT: not used yet)
ServiceClass(2).MaximumLatency=1e-3;
ServiceClass(2).MaximumPacketErrorRatio=1e-4;
% BE traffic
% ServiceClass(3).Name='BE';
ServiceClass(3).ToleratedJitter=inf; % TBD (INPUT: not used yet)
ServiceClass(3).MinimumRate=0; % TBD (INPUT: not used yet)
ServiceClass(3).MaximumLatency=inf; % TBD (INPUT: not used yet)
ServiceClass(3).MaximumPacketErrorRatio=1e-3; % TBD (INPUT: not used yet)

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

15

Obtaining a superframe variable structured as follows:

>> SuperFrame.slotsDL = 46

>> SuperFrame.Flow = [3 2 2 2 2 2 4 4 4 1 1 4 4 4 4 4 4 4

4 4 4 5 0

0 0 0 0 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 6 6

6 6 6 0 0 0 0]

The length of the SuperFrame.Flow array is the superframe duration in slots. In the example, the

superframe is split into 46 slots for the DL (in black) and 27 slots for the UL (in blue).

SuperFrame.Flow(3) =2 means that the third slot is assigned to the flow with identifier 2.

Isochronous windows are marked in yellow.

2.3 ETHERNET TSN NODES INCLUDING SOFTWARE

2.3.1 Report on the current status

2.3.1.1 The Southbound API between the CNC and the TSN switches

The WRZ-API stands as a specialized interface facilitating communication between the

Northbound API and Safran’s TSN switches. This API, integrated within the equipment, plays a

pivotal role in transmitting network configurations from the CNC to the respective equipment.

We will now delve into the format of the endpoints developed.

2.3.1.1.1 Configuration endpoints

These endpoints are related to the configuration of the TSN network and are categorized into

four types: VLAN configuration, TAS configuration, CAM configuration, and QCI configuration.

Each of these types encompasses an endpoint through which new configurations can be applied.

Operation Description and examples

/v1/tsn/vlan

Apply VLAN

configuratio

n

Example of Request:

{"url": “http://10.22.18.80:8201/v1/tsn/vlan?config_id=5”,

"method":"POST", "body": "{“wr2”: [{“addr”: “string”, “vlan_id”: 0,

“vlan_prio”: 0, “filter_en”: 0, “mac_addr”: “string”, “proto”: 0, “ip”: 0,

“vlan_id_cfg”: 0, “port”: 0, “vlan_prio_cfg”: 0, “dscp”: 0, “dest”: 0,

“has_dest”: 0, “ds”: 0, “redundant”: 0, “red_dest”: 0, “red_handle”: 0 }],

“wr3”: [{...}]}"}

Response:

{“msg”: “Success”,“data”: []}

• Notes:

▪ vlan_prio is an integer between 0-7.

▪ The Z16s are divided into 2 quads.

• For the first quad (wr0-wr3): dest and red_dest go from 0 to 3.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

16

• For the second quad (wr4-wr7): dest and red_dest go from 0 to

3.

o Example: wr4 is 0 (it is the first element from the

second quad)

▪ Values for parameter ds are (used in combination with the protocol port

number):

• 1: source port

• 0: destination port

▪ Values for parameter redundant must be 1/0.

▪ red_handle is an integer between 0-16. Must be unique per flow.

▪ vlan_id_cfg and vlan_prio_cfg are unused.

/v1/tsn/tas

Apply TAS

configuratio

n

Example of Request:

{"url": “http://10.22.18.80:8201/v1/tsn/tas?config_id=5”, "method":"POST",

"body": "{“wr2”: {“rules”: [{“interval_time”:0, “gate_cfg”:0}], “tv_sec”: 0,

“tv_nsec”: 0, “tick_granularity”: 0, “framePreemptionStatusTable”: 0}, “wr3”:

{...}}"}

Response:

{“msg”: “Success”,“data”: []}

• Notes:

▫ interval_time is expressed in 16 ns clock cycles. This field would be the

result of the following operation: Ceil [T_int (ns) /16].

▫ gate_cfg is the configuration for each of the TAS queues in one-hot

encoding. Example: 0x9 -> 1001 (Q3 and Q0 active).

▫ tv_sec is the Linux UTC time in which TAS configuration is applied.

▫ tick_granularity is the size of the step for the interval_time. The default

value is 0 which corresponds to 16 ns and it is the recommended value.

The other possible values are 1,2,3, and 4, which correspond to 2,3,5

and 9 clock cycles.

▫ framePreemptionStatusTable indicates the queues that are

preemptable in one-hot encoding. Example: 0x8 -> 1000 (Q3 is

preemtable). By default, all the queues are express.

/v1/tsn/cam

Apply CAM

configuratio

n

Example of Request:

{"url": “http://10.22.18.80:8201/v1/tsn/cam?config_id=5”

, "method":"POST", "body": "{“wr2”: [{ “vlan_pcp”: 0, “vlan_id”: 0,

“fwd_active”: 0, “rx_dest”: 0}], “wr3”: [{...}]}"}

Response:

{“msg”: “Success”,“data”: []}

http://10.22.18.80:8201/v1/tsn/cam?config_id=5

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

17

• Notes:

▫ vlan_pcp is the priority and it is an integer between 0-7.

▫ The Z16s are divided into 2 quads.

• For the first quad (wr0-wr3): rx_dest goes from 0 to 3.

• For the second quad (wr4-wr7): rx_dest goes from 0 to 3.

o Example: wr4 is 0 (it is the first element from the

second quad)

/v1/tsn/qci

Apply QCI

configuratio

n

Example of Request:

{"url": “http://10.22.18.80:8201/v1/tsn/qci?config_id=5”, "method":"POST",

"body": "{“wr2”: { “rules”: [{“interval_time”: 0, “gate_cfg”: 0}], “tv_sec”: 0,

“tv_nsec”: 0, “qci_tick_granularity”: 0}, “wr3”: {...}}"}

Response:

{“msg”: “Success”,“data”: []}

• Notes:

▪ interval_time is expressed in 16 ns clock cycles. This field would be the

result of the following operation: Ceil [T_int (ns) /16].

▪ gate_cfg is the configuration for each of the QCI queues in one-hot

encoding. Example: 0x9 -> 1001 (Q3 and Q0 active).

▪ tv_sec is the Linux UTC time in which QCI configuration is applied.

▪ qci_tick_granularity is the size of the step for the interval_time. The

default value is 0 which corresponds to 16 ns and it is the recommended

value. The other possible values are 1,2,3, and 4, which correspond to

2,3,5 and 9 clock cycles.

Possible error responses

422:

Unprocessab

le Entity

{ "detail": [{ "loc": ["body", "wr5", "tv_sec"],"msg": "value is not a valid

integer",

 "type": "type_error.integer" }]}

{"detail":[{"loc":["body",166],"msg": "Expecting ',' delimiter: line 12 column 5

(char 166)","type":"value_error.jsondecode","ctx": {"msg": "Expecting ','

delimiter",

 "doc": "{\n \"wr9\": {\n \"rules\": [\n {\n \"interval_time\": 0,\n

\"gate_cfg\": 0\n }\n],\n \"tv_sec\": 3,\n \"tv_nsec\": 0,\n

\"tick_granularity\": 0\n \"framePreemptionStatusTable\": 0\n }\n}",

 "pos": 166,

 "lineno": 12,

 "colno": 5}}]}

{"detail": [{ "loc": ["body", "wr2","tv_sec"],"msg": "field required","type":

"value_error.missing"}]}

http://127.0.0.1:8080/NetworkDB/

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

18

2.3.1.1.2 Generating reports endpoints

These endpoints aim to generate data about packet traffic within the Z16.

Operation Description and examples

/v1/tsn/reports

Get Reports Example of Request:

{"url": “http://10.22.18.80:8201/v1/tsn/reports”, "method":"GET"}

Response:

{"msg": "Success", "data": ["/media/data/tsn/reports/22-dic_iface_1"]}

Start Report Example of Request:

{"url":

“http://10.22.18.80:8201/v1/tsn/reports?iface_num=1&vid=1&pcp=0&seq_o

ff=22&seq_mask=ffff&length=16&frer=0&file_name=prueba&time_interval=

60”, "method":"POST"}

Response:

{“msg”: “Success”,“data”: []}

• Notes:

o frer must be 1/0 and it is the flag to compensate the offset value to get the

sequence number if redundancy headers are present.

Download

Report

Example of Request:

{“url”: “http://10.22.18.80:8201/v1/tsn/reports/prueba”, “method”: “GET”}

Example of Response:

-----------New Capture Session with VID(1) PCP(0) Port (1)-------------

TS UTC (s),TS (ns),Sequence Number

1703241856,346389712,326

1703241856,446535056,327

1703241918,34762608,942

1703241918,134901904,943

Possible error responses

404: Not

Found

{

 "msg": "File 'report_1' not found",

 "data": []

}

http://127.0.0.1:8080/NetworkDB/
http://10.22.18.80:8201/v1/tsn/reports?iface_num=1&vid=1&pcp=0&seq_off=22&seq_mask=ffff&length=16&frer=0&file_name=prueba&time_interval=60
http://10.22.18.80:8201/v1/tsn/reports?iface_num=1&vid=1&pcp=0&seq_off=22&seq_mask=ffff&length=16&frer=0&file_name=prueba&time_interval=60
http://10.22.18.80:8201/v1/tsn/reports?iface_num=1&vid=1&pcp=0&seq_off=22&seq_mask=ffff&length=16&frer=0&file_name=prueba&time_interval=60
http://10.22.18.80:8201/v1/tsn/reports/prueba

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

19

2.3.1.2 The Northbound API between the CNC and the TSN Controller

The Northbound API between the CNC and the TSN Controller implements a generic REST API

for receiving the optimized operational settings calculated at UPC’s TSN Controller.

2.3.1.2.1 Network equipment management

These are the endpoints responsible for managing the settings of the Z16 nodes stored within

the CNC's database.

Operation Description and examples

/v1/device

Get Devices Example of Request:

{“url”: “http://localhost:8201/v1/devices”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/devices?name=new_device”, “method”:

“GET”}

Example of Response:

[{

 "scrapping_data": false,

 "id": 1,

 "host": "10.22.18.12",

 "port": 8201,

 "active": true,

 "name": "12",

 "sync_mode": null

 }

]

Create

Device

Example of Request:

{"url": “http://localhost:8201/v1/device, "method":"POST", “body” :

“{“name”: “string”, “host”: “198.51.100.42”, “active”: false,

“scrapping_data”: false, “sync_mode”: “string”, “port”: 8201}”}

Modify

Device

Example of Request:

{“url”: “http://localhost:8201/v1/device?name=new_device”, “method”:

“PATCH”, “body”: “{“name”: “string”, “host”: “198.51.100.42”, “active”: false,

“scrapping_data”: false, “sync_mode”: “string”, “port”: 0}”}

Delete

Device

Example of Request:

{“url”: “http://localhost:8201/v1/device?name=new_device”, “method”:

“PATCH”}

Possible error responses

404: Not

Found

{

 "detail": "Device not found"

}

http://localhost:8201/v1/devices
http://localhost:8201/v1/devices?name=new_device
http://localhost:8201/v1/device
http://localhost:8201/v1/device?name=new_device
http://localhost:8201/v1/device?name=new_device

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

20

422:

Unprocessab

le Entity

{

 "detail": "active: Input should be a valid boolean, unable to interpret input"

}

{

 "detail": "sync_mode: Input should be a valid string"

}

{

 "detail": "host: Input is not a valid IPv4 address"

}

{

 "detail": "name: Field required"

}

409: Conflict {

 "detail": "Host already registered"

}

{

 "detail": "Name already registered"

}

2.3.1.2.2 Network configuration

These endpoints are used to configure the TSN network.

VLAN

Operation Description and examples

/v1/net-config/vlan

Get VLAN

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/vlan”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-

config/vlan?device=new_device&iface=wr2”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/vlan?device=new_device”,

“method”: “GET”}

Apply VLAN

Configuration

Example of Request:

{"url": “http://localhost:8201/v1/net-config/vlan, "method":"POST", “body”

: “[{“device”: “string”, “iface”: “wr2”, “rules”: [1,3]}]”}

Delete VLAN

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-

config/vlan?device=new_device&iface=wr2”, “method”: “DELETE”}

http://localhost:8201/v1/net-config/vlan
http://localhost:8201/v1/net-config/vlan?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/vlan?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/vlan?device=new_device
http://localhost:8201/v1/net-config/vlan
http://localhost:8201/v1/net-config/vlan?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/vlan?device=new_device&iface=wr2

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

21

GET VLAN

Rules

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/vlan/rule”, “method”: “GET”}

Or

{“url”: “http://localhost:8201/v1/net-config/vlan/rule?id=3”, “method”:

“GET”}

Create VLAN

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/vlan/rule”, “method”: “POST”,

“body”: “{“addr”: “string”, “vlan_id”: 0, “vlan_prio”: 0, “filter_en”: 0,

“mac_addr”: “string”, “proto”: 0, “ip”: 0, “vlan_id_cfg”: 0, “port”: 0,

“vlan_prio_cfg”: 0, “dscp”: 0, “dest”: 0, “has_dest”: 0, “ds”: 0, “redundant”:

0, “red_dest”: 0, “red_handle”: 0}”}

Modify VLAN

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/vlan/rule?id=3”, “method”:

“PATCH”, “body”: “{“addr”: “string”, “vlan_id”: 0, “vlan_prio”: 0, “filter_en”:

0, “mac_addr”: “string”, “proto”: 0, “ip”: 0, “vlan_id_cfg”: 0, “port”: 0,

“vlan_prio_cfg”: 0, “dscp”: 0, “dest”: 0, “has_dest”: 0, “ds”: 0, “redundant”:

0, “red_dest”: 0, “red_handle”: 0}”}

Delete VLAN

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/vlan/rule?id=3”, “method”:

“DELETE”}

• Notes:

▪ vlan_id_cfg and vlan_prio_cfg are unused.

TAS

Operation Description and examples

/v1/net-config/tas

Get TAS

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/tas”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-

config/tas?device=new_device&iface=wr2”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/tas?device=new_device”,

“method”: “GET”}

Apply TAS

Configuration

Example of Request:

{"url": “http://localhost:8201/v1/net-config/tas, "method":"POST", “body” :

“[{“device”: “string”, “iface”: “wr2”, “rules”: [1,3], “tv_sec”: 0, “tv_nsec”: 0,

“tick_granularity”: 0, “framePreemptionStatusTable”: 0}]”}

Delete TAS

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-

config/tas?device=new_device&iface=wr2”, “method”: “DELETE”}

GET TAS

Rules

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/tas/rule”, “method”: “GET”}

http://localhost:8201/v1/net-config/vlan/rule
http://localhost:8201/v1/net-config/vlan/rule?id=3
http://localhost:8201/v1/net-config/vlan/rule
http://localhost:8201/v1/net-config/vlan/rule?id=3
http://localhost:8201/v1/net-config/vlan/rule?id=3
http://localhost:8201/v1/net-config/tas
http://localhost:8201/v1/net-config/tas?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/tas?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/tas?device=new_device
http://localhost:8201/v1/net-config/tas
http://localhost:8201/v1/net-config/tas?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/tas?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/tas/rule

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

22

Or

{“url”: “http://localhost:8201/v1/net-config/tas/rule?id=3”, “method”:

“GET”}

Create TAS

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/tas/rule”, “method”: “POST”,

“body”: “{“interval_time”: 0, “gate_cfg”: 0}”}

Modify TAS

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/tas/rule?id=3”, “method”:

“PATCH”, “body”: “{“interval_time”: 0, “gate_cfg”: 0}”}

Delete TAS

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/tas/rule?id=3”, “method”:

“DELETE”}

CAM

Operation Description and examples

/v1/net-config/cam

Get CAM

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/cam”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-

config/cam?device=new_device&iface=wr2”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/cam?device=new_device”,

“method”: “GET”}

Apply CAM

Configuration

Example of Request:

{"url": “http://localhost:8201/v1/net-config/cam, "method":"POST", “body”

: “[{“device”: “string”, “iface”: “wr2”, “rules”: [1,3]}]”}

Delete CAM

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-

config/cam?device=new_device&iface=wr2”, “method”: “DELETE”}

GET CAM

Rules

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/cam/rule”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/cam/rule?id=3”, “method”:

“GET”}

Create CAM

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/cam/rule”, “method”: “POST”,

“body”: “{“vlan_pcp”: 0, “vlan_id”: 0, “fwd_active”: 0, “rx_dest”: 0}”}

Modify CAM

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/cam/rule?id=3”, “method”:

“PATCH”, “body”: “{“vlan_pcp”: 0, “vlan_id”: 0, “fwd_active”: 0, “rx_dest”:

0}”}

http://localhost:8201/v1/net-config/tas/rule?id=3
http://localhost:8201/v1/net-config/tas/rule
http://localhost:8201/v1/net-config/tas/rule?id=3
http://localhost:8201/v1/net-config/tas/rule?id=3
http://localhost:8201/v1/net-config/cam
http://localhost:8201/v1/net-config/cam?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/cam?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/cam?device=new_device
http://localhost:8201/v1/net-config/cam
http://localhost:8201/v1/net-config/cam?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/cam?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/cam/rule
http://localhost:8201/v1/net-config/cam/rule?id=3
http://localhost:8201/v1/net-config/cam/rule
http://localhost:8201/v1/net-config/cam/rule?id=3

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

23

Delete CAM

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/cam/rule?id=3”, “method”:

“DELETE”}

QCI

/v1/net-config/qci

Get QCI

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-

config/qci?device=new_device&iface=wr2”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/qci?device=new_device”,

“method”: “GET”}

Apply QCI

Configuration

Example of Request:

{"url": “http://localhost:8201/v1/net-config/qci, "method":"POST", “body” :

“[{“device”: “string”, “iface”: “wr2”, “rules”: [1,3], “tv_sec”: 0, “tv_nsec”: 0,

“qci_granularity”: 0}]”}

Delete QCI

Configuration

Example of Request:

{“url”: “http://localhost:8201/v1/net-

config/qci?device=new_device&iface=wr2”, “method”: “DELETE”}

GET QCI

Rules

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci/rule”, “method”: “GET”}

or

{“url”: “http://localhost:8201/v1/net-config/qci/rule?id=3”, “method”:

“GET”}

Create QCI

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci/rule”, “method”: “POST”,

“body”: “{“interval_time”: 0, “gate_cfg”: 0}”}

Modify QCI

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci/rule?id=3”, “method”:

“PATCH”, “body”: “{“interval_time”: 0, “gate_cfg”: 0}”}

Delete QCI

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci/rule?id=3”, “method”:

“DELETE”}

2.3.1.2.3 Latency and packet loss test generation

These endpoints are used to generate reports on packet traffic in the TSN network.

/v1/net-analyzer

Start Report Example of Request:

{“url”: “http://localhost:8201/v1/net-

analyzer?vid=1&pcp=0&seq_offset=22&mask=ffff&seq_length=16”,

http://localhost:8201/v1/net-config/cam/rule?id=3
http://localhost:8201/v1/net-config/qci
http://localhost:8201/v1/net-config/qci?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/qci?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/qci?device=new_device
http://localhost:8201/v1/net-config/qci
http://localhost:8201/v1/net-config/qci?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/qci?device=new_device&iface=wr2
http://localhost:8201/v1/net-config/qci/rule
http://localhost:8201/v1/net-config/qci/rule?id=3
http://localhost:8201/v1/net-config/qci/rule
http://localhost:8201/v1/net-config/qci/rule?id=3
http://localhost:8201/v1/net-config/qci/rule?id=3
http://localhost:8201/v1/net-analyzer?vid=1&pcp=0&seq_offset=22&mask=ffff&seq_length=16
http://localhost:8201/v1/net-analyzer?vid=1&pcp=0&seq_offset=22&mask=ffff&seq_length=16

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

24

“method”: “POST”, “body”: “{“name”: “test”, “duration”: 1, “devices”:

[{“name”: “new_device”, “iface”: 2, “frer”: 0}]}”}

Example of Response:

{

 "date": "2023-12-27T18:51:52.885682",

 "id": 42,

 "name": "test",

 "status": "In Progress",

 "duration": 60

}

GET Reports Example of Request:

{"url": “http://localhost:8201/v1/net-analyzer”, "method":"GET"}

Or

{"url": “http://localhost:8201/v1/net-analyzer?name=test”, "method":"GET"}

Example of Response:

[

 {

 "date": "2023-10-25T17:51:45.631055",

 "id": 1,

 "name": "test",

 "status": "Success",

 "duration": 60

 }

]

Delete

Report

Example of Request:

{“url”: “http://localhost:8201/v1/net-analyzer?name=test”, “method”:

“DELETE”}

Download

Report

Example of Request:

{“url”: “http://localhost:8201/v1/net-analyzer/downloader?name=test”,

“method”: “GET”}

Create QCI

Rule

Example of Request:

{“url”: “http://localhost:8201/v1/net-config/qci/rule”, “method”: “POST”,

“body”: “{“interval_time”: 0, “gate_cfg”: 0}”}

GET latency

report

Example of Request:

{“url”: “http://localhost:8201/v1/net-analyzer/latency?name=test”,

“method”: “GET”}

GET packets

lost report

Example of Request:

{“url”: “http://localhost:8201/v1/net-analyzer/packets-lost?name=test”,

“method”: “GET”}

• Notes:

o frer must be 1/0 and it is the flag to compensate the offset value to get the

sequence number if redundancy headers are present.

http://localhost:8201/v1/net-analyzer
http://localhost:8201/v1/net-analyzer?name=test
http://localhost:8201/v1/net-analyzer?name=test
http://localhost:8201/v1/net-analyzer/downloader?name=test
http://localhost:8201/v1/net-config/qci/rule
http://localhost:8201/v1/net-analyzer/latency?name=test
http://localhost:8201/v1/net-analyzer/packets-lost?name=test

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

25

Possible error responses

422:

Unprocessab

le Entity

{

 "detail": "Duration should be an integer between 1 and 120"

}

{

 "detail": "duration: Input should be a valid integer, unable to parse string as

an integer"

}

{

 "detail": "Iface from 10.22.18.10 should be an integer between 0 and 6"

}

{

 "detail": "duration: Field required"

}

{

 "detail": "Length should be 8/16/24/28"

}

{

 "detail": "Sequence offset should be an integer bigger than 14"

}

{

 "detail": "Priority should be an integer between 0 and 7"

}

409: Conflict {

 "detail": "Device string does not exist"

}

{

 "detail": "Report already exists"

}

{

 "detail": "Device 10.22.18.12 is not active"

}

400: Bad

Request

{

 "detail": "Cannot make request: http://10.22.18.10:8201/v1/tsn/reports"

}

404: Not

Found

{

 "detail": "Report not found"

}

http://10.22.18.10:8201/v1/tsn/reports

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

26

2.3.1.2.4 Network topology visualization

This endpoint returns a dictionary containing information about the connections of the devices.

/v1/net-analyzer/topology

GET

Topology

Example of Request:

{“url”: “http://localhost:8201/v1/net-analyzer/topology”, “method”: “GET”}

Example of Response:

{

 "10.22.18.12": [],

 "10.22.18.9": [

 {

 "iface": "wr1",

 "system_name": "z16-401",

 "address": "10.22.18.10",

 "desc": "wr0"

 }]}

2.3.1.2.5 Export Metrics Settings

This endpoint allows for obtaining a list of monitored devices, as well as adding or removing

devices.

/v1/export-metrics-settings

SET export-

metrics

variables

Example of Request:

{“url”: “http://localhost:8201/v1/export-metrics-

settings?export_metrics=no”, “method”: “POST”}

or

{“url”: “http://localhost:8201/v1/export-metrics-

settings?export_metrics=yes&cloud_org_id=string&cloud_tsdb_bucket=strin

g&cloud_tsdb_token=string”, “method”: “POST”}

GET devices

monitorized

Example of Request:

{“url”: “http://localhost:8201/v1/export-metrics-settings/targets”, “method”:

“GET”}

Example of Response:

[

 "10.22.18.10",

 "10.22.18.12",

 "10.22.18.13",

 "10.22.18.80",

 "10.22.18.81",

 "10.22.18.9"

]

http://localhost:8201/v1/net-analyzer/topology
http://localhost:8201/v1/export-metrics-settings?export_metrics=no
http://localhost:8201/v1/export-metrics-settings?export_metrics=no
http://localhost:8201/v1/export-metrics-settings?export_metrics=yes&cloud_org_id=string&cloud_tsdb_bucket=string&cloud_tsdb_token=string
http://localhost:8201/v1/export-metrics-settings?export_metrics=yes&cloud_org_id=string&cloud_tsdb_bucket=string&cloud_tsdb_token=string
http://localhost:8201/v1/export-metrics-settings?export_metrics=yes&cloud_org_id=string&cloud_tsdb_bucket=string&cloud_tsdb_token=string
http://localhost:8201/v1/export-metrics-settings/targets

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

27

Modify

devices

monitorized

Example of Request:

{“url”: “http://localhost:8201/v1/export-metrics-settings/targets?job=wrz”,

“method”: “POST”, “body”: “[“198.51.100.42”, “10.22.18.80”]”}

Reload Example of Request:

{“url”: “http://localhost:8201/v1/export-metrics-settings/reload-config”,

“method”: “POST”}

Possible error responses

404: Not

Found

{

 "detail": "Job wrz2 not found"

}

422:

Unprocessab

le Entity

{

 "detail": "export_metrics must be 'yes' or 'no'"

}

{

 "detail": "cloud_tsdb_bucket cannot be empty"

}

{

 "detail": "cloud_org_id cannot be empty"

}

{

 "detail": "cloud_tsdb_token cannot be empty"

}

2.3.1.3 Workflow

In this section we will explain the workflow designed between the TSN Controller, CNC, and the

Z16 devices for monitoring and configuring the TSN network. Figure 2-6 illustrates the flow of

information exchange among these three components. The downward arrows symbolize the

process of network configuration, initiated by the TSN Controller, translated through the CNC

API to the WRZ API, and subsequently distributed to the respective devices via the WRZ API.

Conversely, the upward arrows signify the network monitoring process, where information is

extracted from the devices using the SNMP Exporter, managed by the CNC, and eventually

relayed to the TSN Controller.

http://localhost:8201/v1/export-metrics-settings/targets?job=wrz
http://localhost:8201/v1/export-metrics-settings/reload-config

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

28

Figure 2-6: Ethernet TSN workflow

Configure the TSN Network

The steps to be taken to configure the TSN Network are (downward arrows):

Preliminary steps (0.1 and 0.2):

0.1. The CNC API is used to add the devices that are on the TSN network.

Example:

Request

POST

/v1/device

{

 "name": "new_device",

 "host": "10.22.18.80",

 "active": false,

 "scrapping_data": false,

 "sync_mode": "string",

 "port": 8201

}

0.2. Configuration rules are created using the CNC

Example – Create TAS rule:

If we want the following GCL specification:

▪ Slot #0: Duration 1 ms, Gate Settings: Q3 & Q0 open.

The parameters we should put are:

▪ interval_time: result of the operation Ceil [T_int (ns) /16]

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

29

▫ In this case, Ceil [1000000 / 16] = 62500

▪ gate_cfg: Q3 and Q0 open is 1001 -> 0x9

The request will be:

Request

POST

/v1/net-

config/tas/ru

le

{

 "interval_time": 62500,

 "gate_cfg": 9

}

Response

{

 "interval_time": 62500,

 "gate_cfg": 9,

 “id”: 1

}

The rule created has id = 1.

Example - Create VLAN rule:

If we want the following VLAN configuration:

▪ WR0: VID: 1; PCP: 2; MAC_DST: 0xcafebabe0102; MAC_ADDR: 0xaabbccddeeff;

HAS_DEST:1; DEST:1.

▪ WR1: VID: 1; PCP: 2; MAC_DST: 0xcafebabe0102; MAC_ADDR: 0xaabbccddeeff.

The parameters we should put are:

▪ wr0:

▫ "addr": "0xcafebabe0102"

▫ "vlan_id": 1,

▫ "vlan_prio": 2,

▫ "mac_addr": "0xaabbccddeeff",

▫ "dest": 1,

▫ "has_dest": 1

▪ wr1:

▫ "addr": "0xcafebabe0102"

▫ "vlan_id": 1,

▫ "vlan_prio": 2,

▫ "mac_addr": "0xaabbccddeeff",

The requests will be:

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

30

• Rule for wr0

Request

POST

/v1/net-

config/vlan/r

ule

{"addr": "0xcafebabe0102","vlan_id": 1, “vlan_prio": 2, "filter_en":

0,"mac_addr": "0xaabbccddeeff ","proto": 0,"ip": 0,"vlan_id_cfg": 0,"port":

0,"vlan_prio_cfg": 0, "dscp": 0, "dest": 1,"has_dest": 1, "ds": 0, "redundant":

0,"red_dest": 0, "red_handle": 0}

Response

{“id”:1, "vlan_id":1, "vlan_prio":2, "filter_en":0, "mac_addr":"0xaabbccddeeff", "proto":0,

"ip":0, "vlan_id_cfg":0, "port": 0,"vlan_prio_cfg": 0, "dscp": 0,"dest": 1,"has_dest": 1,"ds":

0,"redundant": 0,"red_dest": 0,"red_handle": 0}

• Rule for wr1

Request

POST

/v1/net-

config/vlan/r

ule

{"addr": "0xcafebabe0102","vlan_id": 1, “vlan_prio": 2, "filter_en":

0,"mac_addr": "0xaabbccddeeff ","proto": 0,"ip": 0,"vlan_id_cfg": 0,"port":

0,"vlan_prio_cfg": 0, "dscp": 0, "dest": 0,"has_dest": 0, "ds": 0, "redundant":

0,"red_dest": 0, "red_handle": 0}

Response

{“id”:2, "vlan_id":1, "vlan_prio":2, "filter_en":0, "mac_addr":"0xaabbccddeeff", "proto":0,

"ip":0, "vlan_id_cfg":0, "port": 0,"vlan_prio_cfg": 0, "dscp": 0,"dest": 0,"has_dest": 0,"ds":

0,"redundant": 0,"red_dest": 0,"red_handle": 0}

wr0’s rule has id = 1 and wr1’s rule has id = 2.

1. TSN Controller decides which network configuration is going to be used and the corresponding

rules are applied with the CNC API.

Example – Apply TAS rule:

In rules we put the id of the rule we have previously created.

Request

POST

/v1/net-

config/tas

[{ "device": “new_device”, "rules": [1],"tv_sec": 1703238797,"tv_nsec": 0,

"tick_granularity": 0,"framePreemptionStatusTable": 0 }]

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

31

Parameter tv_sec is the Linux UTC time in which TAS configuration is applied and should be

calculated in the following way:

▪ <Current Network Epoch> + Additional offset to make up for configuration time.

Example – Apply VLAN rule:

In rules we put the id of the rule we have previously created.

Request

POST

/v1/net-

config/vlan

[{ "device": "new_device", "iface": "0", "rules": [1] }]

Request

POST

/v1/net-

config/vlan

[{ "device": "new_device", "iface": "1", "rules": [2] }]

The following steps are done automatically, without user control.

2. The CNC API makes a call to the WRZ API of the corresponding device to apply the network

configuration.

3. WRZ API applies the chosen configuration to the devices.

Monitor the TSN Network

To monitor the TSN Network the workflow is:

1. SNMP collects the metrics defined in the CNC.

2. CNC saves the collected metrics and exports them to an external database so that TSN

Controller can access them.

3. TSN Controller analyses the collected data and, based on it, decides which network

configuration to apply.

2.4 SDN-TSN CONTROLLER

2.4.1 Description

The Software Defined Networking (SDN)- Time-Sensitive Networking (TSN) controller (SDN-TSN)

is the entity responsible for the configuration of connectivity services within the TSN-based

network infrastructures, and the corresponding management of said infrastructure. To do so, it

engages on one hand with the Connectivity Manager (CM), which is the entity that receives

service provisioning requests, which ultimately translate to connectivity requests towards the

SDN-TSN controller; and, on the other hand, it engages with the underlying TSN-capable

network nodes (WiFi and Ethernet) at the data plane, to configure them according to the

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

32

characteristics of the requested connectivity. Figure 2-7 depicts a schematic of the functional

architecture of the module and the interactions with other modules, namely, the CM and the

TSN-enabled data plane, as well as the main data structures treated within each of the individual

functionalities. The communications are achieved thanks to a pair of interfaces: the Northbound

Interface (NBI) and the Southbound Interface (SBI).

Figure 2-7: SDN-TSN Controller architecture.

The core of the functionalities is as listed below:

• Topology Manager (TM): responsible for keeping a graph representation of the

underlying data plane, the network resources and their capabilities. It extracts this

information via the SBI.

• Inventory Manager (IM): contains the inventory of the established data flows, according

to the outputs of the connectivity provisioning operations performed at the Provisioning

Manager. It exposes this information to the CM via the Provisioning Manager through

the NBI.

• Provisioning Manager (PM): centralizes the provisioning of data flows to satisfy the

requirements of connectivity services coming from the NBI. The low level configurations

are decided thanks to the information stored at the Topology and Inventory Managers,

and executes the computed configuration by means of the SBI.

• Monitoring Manager (MM): it collects the current status of the resources at the TSN-

capable data plane as well as potential alarms via the SBI. The collected information is

exposed to the CM thanks to the NBI.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

33

2.4.2 Report on the Current Status

The advancements made for the current version of the SDN-TSN are mainly in two fronts: on

one hand, the core functionalities of both the provisioning and the topology managers have

been further developed to include the main classes, data structures and logic for their operation;

on the other hand, both NBI and SBI have been expanded and validated for the operations of

flow creation and deletion according to connectivity services requests coming from the CM (NBI)

and the de-configuration of data plane nodes as a response of a flow deletion (SBI).

Starting with the NBI, Figure 2-8 depicts a schematic of the data structure of the flow of an

application/service, and the relationship between sub-structures. Using such structure, the

operations for the creation and deletion of flows have been defined. Table 4 and Table 5 provide

the details of the operations and the parameters of the requests.

Figure 2-8: Data structure tree of a service request.

Section Northbound Interface

Type Service’s flow creation

TIMING Target
objective

Create the data flows related to upper layer service requests according to the
state connectivity and traffic requirements

Path POST /flows
Description: Creates a TSN or best effort flow.

HTTPS/1.1

Body Example of schema:

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

34

Response It return a string representation of the created flow identifier (if successful) and

the response code as below:

200 (OK): creation operation is successful
400 (Bad request): the request body is malformed or some field is missing
404 (Not found): the creation request cannot be fulfilled (e.g., due to the lack
of network resources)
500 (Internal Server Error): Unspecified error during the flow creation

Table 4: Description of the operation for creating a data flow

Section Northbound Interface

Type Service’s flow deletion

TIMING Target
objective

Delete the active data flows as part of the decommissioning of an upper layer
service

Path DELETE /flows/{flowID}
Description: Deletes the flow with identifier flowID

HTTPS/1.1

Body None

Response No information is returned in the body of the response. Only the response code
is returned:
200 (OK): delete operation is successful
404 (Not found): no flow with the specified identifier is currently active
500 (Internal Server Error): Unspecified error during the flow deletion

Table 5: Description of the operation for deleting a data flow

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

35

The remote access to the presented NBI operations has been validated with the tests reported

below. The current tests expand what have been reported already in deliverable SP1 - D1.3,

which focused on the flow and topology status dissemination. In addition, let us mention that

the time from flow creation/deletion request to data plane configuration/de-configuration

operation, that is, the time that the SDN-TSN requires for processing upper layer requests,

transform them into specific configurations and issue them towards the data plane via the SBI,

has been measured and is in the order of several tens to few hundreds of milliseconds,

depending on the current load of the server in which the SDN-TSN controller is running. With

this being said, the tests are reported below, for which we showcase Wireshark captures of the

successful exchanges between a test REST client and the NBI of the controller.

Test #001

Test Id TSN-C_NBI_createFlow

Description

Test related to the Northbound Interface (NBI) of the SDN-TSN controller to verify the correct reception
and processing of data flow creation requests.

Expected Results

The NBI accepts the operation and processes the body of the request.

Output

The operation is successful (200 OK)

Test #002

Test Id TSN-C_NBI_deleteFlow

Description

Test related to the Northbound Interface (NBI) of the SDN-TSN controller to verify the correct reception
and processing of data deletion creation requests.

Expected Results

The NBI accepts the operation and processes the body of the request.

Output

The operation is successful (200 OK)

In regards to the SBI, the SDN-TSN Controller implements the API reported in Section 2.3.1.2 of

this same document. For the sake of conciseness, we refer to the description of the operations

and parameters already described. The SBI has been further developed to consider an expanded

set of operation with respect what was previously reported in SP1 - D1.3, essentially, the

configuration of the CAM as well as the deletion of VLAN, TAS and CAM configurations. In below

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

36

we report several experiments that validate the implemented operations. To this end, a mock-

up REST server emulating the NBI of CNC has been employed so as to validate that the SDN-TSN

Controller issues properly the operation, thus, the SBI works as expected.

Test #003

Test Id TSN-C_SBI_configureCAM

Description

Test related to the SBI of the SDN-TSN Controller to validate the sending of configurations for the CAM

Expected Results

The SBI sends a well-formatted operation and is accepted by the mock-up REST server

Output

The operation is successful (200 OK)

Test #004

Test Id TSN-C_SBI_deleteCAM

Description

Test related to the SBI of the SDN-TSN Controller to validate the sending of delete requests for CAM
configurations

Expected Results

The SBI sends a well-formatted operation and is accepted by the mock-up REST server

Output

The operation is successful (200 OK)

Test #005

Test Id TSN-C_SBI_configureTAS

Description

Test related to the SBI of the SDN-TSN Controller to validate the sending of delete requests for TAS
configurations

Expected Results

The SBI sends a well-formatted operation and is accepted by the mock-up REST server

Output

The operation is successful (200 OK)

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

37

Test #006

Test Id TSN-C_SBI_configureVLAN

Description

Test related to the SBI of the SDN-TSN Controller to validate the sending of delete requests for VLAN
configurations

Expected Results

The SBI sends a well-formatted operation and is accepted by the mock-up REST server

Output

The operation is successful (200 OK)

2.5 CONNECTIVITY MANAGER

2.5.1 Description

The Time-Sensitive Networking (TSN) Connectivity Manager (CM) is a key component in the

TIMING architecture, playing as the cornerstone role in managing and orchestrating time-

sensitive networks. In the context of the TIMING project, the TSN CM leverages the rest of the

TIMING control plane component to ensure efficient, reliable, and timely data transport across

the network. The TSN CM is strategically positioned at the top of the TIMING architecture as

depicted in Figure 2-9. It is designed to interact directly with all TSN and Metro SDN (Software-

Defined Networking) Controllers, as well as the Digital Twin (DT). This central placement allows

the TSN CM to have an overarching view of the network, enabling it to perform its functions

effectively.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

38

Figure 2-9: TSN Connectivity Manager Architecture

To fulfil its role, the TSN connectivity manager does so by leveraging a set of functionalities

tailored to manage and optimize time-sensitive data flows across the network, which are

summarized below.

• Network Resource Discovery and Management: One of the key functionalities of the TSN

CM is to discover the resources and capacities available within the TSN network. This

involves identifying available bandwidth, latency characteristics, and other critical

network parameters.

• Configuration and Optimization: Post discovery, the TSN CM summarizes the main

changes needed in the network and communicates these to the underlying controllers.

This process involves deploying new configurations to optimize network performance,

especially for time-sensitive data flows.

• Integration with Digital Twin for Predictive Analysis: The TSN CM collaborates with the

Digital Twin (DT) to simulate network conditions and predict the performance of various

network configurations. This predictive modeling is essential for making informed

decisions about network configuration changes.

• Optimization Algorithms: Utilizing advanced algorithms such as the Dijkstra algorithm,

the TSN CM efficiently manages the routing of data, ensuring the most optimal paths

are chosen for time-sensitive traffic.

The TSN CM utilizes a range of interfaces to interact with different components of the TIMING

architecture. The TSN CM makes use of three main APIs: Southbound Interface (SBI),

Northbound Interface (NBI), and East/West Interface (E/WBI).

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

39

• SouthBound Interface (SBI): This interface is used for reading underlying topological

information, which is crucial for understanding the current state of the network.

• NorthBound Interface (NBI): It facilitates interactions with other TIMING modules and

higher-level applications. This interface is vital for global and automated management

of the architecture.

• East/WestBound Interface (E/WBI): This interface enables the TSN CM to communicate

with the Digital Twin, sending and receiving information necessary for simulating

network conditions.

2.5.2 Report on the Current Status

The overall progress of the development of the TSN Connectivity Manager is on-track and with

solid advances, specially, in the definition of internal models and in the Core and ENP functional

blocks, as presented in D1.4 (SP1) and in this document, see later sections.

For future steps, it is planned to develop the external client-side modules (SBI and E/WBI) to

allow the expected interaction with the controllers (via SBI) and with the Digital Twin (E/WBI).

In addition, integration tests will be performed between all components involved. Potentially,

as a consequence of the integration phase, some refinements to the TSN CM data model may

be carried out.

2.5.3 NorthBound Interface Implementation

One of the major advances of the TSN Connectivity Manager has been on the definition and

implementation of the NorthBound interface, that allows vertical and upper-layer applications

to communicate with it. The revised architecture of the Northbound Interface (NBI) adopts a

modular design, partitioning various functions into separate, distinct endpoints. As depicted in

Error! Reference source not found., this architecture is comprised of three principal categories:

controllers, flows, and topologies. Each category is engineered to fulfill a specific role within the

broader context of network management, ensuring a more streamlined and efficient

operational framework.

Figure 2-10: TSN Connectivity Manager NBI endpoints structure

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

40

Thus, the current version of the TSN CM NBI is implemented as follows:

/controllers

Operation Description and examples

POST
controller

It registers a controller in the TSN Connectivity Manger context.

Request URL: POST https://{CM-IP}:8003/controllers/

Example schemas (JSON-based):

INPUT:
{
 "name": "default_name",
 "description": "default_description",
 "url": "https://localhost",
 "port": 0,
 "username": "default_username",
 "password": "default_password",
 "type": "type_not_defined"
}

OUTPUT:

{
 "controller_id": "string",
 "name": "string",
 "description": "string",
 "url": "string",
 "port": 0,
 "username": "string",
 "password": "string",
 "type": "string"
}

GET
controllers

Returns a list with the information of all registered controllers in the TSN
Connectivity Manager

Request URL: GET https://{CM-IP}:8003/controllers/

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:

[
 {
 "controller_id": "string",
 "name": "string",
 "description": "string",
 "url": "string",
 "port": 0,
 "username": "string",
 "password": "string",

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

41

 "type": "string"
 }
]

DELETE
controllers

Delete from the TSN CM system all the registered controllers

Request URL: DELETE https://{CM-IP}:8003/controllers/

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
{
 "code": 200,
 "message": "Successfully deleted"
}

GET
controllers
TSN

Returns a list with the information of all registered TSN-based controllers in the
TSN Connectivity Manager

Request URL: GET https://{CM-IP}:8003/controllers/tsn

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:

[
 {
 "controller_id": "string",
 "name": "string",
 "description": "string",
 "url": "string",
 "port": 0,
 "username": "string",
 "password": "string",
 "type": "string"
 }
]

GET
controllers
metro

Returns a list with the information of all registered metro controllers in the TSN
Connectivity Manager

Request URL: GET https://{CM-IP}:8003/controllers/metro

Example schemas (JSON-based):

INPUT:

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

42

 -

OUTPUT:

[
 {
 "controller_id": "string",
 "name": "string",
 "description": "string",
 "url": "string",
 "port": 0,
 "username": "string",
 "password": "string",
 "type": "string"
 }
]

GET
controllers
{id}

Returns the information of a given controller registered in the TSN CM system
with a concrete id.

Request URL: GET https://{CM-IP}:8003/controllers/{id}

Example schemas (JSON-based):

INPUT:
-

OUTPUT:

{
 "controller_id": "string",
 "name": "string",
 "description": "string",
 "url": "string",
 "port": 0,
 "username": "string",
 "password": "string",
 "type": "string"
}

DELETE
controller
{id}

Delete from the TSN CM system the registered controller associated to a
concrete id.

Request URL: DELETE https://{CM-IP}:8003/controllers/{id}

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
{
 "code": 200,

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

43

 "message": "Successfully deleted"
}

/flows

POST
flows

Creates a new flow from a source to a destination node in a TSN network based
on the body data. The query returns information about the new defined TSN
flow

Request URL: POST https://{CM-IP}:8003/flows/

Example schemas (JSON-based):

INPUT:
{
 "name": "string",
 "description": "string",
 "topology_id": "string",
 "hostA": "string",
 "portA": "string",
 "hostB": "string",
 "portB": "string",
 "switchA": "string",
 "switchB": "string",
 "path": [
 "string"
],
 "trafficMix": {
 "video": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "gaming": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "internet": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

44

 }
 },
 "bandwidth": 0,
 "latency": 0
}

OUTPUT:

{
 "flow_id": "string",
 "name": "string",
 "description": "string",
 "topology_id": "string",
 "hostA": "string",
 "portA": "string",
 "hostB": "string",
 "portB": "string",
 "switchA": "string",
 "switchB": "string",
 "path": [
 "string"
],
 "trafficMix": {
 "video": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "gaming": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "internet": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 }
 },
 "bandwidth": 0,
 "latency": 0
}

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

45

GET flows Returns a list with all the enrolled TSN flows

Request URL: GET https://{CM-IP}:8003/flows/

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
[
 {
 "flow_id": "string",
 "name": "string",
 "description": "string",
 "topology_id": "string",
 "hostA": "string",
 "portA": "string",
 "hostB": "string",
 "portB": "string",
 "switchA": "string",
 "switchB": "string",
 "path": [
 "string"
],
 "trafficMix": {
 "video": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "gaming": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "internet": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 }

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

46

 },
 "bandwidth": 0,
 "latency": 0
 }
]

DELETE
controllers

Deletes all the registered TSN flows

Request URL: DELETE https://{CM-IP}:8003/flows/

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
{
 "code": 200,
 "message": "Successfully deleted"
}

GET flows
{id}

Returns updated information of a TSN flow registered by a concrete id

Request URL: GET https://{CM-IP}:8003/flows/{id}

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
{
 "flow_id": "string",
 "name": "string",
 "description": "string",
 "topology_id": "string",
 "hostA": "string",
 "portA": "string",
 "hostB": "string",
 "portB": "string",
 "switchA": "string",
 "switchB": "string",
 "path": [
 "string"
],
 "trafficMix": {
 "video": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

47

 },
 "gaming": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 },
 "internet": {
 "scale": 0,
 "pattern": {
 "period": 0,
 "unit": "string",
 "pattern": [
 0
],
 "pattern_unit": "string"
 }
 }
 },
 "bandwidth": 0,
 "latency": 0
}

DELETE
flows {id}

Deletes an existing TSN flow registered by a concrete id

Request URL: DELETE https://{CM-IP}:8003/flows/{id}

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:
{
 "code": 200,
 "message": "Successfully deleted"
}

/topologies

GET
topologies
/all

Returns all the information about the underlaying network topologies in
different segments and domains obtained by the previously registered
controllers by executing a topology discovery operation.

Request URL: GET https://{CM-IP}:8003/topologies/all

Example schemas (JSON-based):

INPUT:
 -

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

48

OUTPUT:
[
 {
 "topology_id": "string",
 "source_controller": "string",
 "network": [
 {
 "name": "string",
 "description": "string",
 "network_id": "string",
 "network_types": {},
 "node": [
 {
 "node_id": "string",
 "name": "string",
 "description": "string",
 "type": "string",
 "ports": {
 "additionalProp1": {
 "name": "string",
 "port_type": "string",
 "layer": "string",
 "speed": 0,
 "transmission_delay": 0
 }
 }
 }
],
 "link": [
 {
 "link_id": "string",
 "name": "string",
 "description": "string",
 "nodeA": "string",
 "portA": "string",
 "nodeB": "string",
 "portB": "string",
 "layer": "string",
 "capacity": 0
 }
],
 "l2_topology_attributes": {},
 "l3_topology_attributes": {}
 }
]
 }
]

GET
topologies
tsn

Returns all the information about the underlaying network TSN topologies in
different segments and domains obtained by the previously registered TSN
controllers by executing a topology discovery operation.

Request URL: GET https://{CM-IP}:8003/topologies/tsn

Example schemas (JSON-based):

INPUT:
 -

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

49

OUTPUT:
[
 {
 "topology_id": "string",
 "source_controller": "string",
 "network": [
 {
 "name": "string",
 "description": "string",
 "network_id": "string",
 "network_types": {
 "layer": "string",
 "type": "TSN"
 },
 "node": [
 {
 "node_id": "string",
 "name": "string",
 "description": "string",
 "type": "string",
 "ports": {
 "P1": {
 "name": "string",
 "port_type": "string",
 "layer": "string",
 "speed": 0,
 "transmission_delay": 0
 }
 }
 }
],
 "link": [
 {
 "link_id": "string",
 "name": "string",
 "description": "string",
 "nodeA": "string",
 "portA": "string",
 "nodeB": "string",
 "portB": "string",
 "layer": "string",
 "capacity": 0
 }
],
 "l2_topology_attributes": {},
 "l3_topology_attributes": {}
 }
]
 }
]

GET
topologies
Metro

Returns all the information about the underlaying network TSN topologies in
different segments and domains obtained by the previously registered TSN
controllers by executing a topology discovery operation.

Request URL: GET https://{CM-IP}:8003/topologies/metro

Example schemas (JSON-based):

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

50

INPUT:
 -

OUTPUT:
[
 {
 "topology_id": "string",
 "source_controller": "string",
 "network": [
 {
 "name": "string",
 "description": "string",
 "network_id": "string",
 "network_types": {
 "layer": "string",
 "type": "metro"
 },
 "node": [
 {
 "node_id": "string",
 "name": "string",
 "description": "string",
 "type": "string",
 "ports": {
 "P1": {
 "name": "string",
 "port_type": "string",
 "layer": "string",
 "speed": 0,
 "transmission_delay": 0
 }
 }
 }
],
 "link": [
 {
 "link_id": "string",
 "name": "string",
 "description": "string",
 "nodeA": "string",
 "portA": "string",
 "nodeB": "string",
 "portB": "string",
 "layer": "string",
 "capacity": 0
 }
],
 "l2_topology_attributes": {},
 "l3_topology_attributes": {}
 }
]
 }
]

GET
topologies
{id}

Returns all the information about the underlaying network TSN topologies in
different segments and domains obtained by the previously registered TSN
controllers by executing a topology discovery operation.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

51

Request URL: GET https://{CM-IP}:8003/topologies/{ID}

Example schemas (JSON-based):

INPUT:
 -

OUTPUT:

 {
 "topology_id": "string",
 "source_controller": "string",
 "network": [
 {
 "name": "string",
 "description": "string",
 "network_id": "string",
 "network_types": {
 "layer": "string",
 "type": "string"
 },
 "node": [
 {
 "node_id": "string",
 "name": "string",
 "description": "string",
 "type": "string",
 "ports": {
 "P1": {
 "name": "string",
 "port_type": "string",
 "layer": "string",
 "speed": 0,
 "transmission_delay": 0
 }
 }
 }
],
 "link": [
 {
 "link_id": "string",
 "name": "string",
 "description": "string",
 "nodeA": "string",
 "portA": "string",
 "nodeB": "string",
 "portB": "string",
 "layer": "string",
 "capacity": 0
 }
],
 "l2_topology_attributes": {},
 "l3_topology_attributes": {}
 }
]
 }

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

52

2.5.4 Stand-alone preliminary tests

To facilitate the user interaction with the Connectivity Manager NBI, we have developed a

graphical user interface (see Figure 2-11Error! Reference source not found.) , publicly available,

within the TIMING project scope, in the following URL: https://nbi-connectivity-manager.e-

lighthouse.com/docs.

Figure 2-11: TSN Connectivity Manager NBI GUI

In addition, to validate the remote access to the functionalities provided by this API, a wide range

of tests have been executed, classified according to their functional group. These tests have

been performed using the POSTMAN software from a personal computer remotely located from

the server on which the TSN CM is deployed.

• Controllers:

Functionality Test Test result

POST controller

Test 1: Register a TSN controller:

REQUEST
POST /controllers/ HTTP/1.1

Content-Type: application/json

User-Agent: PostmanRuntime/7.36.1

https://nbi-connectivity-manager.e-lighthouse.com/docs
https://nbi-connectivity-manager.e-lighthouse.com/docs

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

53

Accept: */*

Postman-Token: 4fec6d7c-62c4-4b9b-971e-ec788614bfe9

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 184

{

"name": "tsn_controller",

"description": "tsn_controller",

"url": "https://192.0.22.1",

"port": 8080,

"username": "user",

"password": "pass123",

"type": "tsn"

}

RESPONSE
HTTP/1.1 200 OK

Content-Length: 202

Content-Type: application/json

Date: Fri, 12 Jan 2024 07:39:54 GMT

Server: uvicorn

{"controller_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","name":"tsn_controller","description":"tsn

_controller","url":"https://192.0.22.1","port":8080,"use

rname":"user","password":"pass123","type":"tsn"}

Test 2: Register a Metro controller:

REQUEST
POST /controllers/ HTTP/1.1

Content-Type: application/json

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 4b04e30e-659c-4820-b369-4b485f970699

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 188

{

"name": "metro_controller",

"description": "metro_controller",

"url": "https://192.0.46.1",

"port": 80,

"username": "user",

"password": "pass123",

"type": "metro"

}

RESPONSE
HTTP/1.1 200 OK

Content-Length: 206

Content-Type: application/json

Date: Fri, 12 Jan 2024 07:40:25 GMT

Server: uvicorn

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

54

{"controller_id":"a8aff4e3-6194-42c0-9b8f-

b08ea8e39ecd","name":"metro_controller","description":"m

etro_controller","url":"https://192.0.46.1","port":80,"u

sername":"user","password":"pass123","type":"metro"}

GET controllers REQUEST
GET /controllers/ HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 0d71ef99-01f7-4b61-ad3a-4d0aba49673e

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 411

Content-Type: application/json

Date: Fri, 12 Jan 2024 07:55:49 GMT

Server: uvicorn

[{"controller_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","name":"tsn_controller","description":"tsn

_controller","url":"https://192.0.22.1","port":8080,"use

rname":"user","password":"pass123","type":"tsn"},{"contr

oller_id":"a8aff4e3-6194-42c0-9b8f-

b08ea8e39ecd","name":"metro_controller","description":"m

etro_controller","url":"https://192.0.46.1","port":80,"u

sername":"user","password":"pass123","type":"metro"}]

GET TSN controllers

REQUEST
GET /controllers/tsn HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: d1706120-3903-4eb4-bff1-23f13d454785

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 204

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:33:10 GMT

Server: uvicorn

[{"controller_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","name":"tsn_controller","description":"tsn

_controller","url":"https://192.0.22.1","port":8080,"use

rname":"user","password":"pass123","type":"tsn"}]

GET Metro controllers

REQUEST
GET /controllers/metro HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 8db62c95-449c-44b9-b15a-4cfd7b3770d3

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

55

RESPONSE
HTTP/1.1 200 OK

Content-Length: 208

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:34:19 GMT

Server: uvicorn

[{"controller_id":"a8aff4e3-6194-42c0-9b8f-

b08ea8e39ecd","name":"metro_controller","description":"m

etro_controller","url":"https://192.0.46.1","port":80,"u

sername":"user","password":"pass123","type":"metro"}]

GET controller by ID REQUEST
GET /controllers/42f98df2-b54f-495f-8f31-5e76b91f1fef

HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: ec2b90fb-69f3-497f-86c0-555afb8384d2

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 202

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:37:28 GMT

Server: uvicorn

{"controller_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","name":"tsn_controller","description":"tsn

_controller","url":"https://192.0.22.1","port":8080,"use

rname":"user","password":"pass123","type":"tsn"}

DELETE controller by ID

Step 1: register a generic controller

REQUEST
POST /controllers/ HTTP/1.1

Content-Type: application/json

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 2233e02d-7468-4ed6-9e94-e21bae77b4bc

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 203

{

"name": "test-controller",

"description": "test-controller",

"url": "https://localhost",

"port": 8080,

"username": "user",

"password": "pass123",

"type": "default"

}

RESPONSE
HTTP/1.1 200 OK

Content-Length: 207

Content-Type: application/json

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

56

Date: Fri, 12 Jan 2024 09:29:32 GMT

Server: uvicorn

{"controller_id":"e62c9916-4007-499c-acae-

cdd78ba1727f","name":"test-

controller","description":"test-

controller","url":"https://localhost","port":8080,"usern

ame":"user","password":"pass123","type":"default"}

Step 2: delete such controller by using the ID

REQUEST
DELETE /controllers/e62c9916-4007-499c-acae-cdd78ba1727f

HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 0d683aaf-183f-43e0-9757-e989dc0d9de3

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 45

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:31:22 GMT

Server: uvicorn

{"code":200,"message":"Successfully deleted"}

DELETE all controllers Step 1: Delete all registered controllers

REQUEST
DELETE /controllers/ HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 396a9d22-73bf-4f05-8086-bee072505da8

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 45

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:38:38 GMT

Server: uvicorn

{"code":200,"message":"Successfully deleted"}

Step 2: Check controllers registry

REQUEST
GET /controllers/ HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: c9d60739-a93b-4b56-aa3e-8e9f39306e7f

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

57

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 2

Content-Type: application/json

Date: Fri, 12 Jan 2024 09:40:26 GMT

Server: uvicorn

[]

• Topologies:

Functionality Test Test result

GET topologies/all

HTTP/1.1 200 OK

Content-Length: 8243

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:35:57 GMT

Server: uvicorn

[{"topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","source_controller":"tsn-

controller","network":[{"name":"TSN

network","description":"TSN network as

example","network_id":"8849560a-462a-4992-97e2-

12ad8d781ded","network_types":{"layer":"L2","type":"TSN"

},"node":[{"node_id":"2113f1da-345f-4276-a99b-

2a5ab1b3626b","name":"H1","description":"Host

1","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"7f39f1fa-e971-47db-81cb-

60a79524b08f","name":"H2","description":"Host

2","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"1acb8de8-9983-4222-bbef-

0c65c96afc65","name":"H3","description":"Host

3","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"fa7c3854-77c1-46a3-b6e7-

6b3a157e2272","name":"H4","description":"Host

4","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"e15946e1-6128-49db-ad70-

9954e41035a1","name":"R1","description":"Switch

1","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"96a12a72-957e-

4c06-8c61-

7ecb1e2fae76","name":"R2","description":"Switch

2","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

58

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"24b825b0-5826-

4628-982f-

b008379ed956","name":"R3","description":"Switch

3","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}}],"link":[{"link_id":"d2b75c

6f-eeed-4328-bd30-

f58cc87bf041","name":"L_H1R1","description":"Link

between H1 and

R1","nodeA":"H1","portA":"E1","nodeB":"R1","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"85810507-24dc-

485c-afcf-

0821de0a6102","name":"L_H2R2","description":"Link

between H2 and

R2","nodeA":"H2","portA":"E1","nodeB":"R2","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"44a5ba71-7ed1-

467c-b406-

364186c7ec34","name":"L_R3H3","description":"Link

between R3 and

H3","nodeA":"R3","portA":"A1","nodeB":"H3","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"2eab7157-788d-

49bc-965a-

fde559a8b952","name":"L_R3H4","description":"Link

between R3 and

H4","nodeA":"R3","portA":"A2","nodeB":"H4","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"f2c0f714-274b-

4d10-a46b-

c465e9bc1b3d","name":"L_R1R2","description":"Link

between R1 and

R2","nodeA":"R1","portA":"T1","nodeB":"R2","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"d7c8575f-0ba3-

4a54-a785-

b87c2aeea6c3","name":"L_R1R3","description":"Link

between R1 and

R3","nodeA":"R1","portA":"T2","nodeB":"R3","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"2ffcc5b0-ea7f-

48af-9c7b-

576e70c7322f","name":"L_R2R3","description":"Link

between R2 and

R3","nodeA":"R2","portA":"T2","nodeB":"R3","portB":"T2",

"layer":"L2","capacity":100}],"l2_topology_attributes":{

},"l3_topology_attributes":{}}]},{"topology_id":"a8aff4e

3-6194-42c0-9b8f-

b08ea8e39ecd","source_controller":"metro-

controller","network":[{"name":"Metro

network","description":"Metro network as

example","network_id":"e856f877-2ea7-45a7-bdb0-

a8cdb10ee745","network_types":{"layer":"L2","type":"metr

o"},"node":[{"node_id":"6ef46f62-1ee6-40e8-b67f-

2b9ae005099a","name":"H1","description":"Host

1","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"36d16961-24ef-4c23-9303-

dfe4e34c1a93","name":"H2","description":"Host

2","type":"host","ports":{"E1":{"name":"E1","port_type":

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

59

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"188338c3-c769-482b-b181-

4b6d2414be95","name":"H3","description":"Host

3","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"c8155352-5c7c-4334-998a-

56b8169fd191","name":"H4","description":"Host

4","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"e5ed148c-c32e-4cb5-8bf5-

89f25f011d22","name":"R1","description":"Switch

1","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"8bbc50a0-598a-

458e-84bd-

193c5a74b250","name":"R2","description":"Switch

2","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"8a5e07a7-9e0e-

489f-b7f7-

6fb5ec1722f7","name":"R3","description":"Switch

3","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}}],"link":[{"link_id":"8da29f

75-effe-427a-8f50-

e5fdbbdddb03","name":"L_H1R1","description":"Link

between H1 and

R1","nodeA":"H1","portA":"E1","nodeB":"R1","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"d33bd436-978f-

4733-bc15-

378d2795278a","name":"L_H2R2","description":"Link

between H2 and

R2","nodeA":"H2","portA":"E1","nodeB":"R2","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"64eb06f2-2fc7-

4194-80cd-

313f96a17886","name":"L_R3H3","description":"Link

between R3 and

H3","nodeA":"R3","portA":"A1","nodeB":"H3","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"4e86ca02-06d0-

4ca6-9091-

8d892d00e7ef","name":"L_R3H4","description":"Link

between R3 and

H4","nodeA":"R3","portA":"A2","nodeB":"H4","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"5564edc8-a881-

4751-bd64-

bfae68ea3f48","name":"L_R1R2","description":"Link

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

60

between R1 and

R2","nodeA":"R1","portA":"T1","nodeB":"R2","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"ddd837fa-973a-

4ec8-a1c6-

57d26a650469","name":"L_R1R3","description":"Link

between R1 and

R3","nodeA":"R1","portA":"T2","nodeB":"R3","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"ece732f6-a3ff-

47fb-a255-

929e7dfe3c0b","name":"L_R2R3","description":"Link

between R2 and

R3","nodeA":"R2","portA":"T2","nodeB":"R3","portB":"T2",

"layer":"L2","capacity":100}],"l2_topology_attributes":{

},"l3_topology_attributes":{}}]}]

GET topologies/tsn REQUEST
GET /topologies/tsn HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: e4ec08df-9ef8-423f-857a-420d1fa21363

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 5165

Content-Type: application/json

Date: Fri, 19 Jan 2024 07:57:20 GMT

Server: uvicorn

[{"topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","source_controller":"tsn-

controller","network":[{"name":"TSN

network","description":"TSN network of employees at

ELIG","network_id":"9beee57a-b67e-4c20-9c9e-

2914f3bdad63","network_types":{"layer":"L2","type":"TSN"

},"node":[{"node_id":"2891b00f-6ec2-4f20-831b-

ccf4b72895f7","name":"switch1","description":"Switch 1

located at

Vigo","type":"switch","ports":{"A1":{"name":"A1","port_t

ype":"access","layer":"L2","speed":20,"transmission_dela

y":null},"A2":{"name":"A2","port_type":"access","layer":

"L2","speed":20,"transmission_delay":2},"A3":{"name":"A3

","port_type":"access","layer":"L2","speed":20,"transmis

sion_delay":null},"A4":{"name":"A4","port_type":"access"

,"layer":"L2","speed":20,"transmission_delay":2},"T1":{"

name":"T1","port_type":"trunk","layer":"L2","speed":100,

"transmission_delay":7},"T2":{"name":"T2","port_type":"t

runk","layer":"L2","speed":1,"transmission_delay":7}}},{

"node_id":"76b87550-acb4-4efe-a345-

5beb6300b817","name":"switch2","description":"Switch 2

located at

Cartagena","type":"switch","ports":{"A1":{"name":"A1","p

ort_type":"access","layer":"L2","speed":20,"transmission

_delay":null},"A2":{"name":"A2","port_type":"access","la

yer":"L2","speed":20,"transmission_delay":2},"A3":{"name

":"A3","port_type":"access","layer":"L2","speed":20,"tra

nsmission_delay":null},"A4":{"name":"A4","port_type":"ac

cess","layer":"L2","speed":20,"transmission_delay":2},"T

1":{"name":"T1","port_type":"trunk","layer":"L2","speed"

:100,"transmission_delay":7},"T2":{"name":"T2","port_typ

e":"trunk","layer":"L2","speed":1,"transmission_delay":7

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

61

}}},{"node_id":"479d4dce-7954-473e-963c-

0939fa193921","name":"switch3","description":"Switch 3

located at

Malaga","type":"switch","ports":{"A1":{"name":"A1","port

_type":"access","layer":"L2","speed":20,"transmission_de

lay":null},"A2":{"name":"A2","port_type":"access","layer

":"L2","speed":20,"transmission_delay":2},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":20,"transm

ission_delay":null},"A4":{"name":"A4","port_type":"acces

s","layer":"L2","speed":20,"transmission_delay":2},"T1":

{"name":"T1","port_type":"trunk","layer":"L2","speed":10

0,"transmission_delay":7},"T2":{"name":"T2","port_type":

"trunk","layer":"L2","speed":1,"transmission_delay":7}}}

,{"node_id":"a38dd09c-028a-432f-a04d-

330b461920ed","name":"switch4","description":"Switch 4

located at

Alicante","type":"switch","ports":{"A1":{"name":"A1","po

rt_type":"access","layer":"L2","speed":20,"transmission_

delay":null},"A2":{"name":"A2","port_type":"access","lay

er":"L2","speed":20,"transmission_delay":2},"A3":{"name"

:"A3","port_type":"access","layer":"L2","speed":20,"tran

smission_delay":null},"A4":{"name":"A4","port_type":"acc

ess","layer":"L2","speed":20,"transmission_delay":2},"T1

":{"name":"T1","port_type":"trunk","layer":"L2","speed":

100,"transmission_delay":7},"T2":{"name":"T2","port_type

":"trunk","layer":"L2","speed":1,"transmission_delay":7}

}}],"link":[{"link_id":"7253e9c9-8b8e-457e-989c-

8c65a6c88859","name":"link_vc","description":"Link

between Vigo and

Cartagena","nodeA":"switch1","portA":"T1","nodeB":"switc

h2","portB":"T1","layer":"L2","capacity":100},{"link_id"

:"8d73ad67-fe5c-455a-9458-

9b4d1940ad87","name":"link_cm","description":"Link

between Cartagena and

Malaga","nodeA":"switch2","portA":"T2","nodeB":"switch3"

,"portB":"T2","layer":"L2","capacity":100},{"link_id":"8

dec6cce-ce01-4d8a-9c70-

a488345e4acd","name":"link_ma","description":"Link

between Malaga and

Alicante","nodeA":"switch3","portA":"T1","nodeB":"switch

4","portB":"T1","layer":"L2","capacity":100},{"link_id":

"5e5b8682-215c-489d-94c1-

7e3a758f2178","name":"link_av","description":"Link

between Alicante and

Vigo","nodeA":"switch4","portA":"T2","nodeB":"switch1","

portB":"T2","layer":"L2","capacity":100}],"l2_topology_a

ttributes":{},"l3_topology_attributes":{}},{"name":"TSN

network","description":"TSN network of employees at

ELIG","network_id":"3e5243f3-675f-4a72-a69b-

f3d877f76004","network_types":{"layer":"L3","type":"TSN"

},"node":[{"node_id":"e693930f-f5b6-4fe6-8c86-

270097ff35a7","name":"host1","description":"Host 1

located at

Vigo","type":"host","ports":{"E1":{"name":"E1","port_typ

e":"host","layer":"L3","speed":100,"transmission_delay":

null}}},{"node_id":"28ed0288-6356-40a4-ac86-

2e6bdc02951a","name":"host2","description":"Host 2

located at

Cartagena","type":"host","ports":{"E1":{"name":"E1","por

t_type":"host","layer":"L3","speed":100,"transmission_de

lay":null}}},{"node_id":"45ae8e51-fcd2-49d4-ae98-

71c4bfd71b2e","name":"host3","description":"Host 3

located at

Malaga","type":"host","ports":{"E1":{"name":"E1","port_t

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

62

ype":"host","layer":"L3","speed":100,"transmission_delay

":null}}},{"node_id":"77425b92-f7aa-4f4e-90d1-

6bbb33ff5b03","name":"host4","description":"Host 4

located at

Alicante","type":"host","ports":{"E1":{"name":"E1","port

_type":"host","layer":"L3","speed":100,"transmission_del

ay":null}}}],"link":[{"link_id":"f2dbf1d7-39a9-449c-

8257-

514616570727","name":"link_vc_v","description":"Virtual

link between Vigo and

Cartagena","nodeA":"host1","portA":"E1","nodeB":"host2",

"portB":"E1","layer":"L3","capacity":100}],"l2_topology_

attributes":{},"l3_topology_attributes":{}}]}]

GET topologies/metro REQUEST
GET /topologies/tsn HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: d91e9f46-4e4d-4c73-a29a-91dfd8b7e2c6

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 4118

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:37:05 GMT

Server: uvicorn

[{"topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","source_controller":"tsn-

controller","network":[{"name":"TSN

network","description":"TSN network as

example","network_id":"5e230bed-e576-4262-8009-

c31edcfc3bd3","network_types":{"layer":"L2","type":"TSN"

},"node":[{"node_id":"c4c7a626-a344-4aef-ac64-

54e1c3cc5ca3","name":"H1","description":"Host

1","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"3c58f9e8-6d76-458e-9625-

03b9218ce9e3","name":"H2","description":"Host

2","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"02787165-3438-48ad-bf00-

c655826762a9","name":"H3","description":"Host

3","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"2f587ce4-32cc-43a6-87da-

499490b66bdc","name":"H4","description":"Host

4","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"054c0cd0-8cda-44a1-b530-

7b8a9cdaecdc","name":"R1","description":"Switch

1","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"23905228-f5dc-

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

63

4642-be3c-

9dd0adc62034","name":"R2","description":"Switch

2","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"8e1ae5b3-82ab-

45aa-97f4-

bd3ad35efc6e","name":"R3","description":"Switch

3","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}}],"link":[{"link_id":"318d19

17-e97a-4555-ad90-

b11bf2758715","name":"L_H1R1","description":"Link

between H1 and

R1","nodeA":"H1","portA":"E1","nodeB":"R1","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"67e54702-69da-

495a-a1ed-

75640692de58","name":"L_H2R2","description":"Link

between H2 and

R2","nodeA":"H2","portA":"E1","nodeB":"R2","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"2abd9dfb-8427-

48d9-beb7-

30911ac66d76","name":"L_R3H3","description":"Link

between R3 and

H3","nodeA":"R3","portA":"A1","nodeB":"H3","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"3fee4a79-146c-

45ac-b86c-

63fb8da5f3c8","name":"L_R3H4","description":"Link

between R3 and

H4","nodeA":"R3","portA":"A2","nodeB":"H4","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"1c04b12d-f360-

45b8-94cc-

eccfd36cfa34","name":"L_R1R2","description":"Link

between R1 and

R2","nodeA":"R1","portA":"T1","nodeB":"R2","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"773cd022-223b-

4058-9e69-

4a1c172fa871","name":"L_R1R3","description":"Link

between R1 and

R3","nodeA":"R1","portA":"T2","nodeB":"R3","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"ec4df91b-f0c8-

4f3e-bcf5-

85cd8126772b","name":"L_R2R3","description":"Link

between R2 and

R3","nodeA":"R2","portA":"T2","nodeB":"R3","portB":"T2",

"layer":"L2","capacity":100}],"l2_topology_attributes":{

},"l3_topology_attributes":{}}]}]

GET topologies by ID REQUEST
GET /topologies/a8aff4e3-6194-42c0-9b8f-b08ea8e39ecd

HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

64

Postman-Token: 46f86606-7f4c-4373-8ca9-4526122bf085

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 5177

Content-Type: application/json

Date: Fri, 19 Jan 2024 07:58:36 GMT

Server: uvicorn

HTTP/1.1 200 OK

Content-Length: 4124

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:38:48 GMT

Server: uvicorn

{"topology_id":"a8aff4e3-6194-42c0-9b8f-

b08ea8e39ecd","source_controller":"metro-

controller","network":[{"name":"Metro

network","description":"Metro network as

example","network_id":"13ebde75-7db8-4001-8395-

0ad40fbcd8d8","network_types":{"layer":"L2","type":"metr

o"},"node":[{"node_id":"f458555f-4a0c-43af-bb1f-

3b60e22620c4","name":"H1","description":"Host

1","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"2b3ad396-100e-43af-8a20-

4c8c43c71781","name":"H2","description":"Host

2","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"1eb3eff8-ea2a-4ae4-a8a5-

6dcd1d2ee52e","name":"H3","description":"Host

3","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"a59cd41e-3b13-4ffa-87bc-

ead5da9b2174","name":"H4","description":"Host

4","type":"host","ports":{"E1":{"name":"E1","port_type":

"host","layer":"L2","speed":100,"transmission_delay":nul

l}}},{"node_id":"577c82c1-7117-4b86-8f22-

2b75a7e5f7a4","name":"R1","description":"Switch

1","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"9cfcc4ea-14bc-

4171-bbf0-

9cef91248d38","name":"R2","description":"Switch

2","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}},{"node_id":"cae3f4f8-c705-

41ba-959b-

bf1657cd645b","name":"R3","description":"Switch

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

65

3","type":"switch","ports":{"A1":{"name":"A1","port_type

":"access","layer":"L2","speed":100,"transmission_delay"

:null},"A2":{"name":"A2","port_type":"access","layer":"L

2","speed":100,"transmission_delay":null},"A3":{"name":"

A3","port_type":"access","layer":"L2","speed":100,"trans

mission_delay":null},"T1":{"name":"T1","port_type":"trun

k","layer":"L2","speed":100,"transmission_delay":60},"T2

":{"name":"T2","port_type":"trunk","layer":"L2","speed":

1,"transmission_delay":60}}}],"link":[{"link_id":"d72c63

8e-d08d-4370-9a7f-

f9a1c786e8cb","name":"L_H1R1","description":"Link

between H1 and

R1","nodeA":"H1","portA":"E1","nodeB":"R1","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"4287077c-5e19-

43d5-965a-

01d46748e09f","name":"L_H2R2","description":"Link

between H2 and

R2","nodeA":"H2","portA":"E1","nodeB":"R2","portB":"A1",

"layer":"L2","capacity":100},{"link_id":"05ded8a8-260d-

42dd-bdcd-

fa2f74839a38","name":"L_R3H3","description":"Link

between R3 and

H3","nodeA":"R3","portA":"A1","nodeB":"H3","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"3ef9118c-c03d-

488a-8b67-

1508a2efa233","name":"L_R3H4","description":"Link

between R3 and

H4","nodeA":"R3","portA":"A2","nodeB":"H4","portB":"E1",

"layer":"L2","capacity":100},{"link_id":"7959181d-6a5b-

4862-8a7c-

bcd2dc2fb688","name":"L_R1R2","description":"Link

between R1 and

R2","nodeA":"R1","portA":"T1","nodeB":"R2","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"593dda1b-afb9-

4b37-897d-

2388276da826","name":"L_R1R3","description":"Link

between R1 and

R3","nodeA":"R1","portA":"T2","nodeB":"R3","portB":"T1",

"layer":"L2","capacity":100},{"link_id":"7a9e2048-d357-

49de-9fdf-

fd651d7ce7ac","name":"L_R2R3","description":"Link

between R2 and

R3","nodeA":"R2","portA":"T2","nodeB":"R3","portB":"T2",

"layer":"L2","capacity":100}],"l2_topology_attributes":{

},"l3_topology_attributes":{}}]}

• Flows:

Functionality Test Test result

POST flow

REQUEST
POST /flows/ HTTP/1.1

Content-Type: application/json

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: a5a3bbf9-b130-4adf-971d-668cee88a398

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 1004

{

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

66

"name": "'BG_Traffic1",

"description": "Testing Flow 1",

"topology_id": "42f98df2-b54f-495f-8f31-5e76b91f1fef",

"hostA": "H1",

"portA": "E1",

"hostB": "H3",

"portB": "E1",

"switchA": "R1",

"switchB": "R3",

"path": [

"[R1,R3]]"

],

"trafficMix": {

"video": {

"scale": 100,

"pattern": {

"period": 86400,

"unit": "s",

"pattern": [

0.25,0.3,0.32,0.35,0.39

],

"pattern_unit": "min"

}

},

"gaming": {

"scale": 300,

"pattern": {

"period": 86400,

"unit": "s",

"pattern": [

0.25,0.3,0.32,0.35,0.39

],

"pattern_unit": "min"

}

},

"internet": {

"scale": 500,

"pattern": {

"period": 86400,

"unit": "s",

"pattern": [

0.25,0.3,0.32,0.35,0.39

],

"pattern_unit": "min"

}

}

},

"bandwidth": 50,

"latency": 20

}

RESPONSE
HTTP/1.1 200 OK

Content-Length: 660

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:46:52 GMT

Server: uvicorn

{"flow_id":"b5fb6aa0-0af2-41b7-ba71-

bb5cf522630f","name":"'BG_Traffic1","description":"Testi

ng Flow 1","topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","hostA":"H1","portA":"E1","hostB":"H3","po

rtB":"E1","switchA":"R1","switchB":"R3","path":["[R1,R3]

]"],"trafficMix":{"video":{"scale":100,"pattern":{"perio

d":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,0.39],

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

67

"pattern_unit":"min"}},"gaming":{"scale":300,"pattern":{

"period":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,

0.39],"pattern_unit":"min"}},"internet":{"scale":500,"pa

ttern":{"period":86400,"unit":"s","pattern":[0.25,0.3,0.

32,0.35,0.39],"pattern_unit":"min"}}},"bandwidth":50.0,"

latency":20.0}

GET flows

REQUEST
GET /flows/ HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 3df0f890-68a4-4332-8b67-57bd87a12f82

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 1324

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:50:21 GMT

Server: uvicorn

[{"flow_id":"b5fb6aa0-0af2-41b7-ba71-

bb5cf522630f","name":"'BG_Traffic1","description":"Testi

ng Flow 1","topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","hostA":"H1","portA":"E1","hostB":"H3","po

rtB":"E1","switchA":"R1","switchB":"R3","path":["[R1,R3]

]"],"trafficMix":{"video":{"scale":100,"pattern":{"perio

d":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,0.39],

"pattern_unit":"min"}},"gaming":{"scale":300,"pattern":{

"period":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,

0.39],"pattern_unit":"min"}},"internet":{"scale":500,"pa

ttern":{"period":86400,"unit":"s","pattern":[0.25,0.3,0.

32,0.35,0.39],"pattern_unit":"min"}}},"bandwidth":50.0,"

latency":20.0},{"flow_id":"a9074d69-2f11-4574-8021-

01c4d8039a76","name":"'BG_Traffic2'","description":"Test

ing Flow 2","topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","hostA":"H2","portA":"E1","hostB":"H4","po

rtB":"E1","switchA":"R2","switchB":"R3","path":["[R2,R3]

]"],"trafficMix":{"video":{"scale":100,"pattern":{"perio

d":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,0.39],

"pattern_unit":"min"}},"gaming":{"scale":300,"pattern":{

"period":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,

0.39],"pattern_unit":"min"}},"internet":{"scale":500,"pa

ttern":{"period":86400,"unit":"s","pattern":[0.25,0.3,0.

32,0.35,0.39],"pattern_unit":"min"}}},"bandwidth":50.0,"

latency":20.0}]

GET flows by ID

REQUEST
GET /flows/b5fb6aa0-0af2-41b7-ba71-bb5cf522630f HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 754dd7e2-0a0b-4b8e-abe7-4feac12782d0

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 662

Content-Type: application/json

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

68

Date: Fri, 19 Jan 2024 09:50:59 GMT

Server: uvicorn

[{"flow_id":"b5fb6aa0-0af2-41b7-ba71-

bb5cf522630f","name":"'BG_Traffic1","description":"Testi

ng Flow 1","topology_id":"42f98df2-b54f-495f-8f31-

5e76b91f1fef","hostA":"H1","portA":"E1","hostB":"H3","po

rtB":"E1","switchA":"R1","switchB":"R3","path":["[R1,R3]

]"],"trafficMix":{"video":{"scale":100,"pattern":{"perio

d":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,0.39],

"pattern_unit":"min"}},"gaming":{"scale":300,"pattern":{

"period":86400,"unit":"s","pattern":[0.25,0.3,0.32,0.35,

0.39],"pattern_unit":"min"}},"internet":{"scale":500,"pa

ttern":{"period":86400,"unit":"s","pattern":[0.25,0.3,0.

32,0.35,0.39],"pattern_unit":"min"}}},"bandwidth":50.0,"

latency":20.0}]

DELETE flows by ID

REQUEST
DELETE /flows/a9074d69-2f11-4574-8021-01c4d8039a76

HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: 9c416e9b-5075-4953-85ef-c7c83112579e

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 45

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:51:53 GMT

Server: uvicorn

{"code":200,"message":"Successfully deleted"}

DELETE flows REQUEST
DELETE /flows/ HTTP/1.1

User-Agent: PostmanRuntime/7.36.1

Accept: */*

Postman-Token: a19a948c-c507-4110-8dbc-4a42c6144261

Host: nbi-connectivity-manager.e-lighthouse.com

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

RESPONSE
HTTP/1.1 200 OK

Content-Length: 45

Content-Type: application/json

Date: Fri, 19 Jan 2024 09:52:26 GMT

Server: uvicorn

{"code":200,"message":"Successfully deleted"}

2.6 TSN MODELS/DT

2.6.1 Description

The TSN Digital Twin includes the following basic modules (see Figure 2-12):

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

69

• a manager module configuring and supervising the operation of the rest of the modules.

• a few modules that include algorithm, models, and the interface with the TSN

connectivity manager.

• a Redis DB that is used in publish-subscribe mode to communicate the different modules

among them.

Figure 2-12 Internal architecture of the Digital Twin

In this deliverable, we report the work that has been done from the status reported in TIMING

SP-1 D1.3, especially regarding integration. In particular:

• Definition of common traffic profiles based on a set of defined service profiles and traffic

patterns that will be adopted by other systems in the TIMING architecture, specifically

in the TSN Connectivity Manager.

• Advances on the development of a preliminary version of the REST-API that now is

integrated with the other internal modules of the DT.

• Development of a Simulation Composer module that creates the simulation scenario

based on the topology and KPI evaluation request received.

2.6.2 Traffic Profiles

Two descriptors have been identified to define traffic profiles: service profiles and traffic

patterns.

As for service profiles, they are described in terms of statistical distributions of the following

random variables (see SP-1 D1.2):

• Inter-packet time

• Packet size

• Inter-burst time

• Burst size

Each random variable is defined then, as a probability distribution with some parameters, e.g.,

mean and standard deviation for the normal distribution, the units and a scale factor, usually 1.

The following table reproduces an example for a video service.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

70

Regarding traffic patterns, they are used to described the temporal behavior of a given service.

They define, the periodicity and the specific pattern as values in the continuous range [0-1].

Finally, traffic profiles are defined as a mix of services with different traffic patterns and scale

factors. The following table shows an example of traffic profile.

2.6.3 REST API Interface

The current version of the DT includes a REST API which implements a preliminary interface.

Specifically, this version of the REST API offers several endpoints that provide methods to

interact with the Topology DB and to issue the evaluation of the KPI of a selected flow. The REST

API offers the following endpoints:

• NetworkDB: Allows GET, POST and DELETE methods. Implements the creation, deletion

and retrieval of the Topology DB in the Digital Twin.

• Topology/Node: Allows GET, POST and DELETE methods. Implements the creation,

deletion and retrieval of the Node’s information in the Topology DB.

• Topology/Link: Allows POST and DELETE methods. Implements the creation and deletion

of the Link’s information in the Topology DB.

• Flow: Allows GET, POST and DELETE methods. Implements the creation, deletion and

deletion of the Flow’s information in the Topology DB.

• KPIEvaluation: Allows GET method. Implements the KPI evaluation of a selected flow of

the Topology DB.

The following table describes the end-points and operations and provides examples.

"video":{
 "interBurstRate": {"dist": "normal", "params": {"mean":0.25, "std":2.54e-5},
 "unit":"s-1", "scale":1},
 "burstSize": {"dist": "normal", "params": {"mean":4034485, "std":1266989},
 "unit": "bytes", "scale":1},
 "packetSize": { "dist":"constant", "params": {"mean":1500}, "unit": "bytes", "scale":1},
 "interPacketTime": {"dist": "normal", "params": {"mean":0.0001, "std":0.00002},
 "unit": "s", "scale": 1}
}

"daily": {"period": 86400, "unit": "s", "pattern": [0.25, 0.3, 0.32, 0.35, 0.39,],
 "pattern_unit": "min"},
"periodical": {"period": 5, "unit": "ms", "pattern": [1,0,0,0,0], "pattern_unit": "ms"}

"trafficMix": {
 "video": {"scale": 100, "pattern": "daily-1"},
 "gaming": {"scale": 300, "pattern": "daily-2"},
 "internet": {"scale": 500, "pattern": "daily-3"}
}

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

71

Operation Description and examples

/NETWORKDB

CREATE
TOPO DB

Initializes a Network Database with the following elements:

• List of nodes: packet switches that forward the traffic

• List of hosts: hosts are source and destination of traffic flows

• List of links: a link connects two ports from a node or a host.

• Flows: traffic flows between two hosts.
Example of Request:
{"url": "http://127.0.0.1:8080/NetworkDB/", "method":"POST", "body": ""}

GET TOPO
DB

Returns the contents of the Topo DB.
Example of Request:
{"url": "http://127.0.0.1:8080/NetworkDB/", "method":"GET", "body": ""}

DELETE
TOPO DB

Returns the contents of the Topo DB.
Example of Request:
{"url": "http://127.0.0.1:8080/NetworkDB/", "method":"GET", "body": ""}

/TOPOLOGY/NODE

ADD HOST Adds a host to the Network DB. All ports must be of the type “Host”.
Example of Request:
{"url": "http://127.0.0.1:8080/Topology/Node/", "method":"POST", "body": {
 "DPId": "H1", "data": {
 "type": "Host", "ports": {"E1": {"type": "Host", "speed": 100}}}}
 }

ADD SWITCH Adds a switch to the Network DB. Ports can be the type “Access” to connect
to a host, or type “Trunk” to connect to another switch.
Example of Request:
{"url": "http://127.0.0.1:8080/Topology/Node/", "method":"POST", "body": {
 "DPId": "R1", "data": {
 "type": "Switch", "ports": {
 "A1": {"type": "Access", "speed": 100},
 "A2": {"type": "Access", "speed": 100},
 "T1": {"type": "Trunk","speed": 100, "transmissionDelay": 50},
 "T2": {"type": "Trunk","speed": 100, "transmissionDelay": 50}
 }}}}

GET HOST /
SWITCH

Returns the properties of a Host or a Switch.
Example of Request:
{"url": "http://127.0.0.1:8080/Topology/Node/", "method":"GET", "body": {
 "DPId": "H_FluE_1"
 }}

DELETE HOST
/ SWITCH

Removes a Host or a Switch from the Network DB.
Example of Request:
{"url": "http://127.0.0.1:8080/Topology/Node/", "method":"DELETE", "body":
{
 "DPId": "H_FluE_1"
 }}

/TOPOLOGY/LINK

ADD LINK Adds a link to the Network DB. The link connects a host to a node or two
switches.
Examples of Request:

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

72

Host to Switch:
{"url": "http://127.0.0.1:8080/Topology/Link/", "method":"POST", "body": {
 "DPA": "H1", "PortA": "E1", "DPB": "R1", "PortB": "A1"
 }}
Switch to Switch:
{"url": "http://127.0.0.1:8080/Topology/Link/", "method":"POST", "body": {
 "DPA": "R1", "PortA": "T1", "DPB": "R3", "PortB": "T1"
 }}

DELETE LINK Removes a Link from the Network DB.
Example of Request:
{"url": "http://127.0.0.1:8080/Topology/Link/", "method":"DELETE", "body": {
 "DPA": "H_FluE_1", "PortA": "E1", "DPB": "R1", "PortB": "A2"
}}

/FLOW

ADD FLOW Adds a traffic flow to the Network DB. The traffic flow specifies the end
hosts/ports, as well as the traffic of the flow.
Example of Request:
{"url": "http://127.0.0.1:8080/Flow/", "method":"POST", "body": {
 "flowId": "BG_Traffic1", "data": {
 "src": "H1", "srcPort": "E1", "dest": "H3", "destPort": "E1",
"srcSwitch": "R1", "destSwitch": "R3", "path": ["R1","R3"],
 "trafficMix": {
 "video": {"scale": 100, "pattern": "daily-1"},
 "gaming": {"scale": 300, "pattern": "daily-2"},
 "internet": {"scale": 500, "pattern": "daily-3"}
 }}}}

GET FLOW Returns the properties of a traffic flow.
Example of Request:
{"url": "http://127.0.0.1:8080/Flow/", "method":"GET", "body": {"flowId":
"BG_Traffic1"}}

DELETE
FLOW

Removes a flow from the Network DB.
Example of Request:
{"url": "http://127.0.0.1:8080/Flow/", "method":"DELETE", "body": {
 "flowId": "BG_Traffic1"
 }}

/KPIEVALUATION

GET
ESTIMATION

Evaluates the KPIs (delay, jitter and loss) of a new traffic flow to be established
on a defined path. The KPI estimation of the new flow is for a defined traffic
and takes into account the other traffic flows already established.
Example of Request:
{"url": "http://127.0.0.1:8080/KPIEvaluation/", "method":"GET", "body": {
 "flowId": "FluE", "data": {
 "src": "H_FluE_1", "srcPort": "E1", "dest": "H_FluE_2", "destPort": "E1",
 "srcSwitch": "R1", "destSwitch": "R3",
 "pathToEvaluate": ["R1","R3"],
 "trafficMix": {
 "video": {"scale": 28, "pattern": "daily-1"}
 }}}}

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

73

2.6.4 Report on Current Status

A preliminary REST API is already implemented and fully functional. In addition, this version of

the DT includes preliminary algorithms to compute the delay in a set of queues that support a

traffic flow. Initial versions of traffic definitions are also included.

2.6.5 Stand-alone preliminary tests

We have developed a REST API client that performs requests to the digital twin. The client can

be configured by defining a JSON file with the requests to be submitted through the REST API

interface and prints the results. Specifically, a JSON file named Tests.json has been defined that

follows the following sequence:

• Create a network topology with 4 Hosts and 3 Switches in a ring.

• Add two flows as background traffic

• Request for RPI evaluation for a new flow

The results of the test are listed in the next table.

$ /usr/bin/python3.10 ./client.py -c config/Tests.json
INFO: Running REST API client...
INFO: ---------------------------------------CREATE TOPO DB--
INFO: POST http://127.0.0.1:8080/NetworkDB/
INFO: -- 201 Created - {'networkDB': {'nodeList': [], 'hostList': [], 'linkList': [], 'nodes': {}, 'flows': {}}}

INFO: ---HOSTs---
INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H1', 'data': {'type': 'Host', 'ports': {'E1': {'type': 'Host',
'speed': 100}}}}

INFO: -- 201 Created - {'H1': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H1'}", 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H2', 'data': {'type': 'Host', 'ports': {'E1': {'type': 'Host',
'speed': 100}}}}

INFO: -- 201 Created - {'H2': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H2'}", 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H3', 'data': {'type': 'Host', 'ports': {'E1': {'type': 'Host',
'speed': 100}}}}
INFO: -- 201 Created - {'H3': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H3'}", 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H4', 'data': {'type': 'Host', 'ports': {'E1': {'type': 'Host',
'speed': 100}}}}

INFO: -- 201 Created - {'H4': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H4'}", 'result': 'OK'}

INFO: ---SWITCHES---
INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'R1', 'data': {'type': 'Switch', 'ports': {'A1': {'type':
'Access', 'speed': 100}, 'A2': {'type': 'Access', 'speed': 100}, 'T1': {'type': 'Trunk', 'speed': 100, 'transmissionDelay':
50}, 'T2': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}}}}

INFO: -- 201 Created - {'R1': "{'type': 'Switch', 'ports': {'A1': {'type': 'Access', 'speed': 100}, 'A2': {'type': 'Access',
'speed': 100}, 'T1': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}, 'T2': {'type': 'Trunk', 'speed': 100,
'transmissionDelay': 50}}, 'DPId': 'R1'}", 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'R2', 'data': {'type': 'Switch', 'ports': {'A1': {'type':
'Access', 'speed': 100}, 'T1': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}, 'T2': {'type': 'Trunk', 'speed': 100,
'transmissionDelay': 50}}}}

INFO: -- 201 Created - {'R2': "{'type': 'Switch', 'ports': {'A1': {'type': 'Access', 'speed': 100}, 'T1': {'type': 'Trunk',
'speed': 100, 'transmissionDelay': 50}, 'T2': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}}, 'DPId': 'R2'}",
'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'R3', 'data': {'type': 'Switch', 'ports': {'A1': {'type':
'Access', 'speed': 100}, 'A2': {'type': 'Access', 'speed': 100}, 'A3': {'type': 'Access', 'speed': 100}, 'T1': {'type': 'Trunk',
'speed': 100, 'transmissionDelay': 50}, 'T2': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}}}}

INFO: -- 201 Created - {'R3': "{'type': 'Switch', 'ports': {'A1': {'type': 'Access', 'speed': 100}, 'A2': {'type': 'Access',
'speed': 100}, 'A3': {'type': 'Access', 'speed': 100}, 'T1': {'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}, 'T2':
{'type': 'Trunk', 'speed': 100, 'transmissionDelay': 50}}, 'DPId': 'R3'}", 'result': 'OK'}

INFO: ---ACCESS LINKS---
INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'H1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A1'}

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

74

INFO: -- 200 OK - {'link': {'DPA': 'H1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A1'}, 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'H2', 'PortA': 'E1', 'DPB': 'R2', 'PortB': 'A1'}

INFO: -- 200 OK - {'link': {'DPA': 'H2', 'PortA': 'E1', 'DPB': 'R2', 'PortB': 'A1'}, 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R3', 'PortA': 'A1', 'DPB': 'H3', 'PortB': 'E1'}

INFO: -- 200 OK - {'link': {'DPA': 'R3', 'PortA': 'A1', 'DPB': 'H3', 'PortB': 'E1'}, 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R3', 'PortA': 'A2', 'DPB': 'H4', 'PortB': 'E1'}

INFO: -- 200 OK - {'link': {'DPA': 'R3', 'PortA': 'A2', 'DPB': 'H4', 'PortB': 'E1'}, 'result': 'OK'}

INFO: ---TOPOLOGY LINKS---

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R1', 'PortA': 'T1', 'DPB': 'R3', 'PortB': 'T1'}

INFO: -- 200 OK - {'link': {'DPA': 'R1', 'PortA': 'T1', 'DPB': 'R3', 'PortB': 'T1'}, 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R1', 'PortA': 'T2', 'DPB': 'R2', 'PortB': 'T1'}

INFO: -- 200 OK - {'link': {'DPA': 'R1', 'PortA': 'T2', 'DPB': 'R2', 'PortB': 'T1'}, 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R2', 'PortA': 'T2', 'DPB': 'R3', 'PortB': 'T2'}

INFO: -- 200 OK - {'link': {'DPA': 'R2', 'PortA': 'T2', 'DPB': 'R3', 'PortB': 'T2'}, 'result': 'OK'}

INFO: ---FLOWS--
INFO: POST http://127.0.0.1:8080/Flow/ {'flowId': 'BG_Traffic1', 'data': {'src': 'H1', 'srcPort': 'E1', 'dest': 'H3',
'destPort': 'E1', 'srcSwitch': 'R1', 'destSwitch': 'R3', 'path': ['R1', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern':
'daily-1'}, 'gaming': {'scale': 300, 'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}}}

INFO: -- 201 Created - {'BG_Traffic1': "{'src': 'H1', 'srcPort': 'E1', 'dest': 'H3', 'destPort': 'E1', 'srcSwitch': 'R1',
'destSwitch': 'R3', 'path': ['R1', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern': 'daily-1'}, 'gaming': {'scale': 300,
'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}, 'flowId': 'BG_Traffic1'}", 'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Flow/ {'flowId': 'BG_Traffic2', 'data': {'src': 'H2', 'srcPort': 'E1', 'dest': 'H4',
'destPort': 'E1', 'srcSwitch': 'R2', 'destSwitch': 'R3', 'path': ['R2', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern':
'daily-1'}, 'gaming': {'scale': 300, 'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}}}

INFO: -- 201 Created - {'BG_Traffic2': "{'src': 'H2', 'srcPort': 'E1', 'dest': 'H4', 'destPort': 'E1', 'srcSwitch': 'R2',
'destSwitch': 'R3', 'path': ['R2', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern': 'daily-1'}, 'gaming': {'scale': 300,
'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}, 'flowId': 'BG_Traffic2'}", 'result': 'OK'}

INFO: ---GETs--
INFO: GET http://127.0.0.1:8080/NetworkDB/
INFO: -- 200 OK - {'nodeList': ['R1', 'R2', 'R3'], 'hostList': ['H1', 'H2', 'H3', 'H4'], 'linkList': [{'DPA': 'H1', 'PortA': 'E1',
'DPB': 'R1', 'PortB': 'A1'}, {'DPA': 'H2', 'PortA': 'E1', 'DPB': 'R2', 'PortB': 'A1'}, {'DPA': 'R3', 'PortA': 'A1', 'DPB': 'H3',
'PortB': 'E1'}, {'DPA': 'R3', 'PortA': 'A2', 'DPB': 'H4', 'PortB': 'E1'}, {'DPA': 'R1', 'PortA': 'T1', 'DPB': 'R3', 'PortB': 'T1'},
{'DPA': 'R1', 'PortA': 'T2', 'DPB': 'R2', 'PortB': 'T1'}, {'DPA': 'R2', 'PortA': 'T2', 'DPB': 'R3', 'PortB': 'T2'}], 'nodes': {'H1':
{'DPId': 'H1', 'type': 'Host', 'ports': {'E1': {'DPId': 'H1', 'portId': 'E1', 'speed': 100, 'type': 'Host', 'neighbour': {'DPId':
'R1', 'portId': 'A1'}, 'inFlows': [], 'outFlows': ['BG_Traffic1']}}, 'Neighbours2Ports': {'R1': 'E1'}, 'flows':
['BG_Traffic1']}, 'H2': {'DPId': 'H2', 'type': 'Host', 'ports': {'E1': {'DPId': 'H2', 'portId': 'E1', 'speed': 100, 'type': 'Host',
'neighbour': {'DPId': 'R2', 'portId': 'A1'}, 'inFlows': [], 'outFlows': ['BG_Traffic2']}}, 'Neighbours2Ports': {'R2': 'E1'},
'flows': ['BG_Traffic2']}, 'H3': {'DPId': 'H3', 'type': 'Host', 'ports': {'E1': {'DPId': 'H3', 'portId': 'E1', 'speed': 100, 'type':
'Host', 'neighbour': {'DPId': 'R3', 'portId': 'A1'}, 'inFlows': ['BG_Traffic1'], 'outFlows': []}}, 'Neighbours2Ports': {'R3':
'E1'}, 'flows': ['BG_Traffic1']}, 'H4': {'DPId': 'H4', 'type': 'Host', 'ports': {'E1': {'DPId': 'H4', 'portId': 'E1', 'speed': 100,
'type': 'Host', 'neighbour': {'DPId': 'R3', 'portId': 'A2'}, 'inFlows': ['BG_Traffic2'], 'outFlows': []}}, 'Neighbours2Ports':
{'R3': 'E1'}, 'flows': ['BG_Traffic2']}, 'R1': {'DPId': 'R1', 'type': 'Switch', 'ports': {'A1': {'DPId': 'R1', 'portId': 'A1', 'speed':
100, 'type': 'Access', 'neighbour': {'DPId': 'H1', 'portId': 'E1'}, 'inFlows': ['BG_Traffic1'], 'outFlows': []}, 'A2': {'DPId':
'R1', 'portId': 'A2', 'speed': 100, 'type': 'Access', 'neighbour': None, 'inFlows': [], 'outFlows': []}, 'T1': {'DPId': 'R1',
'portId': 'T1', 'speed': 100, 'type': 'Trunk', 'neighbour': {'DPId': 'R3', 'portId': 'T1'}, 'inFlows': [], 'outFlows':
['BG_Traffic1'], 'transmissionDelay': 50.0}, 'T2': {'DPId': 'R1', 'portId': 'T2', 'speed': 100, 'type': 'Trunk', 'neighbour':
{'DPId': 'R2', 'portId': 'T1'}, 'inFlows': [], 'outFlows': [], 'transmissionDelay': 50.0}}, 'Neighbours2Ports': {'H1': 'A1',
'R3': 'T1', 'R2': 'T2'}, 'flows': ['BG_Traffic1']}, 'R2': {'DPId': 'R2', 'type': 'Switch', 'ports': {'A1': {'DPId': 'R2', 'portId':
'A1', 'speed': 100, 'type': 'Access', 'neighbour': {'DPId': 'H2', 'portId': 'E1'}, 'inFlows': ['BG_Traffic2'], 'outFlows': []},
'T1': {'DPId': 'R2', 'portId': 'T1', 'speed': 100, 'type': 'Trunk', 'neighbour': {'DPId': 'R1', 'portId': 'T2'}, 'inFlows': [],
'outFlows': [], 'transmissionDelay': 50.0}, 'T2': {'DPId': 'R2', 'portId': 'T2', 'speed': 100, 'type': 'Trunk', 'neighbour':
{'DPId': 'R3', 'portId': 'T2'}, 'inFlows': [], 'outFlows': ['BG_Traffic2'], 'transmissionDelay': 50.0}}, 'Neighbours2Ports':
{'H2': 'A1', 'R1': 'T1', 'R3': 'T2'}, 'flows': ['BG_Traffic2']}, 'R3': {'DPId': 'R3', 'type': 'Switch', 'ports': {'A1': {'DPId': 'R3',
'portId': 'A1', 'speed': 100, 'type': 'Access', 'neighbour': {'DPId': 'H3', 'portId': 'E1'}, 'inFlows': [], 'outFlows':
['BG_Traffic1']}, 'A2': {'DPId': 'R3', 'portId': 'A2', 'speed': 100, 'type': 'Access', 'neighbour': {'DPId': 'H4', 'portId': 'E1'},
'inFlows': [], 'outFlows': ['BG_Traffic2']}, 'A3': {'DPId': 'R3', 'portId': 'A3', 'speed': 100, 'type': 'Access', 'neighbour':
None, 'inFlows': [], 'outFlows': []}, 'T1': {'DPId': 'R3', 'portId': 'T1', 'speed': 100, 'type': 'Trunk', 'neighbour': {'DPId':
'R1', 'portId': 'T1'}, 'inFlows': ['BG_Traffic1'], 'outFlows': [], 'transmissionDelay': 50.0}, 'T2': {'DPId': 'R3', 'portId':
'T2', 'speed': 100, 'type': 'Trunk', 'neighbour': {'DPId': 'R2', 'portId': 'T2'}, 'inFlows': ['BG_Traffic2'], 'outFlows': [],
'transmissionDelay': 50.0}}, 'Neighbours2Ports': {'H3': 'A1', 'H4': 'A2', 'R1': 'T1', 'R2': 'T2'}, 'flows': ['BG_Traffic2',

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

75

'BG_Traffic1']}}, 'flows': {'BG_Traffic1': {'flowId': 'BG_Traffic1', 'src': 'H1', 'dest': 'H3', 'srcSwitch': 'R1', 'destSwitch':
'R3', 'srcPort': 'E1', 'destPort': 'E1', 'path': ['R1', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern': 'daily-1'}, 'gaming':
{'scale': 300, 'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}}, 'BG_Traffic2': {'flowId': 'BG_Traffic2',
'src': 'H2', 'dest': 'H4', 'srcSwitch': 'R2', 'destSwitch': 'R3', 'srcPort': 'E1', 'destPort': 'E1', 'path': ['R2', 'R3'],
'trafficMix': {'video': {'scale': 100, 'pattern': 'daily-1'}, 'gaming': {'scale': 300, 'pattern': 'daily-2'}, 'internet': {'scale':
500, 'pattern': 'daily-3'}}}}}

INFO: GET http://127.0.0.1:8080/Flow/ {'flowId': 'BG_Traffic2'}

INFO: -- 200 OK - {'BG_Traffic2': {'flowId': 'BG_Traffic2', 'src': 'H2', 'dest': 'H4', 'srcSwitch': 'R2', 'destSwitch': 'R3',
'srcPort': 'E1', 'destPort': 'E1', 'path': ['R2', 'R3'], 'trafficMix': {'video': {'scale': 100, 'pattern': 'daily-1'}, 'gaming':
{'scale': 300, 'pattern': 'daily-2'}, 'internet': {'scale': 500, 'pattern': 'daily-3'}}}}

INFO: ---KPI EVALUATION--

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H_FluE_1', 'data': {'type': 'Host', 'ports': {'E1': {'type':
'Host', 'speed': 100}}}}

INFO: -- 201 Created - {'H_FluE_1': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H_FluE_1'}",
'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H_FluE_2', 'data': {'type': 'Host', 'ports': {'E1': {'type':
'Host', 'speed': 100}}}}

INFO: -- 201 Created - {'H_FluE_2': "{'type': 'Host', 'ports': {'E1': {'type': 'Host', 'speed': 100}}, 'DPId': 'H_FluE_2'}",
'result': 'OK'}

INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'H_FluE_1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A2'}

INFO: -- 200 OK - {'link': {'DPA': 'H_FluE_1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A2'}, 'result': 'OK'}
INFO: POST http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R3', 'PortA': 'A3', 'DPB': 'H_FluE_2', 'PortB': 'E1'}

INFO: -- 200 OK - {'link': {'DPA': 'R3', 'PortA': 'A3', 'DPB': 'H_FluE_2', 'PortB': 'E1'}, 'result': 'OK'}

INFO: GET http://127.0.0.1:8080/KPIEvaluation/ {'flowId': 'FluE', 'data': {'src': 'H_FluE_1', 'srcPort': 'E1', 'dest':
'H_FluE_2', 'destPort': 'E1', 'srcSwitch': 'R1', 'destSwitch': 'R3', 'pathToEvaluate': ['R1', 'R3'], 'trafficMix': {'video':
{'scale': 28, 'pattern': 'daily-1'}}}}

INFO: -- 200 OK - {'flowId': 'FluE', 'kpis': {'delay_us': 538, 'jitter_us': 35, 'loss': 0}, 'result': 'OK'}

INFO: DELETE http://127.0.0.1:8080/Topology/Link/ {'DPA': 'H_FluE_1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A2'}

INFO: -- 200 OK - {'link': {'DPA': 'H_FluE_1', 'PortA': 'E1', 'DPB': 'R1', 'PortB': 'A2'}, 'result': 'OK'}

INFO: DELETE http://127.0.0.1:8080/Topology/Link/ {'DPA': 'R3', 'PortA': 'A3', 'DPB': 'H_FluE_2', 'PortB': 'E1'}

INFO: -- 200 OK - {'link': {'DPA': 'R3', 'PortA': 'A3', 'DPB': 'H_FluE_2', 'PortB': 'E1'}, 'result': 'OK'}

INFO: DELETE http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H_FluE_1'}

INFO: -- 200 OK - {'delete': 'H_FluE_1', 'result': 'OK'}

INFO: DELETE http://127.0.0.1:8080/Topology/Node/ {'DPId': 'H_FluE_2'}

INFO: -- 200 OK - {'delete': 'H_FluE_2', 'result': 'OK'}

INFO: REST API client finished

2.7 METRO SDN CONTROLLER
The TSN domains are expected to be interconnected by means of a Metro Area Network, based

on packet-switching technology, i.e., and IP network.

Two aspects should be considered:

• The specific network nodes forming the packet-switching infrastructure.

• The SDN controller used to configure the paths tailored to the characteristics required

for satisfying the interconnection of the TSN domains. The goal is to leverage on the

concept of network slicing so that service guarantees can be provided to certain flows.

At the time of designing the use case, the initial approach was the creation of an IP network

infrastructure for interconnecting the TSN domains, being this IP infrastructure being controlled

by an SDN Controller. While being realistic, this option represents a challenge from the point of

view of the alignment of existing solutions, for both control and data plane, with the support of

the network slicing concept being currently defined in IETF. Note that the purpose of the

scenario is to validate the effectiveness of the transport slice approach, rather to resolve the

integration issues of current state of the art.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

76

Thus, a new strategy is being analzed, as work in progress to complete the scenario. Such

strategy is as follows.

Taking advantage of the fact that the TSN switches in the setup support as much as 1 Gbps bit

rate interfaces, a way of emulating the behavior of an IP network from the perspective of the

data plane is to use instrumentation devices able to introduce impairments on the network links.

That is, apply a given behavior in terms of bandwidth, latency, jitter and packet loss to the

interfaces of interest. In this manner, different behaviors can be applied to different flows

differentiated e.g. by vlans. This is sufficient to emulate the behavior of network slices in the

Metro network.

On the other hand, the control elements of TIMING need to interact with the emulated IP

network, such interaction following the network slice model as defined in draft-ietf-teas-ietf-

network-slice-nbi-yang. To that end, the purpose is to develop a control module able to handle

the networks slicing NBI in its interaction with the control elements of TIMING, and program the

instrumentation equipment for the applications of specific impairmenta to the flows received

from the TSN domains.

As said, the interaction with the control elements is expected to follow the IETF NBI YANG model

for slicing, so the same YANG model is assumed to be supported. For the interaction with the

instrumentation vendor, the idea is to leverage on a programmable API from the

instrumentation device.

This is a work in progress, not yet prototyped.

2.8 INDUSTRIAL APPLICATIONS

2.8.1 Description

The architecture of the AGV control software is shown in Figure 2-13.

Figure 2-13: AGV control architecture

Each AGV is equipped with an embedded computer to run all software components based on

Linux. This hardware is connected to the AGV by CAN bus. Each AGV sends the information of

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

77

its sensors to the coordinator. To do it, inside each AGV there is a component that is connected

to the CAN bus and filters the CAN frames with the sensor information. In addition, each AGV is

equipped with a LiDAR. The LiDAR driver receives the point cloud information and send it to the

coordinator. The coordinator considering the sensor information, generates the control actions

needed to govern the movement of the AGVs. In this control problem, the control actions are

the longitudinal speed and the steering angle. Finally, there is a PTP inside each AGV to

synchronize the internal time by a PTP server.

2.8.1.1 Coordinator

The coordinator is composed by an observer and a controller (Figure 2-14).

Figure 2-14: AGV coordinator SW modules

The observer receives the sensor information (speed, and point cloud from the LiDARs) and

estimates the current position of each AGV and its speed (𝑣1, 𝑤1, 𝑥1, 𝑦1, 𝜃1, 𝑣2, 𝑤2, 𝑥2, 𝑦2, 𝜃2).

This information is provided to the controller.

The controller uses this information to generate the speed and steering commands for the AGVs

(𝑣𝑟1, 𝛾1, 𝑣𝑟2, 𝛾2) required to follow the speed profile stablished in the configuration file.

2.8.1.2 AGV software

The AGV is equipped with an external hardware to run the software components. This hardware

is connected to the AGV by a CAN bus. The software components in this hardware are shown in

Figure 2-15.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

78

Figure 2-15: AGV software modules

A component manages the communication with the LiDAR and acts as a driver sending this

information by UDP. Another component listens the CAN frames, filter the frames related with

the sensors in the AGV, and send this information by UDP. A component receives the control

actions form UDP frames and translate them to CAN frames. In addition, a PTP client manages

the time synchronization in the system.

2.8.2 Report on the Current Status

The following modules have been (or are being) developed/implemented:

• Observer (OBS): It will be implemented in python. It requires UDP communication

(library socket).

• Controller (ACON): It will be implemented in python. It requires UDP communication

(library socket).

• CAN-UDP: Implemented in python. It requires UDP communication (library socket). It

requires CAN communication (library python-can). Tested without TSN. Used to capture

traffic.

• UDP-CAN: Implemented in python. It requires UDP communication (library socket). It

requires CAN communication (library python-can). Tested without TSN. Testing with TSN

pending.

• LiDAR driver: An initial version has been implemented in C#. A new version will be

implemented in python or C++.It requires TCP and UDP communication (library socket).

Tested without TSN. Used to capture traffic. Testing with TSN pending.

• PTP client: The software component is ready in http://git.code.sf.net/p/linuxptp/code.

Testing pending of BeagleBone reception.

In the following tables, the details of the preliminary tests that have been conducted are

reported. In particular, for each test, the description, the steps and the preliminary results are

detailed.

Test #1

http://git.code.sf.net/p/linuxptp/code

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

79

Test Id ABBagvCon_PTPclient_timesync_1

Description

This test validates that the time is correctly synchronized in the AGV and the coordinator

Preconditions

The AGV is on, and the PTP client in AGVs and coordinator are not running. The batteries for the RTC
are disconnected. All elements are connected in a network with a PTP server.

Execution Steps

1. Connect the batteries for the RTC
2. Run the PTC client in the AGVs and the coordinator

Expected Results

The time are synchronized with the PTP server

Output

ptp4l, phc2sys should report the time offset between PHC and System Clock, which determines if the
clocks are synchronized

Example:

phc2sys[5374168.545]: CLOCK_REALTIME phc offset -372582 s0 freq +246 delay 6649

phc2sys[5374169.545]: CLOCK_REALTIME phc offset -372832 s1 freq -4 delay 6673

phc2sys[5374170.547]: CLOCK_REALTIME phc offset 68 s2 freq +64 delay 6640

phc2sys[5374171.547]: CLOCK_REALTIME phc offset -20 s2 freq -3 delay 6687

phc2sys[5374172.547]: CLOCK_REALTIME phc offset 47 s2 freq +58 delay 6619

phc2sys[5374173.548]: CLOCK_REALTIME phc offset -40 s2 freq -15 delay 6680

Execution

Pending of beagle bone reception.

Test #2

Test Id ABBagvCon_PTPclient_timesync_2

Description

This test validates that the time is correctly synchronized in the AGV and the coordinator, in the event
of a change in the system time. All elements are connected in a network with a PTP server.

Preconditions

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

80

The AGV is on, and the PTP client in AGVs and coordinator are running.

Execution Steps

1. Manually change the system time to force a difference respect the time in the server

Expected Results

The time must synchronize with the PTP server. Measure the time needed to achieve the
synchronization.

Output

ptp4l, phc2sys should report the time offset between PHC and System Clock, which determines if the
clocks are synchronized

Example:

phc2sys[5374168.545]: CLOCK_REALTIME phc offset -372582 s0 freq +246 delay 6649

phc2sys[5374169.545]: CLOCK_REALTIME phc offset -372832 s1 freq -4 delay 6673

phc2sys[5374170.547]: CLOCK_REALTIME phc offset 68 s2 freq +64 delay 6640

phc2sys[5374171.547]: CLOCK_REALTIME phc offset -20 s2 freq -3 delay 6687

phc2sys[5374172.547]: CLOCK_REALTIME phc offset 47 s2 freq +58 delay 6619

phc2sys[5374173.548]: CLOCK_REALTIME phc offset -40 s2 freq -15 delay 6680

Execution

Pending of beagle bone reception

Test #3

Test Id ABBagvCon_OBS_CANinf_1

Description

This test validates that the CAN frames are correctly processed

Preconditions

The AGVs are ON, coordinator is ON, they are in the same local network. CAN-UDP is running, Observer
is running.

Execution Steps

1. Set a speed 0 in AGV 1.
2. Check the output of OBS
3. Set a speed 0 in AGV 2.
4. Check the output of OBS
5. Set a speed 0.3 in AGV 1.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

81

6. Check the output of OBS
7. Set a speed 0.3 in AGV 2.
8. Check the output of OBS

Expected Results

The observer should correctly estimate the profile speed of the AGVs.

Output

OBS generates a file with the speed estimated from the AGVs.

Execution

CAN-UDP correctly sends the information, processing in observer is pending.

Test #4

Test Id ABBagvCon_OBS_LIDinf_1

Description

This test validates that the LiDAR information is correctly processed

Preconditions

The AGVs are ON, coordinator is ON, they are in the same local network. CAN-UDP is not running,
Observer is running. One LiDAR is connected to each AGV. AGVs are stopped. LiDARs are seeing a
rectangular environment of predefined dimensions.

Execution Steps

1. Delete the log of OBS
2. Check the output of OBS. The position estimated of the AGVs should be match with the real

one
3. Move AGV 1
4. Check the output of OBS. The position estimated of the AGVs should be match with the real

one
5. Move AGV 2
6. Check the output of OBS. The position estimated of the AGVs should be match with the real

one

Expected Results

The observer should correctly estimate the position of the AGVs

Output

OBS generates a file with the position estimated from the AGVs. This file will show the timestamp and
the position.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

82

Execution

Lidar driver has been tested. Testing of observer is pending.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

83

3 OPERATIONAL WORKFLOW FOR E2E SERVICE PROVISIONING

In this section, we present a preliminary version of the operational workflow for the provisioning

of end-to-end (E2E) services across the multiple considered technological domains. The

workflow will be refined as soon as the integration work advances and changes, if any, will be

reported in the next deliverables. Figure 3-1 below depicts a diagram of the sequence of involved

operations and actors. Namely, the E2E service provisioning entails the following operations:

1. Initially, a service provisioning request arrives to the northbound of the Connectivity

Manager (CM). This request may come from a client system or an end-user, and includes

the necessary details to set-up and configure the service. In particular, the request

contains: the set of endpoints between which the service should be set-up; the service

type; a traffic profile that characterizes the communication requirements, such as the

required bandwidth; and a collection of Service Level Agreements (SLAs) that state other

characteristics of the service, such as the expected degree of reliability and the bounded

Key Performance Indicators (KPIs).

2. Upon reception, the CM contacts the TSN Controller so as to fetch the most updated

data in regards to the infrastructure topology and capabilities. This information is

necessary in order to determine which are the viable network paths from a resource

availability and connectivity perspective.

3. The TSN controller replies with the information.

4. Similarly, the CM contacts the Metro controller to fetch information about the

underlying Metro network infrastructure.

5. The Metro controller replies with the information.

6. With the updated information, the CM computes the candidate network paths.

7. Once computed, the CM interacts with the Digital Twin (DT) so as to assess the KPIs of

the computed path, since they have to be both compliant with what the service request,

and the selection of the path should not affect negatively to already established E2E

services.

8. The DT employs as information to estimate the expected KPIs the requested service

information and the currently active flows over the candidate paths. Once determined,

the KPIs are returned to the CM.

9. With the assessed KPIs, the CM takes a final decision of which is the network path that

is going to be configured across the interconnected technological domains.

10. The CM contacts with TSN controller with a Connectivity configuration request

according to the decided network path, which may include nodes at the multiple

technological domains, such as WiFi Access Points (AP) or wired TSN-enabled Ethernet

switches.

11. The TSN controller sends the specific configuration details to the domain controller or

API of the WiFi nodes included in the computed path.

12. Similar to the previous step, the TSN controller sends the specific configuration details

to the domain controller or API of the Ethernet nodes included in the computed path.

13. In the same fashion, the CM contacts the Metro controller with a Connectivity

configuration request so as to modify if needed any underlying configuration at the

Metro network so as to satisfy the requirements of the computed path.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

84

14. As a last step, the Metro controller applies the received configurations to the physical

equipment. At this point, the E2E connectivity is fully provisioned and ready to use by

upper layer services.

Figure 3-1: E2E service provisioning workflow.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

85

4 PRELIMINARY INTEGRATIONS

In this section, we report some preliminary integration tests that have been already done and

involving some of the TIMING architecture components. In particular, here it is reported the

integration works and results of data plane devices interconnection, that is, the TSN Ethernet

switch and the Wi-Fi node.

4.1 PRELIMINARY DATA PLANE INTERCONNECTION TESTS

4.1.1 PTP Synchronization tests

Precision Time Protocol (PTP) synchronization plays a pivotal role in Time-Sensitive Networking

(TSN) technology as it ensures that devices within a TSN network are tightly synchronized,

allowing for accurate and predictable transmission of data. Therefore, the first tests that have

been carried out in the data plane interconnection have been in charge of testing the

interoperability of the different PTP daemons running in the TSN WiFi Access Point and in the

Ethernet TSN switch.

On this purpose, a WiFi TSN AP and an Ethernet TSN switch have been connected together via

Ethernet and the synchronization precision that they achieve has been measured for 180

seconds comparing the Pulse-Per-Second (PPS) signal that both devices produce with a Keysight

53230A frequency counter. Each device produces a PPS signal in the zero-crossing of their

internal timer-counter. These timer-counters are the ones that get synchronized with PTP. In

the tested setup the TSN switch acts as PTP master while the WiFi-TSN AP acts as PTP slave.

Besides, the synchronization information that the PTP daemon offers in the WiFi-TSN AP has

also been gathered. The PTP daemon calculates this information based on the different

timestamps that it receives both from itself and from the TSN switch.

The picture and block diagram below depict the tested scenario.

Figure 4-1: Block diagram of the PTP synchronization measurement setup

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

86

Figure 4-2: PTP synchronization measurement setup

The obtained results from the PPS measurement can be seen in the following figures:

Figure 4-3: PTP synchronization error vs time

Figure 4-4: PTP synchronization error histogram

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

87

As can be observed, both devices get synchronized within a +-180 ns jitter that evolves during

time. That is the expected result with a PTP synchronization. However, the mean

synchronization error is expected to be around 0 while in the performed tests a 2.7 us error can

be observed. This is something that needs to be further investigated.

The synchronization log that has been obtained from the PTP daemon in the WiFi-TSN AP is the

following:

Figure 4-5: Log information obtained from the PTP daemon in the WIFI-TSN AP

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

88

In the “master offset” column the synchronization error (in ns) that the PTP daemon has

measured every second can be observed. Similar to the error measured with the PPS signals it

is bounded to a +-180 nm margin. In this case, the mean is around 0 so the PTP daemon seems

not to be aware of the aforementioned 2.7 us error.

Additionally, we wanted to compare the performance impact by using a Z16 initially, and then

using a modified system with enhanced oscillators to reduce jitter: the Z16 Low Jitter (Z16-LJ).

In the histogram of Figure 4-6, we can see that the differences in PPS between TSN WiFi Access

Point and Low Jitter are localized in a smaller range and follow a normal distribution, while the

differences in PPS between the regular Z16 and TSN WiFi AP exhibit more dispersion and a more

erratic distribution.

Figure 4-6: PPS Differences histogram

In Figure 4-7, we compare the calculated values of mean, maximum and minimum differences,

range of values, and standard deviation between results using regular Z16 and Z16 Low Jitter.

We can observe that the values of PPS differences are higher using Z16 Low Jitter than using

regular Z16 (both the mean differences and maximum and minimum values). This aligns with

the information obtained from the histogram, where we can see that the values using Z16 Low

Jitter are shifted further to the right on the x-axis. However, by examining the range and

standard deviation, we can see that the dispersion of differences using Z16 Low Jitter is much

lower, just as in the histogram where the data is situated in a smaller range.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

89

Figure 4-7: PPS Differences

The obtained values can be seen in the table below.

Results

 TSN WiFi AP - Normal Z16 TSN WiFi AP - Z16 LJ

Mean 2.0834e-06 2.71904e-06

Min 1.6378e-06 2.60444e-06

Max 2.8027e-06 2.86341e-06

Range 1.1649-06 2.58965e-07

Std 3.0625e-07 4.75586e-08

We can use the Allan deviation plot in Figure 4-8 to further quantify the differences between

both devices – the regular Z16 and the enhanced Z16-LJ node – in terms of frequency distribution

stability in the short term. Initially, both sets of measurements show increasing deviation with

increasing τ, which is typical as longer time intervals can introduce more variation. However, the

Z16 LJ graph shows a decrease in deviation at a certain point, indicating a period where the PPS

differences are less variable or more stable. This implies that the PPS differences stabilize at a

certain point for Z16 LJ, whereas we can see that the same does not happen with Z16.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

90

Figure 4-8: Allan Deviation

The main takeaway from these tests is that we have shown that the PTP stacks available on

Safran’s TSN switches and the IKERLAN TSN WiFi AP prototype are essentially compatible and

capable of propagating a unified time reference between the respective network segments

handled by Safran and IKERLAN in the demonstrator scenario of TIMING. These PTP tests show

an early, preliminary integration that showcases how this time reference can be distributed

between the Safran and IKERLAN network domains with different levels of performance as a

function of the available hardware when the default profile of PTP over UDP with unicast

connections and end-to-end (E2E) transport is used. Other profiles could potentially work as well

and be considered for this integration. Nonetheless, this aspect will be further investigated in

future integration tests in the upcoming stages of the project.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

91

5 CONCLUSIONS

This deliverable reports the progress on the implementation of the different software

components/modules that compose the TIMING architecture. The validation of the different

modules in a stand-alone scenario is the prior step of the proper integration; some preliminary

integration tests also reported. The results reported show a significant and solid progress in the

implementation work that well position the project towards the final integration and validation.

Moreover, an operational workflow for E2E service provisioning has been also defined and

reported. From it, the different steps to materialize the provisioning of a service with specific

KPIs requirements over the E2E TIMING infrastructure have been identified as well as the

different interactions among the software components of the architecture. This is a significant

step achieved towards pushing the overall integration, prior to the architecture validation to be

performed in the framework of SP3.

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

92

6 REFERENCES

[1] TIMING Project, Deliverable SP1 D1.2 “Year 1 Report on Requirements, Architecture and
Performance Evaluation”, 2023.

[2] TIMING Project, Deliverable SP1 D1.3 “Preliminary version of software components”, 2023

D1.1 Y1 report on component development, integration, testing and
validation Ref. TSI-063000-2021-148

93

End of Document

