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Abstract

Micrites capable of assembling into arbitrary shapes in three dimensions, with the constraint of a single species, might be
most effectively fabricated in the shape of Platonic solids (regular polyhedra), to take advantage of maximum symmetry and
to ensure that each polygon face of one micrite will perfectly coincide with the face of another micrite, thereby maximizing
adhesion and minimizing stray fields. Only two of the regular polyhedra can be assembled to fill all space: the cube and
the dodecahedron. Therefore, only the cube and dodecahedron are capable of constructing arbitrary shapes including the
highest possible strength realized by a voidless solid. The dihedral angle between the adjoining faces of two cubes, joined
by coinciding squares on a face of each cube, is 180◦. Hence, it is difficult for an electric field, generated by charges on the
perpendicular faces, to rotate the two cubes in such a way as to join at another pair of faces. The dodecahedron, however,
has a corresponding dihedral angle of about 127◦ and a pair of dodecahedra can be easily caused to roll from one contact
face to another. Therefore, the dodecahedron is the only space-filling Platonic solid that is also capable of easily-generated
face-field-driven motion.

I demonstrate that the micrites must be maintained in a fluid environment in order to provide sufficient lubrication for
their polygonal binding surfaces to azimuthally rotate into coincidence. I calculate the speed of convergence in a lubricant
environment and show that the distant micrites assemble only very slowly (for a practical range of parameters) unless there is
some agitation of the fluid. I show how various solids can be constructed by convergence. I demonstrate how a primitive motor
can be built from two dodecahedron-shaped micrites, and I calculate the maximum speed of the motor and the maximum power
the motor can generate. I explain a surprisingly simple algorithm for a curious self-propelling flagellum constructed from
a chain of dodecahedron-shaped micrites. I calculate the flagellum’s maximum swimming speed and power consumption.
Published by Elsevier Science B.V.
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1. Introduction

In 1991, this researcher investigated the possibility
of constructing microrobots using photon lithographic
techniques, particularly, such microrobots that could
be fabricated close to the limit of X-ray lithographic
technology. These previously considered microrobots
had a multitude of moving parts, and special atten-

E-mail address:jxcs@lanl.gov (J.C. Solem).

tion was paid to their locomotion [1,2]. This paper
is concerned with mechanical self-organization of
microrobots with no moving parts at all. Micrites1

considered in this paper must interact with each other

1 ARPA has used the termmicrite to designate a microrobot
with these properties. The termmicrite already has a petrologic
definition as a semiopaque micro-crystalline limestone matrix that
consists of chemically precipitated calcite mud. While this may
cause some confusion, I will use the term coined by ARPA.

0921-8890/01/$ – see front matter. Published by Elsevier Science B.V.
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through electric fields produced by charges on their
faces. Because it is most convenient and most durable
for the micrites to bind at faces that are all the same
size and all the same shape (regular polygons), mi-
crites of most general applicability must be regular
solids, otherwise known as Platonic solids. The five
Platonic solids in ordinary space are: (1) the tetrahe-
dron, (2) the cube, (3) the octahedron, (4) the dodeca-
hedron, and (5) the icosahedron. It is convenient to
characterize these solids by the Schläfli [3] symbol,
{p, q}, wherep is the number of edges on each face
andq is the number of faces joined by each vertex,
whereby we have: tetrahedron{3,3}, cube{4,3}, octa-
hedron{3,4}, dodecahedron{5,3}, and icosahedron
{3,5} [4]. The surface area of any Platonic solid is

S = pql2

4 − (p − 2)(q − 2)
cot

(
π

p

)
, (1)

wherel is the length of an edge. Similarly, the volume
is given by
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The dihedral angle between the planes of any two
adjoining faces of the same Platonic solid is

φ = 2 arcsin

[
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)
csc
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. (3)

When two regular polyhedra are joined by coinciding
polygons, the dihedral angle between the faces of the
two at the joining plane is

ϕ = 2π − 4 arcsin

[
cos

(
π

q

)
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. (4)

The radii of the circum-sphere (0R), which passes
through all the vertices, the mid-sphere (1R), which
touches all the edges, and the in-sphere (2R), which
touches all the faces, are related by

0R
2 = 4l2 + 1R

2 = 4l2csc2
(
π

p

)
+ 2R

2 (5)

and

1R
2 = 4l2 cot2

(
π

p

)
+ 2R

2, (6)

wherep is again the first Schläfli symbol{p, q}.

2. Alignment of the contact surface

Contact between faces can be promoted by either
an electric or a magnetic field. From practical con-
siderations on the micron level, this discussion will
be specialized to electric fields. Then the surfaces
will consist of an electrical conductor coated with a
thin layer of insulator to suppress currents when the
micrites come into contact. The surfaces by which
the Platonic micrites adhere to each other are three
regular polygons: triangle, square, and pentagon.

Will the micrites adhere in such a manner that the
faces coincide? If so the pattern will always be regular
and the maximum binding energy (or tensile strength)
will be achieved.

2.1. Transverse alignment

For each of the polygons, the coefficient of friction
that will allow the surfaces to align with each other
is dependent on the azimuthal alignment in a straight-
forward, but complicated way. The essential physics
is preserved and greatly simplified if we approximate
the polygon surfaces with a circle of the same area.
The areal overlap between two circles of radiusR,
whose centers are displaced by a distanceb is given
by

A = 2


R2 arccos

(
b

2R

)
− 1

2
b

√
R2 − b2

4


 , (7)

where 0� b � 2R. The electrical energy in a parallel
plate capacitor is

W = 1

2
ε
A

d
V 2, (8)

whereA is the overlap area,d is the distance between
the two parallel plates,ε is the permittivity of the
dielectric between the plates, andV is the voltage
applied to the plates. So the force sliding the circular
plates into alignment is

F‖ = dW

db
= −εRV2

2d

√
4 − b2

R2
, (9)

where the‖ indicates the force is parallel to the plates
and the minus sign indicates a restoring force applied
to bring the disks back tob = 0. The force pulling
the two plates together in the direction normal to their
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surfaces is

F⊥ = εAV2

2d2

= εV 2

d2
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 .

(10)

Neglecting the detailed dynamics, the circles will not
be able to slide into alignment unless

F‖ > µF⊥, (11)

whereµ is the coefficient of sliding friction. Combi-
ning Eqs. (9)–(11), the disks move into alignment if

µ < − Rd
√

4 − b2/R2

2R2 arccos(b/2R) + b
√
R2 − b2/4

. (12)

If the disks are nearly aligned, i.e.b 
 R, then

µ � 2d

πR
, (13)

so for a 100�m radius surface, with a 1/2�m dielec-
tric coating, the surface must have a sliding friction
coefficientµ < 0.003. Such a coefficient cannot be
achieved without lubrication.

2.2. Rotational alignment

We now consider the case where the polygons
attach coaxially, but with random azimuthal angles.
The maximal energy attachment will occur if the
overlapping surface area is

Amax = nr2 tan
π

n
, (14)

wheren is the number of sides andr the radius of the
inscribed circle of the polygon. When one of the poly-
gons is rotatedπ/n, the minimal energy attachment
will occur and the overlapping surface area is

Amin = 2nr2 tan
π

2n
. (15)

So the energy changes from minimum to maximum
when one of the polygons is rotated�θ = π/n. Com-
bining Eqs. (14), (15) and (8), the difference between
the maximum and minimum energy is

�W = εnr2V 2

2d
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n
− 2 tan

π
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)
. (16)

We know that dW/dθ = 0 at bothθ = 0 andθ = π/n,
but the functionsW(θ) and dW/dθ are complicated. It
is much easier to write the average electrostatic torque

τ̄ = �W

�θ
= εn2r2V 2

2πd

(
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π
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− 2 tan

π

2n

)
. (17)

From Eq. (9), the force between the plates is

F⊥ � πr2εV 2

2d2
, (18)

and the frictional torque resisting rotation is

τ̄ � µ
πr3εV 2

4d2
, (19)

where µ is the coefficient of friction. Equating
Eqs. (17) and (19), we have the approximate align-
ment criterion

µ <
2n2d

π2r

(
tan

π

n
− 2 tan

π

2n

)
, (20)

or in numerical form,

µ <
d

r




1.053, triangle (n = 3);
0.556, square(n = 4);
0.389, pentagon(n = 5).

(21)

As for the transverse alignment, azimuthal alignment
for reasonable values ofd and r cannot be ensured
without lubrication.

Thus, the micrites must be immersed in a fluid
lubricant of some sort. It would also be desirable to
give the micrites neutral buoyancy within the fluid,
so gravity can be neglected and the electrostatic and
viscous forces alone are in play.

3. Lubrication

Reynolds number is used to describe the relative
importance ofinertial forces andviscousforces. It is
always given for a specific geometric shape; and it
scales with linear dimensionξ such that

Re ∼ ρvξ

η
, (22)

whereρ is the fluid density,v is the velocity through
the fluid, andη is the fluid viscosity. For exceedingly
small objects, inertial forces are swamped by viscous
forces.
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The viscosity of SAE 30 motor oil is about
4.0 dyn s cm−2 at 40◦C, its density about 0.9 g cm−3,
its dielectric constant is about six times that of vac-
uum, and its resistivity is about 2× 1016! cm−3.
A micrite about 1 mm in linear dimension, moving
about 0.1 mm s−1 would have a Reynolds number of
about 2× 10−5. Its motion would be strongly domi-
nated by viscous forces, and inertial and gravitational
forces can be neglected.

For a Newtonian fluid between two planar plates
parallel to thex–y plane of a Cartesian coordinate
system, the shear stressσ and pressurep are related
by

∂p

∂x
= ∂σ

∂z
, (23)

and the viscosityη is defined such that

σ = η
∂u

∂z
, (24)

whereu is the fluid velocity. Substituting Eq. (24) into
Eq. (23), we obtain

dp

dx
= η

∂2u

∂z2
, (25)

assuming the plates are large compared to their sepa-
ration andη is everywhere constant [5]. Integrating
Eq. (25) twice and applying the boundary condition
u = 0 at both surfaces, we obtain

u = 1

2η

dp

dx
z(z − d), (26)

whered is again the distance between the plates.

3.1. Approximate equations of motion
for converging micrites

In understanding the kinetics of micrites being
drawn together by electric fields, it is necessary to
understand the motions involved in: (1)terminal
convergence, when the faces are nearly touching;
(2) translation, when the faces are nearly touching
but not yet aligned; and (3)distant convergence,
when the micrites are being drawn together by their
dipole–dipole interaction, each moving in the field
gradient of the other.

3.1.1. Terminal convergence
As before we will approximate the faces of the

Platonic solids with circular disks, to take advantage
of the simplification offered by cylindrical symmetry.
From Eq. (26), the total fluid flow rate between two
parallel coaxial disks is

Q = 2πr
∫ d

0
udz = −2πr

h3

12η

dp

dr
. (27)

Takingp = 0 at the outer radiusR, the viscous force
holding the disks apart is

F⊥ = 2π
∫ R

0
pRdR = −π

∫ R

0
R2 dp

dR
dR

= 6ηQ

d3

∫ R

0
R dR = 3ηQR2

d3
, (28)

wherer is the distance from the center of the disks.
The volume between the disks is 2πR2d, so

Q = 2πR2ḋ. (29)

The electrostatic force pulling the parallel coaxial
disks together is

F⊥ = εAV2

2d2
= επR2V 2

2d2
. (30)

Combining Eqs. (28)–(30) and integrating, the
distance between the plates will shrink according to

d = d0 exp

(
− εV 2

12ηR2
t

)
. (31)

In this approximation, the plates will never make
contact, and, if the micrites make contact, the insu-
lator on the micrite surface will stop the closure. The
approximation is good only if the insulator is thin.
The time for two micrites to converge to a distanced

is obtained from Eq. (31) to be

t = 12ηR2

εV 2
ln

d0

d
, (32)

nominal size of the micrites is 1 mm. From Eqs. (5)
and (6), the radius of the dodecahedral in-sphere is

2R = (1 + √
5)5/2

8(20)1/4
= 1.11l. (33)

So, if the micrite is a dodecahedron with diametric
face distance of 22R = 1 mm, the length of its edge
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would be 2l = 0.449 mm, and, from Eq. (1), the
surface area of one pentagonal face is

A= 5

4
l2 cot

(π
5

)
� 1.72l2 � 0.347 mm2

= 3.47× 10−7 m2. (34)

For clarity, the diametric face distance is the perpen-
dicular distance between the two parallel pentagons
on opposite sides of the dodecahedron. In Figs. 3(a)
and 3(b), the parallel pentagons would be numbered:
1 and 2; 3 and 4; 5 and 6;. . . ; 11 and 12. A circle
with area 3.47 mm2 has radiusR = 3.32 × 10−4 m.
The permittivity of pure water isε = 7.18× 10−10 in
practical (mks) units at 20◦C, and its viscosity is about
η = 0.0101 dyn s cm−2 = 1.01× 10−3 J s m−3. If we
take the micrites to be initially 1 mm apart each with
a face potential of 10 V (a potential of 20 V between
the two converging faces) and say they are for most
intents and purposes in contact when they are 1�m
apart, Eq. (32) gives a time to contact is about 32.1 ms.
For comparison, the permittivity of motor oil is about
six times vacuum orε = 5.31× 10−11 (mks) and its
viscosity is aboutη = 4 × 10−1 J s m−3. With a face
potential of 100 V the time to contact is about 1.72 s.

3.1.2. Translation
The frictional force between two lubricated surfaces

is

F‖ � ηv‖A
d

, (35)

whereA is again the contact surface area andv‖ is
the velocity with which they are being drawn across
each other. Remarkably, when this is equated to the
electrostatic force pulling the plates into alignment
(Eq. (9)), the distance between the plates drops out,
and the velocity of alignment is

v‖ = −εRV2
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√
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,

(36)

which is singular atb = 2R, but presents no problem
for subsequent integrations. Assuming they start at a
center-to-center spacing ofb, the time required for

them to align will be

t =
∫ 0

b

db

v‖

= − b2η

V 2ε
− 8ηR

εV 2

∫ 0

b
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√
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× arccos

(
b
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)
db. (37)

The integral on the far right of Eq. (37) is not easily
evaluated, but we can use the approximation

R2

√
R2 − b2

arccos

(
b

2R

)
� 0.773− 0.142

b

R
, (38)

which is within a few percent of the function value on
the interval 0� b � 2R. So from Eqs. (37) and (38),
we obtain the approximation

t � 1.57η

εV 2
(3.94bR− b2). (39)

The time for osculating disks to become concentric
(b = 2R) is then

t � 6.10ηR2

εV 2
. (40)

Using the values for SAE 30 weight oil, a micrite face
100�m in radius (R = 100�m), and a face potential
of 100 V, we find the time to attain concentricity is
about 115�s, quite fast on the human time scale.

3.1.3. Distant convergence
At distances large compared to the micrite diam-

eter, the micrite appears as an electric multipole. If
only diametric plates are charged, the micrite appears
as a dipolep = qD, whereD is the face-to-face
distance and±q is the charge on each plate andq
is in statcoulombs (esu or dyn1/2 cm), where 1 C=
2.996× 109 statcoulombs. Two similar micrites inter-
act by torquing each other and by attraction in their
mutual electric fields assuming they quickly re-orient
to minimize potential. The torque on a micrite in and
electric field is

�L = �p × �E. (41)

At a distance|�r − �r0| � D, the electric field from
either of the micrites is

�E(�r) = 3�n( �p · �n) − �p
ε|�r − �r0|3 , (42)
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where �r0 is the location of the dipole and�n is the
unit vector directed form�r0 to �r. The initial torque
on micrite A is

�LA = �pA × 3�n( �pB · �n) − �pB

ε|�rA − �rB|3 , (43)

where �pA and �pB are the dipole moments of micrites
A and B, respectively. If, e.g. micrite B has its dipole
parallel to the line connecting the micrites and micrite
A has its dipole perpendicular to the line connecting
the micrites, Eq. (43) becomes

LA = 4p2

εr3
, (44)

where r = |�rA − �rB| and p = | �pA | = | �pB|. The
torque is also small.

The interaction energy between two micrites with
dipole moments is

WAB = �pA · �pB − 3(�n · �pA)(�n · �pB)

ε|�rA − �rB|3 . (45)

If the micrites have their dipoles aligned along the line
connecting them, Eq. (45) becomes

WAB = 4p2

εr3
. (46)

The force felt by each dipole attracting it toward the
other is

FAB = −12p2

εr4
. (47)

The drag force on a sphere of radiusR is 6πηRv,
wherev is its velocity in the viscous fluid. Equating
this drag force to the attractive force given in Eq. (47)
and integrating we find the time it will take the micrites
to converge to where they are in each others near field
is given by

t � πηεR

10p2
r5, (48)

assuming that the viscous forces are large compared
to the inertial forces. At this point it is easy to observe
that the micrites will not influence each other much in
the far field. The time for them to converge goes as
thefifth power of the distance between them!

To put this into numerical context, consider again
that our micrite can be regarded as a parallel-plate
capacitor

C = q

V
= εmA

4πd
, (49)

where εm is the dielectric constant of the micrite
material. Combining Eq. (49) with Eq. (48) and using
p = qd, we obtain

t � 8π3εηR

5A2ε2
mV

2
r5. (50)

Again consider our dodecahedron micrite with dia-
metric face distance of 1 mm, corresponding to an edge
length of l = 0.449× 10−3 m. The area of one pen-
tagonal face isA = 3.47 mm2 = 3.47×10−6 m2. The
volume of a dodecahedron is obtained from Eq. (2) as

Vol = 5

4
cot2

(π
5

)
csc

( π

10

)
l3 � 7.66l3

� 4.27× 10−10 m3. (51)

The dodecahedron is approximately a sphere so
Stokes’ law will be a good approximation. A sphere
of the same volume as the dodecahedronVol � 4.27×
10−10 m3 will have a radius ofR = 4.67× 10−4 m.
Take a pair of these micrites immersed in water
(ε = 7.18× 10−10 (mks),η = 1.01× 10−3 J s m−3)
across which the potential is 10 V. Also takeεm = ε.
The time to converge to the near field from a sepa-
ration r = 1 cm is 2.71 × 103 s or about 45 min. If
the initial separation were 10 cm, convergence would
require 2.71× 108 s or about 8.5 years!

Clearly, for the micrites to self-assemble, there
must be some agitation of the fluid in which they
are immersed. This agitation has already been found
necessary when millimeter-scale objects were self-
assembled into two-dimensional shapes using wetabi-
lity of the interfaces to provide binding [6].

4. Space-filling

For most general utility, the micrites must be capa-
ble of filling all space. The reason is strength: a solid
member of some construction will have greatest ten-
sile strength if the constituent micrites can bind to
each other without voids. If a member has voids, its
tensile strength will be diminished from the maximum
electric-interface strength by a factor of

At − Av

At
(52)

where At is the total cross-sectional area of the
member at the binding surfaces andAv is the void
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cross-sectional area of voids at the binding surfaces.
For example, a member built from solid-packed cubes
would have twice the tensile strength of one with
only every other cube filled in. In general, the tensile
strength will be anisotropic.

4.1. The space-filling Platonic solids

The cube is the basic unit of Cartesian coordinates
in three dimensions. There is only one noncubic tes-
selation of three-space with regular polyhedra: the
dodecahedron.

4.1.1. Sketch of proof for mathematicians
Find two regular polyhedra, the sum of whose dihe-

dral angles is 2π/n, wheren is an integer. These can
only be the octahedron and the tetrahedron, and each
vertex of the tesselation joins six octahedra and eight
tetrahedra. The vertices are all alike. The symmetry
group is the same as for the cuboctahedron, which
has 12 vertices. Therefore, each vertex joins 12 lines,
twice as many as the cubic tesselation.

4.1.2. Sketch of proof for physicists
Consider a face-centered cubic lattice (FCC) lattice.

Draw lines between the lattice points and construct
perpendicular planes bisecting these lines. There are
12 lines from each point, so the planes will form
regular dodecahedra, which fill all space.

Because the cube{4,3} and the dodecahedron{5,3}
are the only space filling regular solids, and thereby
capable of composing structural elements of maximum
tensile strength, we restrict our attention to these two
polyhedra.

5. The cube {4,3}

From Eq. (1), the surface area of a cube is 6l2 and,
from Eq. (2), its volume isl3. If we are restricted
to electric dipoles between the faces of a cube, the
number of such dipoles is (6 taken 2 at a time) times
2 polarities, which is

2
6!

2!(6 − 2)!
= 30. (53)

An indefinite number of dipole directions and stren-
gths is possible if we can fractionally charge the faces.

Fig. 1. Numbering scheme used to distinguish among the six faces
of the cube. Visible are only the odd numbered faces. The face
diametric to each of these faces is found by adding 1, e.g. the
face diametric to 1 is 2, the face diametric to 5 is 6.

From Eq. (3), the dihedal angle between the faces
of a cube is 90◦. When two cubes are joined by coin-
ciding squares, the dihedral angle between the faces
of the two at the joining plane is 180◦, as given by
Eq. (4). Once two cubes are electrostatically bound at
a common face, they cannot easily be made to rotate
to a new face by applying charges to those faces.

Fig. 1 shows the numbering scheme used here to dis-
tinguish among the six faces of the cube. Visible in the
figure are only the odd numbered faces. The face dia-
metric to each of these faces is found by adding 1, e.g.
the face diametric to 1 is 2, the face diametric to 5 is 6.

5.1. Making a filament

A filament may be constructed by applying plus
and minus charges to sequential faces. For example,
a ‘+’ charge could be applied to all faces 1, while
a ‘−’ charge is applied to all faces 2. Because there
is some physical flexing at the faces where the cubes
bind, the filament will not necessarily be a straight
line, and several filaments may form at once. Fig. 2 is
a simulation of the assembly of a filament from a col-
lection of five cubic micrites. The frame of reference
in Fig. 2 is such that the location and orientation of
the bottom cube is constant.
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Fig. 2. A simulation of the assembly of a filament from a collection of five cubic micrites. Frame of reference is such that the location
and orientation of the bottom cube is constant. Arbitrary-unit time sequence is (a), (b), (c), ( d), (e), (f).
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If we command all the polyhedra to apply a poten-
tial between faces 1 and 2, that is, move charge from
face 1 to face 2, the micrites will line up as shown
in Fig. 2(a), which shows the micrites in a column.
Because of lubrication, they will eventually line up
with coinciding faces as shown in Fig. 2(f). Depend-
ing on how high the potential for stochastic bending
of the filament, it may form a loop as well.

6. The dodeahedron {5,3}

From Eq. (1), the surface area of a dodecahedron
is ∼20.6l2 and, from Eq. (2), its volume is∼7.66l3.
From Eq. (14), the dihedal angle between the faces

Fig. 3. (a) Numbering scheme used to distinguish among the 12 faces of the dodecahedron. As in Fig. 1, only the odd numbered faces
are visible. The face diametric to each of these faces is again found by adding 1. (b) Faces of the dodecahedron unfolded onto a plane.

of a dodecahedron is 116.57◦. If we are restricted
to electric dipoles between the faces of a cube, the
number of such dipoles is (12 taken 2 at a time) times
2 polarities, which is

2
12!

2!(12− 2)!
= 132. (54)

Once two dodecahedra are electrostatically bound at
a common face, they can be made to rotate to a new
face by applying opposite charges to those faces. From
Eq. (4), the dihedral angle between those faces is
126.87◦, whereas it is 180◦ for cubes.

Fig. 3 shows the numbering scheme used here to
distinguish among the 12 faces of the dodecahedron.
As in Fig. 1, only the odd numbered faces are visible.
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The face diametric to each of these faces is again found
by adding 1, e.g. the face diametric to 5 is 6, the face
diametric to 11 is 12. Fig. 3(b) shows the faces of the
dodecahedron unfolded onto a plane.

6.1. Making a filament

If we command all the dodecahedra to apply a
potential between faces 1 and 2, that is, move charge
from face 1 to face 2, the micrites will line up as
shown in Fig. 4, which shows the micrites in a col-
umn. Because azimuthal energy will be minimized,
the lubricated convergence to an aligned filament will
involve some rotation of the dodecahedra, as illus-
trated for the cube in Fig. 2. Depending on how high
the potential for stochastic bending of the filament, it
could also form a loop.

6.2. Making planar and solid structures

Fig. 5 is a simulation of the convergence of a do-
decahedron on a pair of bound dodecahedra, forming
a triangle of dodecahedra, which will be the basic
building block of an undulating plane. The plane is a
face-centered cubic structure, Fig. 6 shows the centers
of the dodecahedra with a box delineating the surfaces
of the planar structure. To a crystallographer’s eye,
the centers of the dodecahedra form a face-centered
cubic lattice, which is to be expected from their
symmetry. Fig. 7 shows the centers of dodecahedra
formed into a rough-surfaced sphere with maximum
diameter of 151 dodecahedra.

6.3. Making a primitive motor

Fig. 8(a) shows two micrites bound together with a
‘+’ charge on face 11 of the lower micrite (specified
micrite B) and a ‘−’ charge on face 12 of the upper
(specified micrite A). (Recall the definitions of the face
numbers on the dodecahedron as given in Figs. 3(a)
and (b).) The charges on are then turned off and a
‘+’ is applied to face 3 of micrite A, while a ‘−’ is
applied to face 5 of micrite B. Figs. 8(a)–8(e) show
the sequence of events as the micrites roll to their
new positions. In each case the balancing charge is
applied to the face diametric to the contacting face. A
repetition of the same pattern causes the two micrites
to revolve around each other constituting a primitive

Fig. 4. If we command all the dodecahedra to apply a potential
between faces 1 and 2, they will align in a filament. Because of
lubrication, dodecahedral micrites line up with coinciding faces.

motor. The exact sequence of events is summarized in
Table 1, wheret is dimensionless time.

Several symmetries are immediately apparent. The
commands being given to both micrite A and micrite
B are exactly the same. A motor in the opposite di-
rection is obtained by the mirror image or initially
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Fig. 5. Simulation of the convergence of a dodecahedron on a pair of bound dodecahedra, forming a triangle of dodecahedra, which will
be the basic building block of an undulating plane. Arbitrary-unit time sequence is (a), (b), (c), (d).

interchanging micrite A and micrite B. The same will
be obtained by reversing the charges. The faces with
‘+’ and ‘−’ are given as a function of time by the
formula

F± = 2�t mod5� + 7
2 ± 1

2 (55)

The floor ‘� �’ retains integer values for the face
numbers despite fractional (real) values of time.

Table 1 describes a microprocessor program to
make the two micrites revolve around each other.
It could be used as a switching program just as
described, as providing the time interval of the charge
rotation is long enough to allow closure of the faces
and alignment of the pentagons. With more elaborate
electronics, it could include a feedback loop to en-
sure that contact and alignment are attained between
faces before charging the next face in the rotation.
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Fig. 6. Centers of the dodecahedra with a box delineating the surfaces of the planar structure.

Capacitance between the faces is minimum when
they are opened to their maximum dihedral angle
and maximum when the faces are closed and aligned.
Assuming that the micrites are emersed in a dielectric
fluid, charge could be moved from the face that is go-
ing to close to any or all of the 11 remaining faces. For
motions involving more than two micrites, such as the
flagellumdescribed later, there always remain several
faces to which charge can be moved without affecting

Table 1
Time sequence of charges on faces of two dodecahedral micrites
for primitive motor

t A− A+ B− B+

0 3 4 3 4
1 5 6 5 6
2 7 8 7 8
3 9 10 9 10
4 11 12 11 12
5 3 4 3 4
6 5 6 5 6
7 7 8 7 8
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

the revolution of the micrites. Detecting contact can
then be accomplished by either of two methods:

1. Constant charge: The microprocessor and attendant
electronics maintain a constant charge on the clos-
ing surface while monitoring the voltage required
to maintain that charge. The voltage will decrease
as the faces close, will reach a minimum when the
faces contact, and remain at that minimum. The
microprocessor has then received a positive signal
that the faces are closed and then rotates voltage to
the next face of the sequence given in Table 1.

2. Constant voltage: The microprocessor and atten-
dant electronics maintain a constant voltage on the
closing surface (with respect to the other faces of
the micrite) while monitoring the current flowing to
the face. The greatest current will occur while the
dihedral angle is in the process of closing, and the
current will go to zero when the faces are closed.
The current will also go to zero when motion has
stopped for any reason, thereby detecting interfer-
ence with the motion.

At a higher level of sophistication, variable charges
and voltages might also be used to improve efficiency
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Fig. 7. Centers of dodecahedra formed into a rough-surfaced sphere with maximum diameter of 151 dodecahedra.

of the motor. For higher efficiency, the charge dif-
ference between the faces should be maximum when
the dihedral angle is fully open and be reduced as
the faces close, thereby reducing the kinetic energy
imparted to the fluid squeezed out from between the
plates.

6.4. Power from the motor

From Eq. (4), the dihedral angle between the two
pentagon faces before the electric field is switched on

to close them is

ϕ = 2π − 4 arcsin

[
1

2
csc

(π
5

)]
� 2.21 rad. (56)

The height of the pentagons from the edges where they
join to the opposite vertex is

h = l

2

[
csc

(π
5

)
+ cot

(π
5

)]
� 1.54l. (57)

Neglecting the distance between the pentagons owing
to thickness of the insulator, the distance between the
pentagons at their furthest vertex is
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Fig. 8. Primitive motor: two micrites bound together with a ‘+’ charge on face 11 of the lower micrite (specified micrite B) and a ‘−’
charge on face 12 of the upper (specified micrite A). The charges on are then turned off and a ‘+’ is applied to face 3 of micrite A, while
a ‘−’ is applied to face 5 of micrite B. Sequence is (a), (b), (c), (d), (e) as the micrites roll to there new positions. A repetition of the
same pattern causes the two micrites to revolve around each other.
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H = 2h sin

(
θ

2

)
, (58)

whereθ is the dihedral angle between the pentagons at
their common edge. The capacitance of the insulated
pentagonal plates as a function ofθ is a complicated
integral, but can be approximated by

C(θ)� 5

2

[
εl cot(π/5)csc(θ/2)

csc(π/5) + cot(π/5)

]

� 1.12εl csc

(
θ

2

)
, (59)

which is singular atθ = 0 because we have neglected
the insulation. The energy used in closure of the dihe-
dral angleϕ to a minimum dihedral angleθm is

�W = 1
2εV

2[C(θm) − C(ϕ)]. (60)

Because of the viscosity of the fluid in which the
micrites are immersed and the insulator on the con-
ducting surfaces, the dihedral angle never completely
closes, the conductors never come in contact. In a
manner analogous to the derivation of Eq. (31), it can
be shown that the angle between the pentagons at the
common line is given as a function of time by

θ(t) � ϑ exp

[
−2πεV 2 tan(π/5)

15ηl2
t

]
. (61)

Suppose the primitive motor were running at an an-
gular velocityω. To complete a revolution it must
approximately close the dihedral angle five times. So
the time allowed for each approximate closure is

t = 2π

5ω
(62)

The minimum angle is therefore,

θm � ϑ exp

[
−4π2εV 2 tan(π/5)

75ηl2ω

]
. (63)

For small enoughω, the value ofθm could become
arbitrarily small, making the�W as given by Eq. (60)
indefinitely large. This is a result of the assumption
that the thickness of the insulator on each pentagon
is negligible.

6.5. Power at smallω

When the viscosity is insufficient to prevent com-
plete closure of the surfaces, we must consider the

maximum capacitance resulting from the insulator
thickness. This capacitance is

Cins = 5l2εins cot(π/5)

8δ
, (64)

whereδ is the insulator thickness andεins is the insula-
tor permittivity. Takingεins = ε, the energy of closure
is

�W = 1
2εV

2[Cins − C(ϕ)]

� εV 2l

(
0.430

l

δ
− 0.911

)
. (65)

Using the example of a micrite with diametric face
distance of 1 mm (l = 0.449 mm), insulator thickness
of 1 �m, and face potential of 10 V (20 V interface
potential), immersed in water withε = 7.18× 10−10,
the energy of a single gap closure will be about
0.247863 ergs.

The angular velocity above which the gap does not
completely close owing to viscosity can be estimated
by settingC(θm) = Cins, which turns out to be

ωm = −4π2εV 2 tan(π/5)

75ηl2

×
{

ln

[
2

ϑ
arccsc

(
5l cot(π/5)

8kδ

)]}−1

, (66)

where

k = 5

2

[
cot(π/5)

csc(π/5) + cot(π/5)

]
. (67)

The viscosity of pure water is approximatelyη =
0.00101 J s m−3, so for the above described micrites
we haveωm = 90.7 s−1. The motor can, of course, run
more slowly if the voltage is switched from face to face
more slowly, butωm is the highest angular velocity
at which the faces will completely close on the insu-
lator. The power generated by this motor is given by

P = 5

2π
ωm�W = 1.79�W. (68)

6.6. Power at largeω

If the motor rotates at an angular velocity greater
than ωm, the gaps between the pentagonal faces of
the two dodecahedra will not completely close. There
will also be some floating motion where the two
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dodecahedra actually lose contact. If we assume,
however, that the common line of contact is still a
good approximation, we can calculate the power for
cases where viscosity prevents complete closure of the
gaps. Evaluating Eq. (60) directly by using Eqs. (59)
and (63), it can be shown that

P = 25lωεV 2 cot(π/5)

8π [csc(π/5) + cot(π/5)]

×
{

csc

[
ϑ

2
exp

(
−4π2εV 2 tan(π/5)

75ηl2ω

)]

− csc

(
ϑ

2

)}
. (69)

Again, this expression is singular atω = 0 because
it does not account for the insulator and would allow
the capacitance between faces to become indefinitely
large. Atω = 90.7 s−1, Eq. (69) givesP = 1.79�W,
which is in agreement with Eq. (68) to three figures
of accuracy.

For very large values ofω, Eq. (69) monotonically
asymptotes to

P � πε2V 4ϑ cot(ϑ/2)csc(ϑ/2)

12ηl[csc(π/5) + cot(π/5)]
. (70)

For the numerical example we are considering, this
corresponds toP � 0.0192�W. In other words, the
net power of the motor decreases if it is run so fast as
to prevent closure of the faces. Therefore, it is strongly
indicated that 1.79�W, as given by Eq. (68), is the
greatest power generated by this two-micrite system
immersed in water.

6.7. Adding more micrites to the motor

A third micrite (specified micrite C) could be at-
tached to micrite B diametrically from micrite A.
The end micrites will them orbit around micrite B if
all are given the same command sequence as shown
in Table 2. An indefinite number of micrites may be
added to form a writhing linear filament. No propul-
sion will occur because all the opening and closing
on gaps as shown in Figs. 8(a)–8(d) are symmetrical.
The filament will only churn the fluid around it.

Now consider what happens if the electric dipole is
not across diametric faces of the micrite but is out of
phase by one face. To be specific, the configuration
looks like this.

Table 2
Time sequence of charges on faces of three dodecahedral micrites

t A− A+ B− B+ C− C+
0 3 4 3 4 3 4
1 5 6 5 6 5 6
2 7 8 7 8 7 8
3 9 10 9 10 9 10
4 11 12 11 12 11 12
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

A+ A− B+ B− C+ C− D+ D− E+ E−
11 4 11 4 11 4 11 4 11 4

Propulsion can only occur if the symmetry of move-
ment is somehow broken. This implies independent
commands to more than one type of micrite. Micrites
must be independently addressable in at least two
classes.

7. Propulsion by sinuous motion
of joined dodecahedra

Suppose we use the following rule to join the faces
of dodecahedra. The contact faces are sequential: face
1 of dodecahedron A contacts face 2 of dodecahedron
B, face 3 of dodecahedron B contacts face 4 of dodec-
ahedron C, face 5 of dodecahedron C contacts face 6
of dodecahedron D, etc. The dihedral angles between
dodecahedra are sequential: the dihedral angles made
at the first interface will consist of the following faces:
3:4, 5:6, 7:8, 9:10, 11:12. For all interfaces except the
interface between dodecahedron A and dodecahedron
B (called AB), two of the dihedrals are sequential but
in reversed order. For example, the interface BC has
dihedrals with faces 8:7 and 10:9.

7.1. Contact and orientation

The above-described assembly algorithm will pro-
duce a cycle that repeats every 6 interfaces. Table 3
summarizes the contact and orientation at each of the
6 interfaces of 7 dodecahedra specified A through G.

In Table 3, the faces shown in bold are in contact,
the normal font are the faces forming dihedrals. At
interfaces 2 through 6, two of the dihedrals are num-
bered sequentially but in backward order. These are
shown in italics in the table.
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Table 3
Interface structure of dodecahedral micrites bound at sequential
faces and oriented with sequential dihedrals

AB BC CD DE EF FG

1:2 1:2 1:2 1:2 1:2 1:2
3:4 3:4 3:4 4:3 4:3 3:4
5:6 5:6 5:6 5:6 6:5 6:5
7:8 8:7 7:8 7:8 7:8 8:7
9:10 10:9 10:9 9:10 9:10 9:10
11:12 11:12 12:11 12:11 11:12 11:12

The sequence described in Table 3 consists of two
triples of the form shown in Fig. 9. These are joined at
a 127◦ angle to form the sextuple described in Table 3
and illustrated in Fig. 10. Fig. 11 shows a sequence of

Fig. 9. Micrite triple.

Fig. 10. Sequence in Table 3 consists of two triples, joined at a 127◦ angle to form the sextuple.

9 consisting of 3 triples and Fig. 12 shows a sequence
of 12 consisting of 4 triples the total sinuous geometric
cycle. The next cycle is simply the mirror image. If
we connect a set of 14 starting with the 1:2 interface,
we get the configuration shown in Fig. 13. Starting in
the upper left corner of Fig. 13, we have the following
sequence of 13 interfaces:

1:2 3:4 5:6 7:8 9:10 11:12

1:2 3:4 5:6 7:8 9:10 11:12

1:2

The configuration has a parity conserving plane
of symmetry through the middle 11:12 interface
(between the G and H dodecahedra).
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Fig. 11. Sequence of 9 consisting of 3 triples.

7.2. Sinuous motion

Now issue a single command for the micrites to
move charge so they close the next lower numbered
pair of pentagons. So the interface 5:6 becomes 3:4,
and 1:2 becomes 11:12, etc. The new-configuration
sequence of interfaces becomes:

11:12 1:2 3:4 5:6 7:8 9:10

11:12 1:2 3:4 5:6 7:8 9:10

11:12

Fig. 12. Sequence of 12 consisting of 4 triples, the total sinuous geometric cycle.

and the new configuration is shown in Fig. 14. Note
that although each dodecahedron only rotates to a
new face, the new configuration is as if a micrite were
taken off the right end and re-attached at the appro-
priate sequential face at the left end. Also note from
Table 3, the pentagon surfaces that close are always in
sequential order, never in backward sequential order.
For example, 1:2 closes on 3:4, never on 4:3, simi-
larly 3:4 closes on 5:6, never on 6:5, etc. This has the
simplifying result that all the electric dipoles remain
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Fig. 13. Configuration of a set of 14 micrites starting with the 1:2 interface.

Fig. 14. Configuration resulting from a single command for the micrites to move charge so they close the next lower numbered pair of
pentagons, and the interface 5:6 becomes 3:4, and 1:2 becomes 11:12, etc. Although each dodecahedron only rotates to a new face, the
new configuration is as if a micrite were taken off the right end and re-attached at the appropriate sequential face at the left end.
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Fig. 15. Configuration after the same command is given to all the micrites again.

in the same direction as the numerical sequential
ordering.

Fig. 15 shows the configuration after the same
command is given to all the micrites again. Again it
appears that the micrite at the right end of the chain
has been moved to the left end.

Fig. 16 shows the entire set of seven rotations that
will convert the chain of 14 micrites from the initial
configuration shown in Fig. 13 to its vertical inverse
shown in Fig. 16(g). The vertical inverse is also the
same as if Fig. 16(a) [same as Fig. 13] had been turned
upside-down with a rotation ofπ about a horizontal
axis. Fig. 17 is an enlargement of this configuration.
Table 4 shows the sequence of binding interfaces for
the cycle to inversion.

The time sequence of charges on the pentagon faces
that will produce the sinuous propulsion pattern is
shown in Table 5.

The algorithm for charging each face is then

F± = �(n + t)mod 6� + 5
2 ± 1

2, (71)

wheren indicates the number of the micrite. Because
of the selection of end point and phase, micrite A is
specified byn = −1, micrite B is specified byn = 0,
micrite C is specified byn = 1, micrite D is speci-
fied byn = 2, etc. For the complexity of the sinuous

motion, this is a remarkably simple algorithm. It does,
however, require some micrite-to-micrite communi-
cation so each can know its number in the sequence.

A greater thrust and efficiency is obtained by bind-
ing together several cycles to resemble a biological
flagellum, as shown in Fig. 18.

7.3. Power expended in micrite rolling

The power consumed in sinuous motion is sim-
ilar to the previously described primitive motor.
The essential difference is the micrites undergoing
sinuous motion repeat a cycle of rolling over six faces
as indicated by the algorithm described by Eq. (71), as
opposed to the primitive motor completing a cycle by
rolling over 5 faces as indicated by the algorithm de-
scribed by Eq. (55). A total of 12 face closures will be
required for a complete cycle of the chain to its original
configuration. The power is analogous to Eq. (68), and
if there areN micrites in the chain, the power will be

P = 3εV 2

π
[C(θm) − C(ϕ)]NΩ, (72)

where 2π/Ω is the time taken for the chain to resume
its original configuration. For our standard 1 mm
micrites in oil, the highest angular velocity at which
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Fig. 16. Entire set of seven rotations that will convert the chain
of 14 micrites from the initial configuration shown in Fig. 13 to
its vertical inverse shown in (g). The vertical inverse is also the
same as if it had been turned upside-down with a rotation ofπ

about a horizontal axis.

Table 4
Sequence of binding interfaces for half cycle of sinuous motion shown in Fig. 16

AB BC CD DE EF FG GH HI IJ JK KL LM MN

1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2
11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12
9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10
7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8
5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6
3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4
1:2 3:4 5:6 7:8 9:10 11:12 1:2 3:4 5:6 7:8 9:10 11:12 1:2

the faces will completely close on the insulator is
Ω = 37.8 s−1. The electrical power dissipated in the
sinuous motion is

P = 1.79N �W, (73)

to be compared with Eq. (68).

7.4. Propulsion

Our sinuous assembly of 1 mm micrites immersed
in a viscous fluid will still have Reynolds number suf-
ficiently small to exhibit Aristotlean or “Stokesian”
behavior. Flagellum-propelled organisms have already
been well studied [7–10] and a fine review is given by
Azuma [11].

Following Azuma, I take the shape to be truly sinu-
soidal, so in the frame of the micrite chain,

y = a sin

[
2π

λ
(x + ct)

]
, (74)

wherea is the amplitude,λ is the wavelength, andc is
the wave propagation speed. The shape of the micrite
configuration is not exactly sinusoidal, but neither are
biological flagella [12]. Similarly, the micrites are not
all in the same plane, but biological flagella are not
perfectly planar either [13]. But in all cases, the motion
is well approximated by a moving sine wave as given
in Eq. (74).

The value of c may be positive or negative,
depending on direction of motion. In a reference
frame moving at velocity equal to that of an element
of the micrite chain, the relative fluid velocity normal
and tangential to an element of the micrite chain is

uN = (ẏ − v) cosθ + (u − ẋ) sinθ

uT = −(ẏ − v) sinθ + (u − ẋ) cosθ,
(75)
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Fig. 17. Enlargement of this configuration shown in Fig. 16(g). Table 4 shows the sequence of binding interfaces for the cycle to inversion.

Table 5
Time sequence of charges on faces of micrites in indefinite chain undergoing sinuous motion

t A− A+ B− B+ C− C+ D− D+ E− E+ F− F+ G− G+ H− H+ I− I+ . . .

0 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 . . .

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 . . .

2 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 . . .

3 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 . . .

4 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 . . .

5 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 . . .
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Fig. 18. A greater thrust and efficiency is obtained by binding together several cycles to resemble a biological flagellum.
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whereθ is the pitch angle in the vicinity of the ele-
ment, recognizing that on the micrite scale, the chain
is not smooth and the interaction with the fluid is com-
plicated by the opening and closing of gaps between
pentagons. Since the Reynolds number is small, end
effects are small and the drag is proportional to the
velocity.

7.5. Swimming speed

The drag forces acting on the micrite chain can be
approximated by

dDN

ds
= 1

2
ρdcNuN,

dDT

ds
= 1

2
ρdcTuT, (76)

where s refers to distance along the chain,DN the
normal drag,DT the tangential drag,cN andcT are the
normal and tangential modified drag coefficients, and
d is the cylindrical equivalent of the chain diameter,
about 1 mm for our example. If we take [10]

cT

cN
� 1

2
, (77)

then, assuming the wave propagation speedc is
positive, the forward thrust is

F � lcN

2λ2
(2π2a2c − λ2u − 4π2a2u), (78)

wherel is the total length of the micrite chain. This
is the thrust that the micrite chain can apply to an
object it is trying to move. That object could be an
apparatus constructed of other micrites and its drag
will be derived to be some variant of Stokes’ law in the
low Reynolds number regime. If there is no “head” on
the “flagellum”, the speed of the micrite chain is given
by settingF = 0 in Eq. (78) from which we obtain

u = 2π2a2

λ2 + 4π2a2
c, (79)

which is independent of drag coefficients or length.
For our 1 mm micrite formed in a chain as shown in
Fig. 16,a ∼ 0.43 cm,λ ∼ 0.40 cm, andc = λΩ/2π .
The maximum power is produced when the gaps are
not prevented from closing by the viscosity. In this
case,

Ω = 5

12
ωm = 37.8 s−1, (80)

whereωm = 90.7 s−1 is given by Eq. (66), and the
factor of 5/12 derives from a complete cycle involv-
ing 12 face closures rather than 5 as for the primi-
tive motor. This results in a wave propagation speed
of c = 2.43 cm s−1, which from Eq. (79) results
in a swimming speed ofu = 1.19 cm s−1 in pure
water.

8. Summary conclusions

This paper has been a brief look at self-organizing
micrites in three dimensions. The Platonic solids
were chosen because their faces are all regular
pentagons and they can bind together with perfect
overlap. The perfect overlap provides for maximum
binding strength for applied charge and minimal stray
fields. This would not be possible for the Archime-
dian solids, e.g. whose faces are regular polygons but
not all the same.

Among the Platonic solids, only the cube and
dodecahedron can fill all space leaving no voids. And
between these two, only the dodecahedron is capable
of a broad range of motions because its dihedral angle
with others of its species is less thanπ .

I have analyzed the dynamics of Platonic solids
in the process of assembly into structures, and have
derived the time scales for: (1) terminal convergence;
(2) translation and alignment; and (3) distant conver-
gence. For translation and alignment of faces moving
across each other, I have shown that a lubricant is nec-
essary, which will be the fluid in which the micrites are
immersed, and may endow the micrites with the collat-
eral benefit of neutral buoyancy. Use of the lubricant
forces the dynamics into the low-Reynolds-number
regime. Immersion in air to achieve the same effect
is not dismissed, but requires a micrite size scale
far less than 1 mm to attain the requisite Reynolds
number.

I have shown a simple algorithm for making a
primitive two-component motor and a surprisingly
simple algorithm for making a chain of micrites un-
dergo sinuous motion resulting in self-propulsion.
The chain can provide thrust to move other structures
as well as propelling itself.

There are undoubtedly many other algorithms of
more complexity, which would result in more complex
agglomerations and more complex motions.
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