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Abstract

Mutation frequencies vary significantly along nucleotide sequences such that mutations often concentrate at certain positions
called hotspots. Mutation hotspots in DNA reflect intrinsic properties of the mutation process, such as sequence specificity, that
manifests itself at the level of interaction between mutagens, DNA, and the action of the repair and replication machineries.
The hotspots might also reflect structural and functional features of the respective DNA sequences. When mutations in a gene
are identified using a particular experimental system, resulting hotspots could reflect the properties of the gene product and the
mutant selection scheme. Analysis of the nucleotide sequence context of hotspots can provide information on the molecular
mechanisms of mutagenesis. However, the determinants of mutation frequency and specificity are complex, and there are many
analytical methods for their study. Here we review computational approaches for analyzing mutation spectra (distribution
of mutations along the target genes) that include many mutable (detectable) positions. The following methods are reviewed:
derivation of a consensus sequence, application of regression approaches to correlate nucleotide sequence features with muta-
tion frequency, mutation hotspot prediction, analysis of oligonucleotide composition of regions containing mutations, pairwise
comparison of mutation spectra, analysis of multiple spectra, and analysis of “context-free” characteristics. The advantages
and pitfalls of these methods are discussed and illustrated by examples from the literature. The most reliable analyses were
obtained when several methods were combined and information from theoretical analysis and experimental observations was
considered simultaneously. Simple, robust approaches should be used with small samples of mutations, whereas combinations
of simple and complex approaches may be required for large samples. We discuss several well-documented studies where
analysis of mutation spectra has substantially contributed to the current understanding of molecular mechanisms of mutage-
nesis. The nucleotide sequence context of mutational hotspots is a fingerprint of interactions between DNA and DNA repair,
replication, and modification enzymes, and the analysis of hotspot context provides evidence of such interactions.
Published by Elsevier B.V.
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1. Introduction

Mutations arise in nucleic acids as part of an im-
portant and essential biological process generating ge-
netic variation that is required for a species to evolve.
Thus, genomes are replicated at a level of fidelity that
leads to a defined rate of spontaneous mutagenesis
[1–3]. An increase in spontaneous mutation rate leads
to an increase in genetic variation and may be asso-
ciated with deleterious effects[4]. The mechanisms
of spontaneous and induced mutagenesis are complex,
and much research is devoted to understanding of
these mechanisms and the factors that alter mutation
rate. Deeper insight in mutagenic mechanisms can be
achieved as more mutation spectra are collected and
as sophisticated systems for studying mutagenesis are
developed[5–8]. This article describes computational
approaches for analyzing mutation spectra with a par-
ticular focus on nucleotide sequence context factors
that influence mutation frequency.

1.1. Mutation spectra and experimental
mutagenesis systems

A mutation spectrum is a set of data that includes
the frequency of mutations in a target nucleotide se-
quence under defined conditions. Mutation spectra are
often determined by applying phenotypic selection in
an experimental mutagenesis system. Phenotypic se-
lection restricts the mutation spectrum to detectable
nucleotides in which a mutation leads to phenotypic
changes. Alternatively, mutants are identified by ran-
dom sequencing of DNA clones or PCR-amplified
DNA molecules. A mutation spectrum is usually dis-
played with the target nucleotide sequence along a hor-
izontal linear axis and each mutational variant listed
vertically above the unmutated residue it replaces (e.g.
Fig. 1A).

Several types of mutagenesis systems are used to
generate mutation spectra. Phenotypic selection sys-
tems can be designed to select for reversion or forward
mutation. In some reversion systems, only one nu-
cleotide can mutate to produce the desired phenotype
and the target sequence is one nucleotide in length. In
these systems, the observed mutation frequencies ob-
tained in different conditions can be readily compared
(see[9–14]). In other reversion systems, there are mul-
tiple mutation mechanisms that revert the mutant to

a wild-type phenotype. In this case, and in the case
of forward mutation systems using very small target
genes (i.e.supF, SUP4-o), a limited mutation spec-
trum is generated (see, for example[15–18]). How-
ever, the results can be biased due to the small number
of detectable positions. In contrast, a forward mutation
spectrum in a reasonably large RNA or protein-coding
gene usually possesses many (more than 50) detectable
positions. Such a mutation spectrum may include sub-
stitutions, deletions, insertions, inversions, transposi-
tions and other changes including complex mutations.
An example of mutation spectrum in thelacZ gene is
shown inFig. 1A [19].

The base substitution mutation spectrum inFig. 1
includes three principal elements: (1) the target se-
quence (Fig. 1A; lower line of continuous DNA
sequence); (2) the mutations generated by DNA
polymerase� when replicating the target sequence
(Fig. 1A); and (3) a representation of all positions in
the target sequence which can be detected using phe-
notypic selection for white phage plaques (Fig. 1B)
[20]. Pol � generates mutations in all target positions
(Fig. 1A) due to its low level of fidelity; therefore,
mutant frequency is about 60%, which is the theo-
retical maximum for this system predicted by recon-
struction experiments[20], and multiple mutations
are observed in almost all mutants[19].

Fig. 1C shows Pol� mutations that are detectable
by phenotypic selection; this mutation spectrum
is very different than the unselected spectrum in
Fig. 1A, which includes all Pol� mutations, indi-
cating that phenotypic selection limits information
about mutation hotspots and the error specificity of
an enzyme. Twice as many hotspots are observed
in nucleotides 1–40 (lacZ promoter region) in the
unselected (Fig. 1A) than in the selected spectrum
(Fig. 1C). In the protein coding region, prominent
hotspot positions 50, 56, 71, 77, 80 and 98 are present
in the unselected but not in the selected spectrum.
Phenotypic selection reveals only transitions at the
first position of the initiator codon (Fig. 1C), however
the complete spectrum shows that transversions are
strongly favored at this site (Fig. 1A). Therefore, only
sites where all base changes are detectable by the
chosen selection protocol (e.g. positions 70, 73, 84)
provide complete information on the mutation signa-
ture of the polymerase when phenotypic selection is
applied.
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Fig. 1. Mutations in thelacZ gene. (A) Error spectrum of human DNA polymerase� without phenotypic selection[19]. (B) Detectable
positions in thelacZ gene[20]. (C) Error spectrum of the human DNA polymerase� for detectable positions. (D) Mutation frequency
distribution.
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Mutation spectra generated without the use of phe-
notypic selection are rare and usually restricted to a
few specific positions (i.e. restriction enzyme cleav-
age sites). Advances in mutational spectrometry allow
mutation spectra to be reconstructed without test sys-
tems[21–23]. This approach is not widely used and
produces mutant fractions instead of mutation fre-
quencies. Many of the statistical methods described
in this paper are not directly applicable to this type
of data. It is difficult to reconstruct a complete muta-
tion spectrum without a test system, and it requires a
very high frequency of mutation. One example is mu-
tagenesis of immunoglobulin genes during somatic
hypermutation. In this case, clones can be isolated
and sequenced randomly, and it can be assumed that
mutations are detectable at all positions[24,25] (note
that clonal expansion of certain B-cells may create a
bias). Mutation spectra can also be generated with-
out phenotypic selection when mutations are made
in vitro by inaccurate DNA polymerases such as Pol
� (Fig. 1A), Pol � and Dpo4[19,26,27]. Another
example is a phylogenetically reconstructed mutation
spectrum in human mitochondrial DNA; in this case,
all mutations were identified by direct sequencing
[28].

For many mutation spectra determined using phe-
notypic selection, the list of detectable positions is
not known. For some intensively studied genes (e.g.
hisD3052and lys2–�Bgl2 for reversion andlacI and
lacZα for forward mutation) detectable positions can
be inferred with a high degree of accuracy. However,
even more than 10,000 mutations inlacI have not sat-
urated this sequence with base substitution mutations,
since transversions are usually less frequent than
transitions[8]. The most intensively used mutational
target sequences arelacI, lacZα, p53, CAN1, SUP4-o
and supF for forward mutations[8,18,29–33]. Re-
version mutation spectra are often generated using
hisD3052allele in Salmonellaor lys2–�Bgl allele in
yeast[16,17].

1.2. Mutation types and mechanisms

Mutations in DNA/RNA molecules are classified
as point mutations, deletions/insertions, duplications,
inversions, and chromosomal rearrangements. Point
mutations are subclassified as base pair substitutions,
including transitions (purine (R) mutates to R or

pyrimidine (Y) mutates to Y) and transversions (R
mutates to Y or Y mutates to R), and+1 and −1
frameshifts (insertions and deletions of a single base
pair). Complex mutations include combinations of
several point mutations and are relatively rare. Point
mutations are often considered to be the direct re-
sult of mutagenesis, and other types of mutations are
considered to be the result of genetic recombination.
However, these assignments are not valid, because
gene conversion between homologous sequences can
create point mutations and, DNA polymerase slippage
can create large deletions between direct repeats (see
[34–36]).

Mutations are generally classified as induced or
spontaneous; induced mutations are caused by expo-
sure to exogenous mutagenic factors and spontaneous
mutations occur in the absence of such exposure.
Spontaneous mutations can arise due to errors in
DNA replication, recombination or repair, or can re-
flect a basal level of endogenous or environmental
DNA damage. The rate of mutagenesis during in vitro
DNA synthesis is dependent on the concentration of
deoxynucleotide substrates, the properties of the DNA
polymerase and the interaction between the enzyme
and the template/primer. In vivo mutagenesis is likely
to be a complex multi-step process involving DNA
target sequences and enzymes that play roles in DNA
precursor metabolism, DNA replication, recombina-
tion and repair[37,38].

This paper focuses on computational methods for
studying mutation spectra composed mainly of base
pair substitutions. It is possible to apply these meth-
ods to spectra composed of other types of mutations,
despite some technical differences.

1.3. Mutation hotspots

Mutation frequencies vary along a nucleotide
sequence. Nucleotide positions with an exception-
ally high mutation frequency are called mutation
“hotspots” [5]. Mutation hotspots often reflect a spe-
cific mechanism of generating mutations at a particular
site and/or unusual properties of a phenotypic selection
protocol. Thus, study of mutation hotspots can help
reveal mutagenic mechanisms, or can reveal informa-
tion about the functional domains of a target protein
[16,39–42]. Some mutation hotspots are thought to de-
pend on the nucleotide sequence and the mechanism of



I.B. Rogozin, Y.I. Pavlov / Mutation Research 544 (2003) 65–85 69

Table 1
Mutable motifs

Test system/mutagen/spectrum Mutable motif Comments Reference

Spontaneous G·C → A·T
mutations in human genome

CG May result from the spontaneous deamination
of 5-methylcytosine

[71]

Sn1-type alkylating agents, the
lacI gene

RG GG is more mutable compared to AG [67]

Spontaneous mutations in the
lacI gene

CCAGG 14 amber nonsense sites were studied [84]

Triplet repeats associated with
human disease

(CAG)n; (CGG)n; (GAA)n Amplification of repeats results in disease [162]

Somatic mutations in
immunoglobulin genes

RGYW; WA AGYW is more mutable compared to GGYW;
TA is more mutable compared to AA

[25,95,114]

Hotspots of errors produced by
human DNA polymerase�

WA In vitro gap-filling [19]

Hotspots of errors produced by
DNA polymerases in vitro

SM Errors produced by DNA polymerases�, � and
� were merged in one spectrum

[107]

UV-induced mutations in the
lambdacI gene

YY Similar with sites of UV-induced photoproducts [6]

Pyrimidine (6-4) pyrimidine
photoproducts

YTC In vitro DNA damages induced by UV [163]

8-OxoG induced hotspots in
vitro

GGA This motif was found to be mutable in some
human genes

[128]

AF2-induced mutations in the
lacI gene

TGC Characteristics of mutations are similar to those
that are due to apurinic sites

[164]

Hotspot of frameshifts inS.
typhimurium

(CG)4 Spontaneous mutagenesis [49]

Single-base deletions YTG In vitro DNA synthesis [165]
Spontaneous A·T → T·A

mutations in thelacI gene
GTGG MutD5 strain of E. coli [166]

Spontaneous substitutions in
the supF gene

GR Mutations after transfection of monkey cells [167]

Target signal of retroposable
elements in mammals

TTAAAA L1 reverse transcriptases show nicking in vitro
with preference for similar targets

[168]

Signal of recombination in
Bacillus subtilis mal
gene

CATCGCTTRRT Similar with gyrase binding sites [169]

Hotspots of frameshifts by
Sulfolobus solfataricusDNA
polymerase IV

GC In vitro DNA synthesis [27]

Hotspot positions are underlined, for some motifs the exact location of hotspot positions can not be defined.

mutagenesis per se; these hotspots are called intrinsic
mutation hotspots. In contrast, some hotspots may be
due to preferential expansions of mutants with high
fitness[41,42], e.g. some hotspots of somatic muta-
tions in functional immunoglobulin genes[43]. It has
been suggested that hotspots in humanp53 reflect
both intrinsic mutability and selection for tumoroge-
nesis[41,44]. This article discusses primarily meth-
ods that are useful for analysis of intrinsic mutation
hotspots.

1.4. Nucleotide sequence context of mutation
hotspots

Many studies have identified specific DNA se-
quence patterns associated with elevated mutation fre-
quency (Table 1). For example, repetitive sequences
such as homonucleotide runs, direct and inverted
repeats and microsatellite repeats are involved in
specific types of high frequency mutational events
(reviewed in[36]). For these mutation hotspots, the
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exact DNA sequence is not critical but only the fact
that a sequence motif is repeated. Alternatively, mu-
tation hotspots can depend on nucleotide sequence
context (mutable motifs, subsequences). Both of these
scenarios are discussed below.

In 1966, Streisinger et al. proposed that short
deletions and insertions within homonucleotide or
homopolymeric tracts arise by misalignment of DNA
strands during replication[45]. This misalignment can
lead to heterogeneity in the length of homopolymeric
tracts; similar arguments apply to the more com-
plex tandemly repeated structures of microsatellites
(reviewed in[6,36,46–48]). A well-studied example
of misalignment mutagenesis is the two base pair
deletion in the CGCGCGCG region ofSalmonella
typhimurium hisD3052(Table 1) [49]. One base pair
insertions and deletions are frequent in homonu-
cleotide runs, and the longer the run, the higher the
probability of mutation; this observation is consistent
with the suggestion that the mutation rate increases
as the frequency of misalignment increases in longer
homonucleotide runs (see extensive review[48]).
Dislocation mutagenesis is similar to misalignment
mutagenesis, but involves transient misalignment of
a homonucleotide run leading to a base substitution
hotspot. This mechanism was proposed based on stud-
ies of the in vitro mutation spectra of Pol� [50,51]
and HIV reverse transcriptase[52]. Dislocation mu-
tagenesis may also play an important role in vivo
generating base substitution hotspots in the control
region of human mitochondrial DNA[28].

There is strong evidence that short direct repeats
mediate deletions and duplications in DNA[53–55].
Two possible mechanisms for these events are: (1)
recombination between short homologous repeats
[56] or (2) DNA polymerase slippage between short
repeated sequences[57]. In addition, if heterodu-
plexes form between imperfect direct repeats, repair
of the mismatches could cause base substitutions and
frameshift mutations[58] in a concerted manner[59].
This mechanism applies tohisD3052reversion[16]
and has been suggested as a mechanism for some
classes of somatic mutations in immunoglobulin
genes[60,61] and spontaneous mutations in bacterial
and eukaryotic genes[62,63].

Long inverted repeats (40–150 bases) are also
particularly unstable in bacterial cells[64,65]. This
instability is likely due to formation of hairpin struc-

tures in single-stranded DNA and/or DNA polymerase
“jumps” (see Gordenin and Resnick[36]). Correction
of a quasipalindrome to a perfect inverted repeat may
occur by either inter- or intramolecular strand switch
[58]. Many mutations of this type have been observed
in bacteria, yeast and human cells[16,34,35,58,63].
Thus, this mechanism or a direct repeat-mediated
mechanism may explain some classes of somatic mu-
tations in immunoglobulin genes[60,61]. Although
there is a significant correlation between substitutions
and direct and inverted repeats in immunoglobulin
genes[66], it is not clear whether a similar process
contributes to base substitution hotspots in other
contexts.

Repeated DNA sequences can be found using stan-
dard computer programs for DNA analysis which
identify repeated elements. Specialized programs have
also been developed to identify short direct and in-
verted repeats (i.e.http://wwwmgs.bionet.nsc.ru/mgs/
programs/oligorep). Microsatellites can be identified
using the Tandem Repeat Finder system (http://c3.
biomath.mssm.edu/trf.html).

As mentioned above, some intrinsic mutation
hotspots are caused by mutable motifs (reviewed in
[6,41,42,67]). Sequence context effects can act over a
significant distance: in one example, the mutation rate
was altered by a change 80 bases away from actual
site of mutation[18], and in another example, a single
base pair change altered the mutation rate 12 bases
away (eight-fold effect on 2-aminopurine induced
mutagenesis[68]). The effect of sequence context
on mutation rate is a well-studied phenomenon. For
example, mutation spectra of Sn1 alkylating agents
in lacI show that most of the induced mutations are
G·C → A·T transitions[67]. Mutations at RGsites,
where G is the mutable base (underlined), are several
times more frequent than mutations at YGsites[67]
(Table 1). However, this pattern does not apply for all
alkylating agents[67,69,70].

CG dinucleotides are correlated with mutation
hotspots in human genes (Table 1). The mutational
mechanism for this effect is likely to involve deami-
nation of 5-methylcytosine, which is frequently found
at CG dinucleotides. Thus, C·G → T·A mutations
occur at CGmutable motifs (hotspot bases are under-
lined) due to deamination of 5-methylcytosine[71,72]
followed by replication of the resulting T·G mispair.
It has been proposed that C·G → T·A mutations at

http://wwwmgs.bionet.nsc.ru/mgs/programs/oligorep
http://wwwmgs.bionet.nsc.ru/mgs/programs/oligorep
http://c3.biomath.mssm.edu/trf.html
http://c3.biomath.mssm.edu/trf.html
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CG mutable motifs prevent genome instability due to
recombination of repeated sequences[73]. Dipyrim-
idines containing 5-methylcytosine are also preferen-
tial targets of sunlight-induced mutagenesis in cultured
mammalian cells; this observation might explain the
large proportion of CGmutations inp53 in skin tu-
mors in vivo [74]. Many other nucleotide sequence
context effects on mutation rate have been studied
and characterized (Table 1). A compilation of recom-
bination signals and mutable motifs is available at
ftp.bionet.nsc.ru/pub/biology/mutan/RECOMB.ZIP.

2. Methods for analyzing mutation spectra

Computational methods for analyzing mutation
spectra are reviewed below. The simpler methods
are described in detail; more complicated methods
are discussed briefly and sources for more detailed
information are cited.

2.1. Hotspot prediction

A mutation spectrum (e.g.Fig. 1A) can be trans-
formed into a distribution of observed mutation
frequencies (Fig. 1D). This distribution has been ap-
proximated by a Poisson distribution assuming the
uniform distribution of mutation frequencies along
a target sequence[5,75]. However, this assumption
is generally incorrect, since different nucleotide po-
sitions have different probabilities of mutation[76].
Thus, there are significant differences between ob-
served and expected distributions (in accordance with
the simple Poisson model). These differences may
be explained by the presence of mutation hotspots
and/or “coldspots”, which may be revealed by com-
paring observed and expected distributions. Two
steps are required to predict a distribution of mu-
tation frequencies in a nucleotide sequence: (1) es-
timation of the parameters of distribution, which
assumesno significant deviationfrom a standard dis-
tribution (Poisson or binomial); and (2) prediction
of hotspots, which are siteswith significant devi-
ation from the standard distribution. An obvious
methodological contradiction between steps 1 and
2 is the major problem of hotspot prediction using
approximation by one standard Poisson distribution
[41].

An alternative approach was suggested by Glazko
et al. [77]. These authors propose to define mutation
hotspots using a threshold (Sh) for the number of
mutations at a detectable site (Fig. 1D). The threshold
is established by analyzing the frequency distribution
derived from a mutation spectrum using CLUSTERM
program (http://www.itba.mi.cnr.it/webmutation)
[41,77]. CLUSTERM identifies several homogeneous
classes of sites from a mutation spectrum. Each class
of sites is approximated by a binomial (or Poisson)
distribution. The probability of mutation is the same
for all sites in a class, so variation in mutation fre-
quency for sites of the same class is random and
not statistically significant. In contrast, differences in
mutation frequency for sites from different classes
are statistically significant. Classes with a very high
mutation frequency include mutation hotspots. See
Rogozin et al.[41] for detailed discussion of this ap-
proach and problems associated with its application.

2.2. Comparing mutation spectra

A common problem in mutagenesis is to compare
mutation spectra generated under different conditions
or by different compounds. This is not a simple prob-
lem and it requires statistical methods. One approach
uses a contingency table. If there are “T” mutation
spectra and “n” detectable sites, then the data are de-
scribed by ann×T matrix (or contingency table). The
number of mutations in site “i” of spectrum “j”, is Yij.
The total number of mutations in spectrum “j” (Nj), is
assumed to be fixed and known. Piegorsch and Bailer
described statistical methods to compare two spectra
based on an exact or pseudo-probability test (a Monte
Carlo modification of the exact test)[76,78]. The prin-
ciple of the exact test is based on works of R.A. Fisher,
who suggested that testing for homogeneity in an
n×T matrix can be performed without the use of large
sample distributions such asχ2. An HG-PUBL pro-
gram for such comparisons is available from the FTP
site (ftp://sunsite.unc.edu/pub/academic/biology/dna-
mutations/hyperg) [79]. The Kendall’s tau correlation
coefficient can be used as a complementary approach
[80]. If two mutation spectra are not significantly
different, they may be assumed to be significantly
similar only if a significant correlation is found be-
tween these two spectra, as shown by analysis with
CORR12 (ftp://ftp.bionet.nsc.ru/pub/biology/dbms/

ftp://ftp.bionet.nsc.ru/pub/biology/mutan/RECOMB.ZIP
http://www.itba.mi.cnr.it/webmutation
ftp://sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg
ftp://ftp.bionet.nsc.ru/pub/biology/dbms/CORR12.ZIP
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CORR12.ZIP). Multiple and pairwise spectra com-
parisons are discussed by Piegorsch and Bailer[76],
Khromov-Borisov et al.[69], Rogozin et al.[41]
and Lewis and Parry[81]. New analytical strategies
for mutational spectra comparisons were suggested
recently, these approaches might be also useful for
hotspot prediction and analysis[82,83].

2.3. Nucleotide sequence context of mutation hotspots

As described above, nucleotide sequence context
influences mutation probability[5,25,42,67,71,72,84].
Several methods are available to analyze this phe-
nomenon. For example, a set of aligned sites can be
analyzed to derive a consensus sequence[75] (Table 2)
using one of several available approaches as described
by Day and McMorris[85,86]). Methods that rely
on arbitrary discrimination between informative and
non-informative positions may lead to controversial
and/or unreliable results. Simple consensus sequences
can be misleading especially when the data set is
small; however, they can be reconstructed using any
mutation spectrum and any subset of positions.

The binomial test can also be used to study consen-
sus sequences at or near mutation hotspots[28,87,88].
In this method, a numberNIJ of a nucleotide “I ” is
calculated in each position “J” in a set of “M ” aligned

Table 2
Putative DNA polymerase� mutation hotspots inlacZ [19]

Sequence Hotspot
position

Type of changes Number of
mutations

CAATT 3 A → G, T, C 15, 1, 1
TTATC 14 A → G, C, T 14, 1, 1
GTTAT 15 T → G, A 10, 5
AAA TT 20 A → G, T 11, 1
GAAAT 21 A → G, T 16, 2
ATAGC 38 A → G, T, C 9, 2, 1
CATAG 39 T → G, A, C 9, 9, 2
TCATG 46 A → G, T 13, 1
GTAAT 50 A → G, T 16, 4
GAATT 56 A → G 17
AAA CG 70 A → G, T 18, 3
GTAAA 73 A → G, T 14, 1
CGTTG 77 T → C, G 12
CGACG 80 A → G, T 11, 2

WA Consensus

Hotspot positions are underlined. The spectrum, part of which is
shown inFig. 1, was converted to the complementary strand.

mutation hotspot sequences (Table 2). The probability
P(NIJ , M, FI ) to find NIJ or more nucleotides “I ” in
a position “J” is calculated taking a frequencyFI of
a nucleotide “I ” in a target sequence as an expected
number of the nucleotide “I ” in the position “J”. A
nucleotide with the lowest probabilityP(NIJ , M, FI )
among all possible nucleotides in a position “J” is ac-
cepted as a consensus nucleotide for this position if
P(NIJ , M, FI ) for this nucleotide is below the signif-
icance levelα. It is important to note thatα = 0.05
can not be used for rejecting or accepting a statisti-
cal hypothesis due to multiplicity of binomial tests;
moreover these tests are strongly inter-dependent for
each position. In order to estimate the significance
level for P(NIJ , M, FI ), Malyarchuk et al.[28] devel-
oped a resampling procedure. In this procedure, “M ”
sites were randomly chosen from a target sequence.
Thus, each “random” sample was a mixture of hotspots
and non-hotspots. Statistical analysis described above
was repeated for each sample, and the minimal value
Pmr(NIJ , M, FI ) was calculated for all positions. This
procedure was repeated 10,000 times to calculate the
significance levelα that separates the right critical re-
gion of the distributionPmr(NIJ , M, FI ) at 5% level of
significance,α may be significantly less than 0.05 (for
example,α = 0.005 for the HVS1 spectrum)[28].

2.4. Regression analysis of nucleotide sequence
context effects

Multiple regression models can be used for simul-
taneous analysis of how several neighboring positions
influence mutation frequency. The purpose of multiple
regression analysis is to learn more about the relation-
ship between several independent (or predictor) vari-
ablesXi and a dependent (or criterion) variableY. In
general, multiple regression procedures estimate a lin-
ear equation of the formY = A+B1X1+B2X2+· · ·
BnXn where “A” is a constant and “Bi ”s are regres-
sion coefficients which represent the contributions of
each independent variable to the dependent variable. In
other words,Xi is correlated withY, after controlling
for all other independent variables. Stormo et al.[89]
used multiple linear regression analysis to see how nu-
cleotide sequence context affects 2-aminopurine mu-
tagenesis in thelacI gene. The data indicate that two
nucleotides immediately preceding the mutable base
strongly affect the frequency of mutation. However,

ftp://ftp.bionet.nsc.ru/pub/biology/dbms/CORR12.ZIP
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the method assumes a direct linear correlation between
the frequency of mutations in detectable positions and
factors attributable to nucleotide sequence context, and
that the factors are distributed normally; in general,
these assumptions are not valid for experimental mu-
tation spectra.

Rogozin and Kolchanov[25] employed a heuristic
classification approach and a Monte Carlo procedure
to build hotspot consensus sequences. This procedure
assesses the non-randomness of nucleotides adja-
cent to or near a mutation hotspot. Somatic mutation
hotspots in immunoglobulin genes were analyzed us-
ing this approach, which revealed the statistically sig-
nificant consensus sequences RGYW and TAA [25].

Regression trees have also been used to analyze
the effect of nucleotide sequence context on muta-
tion frequency[90]. Regression trees are mathemati-
cally tenable, do not restrain the number of variables
(as do heuristic methods) and are recommended for
study of simulated and real mutation spectra[90].
However, these approaches are based on complex as-
sumptions and need large datasets (http://www.stat.
umn.edu/users/FIRM/firm-info.html).

2.5. Oligonucleotide composition

Nucleotide sequence context of mutation hotspots
has also been analyzed by focusing on local mutable
motifs. For example, Smith et al.[91] analyzed the
relative frequency of somatic mutations in 16 dinu-
cleotide and 64 trinucleotide motifs. This approach
revealed that the mutation frequencies in different di-
or trinucleotides were significantly different[91–96].
However, this method neglects the influence of posi-
tions other than+1 and−1 on mutation frequency.
Milstein et al.[92] suggested joining the most highly
mutable triplets in longer consensus sequences, and
used this method to study somatic mutation in im-
munoglobulin genes. The consensus sequences they
deduced, G-A-G/a-C/t-T/A and T-A-T/C/G/a [92],
are generally consistent with the results of previ-
ous studies (i.e. RGYW and TAA [25]). A local
oligonucleotide composition is also the focus of stud-
ies on frameshift mutations in microsatellites. These
mutation hotspots are affected by length and base
composition of the microsatellite repeat (reviewed
in [36,46,48]). In general, this approach requires a
large number of detectable sites (hundreds of sites

for trinucleotide motifs) in a target sequence. Esti-
mated frequencies of mutations in oligonucleotides
can be used for prediction of mutability of sites in
any nucleotide sequence[91–96].

2.6. Statistical analysis of 5′ and 3′ neighboring
bases

A commonly used approach for analysis of neigh-
boring bases is to calculate the number of times a given
base is next to a mutated base, immediately in the 5′
or 3′ direction (positions−1 and+1). A significance
of deviation from the expected numbers can be esti-
mated by using various statistical tests[19,33,42,97].
The following procedure can be used for such analy-
sis. For each type of substitutions X→ Z, the total
number of mutations in sites AX, CX, GX and TX is
calculated [M(AX), M(CX), M(GX) and M(TX), re-
spectively]. The number of AX, CX, GX and TX target
dinucleotides are calculated asN(AX), N(CX), N(GX)
andN(TX). The expected number of mutationsE(AX)
in AX sites is estimated as

E(AX ) = N(AX ) × (M(AX ) + M(CX) + M(GX) + M(TX))

N(AX ) + N(CX) + N(GX) + N(TX)

and theP-value is determined using a standardχ2-test
with three degrees of freedom (P(χ2)). A Bonferroni
correction for multiple comparisons can be used to es-
timate the significance levelα (α = 0.05/Nt = 0.004,
where Nt= 12 is the total number of statistical tests
used)[19]. The same procedure is repeated for XA,
XC, XG and XT sites. In general, this method does not
require prior analysis of mutation hotspots and may be
extended to positions beyond+1 and−1. Krawczak
et al.[72] analyzed nearest-neighbor effects with cor-
rection for codon usage and for different probability of
detecting different amino acid substitutions in a clin-
ical study, which may be useful in studying human
disease susceptibility genes. Maximum likelihood es-
timates of nearest-neighbor effects were developed by
Zavolan and Kepler[42].

2.7. Correlation between nucleotide sequence
features and mutation spectra

Nucleotide sequence features can be correlated with
a mutation spectrum and the correlation can be tested
for statistical significance. This approach is discussed

http://www.stat.umn.edu/users/FIRM/firm-info.html
http://www.stat.umn.edu/users/FIRM/firm-info.html
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Fig. 2. Somatic hypermutation spectrum in an artificialGFP substrate[98]. The RGYW and complementary variant WRCY motifs (Table 1)
are shown under the nucleotide sequence. Mutable motifs in the complementary strand are in italics.

here with regard to analysis of multiple somatic mu-
tations in an artificialGFP substrate in non-immune
system type cells, murine fibroblasts[98] (Fig. 2). The
RGYW mutable motif is a signature of somatic hy-
permutation (Table 1), and may play a role in somatic
mutations observed inGFP (Fig. 2) (seeSection 3.2).
The number of mutations (MM) and the number of tar-
get sequence positions, NP, included in this motif (or
by the mutable position in this motif) are calculated
[98,99]. The Fisher exact test or a Monte Carlo modi-
fication of the exact test[76,78] for analyses of 2× 2
tables can be used to test the null hypothesis that mu-
tations are equally probable in mutable motifs and all
other positions of the target sequence. The input num-
bers are MM, MA− MM, NP, NA − NP, where MA
is the number of substitutions and NA is the number of
positions in the target sequence. (The Fisher exact test
is available athttp://www.matforsk.no/ola/fisher.htm,
MM, MA − MM in the first row and NP, NA− NP
in the second row; a Monte Carlo modification of the
exact test is discussed inSection 2.2). When the one
of the numbers is large (>300), theχ2-test with one
degree of freedom can be applied instead of the exact
test. In this case, the expected number of mutations
in mutable motifsE(MM) and all other positions
of the target sequenceE(MA − MM) are calcu-
lated,E(MM ) = MA(NP/NA) and E(MA − MM ) =
MA[ (NA − NP)/NA]. In the case of mutations in
GFP (Fig. 2), the correlation is statistically significant
(P(χ2) < 0.01).

In the above analysis, statistical significance can be
also estimated using a modified Monte Carlo proce-
dure[25]. This approach takes into account frequency
of substitutions in A, T, G and C bases, the presence

of several mutations in a site and the nucleotide se-
quence of the target sequence. Weight “Wj ” of site “j ”
is defined as the number of substitutions in a mutable
motif. A distribution of statistical weightsWrandom
was calculated for 10,000 computationally-generated
groups of random sites. Each group contained the
observed number of mutations distributed similarly
in all sites. The distribution inWrandom was used to
calculate probabilityP(W ≤ Wrandom). This proba-
bility is equal to the number of groups of random
mutations in whichWrandom is the same or higher
thanW. Small probability values (P(W ≤ Wrandom) ≤
0.05) indicate a significant correlation between muta-
ble motif and mutation frequency. Modified versions
of this approach were used to analyze a dislocation
model in human mitochondrial DNA[28], mutabil-
ity of direct and inverted repeats in immunoglobulin
genes[66] and gene conversion in immunoglobulin
genes[100]. A similar approach was used to analyze
illegitimate recombination events[101]. Theoreti-
cally, this method can be applied to any data where a
reliable correlation measure (the weightWj) between
mutation/recombination events and the nucleotide se-
quence context can be derived. This approach is differ-
ent from a Monte Carlo modification of the exact test
(Section 2.2). A hypothesis of no correlation between
context factors and mutations was tested instead of a
hypothesis of contingency table homogeneity.

2.8. Analysis of aligned sites

Theoretically, various computational approaches
can be used to analyze aligned sequences of mutation
hotspots. Many techniques have been developed for

http://www.matforsk.no/ola/fisher.htm
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analysis of functional signals including information
content, weight matrices, perceptron,k-tuple frequen-
cies, discriminant analysis, hidden Markov models,
linguistic approaches, and neural network models
(reviewed in[102–106]. These methods are well es-
tablished and have been tested on different types of
data, but all of these methods require large datasets.

2.9. “Context-free” characteristics of a mutation
spectrum

Several aspects of a mutation spectrum, including
frequency of substitutions, clustering of mutations and
hotspots, and periodicity of mutation can be consid-
ered as “context-free” characteristics of the spectrum.
This kind of information can be used to understand
molecular mechanisms of mutagenesis. Some statis-
tical approaches for analyzing context-free character-
istics are described in[24,107–111]. For example,
context-free analysis was combined with analysis of
mutable motifs in a recent analysis of somatic hyper-
mutation in immunoglobulin genes[110].

3. Examples of mutation spectra analysis

The information on parameters of mutation spectra
and, specifically, mutation hotspots provides insight on
mechanism of mutagenesis and could be invaluable for
evolutionary biologists (see[6,42,81,112–114]). For
example, it has been often assumed that a nine base
pair deletion between COII and tRNA(Lys) genes in
human mitochondrial genome have arisen just once in
human populations, thus this deletion has been used
for tracing migration patterns of various populations.
However, newer data suggested that the nine base pair
deletion originated multiple times in populations of
Africa, Europe, South India and China, multiple ori-
gins of the deletion is supported by coalescence and
phylogenetic analyses[115,116]. This intergenic re-
gion contains a nine base pair tandem repeat (Fig. 3)

Fig. 3. The intergenic region between the COII and tRNA(Lys)
genes in the human mitochondrial genome (positions 8269–8293;
AF382000). The polymorphic tandem direct repeat is underlined.

and therefore may be a hotspot for deletions (see
Section 1.4). We will further illustrate the importance
of a “hotspot context” approach for mutagenesis using
two additional examples.

3.1. Analysis of mutations in the mutT deficient
strain of Escherichia coli

Chemical agents, ionizing radiation and oxidative
stress cause DNA oxidation[117,118]. 8-Oxoguanine
(8-oxoG) is one of the most prominent base oxida-
tion products and has been implicated in mutagene-
sis, carcinogenesis and aging[119]. It has been shown
to cause G·C → T·A and A·T → C·G mutations in
vivo and in vitro, depending whether guanine is oxi-
dized in DNA or in the DNA precursor pools, respec-
tively [120,121]. To counter the mutagenic effects of
8-oxoG,E. coli has an effective repair system contain-
ing three genes,mutT, mutM and mutY [122]. mutM
andmutYare involved in repair of 8-oxoG in DNA and
mutTcodes for an enzyme that converts 8-oxoGTP in
the nucleotide pool to 8-oxoGMP, preventing the in-
corporation of 8-oxoG into DNA[123].

A spontaneous mutation spectrum in themutTde-
ficient E. coli strain is composed, almost exclusively,
of A·T → C·G transversions which is in general
consistent with mutagenic properties of 8-oxoGTP
[124,125]. Hotspot context analysis of these transver-
sions using regression trees (Section 2.5) revealed
AA mutable sequence[90]. Comparison of themutT−
spectrum and A·T → C·T transversions in a spectrum
of spontaneous mutations in thelacI gene (lacI−d

test system)[126] did not reveal significant differ-
ences between them (Table 3). Furthermore, a highly
significant positive correlation was found (Table 3).
This result suggested that a fraction of spontaneous
A·T → C·T mutations inE. coli may be caused by
8-oxoGTP in nucleotide pools. Reconstructed spon-
taneous mutations in human pseudogenes[88,127]
were also analyzed, and the frequencies of nucleotides
surrounding A·T → C·T transversions are shown in
Table 4. Notably, AA and TT are the most frequent
dinucleotide combinations. Such excess is statistically
significant (P(χ2) < 0.01) as compared to dinucleotide
frequencies in reconstructed ancestral sequences[88]
(Table 4).

A strong influence of neighboring bases was also re-
vealed for G·C→ T·A transversions, another hallmark
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Table 3
Comparison of A·T → C·G transversion inlacI gene frommutT− and wild-type strains ofE. coli

Position

41 81 72 64 87 168 79 189 192 195 167 83 117 96 128 177 77 141 105 54

A·T → C·G mutations inmutT− strain
4 10 5 2 4 9 7 23 18 10 37 5 1 5 4 7 20 5 2 8

A·T → C·G spontaneous mutations
2 3 2 2 1 2 2 8 1 6 10 0 1 0 0 3 4 0 1 3

Results of direct comparison between spectra (Section 2.2): probability that these two spectra are differentP(χ2) = 0.69 [79], Kendell’s
ran tau correlation coefficient= 0.65 (P < 0.01) [80]. Positions of AA mutable motifs are underlined.

of the 8-oxoG-dependent mutagenesis. A consensus
mutable sequence GGA was derived for this type of
error made in vitro by T4 DNA polymerase replicat-
ing 8-oxoG containing oligonucleotides[128]. It was
found that the mutable motif G(8-oxoG)A not only
was more prone to direct misincorporation of A oppo-
site the template 8-oxoG, but also allowed relatively
a higher efficiency of incorporation of C. One impli-
cation of this finding is that this nucleotide context of
the 8-oxoG lesion induced less distortion of the DNA
structure[128]. Quite remarkably, the same GGA con-
text for spontaneous G·C → T·A mutations in thelacI
gene inE. coli was very prominent, even though DNA
was replicated in vivo by a different replicative com-
plex. More, G·C → T·A mutations in the same context
were over-represented in the collection ofp53 muta-
tions in humans[128]. These results suggested that
mutagenesis due to 8-oxoG is significantly influenced
by nearest neighboring bases and the context is quite
evolutionarily stable.

Table 4
Frequencies of bases in position+1 and−1 in a set of spontaneous
A·T → C·G transversions found in human pseudogenes[88]

Mutation Position−1 Position+1

A T G C A T G C

A → C 0.35 0.24 0.17 0.24
T → G 0.25 0.32 0.21 0.22

Expected 0.25 0.22 0.22 0.31 0.26 0.23 0.29 0.22

Expected values (frequencies of AN and NT dinucleotides) were
calculated in ancestral sequences used for reconstruction of spon-
taneous mutations[88,127]. The differences between observed and
expected frequencies of AA and TT dinucleotides were statisti-
cally significant (P(χ2) < 0.01).

3.2. Analysis of somatic mutations in
immunoglobulin genes

The wide variety of immunoglobulins in verte-
brates results from the combinatorial joining of dif-
ferent variable (V), diversity (D) and joining (J) gene
segments to create the primary antigen-receptor reper-
toire, followed by somatic hypermutation of variable
(V) regions. These mutations are introduced at a rate
estimated to be about six orders of magnitude greater
than the normal rate of spontaneous mutations in the
genome[129,130]. Immunologists have been inves-
tigating possible mechanisms of somatic hypermuta-
tion for more than 20 years and a number of different
models have been proposed[131,132]. Most models
postulate involvement of mutator polymerases to ac-
count for high frequency of mutagenesis in V regions
[133]. One important feature of somatic hypermuta-
tion in V regions is the non-random distribution of
mutations. Somatic mutation hotspots in V regions
occur primarily within two DNA sequence motifs.
RGYW hotspots[25,114] are found in both strands
and WA hotspots preferentially are found in only one
strand[25,92,95,114,134,135](Table 5).

Analysis of mutation spectra of errors made by var-
ious DNA polymerases during in vitro DNA synthesis
provided clues on what polymerase could operate
during somatic hypermutation. A correlation between
the WA motif and the error specificity of human Pol
� and lack of A–T mutations in XP-V patients de-
ficient in Pol � suggested that this polymerase may
contribute to the WAhotspots[114,135,136]. The er-
ror specificity of Pol� does not correlate with SHM
at G–C base pairs in the RGYW sequence motif. This
suggests that SHM may involve more than one DNA
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Table 5
Somatic mutation hotspots in the VkOx1 transgene

Exact match with RGYW One mismatch with RGYW Exact match with TA Exact match with AA Other hotspots

CAGCT AtGCA GTACC GAAGG GCAGT
AAGTT GtGTA GTAGT GAAGT GCATG
GAGCT CtGCT GTAAG AAA AG
CAGCA GAGgT TTACA CAATC
TGGTA CAGTg TTATG GAAGA
TGGCT GtGCA TTACT
CAGCA CtGCA GTAAC
CAGCA GAGaT GTAAG
CAGCA TtGCT
GAGTA
TAGTA
GGGTT
GAGTA
GAGCA
CAGTT
TGGTA
TGGCA

Hotspots were predicted by CLUSTERM[77]. Data was taken from[92]. The mutable base is displayed as a purine, using the appropriate
DNA strand. Mismatches are indicated by lower-case letters, hotspot positions are underlined.

transaction and more than one DNA polymerase[114]
what is consistent with the two-phase model of SHM
proposed earlier[134,137]. Additional analysis of
this correlation using the same mouse immunoglobu-
lin target sequence for in vivo and in vitro spectrum
generation (described inSection 2.2) combined with
studies of mutable motifs and frequencies of substi-
tutions greatly improved the power of comparisons,
allowing use of different statistical methods[138]. It
was found that two Pol� error spectra determined
while it synthesizes the transcribed or non-transcribed
strands, correlate in a mosaic fashion with a spectrum
of somatic mutations in vivo. This suggested that this
polymerase contributes to somatic hypermutation in
mice during short patch DNA synthesis on alternat-
ing DNA strands. Interestingly, inXenopussomatic
hypermutation is strongly biased toward alterations
in G–C pairs (with a strong preference for RGYW
motifs) suggesting that WA-mutator not always has a
significant role in mutagenesis[139].

It was suggested recently that double-strand breaks
(DSBs) in V genes are associated with this mutable
motif and thus may initiate the somatic hypermuta-
tion [140,141]. However, a careful analysis of DSB
hotspots and their correlation with RGYW and WA
motifs suggested that two different mutator processes
might produce closely spaced mismatches that yield

DSBs, owing to overlapping excision tracts during
subsequent processing[142]. Thus, DSBs might be a
consequence rather than a cause of somatic hypermu-
tation in immunoglobulin V genes.

A candidate for a principal RGYW mutator is
activation-induced cytidine deaminase (AID), convert-
ing cytosine in DNA into uracil[111,132,143–145].
Indeed, overexpression of AID in murine fibroblasts
was mutagenic and mutations occurred in RGYW
motifs (for example see[98]). Current models of
somatic hypermutation in two mutable motifs were
discussed by Kunkel et al.[146].

4. Problems in analysis of mutation spectra

4.1. Defining hotspots

Defining hotspots in a mutation spectrum is a
non-trivial task. Hotspots are not simply the CLUS-
TERM class with the highest frequency of mutation
(i.e. a hotspot can not be assigned arbitrarily based
on relative mutation frequency). A mutation hotspot
should be assignable as a hotspot with≥0.95 proba-
bility [41]). The problem becomes more complicated
as the number of CLUSTERM classes increases.
Some empirical rules based on CLUSTERM out-
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put have been suggested to deal with these issues
[41].

Cold spots also present difficulties in analysis of
mutation spectra. A cold spot is a position where
mutations are not observed or are observed with low
frequency. Cold spots are difficult because it is very
difficult to estimate low mutation frequency, and it is
not technically possible to characterize a cold spot if
the mutation rate can not be accurately measured.

4.2. Small sample size

Small sample size is a major problem in analysis
of mutation spectra. Even if the number of mutations
is large, the number of mutation hotspots is likely to
be small. A few approaches can be robust with small
data sets (i.e. hotspot prediction, comparing muta-
tion spectra, correlation between nucleotide sequence
features and mutation spectra). Other methods may
not be reliable when applied to small datasets. In
some cases, a combination of two approaches can
be used. For example, a consensus sequence can be
constructed and correlation between the consensus
sequence and a mutation spectrum can be analyzed.
This procedure may be repeated several times until a
consensus sequence is derived that has a small value
of P(W ≤ Wrandom) or P(χ2). When two (or more)
mutation spectra with similar nucleotide sequence
features are analyzed, one spectrum can be used to
derive a consensus (Section 2.3) and the other can be
used for correlation analysis (Section 2.7).

4.3. Complexity of mutation spectra

Mutation spectra include different types of base
substitutions occurring with different frequencies at
different sites. If these substitutions are further di-
vided into subgroups, the uni-dimensional set “Y”
(“Yi ” is the number of mutations in site “i ”) becomes
two-dimensional or multidimensional requiring more
complex analytical methods (see[19,69]). The ap-
proaches described above do not take this level of com-
plexity into account. With very extensive spectra, it is
possible to analyze various types of mutations sepa-
rately, which is one way to deal with the complexity
of the data. For example, A·T → C·G mutations could
be analyzed without including other transition and
transversion substitutions in the analysis (Section 3.1).

4.4. Global factors

Many factors influence mutation frequency in a par-
ticular nucleotide sequence. However, in most cases,
analytical methods only attempt to characterize factors
related to local nucleotide sequence context. It is likely
that other higher-level features of gene or chromatin
structure also have significant influence on mutation
frequency of a mutable motif at a specific site. For ex-
ample, AGTA is more mutable in CDR regions than in
FR regions of immunoglobulin genes[147]. Another
factor could be the rate of DNA repair; DNA repair
rates vary for transcribed and non-transcribed strands
of the same gene and for more and less highly ex-
pressed genes[148,149]. Inherent asymmetry between
the two DNA strands at the replication fork could
also influence mutation frequency and specificity
(see[13,14,150–152]). Other potential factors include
asymmetric base composition[153] or higher order
chromatin structure (reviewed by Boulikas[154]).

Theoretically, it is possible to analyze the correla-
tion between all factors affecting mutation frequency
and an observed mutation spectrum. However, a large
number of correlations would be tested in such an
analysis, and it is expected that correlations with
P < 0.05 would occur by chance at a rate of 5 per
100 analyses. Moreover, interdependent factors could
bias the results of such exhaustive searches (i.e. base
composition and frequency of homonucleotide runs).
The only way to address this problem is to system-
atically collect and analyze mutation spectra for the
same mutational target under different experimental
conditions. This approach has been undertaken for
lacI andsupF(see[8,18,81,155]).

4.5. Consensus sequence discrepancies

A consensus sequence for a mutation hotspot is
rarely definitive and can therefore have several vari-
ants. For example, mutation hotspots associated with
somatic hypermutation in immunoglobulin genes
have been reported as RGYW and TAA [25] or
G-A-G/a-C/t-T/A and T-A-T/C/G/a[92]. Other vari-
ants have also been reported[91,95,134,156]. Rogozin
et al. proposed a method to evaluate the relative merit
of different consensus sequences[114]. All possible
pentanucleotides NNNNN were analyzed as poten-
tial consensus sequences. Some consensus sequences
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included the ambiguous positions R, Y, W, S, K and
M. A Monte Carlo procedure was used to test for cor-
relation between mutations in 15 spectra and the dis-
tribution of each motif in the target. Small probability
values (P(W ≤ Wrandom) ≤ 0.05) indicate a signif-
icant correlation between mutation frequency and a
mutable motif. The number of spectra whereP(W ≤
Wrandom) was≤0.05 divided by the number of spectra
that include a motif defined the score for the motif. The
sequences RGYW, AGYW, WA and TA had highest
scores. All these motifs were used for further analysis
of errors made by DNA polymerases in vitro[114].

4.6. Parameterization of theoretical methods

Methods for analyzing mutation spectra vary greatly
in their complexity. However, a higher degree of com-
plexity does not guarantee better results. Indeed, the
result depends on the quality of the data and the abil-
ity to correctly define the relevant sequence context
features and the theoretical models. When the num-
ber of parameters in a method increase (for example,
in regression models), the method may behave un-
predictably with small data sets or if several context
factors simultaneously influence mutation frequency.
Thus, complex models can be used only for large data
sets. It is better to analyze different types of muta-
tions separately (e.g. mutations associated with repeti-
tive sequences or a mutable motif)[28], which reduces
model complexity.

4.7. Identification of detectable positions

It is very important to identify the detectable
positions in a target sequence before analyzing its
mutation spectrum. For example, mutations in the
humanp53 gene are not 100% accurate[157], and
the database may include false detectable positions
(due to sequencing errors and DNA polymorphism).
In general, the molecular basis for the relationship
between the mutations inp53 and human cancer is
not always clear (reviewed in[158] and[159]) and the
meaning of “a detectable position” cannot be clearly
defined for this gene. It is difficult to interpret the
significance of results obtained for mutations inp53
(for example, results of spectra comparisons[41]).
Population polymorphism becomes an important is-
sue when the mutated sequences from one individual

are compared with non-mutated sequences from an-
other individual (such an approach is used sometimes
for studies of somatic mutations in immunoglobulin
genes). In such cases, each polymorphic position will
be counted as a mutation, which may bias mutation
spectra. It is possible to misassign a functional mu-
tation at a specific site even if a dataset is carefully
collected. This can occur in cases of multiple muta-
tions when an unidentified distal mutation alters gene
function, and the mutation in the assigned site does
not have a functional effect. Thus, only well charac-
terized detectable sites, in which several independent
mutations have been observed, should be used when
a mutation spectrum is analyzed.

4.8. Mutation hotspots and phylogenetic analysis

On one hand, phylogenetic analysis may be used
for reconstruction of mutation spectra[28,88,127],
however these spectra could contain errors due to un-
foreseen problems with alignments and phylogenetic
reconstructions[28]. On the other hand, hotspot con-
text analysis may be important for phylogenetic re-
construction, which is based on models of mutational
process[160]. In general, spontaneous mutations are
influenced by selection and specificity of mutagene-
sis. An important role of selection is obvious (e.g. the
rate of synonymous substitutions is much higher than
nonsynonymous substitutions for most protein-coding
genes). However, it was suggested that mutational
bias in the introduction of novelty strongly influences
the course of evolution[161]. Thus, information about
context specificity of mutations might improve phy-
logenetic studies, however this would dramatically
increase complexity of substitutions models[160] and
currently is not used. Instead hotspot sites (for exam-
ple, CGmutable motifs) may be simply removed from
phylogenetic analysis. Alternatively, substitutions
models, which accounts for substitution rate variation
among sites (e.g. gamma distances[160]) can be used.

5. Conclusion

This article reviews computational methods for ana-
lyzing context specificity of mutation spectra and dis-
cusses common problems in such analyses. The goal of
these methods is ultimately to increase understanding
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of molecular mechanisms of mutagenesis. To this
end, the most reliable results can be obtained if sev-
eral methods are combined or used sequentially and
if many different sources of information are consid-
ered. Simple, robust approaches should be used with
small samples of mutations (seeSection 4.2), whereas
combinations of simple and complex approaches can
be used for large samples. Complex approaches are
needed because mutation spectra reflect the influence
of multiple diverse local and global factors. It is a
challenging task to analyze mutation spectra, and in
some cases, the effort will be primarily descriptive in
nature. However, in several well-documented studies,
the analysis of mutation spectra has contributed sub-
stantially to understanding molecular mechanisms of
mutagenesis. As analytical methods continue to be de-
veloped and/or improved, more studies will contribute
insights into the complex process of mutagenesis.
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