ACTIVATION OF H₂ AND SO₂ BY M₀ AND W COMPLEXES: FIRST EXAMPLES OF MOLECULAR-H₂ COMPLEXES, SO₂ INSERTION INTO METAL-HYDRIDE BONDS, AND HOMOGENEOUS HYDROGENATION OF SO₂

G. J. KUBAS[†] and R. R. RYAN

Los Alamos National Laboratory, University of California, Los Alamos. NM 87545, U.S.A.

(Received 3 July 1985)

Abstract—Our recent work on small-molecule activation by low-valent organometallic Mo and W complexes is summarized. Stereochemical control of Mo-SO₂ coordination geometry has been achieved since the SO₂ in Mo(CO)₂(PPh₃)₂(SO₂)(L) can bind as a σ -base (η^{1}), as a π acid (η^2) , or as an isomeric mixture of both forms merely by fine-tuning the donor-acceptor nature of the single cis ligand, L. Modification towards bulky phosphines led to a synthetic pathway to the formally 16-electron complexes, $M(CO)_3(PR_3)_2$ (R = Cy or Prⁱ), the structures of which show agostic $M \cdots H - C$ interaction. This weak interaction can readily be supplanted by others, including the first example of coordination of molecular H_2 . Neutron diffraction studies of W(CO)₃(PPrⁱ₃)₂(η^2 -H₂) show that W-H = 1.89(1) Å and H-H = 0.82(1) Å. ¹H NMR of the HD complex provides a useful spectroscopic diagnostic for molecular coordination (J_{HD} = 33.5 Hz). Complete H–D isotopic exchange occurs for D₂ + H₂ complex, even in the solid state. Reductions of SO₂ by hydrides and H₂ have been studied. Addition of SO₂ to solutions of $(\eta^5 - C_5 R_5)M(CO)_3H[R = H(=Cp) \text{ or } Me(=Cp^*)]$ produced $(\eta^5 - C_5 R_5)M(CO)_3(SO_2H)$, the first example of SO₂ insertion into an M-H bond. The -S(O)(OH) complexes are thermally unstable, decomposing at 25-75°C to SO₂ reduction products, including water and sulfido-oxo cluster complexes. A dithionite-bridged complex, $[Cp^*Mo(CO)_3]_2(\mu-S_2O_4)$, has also been obtained from the hydride-SO₂ reaction. Homogeneous catalysis of SO₂ reduction by H₂ has been effected using $[Cp^*Mo(\mu-S)(\mu-SH)]_2$ catalyst. Clean conversion to sulfur and water occurs in chlorobenzene-butanol at 1-3 atm and 25–100°C at a rate of up to 350 catalyst turnovers h^{-1} . Weak bases such as Et₃N and ROH greatly increase the rate.

Our recent findings and those of others indicate that low-valent group 6 organometallic complexes are well-suited for studies of the activation of SO₂, molecular H₂,¹ C—H,² and O—H³ bonds, and also of the stereochemical control of metal–ligand (e.g. Mo–SO₂) coordination geometry.⁴ Indeed, Cr(CO)₅ has been well recognized as a prototype mononuclear transition-metal fragment, ⁵ forming complexes with weak ligands such as methane in lowtemperature matrices.⁶ Formally 16-electron complexes, of which M(CO)₃(PCy₃)₂ is an example,^{2,7} have been found that offer a similar type of chemistry with the advantage of room-temperature adduct stability conferred by the bulky phosphines. Because of this stability, the first examples of molecular-H₂ complexes have been characterized as isolable, crystalline solids.¹

In this paper we summarize much of our recent work on small-molecule activation by Mo and W complexes. In general, both metals give similar chemistry, but, since the W complexes possess greater thermal and air stability, they often were more readily characterized. Our research has emphasized SO_2 -transition-metal chemistry, with recent work directed towards SO_2 reduction. The pursuit of this goal led to the recent serendipitous

[†] Author to whom correspondence should be addressed.

discovery of the W and Mo dihydrogen complexes. Little is known about the elementary steps of SO_2 reduction, and we have found that Mo complexes offer an excellent opportunity for studying stepwise reactions of SO_2 with hydrogen and hydride ligands. The overall goal of our efforts, in addition to understanding the mechanistic processes which occur during SO_2 reduction on heterogeneous catalysts, has been to develop a homogeneous catalytic SO_2 reduction cycle.

COORDINATION OF SO₂ TO Mo(0) AND W(0) COMPLEXES

The primary focus of our research has been the synthesis, structure, bonding and reaction chemistry of transition-metal-SO₂ complexes.^{4(b)} The diversity of bonding modes exhibited by SO₂-metal complex interactions is unequalled by any other ligand, making SO₂ a remarkably versatile bonding probe for transition-metal complexes. Studies of octahedral d^6 complexes of the group 6 metals have contributed much to our understanding of SO_2 coordination. In particular, the ability of SO_2 to coordinate in an η^1 -planar or η^2 (S,O-bonded) fashion to Mo(0) and W(0) has been advantageous in regard to our understanding of the π -acceptor ability of SO₂. Insight into the reactivity of coordinated SO_2 , for example the basicity of the uncoordinated oxygen atom in η^2 -SO₂, has also been obtained.

Interestingly, Mo(CO)₃(phen)(SO₂) and Mo(CO)₂(bipy)(SO₂)₂ contain η^2 -SO₂ ligands,⁸ whereas η^1 -planar SO₂ was found in all previously structurally characterized SO₂ complexes of d^6 metals.^{4(b)} A large variety of d^6 Mo– and W–SO₂ complexes has since been systematically synthesized and characterized to determine the extent and nature of stereochemical control of the metal–SO₂ bonding geometry.^{4,9} For d^6 -complexes in general, and Mo(0) and W(0) in particular, the η^1 -planar and η^2 geometries have been observed whereas the η^1 pyramidal has not and is not expected on the basis of simple orbital participation schemes, i.e. η^2 fashion, depending upon the nature of L:⁴

OC PPh₃ SO₂
$$\eta^1$$
: L = π -acceptor
Mo
OC PPh₃ L η^2 : L = σ -donor

The bonding mode is remarkably sensitive to finetuning just one ligand and for the complex containing L = alkylisocyanide the coexistence of both an η^1 -planar SO₂ isomer and an η^2 -SO₂ isomer in apparent equimixture was observed. This is the first direct observation of spontaneous linkage isomerism of coordinated SO₂, although it has been implicated in reactions of coordinated SO₂. From these and related studies the following conclusions may be drawn:

(a) The η^2 -geometry involves more $M \rightarrow SO_2 \pi$ donation and less $SO_2 \rightarrow M \sigma$ -donation than does the η^1 -planar case. The η^2 -geometry is, therefore, generally discouraged by strongly π -accepting ligands and encouraged by strongly σ -donating ligands.

(b) The existence of a D-M-A (D = donor or weak π -acceptor, A = acceptor) conformation *cis* to SO₂ promotes η^2 -bonding and dictates the orientation of the S-O_m bond: in all cases, the sulfur atom lies closest to the acceptor ligand (e.g. CO).

The latter can be attributed to a polarization of π electron density toward the better π -accepting ligands in the plane *cis* to the SO₂. The unsymmetrical η^2 -SO₂ ligand is oriented to best compete for the π -electron density with the sulfur atom nearer the carbonyls since the $2b_1$ acceptor orbital is largely sulfur *p* in character with a smaller oxygen *p* contribution.

The coordinated SO₂ in the Mo complexes is neither reversibly bound nor reactive with oxygen to form sulfato complexes. For those complexes containing η^1 -planar SO₂, this behavior is consistent with the majority of known η^1 -planar SO₂ complexes of all metal coordination types. The behavior of the η^2 -complexes, however, is in contrast

Control of the SO₂ bonding mode has been achieved by the proper choice of the σ -donating vs π -accepting ancillary ligands as well as their geometric disposition with respect to the SO₂. For example, the SO₂ ligand in *cis,trans*-Mo(CO)₂(PPh₃)₂(SO₂)(L) has been found to coordinate in either η^1 -planar or to that of η^2 -SO₂ in four- and five-coordinate complexes.^{4(b)} One important difference between the octahedral η^2 -SO₂ complexes and the lowercoordinate systems is the inaccessibility of the η^1 pyramidal SO₂ bonding mode in the octahedral complexes. In general, the η^1 -pyramidal SO₂ geometry is not far removed energetically from that of the η^2 -geometry for the four- and five-coordinate η^2 -SO₂ complexes. The great majority of η^1 pyramidal SO₂ complexes contain reversibly bound SO₂ and react with oxygen to give sulfato complexes.^{4(b)} Thus, an intermediate species containing an η^1 -pyramidal SO₂ might be involved in the reversible coordination of SO₂ and sulfato reaction of the four- and five-coordinate η^2 -SO₂ complexes. For the octahedral η^2 -SO₂ systems, such a reaction pathway would be blocked by the very high energy of the η^1 -pyramidal species and, in general, $d^6 \eta^2$ -complexes do not react with O₂ to form sulfates.

Since the discovery of η^2 -SO₂ bonding in transition-metal complexes,¹⁰ there has been considerable interest in this bonding mode and in the extent to which S-O bond activation actually occurs and whether it can be exploited in reaction chemistry studies. This form of coordinated SO₂ has shown some intriguing examples of reactivity quite different from that presently known for the η^{1} planar, η^1 -pyramidal or bridging SO₂ coordination modes. The bonding of η^2 -SO₂ has been suggested to primarily involve π -donation from the metal to the LUMO of SO₂, which is antibonding with respect to the S-O bond and bonding with respect to the O-O interaction.^{4(b)} This type of interaction would be expected to lengthen S-O distances, increase the terminal oxygen basicity, and enhance coordination by Lewis acids. The complex

$$\operatorname{Ru}(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\eta^2 - \operatorname{SO}_2 \cdot \operatorname{SO}_2)(\mathbf{I})$$

was found to contain a second SO₂ coordinated as a Lewis acid to the terminal oxygen of the η^2 -SO₂ (Fig. 1).¹¹ It exhibits the longest coordinated S—O bond and the lowest v(SO) value of any of the reported η^2 -SO₂ complexes.^{4(b)} An unusual reactivity was observed: the complex slowly reacted with excess SO_2 in the absence of oxygen to generate the bidentate sulfate complex¹² Ru(SO₄)(CO)₂(PPh₃)₂ (the same complex that was obtained on reaction of I with molecular oxygen¹³) plus PPh₃S and an unidentified ruthenium species which appeared to contain bridging carbonyls. The only products obtained in the presence of excess PPh₃ are $Ru(SO_4)(CO)_2(PPh_3)_2$ and PPh_3S . In an attempt to explore the effect of enhanced basicity of the ancillary ligand, a variety of complexes of the type $Ru(CO)_2(SO_2)(PR_3)_2$ were prepared where $PR_3 = (A)$ triphenylphosphine, (B) ptolyldiphenylphosphine, (C) tribenzylphosphine, and (D) tricyclohexylphosphine. For A-C the reactivity is essentially identical with $\sim 10\%$ of the corresponding SO₄ complexes formed in 2 days in SO₂-saturated benzene solutions. For D, a different complex was isolated after 1 day which analyzes for $Ru(CO)_2(S_2O_4)(PCy_3)_2$ and is monomeric by solution molecular weight studies. Since this species continues to react and generate the sulfato complex, $Ru(CO)_2(SO_4)(PCy_3)_2$, it appears likely that this is an intermediate in the reaction and that the reaction should be depicted as $M^{0}(SO_{2} \cdot SO_{2})$ $\rightarrow M^{2+}(S_2O_4)^{2-} \rightarrow M^{2+}(SO_4)^{2-} + \frac{1}{8}S_8$ (the S_8 reacts with PR₃ to form SPR₃). At this point there appears to be no clear trend in the reactivity that can be related to the phosphine basicity, but other factors such as steric effects could dominate.

Other studies of $Mo-SO_2$ complexes have produced well-defined illustrations of the basicity of

Fig. 1. Structure of $Ru(CO)_2(PPh_3)_2(\eta^2-SO_2 \cdot SO_2)$.

Fig. 2. Structure of [Mo(CO)₂(PPh₃)(py)(SO₂)]₂.

the terminal oxygen of η^2 -SO₂. The structure of $[Mo(CO)_2(PPh_3)(py)(SO_2)]_2$ showed the first example of SO₂ coordinated to metals by way of all three of its atoms (Fig. 2).^{4(a),14} This complex was spontaneously formed in solution from $Mo(CO)_2(PPh_3)_2(pyridine)(\eta^2-SO_2)$ by loss of PPh_3. Thus, the terminal oxygen of the η^2 -SO₂ ligand in this complex apparently possesses sufficient basicity to displace PPh₃, a surprising result since PPh₃ is an excellent ligand. Even more striking is the finding that the dimer will precipitate in the presence of a large excess of pyridine, a strong competing ligand, and is not readily cleaved by pyridine and other strongly basic ligands. The low solubility of $[Mo(CO)_2(pyridine)(PPh_3)(\mu-SO_2)]_2$ may provide some driving force for its formation, but nonetheless the Mo-O bond [Mo-O(4)] must be relatively strong (bond length = 2.24 Å) and indeed is only 0.05 Å longer than that for Mo-O(3). Further indication of the oxygen basicity in Mo-SO₂ complexes was given by Schenk and Baumann,9 who reported Osilulation of both η^1 - and η^2 -complexes.

An interesting series of complexes of the type $Mo(CO)_2L_3(SO_2)$ (L = PMePh₂ or CyNH₂) has been synthesized and found to contain η^1 -planar SO₂. The geometry was unexpected because the presence of three σ -donating ancillary ligands would appear to favor η^2 -bonding. The X-ray crystal structure of $Mo(CO)_2(CyNH_2)_3(SO_2)$ revealed that the cyclohexylamine ligands coordinate in *facial* fashion.

The most intriguing feature of this complex was found to be its novel reactivity with oxygen:

$$Mo(CO)_{2}(CyNH_{2})_{3}(SO_{2})$$

$$+O_{2} \xrightarrow{DMSO}_{(H_{2}O)} [CyNH_{3}]_{2}[SO_{4}]$$

$$+2CO + [CyNH_{3}][Mo_{x}O_{y}].$$

The production of *uncoordinated* sulfate from SO_2 complexes has not been observed and a catalytic

method for SO₂ oxidation to sulfate would be of considerable interest. However, the mechanism may involve reaction of dissociated ligands since SO₂ and CyNH₂ were found to give $[CyNH_3][HSO_3]$ in DMSO, and air-oxidation of the bisulfite to sulfate was catalyzed by the molybdate coproduct of the reaction. Thus, it is probable that oxidation of the metal with concomitant ligand loss occurs initially, followed by reaction of SO₂, CyNH₂ and H₂O to give bisulfite and eventually sulfate.

ACTIVATION OF H---H AND C---H BONDS: MOLECULAR-H₂ COMPLEXES

The discovery^{2,7} of a facile synthetic pathway to stable 16-electron complexes, $M(CO)_3(PCy_3)_2$ (M = Mo or W), has provided an unparalleled opportunity to study small-molecule activation, in particular the first examples of molecular-H₂ complexes.¹ The complexes are the only ones of which we are aware that activate *both* H—H and C—H bonds. The synthesis evolved serendipitously from our work on Mo–SO₂ complexes, specifically *mer,trans*-Mo(CO)₃(PR₃)₂(SO₂).^{4(a)} During attempts to optimize their preparation from *fac*tricarbonyl complexes containing labile ligands, $M(CO)_3$ (cycloheptatriene) was found to be a viable precursor to formally coordinatively unsaturated species :

 $M(CO)_3$ (cycloheptatriene) + 2PCy₃

$$\xrightarrow[argon]{ether} M(CO)_3(PCy_3)_2 + C_7H_8.$$

The observation of the striking deep blue-purple color of the 16-electron complexes was a key factor in their identification.

The stability of the complexes is largely a result of the well-known steric demands imposed by bulky phosphine ligands. The labile cycloheptatriene in the starting complex, M(CO)₃(cycloheptatriene), occupies three coordination sites but is effectively displaced by only two phosphine ligands, thereby opening up the sixth coordination site. Because of the phosphine bulk, the cycloheptatriene is squeezed out of the coordination sphere of the metal. The phosphine size must, of course, be large enough such that three cannot easily fit around the metal in an octahedral array, but curiously the synthesis succeeds for PCy_3 , PPr_3^i and $PCy_2Pr_3^i$, but not for other phosphines with similar cone angles. The use of smaller phosphines results in the formation of $Mo(CO)_{3}(PR_{3})_{3}$.

The structure of $W(CO)_3(PCy_3)_2$ shows the addition of a distal phosphine hydrogen to the metal coordination sphere (Fig. 3). This agostic interaction

Fig. 3. Structure of $W(CO)_3(PCy_3)_2$.

 $[v(CH) = 2552 \text{ cm}^{-1}]$ is the first well-defined example of its type for an alkylphosphine. Importantly the highly distorted geometry about P(2)

and

$$[W - P(2) - C(9) = 122.0(2)^{\circ},$$

$$W - P(2) - C(10) = 99.0(2)^{\circ}$$

is evidence that the tungsten atom exerts a strong attractive force upon the (11a) atom. Note that this is in distinct contrast with several other coordinatively unsaturated complexes in which hydrogen atoms from coordinated phosphine groups are located near the open site about the metal. For example, the triphenylphosphine ligands in both RhHCl(SiCl₃)(PPh₃)₂¹⁵ and RuCl₂(PPh₃)₃¹⁶ have normal, undistorted geometries. LaPlaca and Ibers¹⁶ attribute the particular location of ring hydrogen atoms near the metal in these complexes to "geometric" effects, rather than any true metalhydrogen bonding interactions. The same is apparently true in the case of the Mo(CO)(diphos), (diphos = diphenylphosphinoethane) molecule,¹⁷ another example of a formally five-coordinate complex with a group 6 metal.

Although refinement of the hydrogen atom positions was unsuccessful, the idealized position of the activated hydrogen atom is *ca* 2.17 Å from the metal [W-C(11) = 2.943(6) Å]. The overall structure of the PPr³ analogue is basically similar, although disorder hampers precise description of the crucial distorted portion of the molecule.

 $M(CO)_3(PR_3)_2$ readily "add" donor ligands, which displace the C—H group from the metal center. The resultant *mer,trans*- $M(CO)_3(PR_3)_2L$ can contain reversibly bound donors (e.g. H_2 , N_2 , C_2H_4 and H_2O) or irreversibly bound groups (e.g. CO, SO₂ and pyridine).

As with other unsaturated complexes, the ability to bind additional ligands is strongly influenced by steric factors. For example, as also found for $Mo(CO)(diphos)_2$,¹⁷ the complexes coordinate primary but not secondary or tertiary amines. Other ligands which fail to form isolable adducts include propylene, cyclohexene, butadiene, C_2F_4 and furan. Nevertheless, certain strong ligands, such as phosphines (e.g. PPh₃) and phosphites, will form adducts despite their relative bulkiness. Also, in spite of the strong Lewis acidity of the metal atom in $M(CO)_3(PR_3)_2$, it has been shown that CO_2 does not add, even in liquid CO₂.³ A hydrido-bicarbonate complex, W(CO)₃(PCy₃)₂(H)(HCO₃), has been suggested as the result of reaction with "wet" CO₂.³ The same authors propose that the H₂O complex is a precursor to the bicarbonate and contains hydridohydroxo ligands resulting from oxidative addition. This activation of O-H bonds by Mo and W is a promising area for exploration also.

Molecular-H₂ coordination

The activation of hydrogen by transition-metal complexes, i.e. oxidative addition to form hydride complexes, has been well studied because of its importance in catalysis. The geometry of approach of the H₂ molecule to the metal ("end-on" or "sideon") has long been the subject of discussion,¹⁸ and recent theoretical studies favored sideways addition to a 16-electron ML₅ center.⁵ The existence of transient side-on molecular-H₂ coordination has been proposed, particularly in "direct hydrogen transfer" reaction processes, 19 but until our work a well-characterized molecular-H₂ complex had not been isolated. Spectroscopic evidence for $Cr(CO)_{5}(H_{2})$ (stable at low temperature but shortlived at 25°C) has recently been observed,²⁰ and, several years prior to this, we reported novel complexes, $M(CO)_3(PCy_3)_2(H_2)$ (M = Mo or W), with unusual IR features.⁷ These room-temperature stable complexes, along with $W(CO)_3(PPr_3^i)_2(H_2)$, were then shown to contain the η^2 -H₂ ligand,¹ one of the last "holdouts" in the realm of small-molecule coordination. More importantly, the H₂ complexes (including newly reported examples²¹) represent incipient oxidative addition of a diatomic molecule, giving an unprecedented opportunity for study.

The complexes are readily synthesized in excellent yields from the 16-electron precursors, $M(CO)_3(PR_3)_2$, or directly from $M(CO)_3$ (cycloheptatriene) and PR₃ under H₂. As for $M(CO)_3(PR_3)_2$, the complexes could be formed only for $R_3 = Cy_3$, Pr_3^i or Cy_2Pr^i . The H₂ ligand readily dissociates reversibly in solution although crystals of the complexes can be handled even in air for short periods. X-ray structural studies revealed an octahedral geometry for $W(CO)_3(PPr_3^i)_2(H_2)$ and the H₂ molecular ligand was first observed by roomtemperature neutron diffraction studies at the Los Alamos Pulsed Neutron Source. Subsequent lowtemperature neutron studies^{21(d)} at both the Brookhaven National Laboratory and Los Alamos were necessary in order to properly model a disorder in one of the phosphino ligands and resulted in the determination, with resonable precision, of H-H and W-H distances of 0.82(1) and 1.89(1) Å (Fig. 4). The H_2 is symmetrically bonded parallel to the $\mathbf{F} - \mathbf{W} - \mathbf{P}$ axis, and the overall coordination geometry is nearly octahedral. Similarly X-ray structural studies of $M(CO)_3(PCy_3)_2(H_2)$ demonstrated an octahedral geometry. Refinement of preliminary neutron diffraction data, despite a disorder of H₂ and CO due to centrosymmetry at the metal, show the H_2 to be bound in a similar fashion to that in the PPr_3^i analog. It should be noted that the structures of a series of group 6 hydride complexes, including $MoH_2(PMe_3)_5$, all showed nonoctahedral phosphine positions.²²

Spectroscopic studies confirmed the structural data, and a useful NMR diagnostic for molecular-H₂ coordination, was found to be the value of J_{HD} for the monodeuterated species, e.g. W(CO)₃(PPr³₃)₂(HD). The ¹H spectrum (90 MHz) of the H₂ complex showed only a single broad major* resonance at *ca* -4 ppm from 70 to -80°C, but the HD complex gave a 1:1:1 triplet with $J_{HD} = 33.5$ Hz (Fig. 5). This value is an order of magnitude larger than that for, say, hydride and deuteride compounds and is 77% of that for HD gas (43.2 Hz).²³ Solid-state ²H NMR studies shows that, for W(CO)₃(PPr³₃)₂(D₂), the D₂ undergoes rotational motion about the metal-D₂ axis at a rate greater than 130 kHz at ambient temperature.

IR spectroscopy provided the first hint of molecular- H_2 coordination, and subsequent thorough IR and Raman examinations of the H_2 , HD and D_2 complexes located four of the six

Fig. 4. Structure of $W(CO)_3(PPr_3^i)_2(H_2)$.

fundamental modes expected for η^2 -H₂ (Table 1). The use of fully deuterated PCy₃ enabled location of v(HH) as a weak, broad band at 2690 cm⁻¹ in the Nujol mull IR spectrum of

$$W(CO)_{3}[P(C_{6}D_{11})_{3}]_{2}(H_{2})$$

(Fig. 6). This value is some 1500 cm^{-1} lower than that of free H₂. Failure to observe v(HH) in the Raman experiments may have been due to sample decomposition (even at 77 K). The electronic spectrum of W(CO)₃(PPrⁱ₃)₂(H₂) shows a band at 364 nm.

In regard to the chemistry of the coordinated H_2 , isotopic exchange has been found to occur between $W(CO)_3(PR_3)_2(H_2)$ and D_2 gas in both solution and

Table 1. Vibrational frequencies $[\nu \ (cm^{-1})]$ for solid $W(CO)_3(PCy_3)_2(H_2)$ and isotopically substituted species^a

	нн	HD	DD ~1900 (R)	
v(HH)	2690 (IR) ^b	2360 (IR)		
$v_{a}(WH_{2})$	1570 (IR)	~1350 (IR) ^b	$\sim 1132 (IR)^{b}$	
$v_{s}(WH_{2})$	953 (IR, R)	791 (IR, R)	703 (IR, R)	
$\delta(WH_2)$	\sim 450 (IR) ^b		319 (IR)	

^aIR samples were Nujol mulls; Raman samples were enclosed in capillaries and excited by the 5682-Å line of a Kr laser. Similar results were obtained for the $P-i-Pr_3$ analogues.

^b Partially obscured. v(HH) was relatively clear in the $P(C_6D_{11})_3$ analogue.

^{*} A minor (ca 15–20%) resonance appears on cooling or on changing to higher field (200 MHz). This resonance, which coalesces with the major peak at or above room temperature, is a triplet (J = 38 Hz) in certain temperature ranges, suggesting P–H coupling and the possibility of a hydride form in equilibrium with the H₂ form.^{21(c)}

Fig. 5. ¹H NMR spectra in C_6D_6 at 35°C.

solid states at 20°C, giving within days a statistical mixture of H_2 , HD and D_2 species. Neither the phosphine nor solvent hydrogen atoms exchange. At this point the mechanism for this process is unknown. The solid-gas scrambling is particularly interesting since transient phosphine dissociation

cannot be providing vacancies for coordination of a second H_2 and D_2 molecule. The H_2 complexes do not catalyze hydrogenation of ethylene under mild conditions (toluene, 1 atm, 20°C), presumably because of limited available coordination sites (i.e. steric crowding by the phosphines).

Fig. 6. IR spectra of W(CO)₃[P(C₆D₁₁)₃]₂(H₂) and D₂ species.

Theoretical calculations of H_2 binding in the model complex, $W(CO)_3(PH_3)_2(H_2)$, indicate that the observed conformation of the complex is stable by 16.8 kcal mol⁻¹ relative to $W(CO)_3(PH_3)_2 + H_2$.²⁴ The conformation with the H—H rotated by 90° was only 0.3 kcal mol⁻¹ less stable, in agreement with the NMR results, indicating only a small barrier to rotation. The studies also indicated that the bonding of H_2 to the metal involves primarily σ -donation to the metal, with very little backbonding into the σ^* -orbital of H_2 . For the minimum-energy structure the H—H distance was 0.79 Å, close to that observed (0.82 Å) although the W—H distances were longer than those determined (2.15 vs 1.89 Å).

Two obvious questions arise: do more H₂ complexes exist and why do $M(CO)_3(PR_3)_2(H_2)$ coordinate dihydrogen while MoH₂(PMe₃)₅^{22(a)} and related complexes²² proceed to the hydride? We now have evidence that the known 16-electron complex Mo(diphos)₂(CO),¹⁷ which contains a weak $M \cdots H - C$ interaction, gives very similar H_2 complexes.^{21(c)} Thus complexes which weakly coordinate a distal hydrogen atom are clearly excellent candidates for H₂ coordination. While the bulkiness of the phosphine ligands is no doubt important in determining whether the H_2 is arrested rather than cleaved by the metal, other factors are also involved. The electronic influence of the ligand trans to H_2 may be crucial, judging by the fact that the H_2 complexes [including $Cr(CO)_5(H_2)$] contain trans-CO while none of the structurallycharacterized group 6 polyhydrides²² contain any CO ligands at all. These principles may not apply to other metal systems,^{21(b)} and only the discovery of further examples of H₂ coordination will provide understanding.

REDUCTION OF SO₂ BY GROUP 6 METAL HYDRIDES AND HYDROGEN

Hydride reduction: insertion of SO_2 into a metalhydride bond

The reduction of SO_2 with H_2 or other agents such as CO to give sulfur and H_2O is an attractive method for SO_2 conversion. In the objectives of our studies of transition-metal- SO_2 complexes, we include metal systems that will act as catalysts for the reduction of SO_2 or will provide models for the elementary steps in a catalytic cycle. Transition-metal-hydride complexes have been shown to be important intermediates in catalytic cycles involving hydrogenation of organic substrates. Thus, in seeking homogeneous systems to catalytically or stoichiometrically hydrogenate SO_2 , we are examining the reactions of metal-hydride complexes with SO_2 . Much of our work has focused upon molybdenum and tungsten complexes as these metals are abundant, nonstrategic, and contained in proven catalysts in industrial processes.

A wide variety of reaction types have been found depending on the nature of steric and electronic factors. The system Cp_2MH_2 (M = Mo or W) cleanly and rapidly reduced SO_2 to $Cp_2M(S_2O_3)$ and H₂O, representing partial reduction of the SO₂.²⁵ Strong acids such as HCl convert $Cp_2M(S_2O_3)$ to H_2O , SO_2 and new types of cationic metal-sulfur complexes²⁵ in a manner similar to the conversion of ionic thiosulfate to H₂O, SO₂ and S_8 . We speculate that a well-defined color change upon the addition of SO_2 to Cp_2MoH_2 may be due to adduct formation which is then followed by SO₂ insertion into the Mo-H bond. SO₂ inserts into the metal-hydride bond in $C_5H_5M(CO)_3H$ $(\mathbf{R} = \mathbf{H} \text{ or } \mathbf{M}\mathbf{e}; \mathbf{M} = \mathbf{M}\mathbf{o} \text{ or } \mathbf{W})$ to form $(C_5R_5)M(CO)_3(SO_2H)$ ²⁶ The reaction occurs readily at room temperature, and the insertion product precipitates upon addition of SO₂ to a concentrated solution of $(C_5R_5)M(CO)_3H$ in organic solvents. Xray crystallography of CpMo(CO)₃(SO₂H) confirmed that an S-bound insertion occurred (Fig. 7). Although both S-O distances are significantly longer than that normally found in SO₂ complexes $(ca 1.45 \text{ Å})^{4(b)}$ the difference in the two distances [S-O(1) = 1.637(6), S-O(2) = 1.515(6)] is sufficient to indicate that the H atom is bound to O(1). A peak appeared in the difference maps near O(1) and refined to a chemically reasonable position for an Hatom if the thermal parameter was fixed. Sulfinate ligands bound to transition metals have been

Fig. 7. Structure of CpMo(CO)₃(SO₂H).

structurally characterized for S-sulfinates or Osulfinates^{27,28} with an alkyl or aryl bound to the sulfur and spectroscopic evidence exists for O,Osulfinate and those of the type M—S(O)—OR.²⁹ The present study affords the first structural characterization of the latter type as well as the first direct evidence for insertion into a M—H bond.

The complexes $(C_5R_5)M(CO)_3(SO_2H)$ can be considered to be metallo analogues of organic sulfinic acids. RSO₂H.³⁰ A metallo *sulfonic* acid, CpFe(CO)₂[S(O)₂OH], is known,³¹ but is not a result of an insertion reaction. There appears to be no well-characterized precedent for the SO₂H⁻ ligand (or free anion) although a sulfinate structure, Ru(SO₂H)₂(PPh₂Me)₃, was tentatively formulated for the product of the RuH₂(PPh₂Me)₄-SO₂ reaction.³² In contrast with SO₂, insertion of CO₂ into metal-hydride bonds is well known and results in metal-oxygen coordination,

definitive identification of a metallocarboxylic acid, M--C(O)--OH, derived by CO_2 insertion is lacking.³³

For the reaction:

$$(C_5R_5)Mo(CO)_3H + SO_2$$

$$\xrightarrow{solvent} (C_5R_5)Mo(CO)_3(SO_2H)$$

the solution equilibrium lies far to the left; NMR shows that SO₂ readily extrudes on dissolution, unless excess SO₂ is present. Cp*Mo(CO)₃(SO₂H) (Cp* = C₅Me₅) in liquid SO₂ at -40° C shows a broad resonance for the OH proton at δ 3.89, which shifts on addition of H_2O , reflecting proton exchange. A weak, broad IR stretch near 2550 cm⁻¹ is assigned to v(OH), on the basis of ²H and ¹⁸O substitution.

The mechanism of the SO₂ insertion may be a concerted process, involving attack on the coordinated hydride, analogous to the attack on α -carbon proposed for the alkyl analogues, CpM(CO)₃S(O)₂R.³⁴ It is reasonable that SO₂ initially coordinates to the hydride much as it does to metal-bound halides and pseudohalides.^{4(b)}

A significant finding in terms of SO₂ reduction is the thermal instability of the solid complexes, which undergo auto-redox within 1 day [25°C for CpMo(CO)₃(SO₂H), and 55–75°C for the W and Cp* analogues] to products indicative to S(IV) \rightarrow S(II –) reduction and metal oxidation :

$$(C_5R_5)M(CO)_3(SO_2H)$$

$$\triangleq [(C_5R_5)M(CO)_3]_2$$

$$+ [(C_5R_5)MS_xO_y]_n + H_2O + CO.$$

A complex mixture of sulfido and oxo-sulfido complexes generally resulted, although for R = Meand M = Mo, the reaction was cleaner, yielding $[(C_5Me_5)MoO(\mu-S)]_2^{35}$ and a species analyzing as " $(C_5Me_5)_3Mo_3S_2O_4$ " (see Fig. 8). Prolonged reactions of solutions of $(C_5R_5)M(CO)_3H$ with SO₂ in 4: 1 stoichiometry also gave reduction of SO₂, and for R = Me and M = Mo the products were nearly identical to those for thermolysis of the SO₂ complex. Thus it would appear that the insertion complexes are logical intermediates in the SO₂ reduction. A possible further (or alternate) intermediate has also been isolated and structurally characterized. A solution-unstable dithionitebridged complex, $[(C_5Me_5)Mo(CO)_3]_2(\mu-S_2O_4)$

^oConcentrated solution, ^b4:1 hydride: SO_2 ratio, ^cdilute solution Fig. 8. Reactions of Cp*Mo(CO)₃H with SO_2 . (Fig. 9), crystallized slowly at -20° C from dilute CH₃CN solutions of Cp*Mo(CO)₃H containing excess SO₂. No H₂ was produced in this or any other of the hydride– SO_2 reactions; the hydride protons transfer to an oxygen atom to form H_2O . Conceivably, the dithionite species is produced bv s—s coupling of two deprotonated Cp*Mo(CO)₃(SO₂H) fragments (an oxidation step is also required). The dithionite decomposes in solution, converting within minutes to a series of products. After several days, only two major products formed (plus CO and CO_2): the same two oxo-sulfido complexes produced from thermolysis of the insertion product or prolonged solution reaction of $(C_{Me_{3}})Mo(CO)_{3}H$ and SO2. Thermolysis of the solid dithionite at 75° C for 18 h gave the same complexes, along with CO and CO_2 (from transfer of oxygen to CO).

The S-bound dithionite represents the first structurally characterized example of its type although this geometry had been proposed for $[CpFe(CO)_2]_2(S_2O_4)$ and $[M(CO)_5]_2(S_2O_4)$ (M = Mn or Re).³⁶ The S—S bond distance of 2.266(1) Å for the C_{2h} S₂O₄ is shorter than that found in Na₂S₂O₄ and other structures with C_{2v} S₂O₄²⁻ ion (2.35-2.39 Å).³⁷ These unexpectedly long distances have generally eluded attempts at theoretical description. The S—S distance in the Mo complex is significantly longer than that in diphenyl disulfone

[2.193(1) Å],³⁸ the only other structure we know of for which the S₂O₄ moiety is found in approximate C_{2h} -symmetry.

As previously mentioned, the prolonged solution reactions of SO_2 and $(C_5R_5)M(CO)_3H$ in all cases eventually yield a mixture of sulfido and/or oxo metal complexes and water as a result of SO_2 reduction. The nature of the final products depends on the metal, R group, solvent, temperature and hydride: SO₂ ratio. For example, whereas $[CpW(CO)_3]_2(\mu-S)^{39}$ is found to be both the major as well as the initially observed sulfur-containing product for M = W, the Mo analogue is unstable and rapidly decomposes in solution with CO loss to a mixture of sulfide products. Complexes of the type $[Cp^*M(CO)_3]_2S$ are not observed for the Cp* systems, but rather oxo-containing products such as $[Cp*MO(\mu-S)]_2$ are prevalent in hydride-SO₂ reactions. However, for M = W, a *double* sulfidebridged complex, $[Cp^*W(CO)_2(\mu - S \cdot SO_2)]_2$, with a strong sulfide-SO₂ interaction can also be isolated (Fig. 10).³⁹ The different products isolated in these reactions may thus merely reflect different stabilities rather than major differences in mechanisms.

Summarizing, the SO₂H unit appears to be inherently unstable, certainly when coordinated to transition metals [reduction of SO₂ by (μ -H₂)Os₃(CO)₁₀ is also believed to proceed via an SO₂H complex]⁴⁰ and also in sulfinic acids, RSO₂H,

Fig. 9. Structure of $[Cp*Mo(CO)_3]_2(S_2O_4)$.

Fig. 10. Structure of $[Cp^*W(CO)_2(\mu - S \cdot SO_2)]_2$.

which readily disproportionate at 25–75°C.³⁰ One can conclude that the SO₂H ligand is even more reactive in solution since it could not be observed spectroscopically except at low temperature, where its reactivity was suppressed. Thus, the SO₂H species would appear to be a key intermediate in the reduction of SO₂ by hydrogen-containing complexes.

Hydrogen reduction of SO_2 : the first example of a catalytic homogeneous system

Reduction of SO_2 by H_2 over heterogeneous catalysts is known. An effective heterogeneous catalyst has been found to be Ru-Al₂O₃ which readily and cleanly promoted hydrogenation to sulfur and H₂O under mild conditions (150°C, 1 atm), without catalyst poisoning.⁴¹ Catalysis of SO₂ reduction by transition-metal species is a difficult problem in homogeneous systems because of catalyst poisoning by sulfur. As seen in the previous section, metal sulfides and oxysulfides readily form and no well-defined homogeneous systems catalyzed by transition-metal complexes have been reported. However, a possible means to circumvent the sulfiding problem was suggested by a reaction of SO_2 with a metallothiol complex, $[W(CO)_5(SH)]^-$, in which elemental sulfur was found to be produced. Instead of using metal-bound hydrogen to reduce SO_2 , one could conceivably use the active hydrogen contained in SH groups ligated to a sulfur-saturated metal center. Furthermore, a remarkable addition of hydrogen to a dinuclear sulfur-bridged molybdenum complex to form a metallothiol $[(Me_nCp)MoS(SH)]_2$ (1) has been described in the literature.⁴² This SH complex has been found⁴²

to homogeneously catalyze the reaction of sulfur with H_2 in CHCl₃ solution to form H_2S , and one could easily envision extension to SO₂ reduction. Experiments have indeed confirmed roomtemperature reaction of $SO_2 + H_2$, in a closed flask, to give elemental sulfur and H₂O under mild conditions (25–75°C, 1–3 atm of H_2). The stoichiometric reaction of SO_2 with 1 (no H_2) produces $(Me_nCp)_2Mo_2(\mu-S)_2(\mu-S_2)(2)$, an insoluble sulfur-rich species $(Me_nCpMoS_3)_x$ (3), and H_2O . Both 2 and 3 readily react with H_2 to regenerate 1, and H_2S is also generated from the excess sulfur in 3. In the catalytic system, H₂S is produced but rapidly reacts with unconsumed SO₂ via the Claus reaction to give the observed products, sulfur and H₂O. The mechanism of the catalysis conceivably involves the above reactions (see Scheme 1) but is obviously quite complex in nature.

If the catalysis is terminated at or before complete SO_2 consumption, sulfur is the product. If the reaction is allowed to continue (assuming excess H_2 is present), the S_8 is hydrogenated to H_2S as the final product. Actually, a parallel catalytic cycle based on SO_2 reduction by H_2S produced from the S_8 - H_2 reaction undoubtedly occurs in addition to the cycle shown in the Scheme 1. Importantly, the catalyst is stable to oxygenation by SO_2 , although the presence of atmospheric oxygen results in $(Me_5Cp)_2Mo_2(O)S_3^{43}$ being formed.

Both reaction (1) and the overall catalysis have been carefully studied in regard to variations in reaction conditions (Table 2). In both instances, SO₂ reduction proceeds at a slow rate if CHCl₃ is used as solvent. However, the rate of catalysis increases several hundred fold (e.g. from 0.4 to 355 turnovers h^{-1}) if weakly basic solvents such as alcohols and/or catalytic amounts of Bronsted bases such as amines are present in the catalyst solution. For example, using only 0.04 mmol of 1, 6.1 mmol of SO₂ is cleanly reduced by H₂ (27 mmol, ~3 atm) in 34 min at 75°C in 1:1 butanol-chlorobenzene (25 cm³) containing

Solvent	Catalyst [Me _n CpMoS(SH)] ₂	Temperature (°C)	P _{H2} (atm)	Reaction time (h)	Catalyst turnovers h ⁻¹ (average) ^b
Toluene	n = 0	60	1.2	64	0.3
CHCl ₃	n = 1	65	1.2	240	0.2
CHCl ₃	n = 5	75	2.8	144	0.4
PhCl	n = 5	100	2.8	5.8	18.4
4:1 PhClBzOH	n = 5	20	1.2	15.5	1.8
4:1 PhCl-BzOH	n = 5	100	1.2	1.0	34.0
4:1 PhCl-BuOH	n = 5	75	2.8	1.4	110
1:1 PhCl-BuOH	n = 5	75	2.8	1.0	203
PhCl+Bu ₃ N ^c	n = 5	75	2.8	1.2	121
1:1 PhCl–BuOH + Bu ₃ N ^d	n = 5	75	2.8	0.6	355

Table 2. Summary of catalytic reactions of SO₂ (3-8 mmol) and H₂ (12-17 mmol) to give sulfur and H₂O^a

^a Magnetically-stirred in a closed 250- or 500-cm³ flask, using 0.04-0.1 mmol catalyst in 25-50 cm³ of solvent.

^b Based on SO₂ consumption (assuming 2 mmol of catalyst converts 1.5 mmol SO₂).

^c 0.1 cm³ (0.42 mmol).

^d 0.025 cm³ (0.105 mmol).

0.1 mmol of Bu₃N. Similar rate enhancements by weak bases occur for reaction (1) and the Claus reaction $\lceil (4) \rceil$, which also is very slow in CHCl₃ but is known⁴⁴ to be promoted by donor solvents (e.g. H₂O and alcohols) and weak bases. If CHCl₃ is the solvent for the catalysis, the Claus reaction occurs inefficiently mainly along the upper flask walls (sulfur deposition is observed) where H_2O (from SO₂ reduction) condenses and acts to promote it. If alcohols or small amounts of amines are present in the catalyst solution, the H_2S-SO_2 reaction [(4)] occurs rapidly and completely in the solution phase. In this context, the reactivities of $(\mu$ -SH)₂Fe₂(CO)₆ and Cp₂Ti(SH)₂Mo(CO)₄ have been found to be also promoted by bases such as amines.45 The mechanism for base promotion of reaction(1) may be proton abstraction followed by electrophilic attack of SO₂ on S⁻. In this regard, the complex μ - $SH[W(CO)_5]_2^-$ was found to be much more reactive to heterocumulenes (e.g. MeN=C=O) in its deprotonated form,⁴⁶ and SO₂ is a type of heterocumulene. Alternatively, initial coordination of SO_2 to the sulfur atom of the SH ligand, similar to Lewis acid coordination of SO₂ to SR ligands in L_nCuSR,⁴⁷ could occur. In both cases, base-assisted proton transfer to an oxygen atom could result in formation of an MSSO₂H group, giving what amounts to insertion of SO₂ into the S-H bond. Since, as discussed above, the SO₂H unit is unstable in both RSO₂H and the MSO₂H complexes, the proposed MSSO₂H group would likewise be expected to decompose with eventual formation of H_2O and polysulfide $(S_n^{2^-})$. This is precisely what is observed [reaction (1) of Scheme 1)], since the sulfurrich product, 3, almost certainly contains polysulfide. The implications of the above chemistry, which has recently been reported, 48 could extend to hetereogeneous sulfide catalysts such as hydrodesulfurization catalysts. Thus, we plan to investigate such catalysts for SO₂ reduction and to determine whether bases promote reaction.

Acknowledgements—This work was performed under the auspices of the Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences. We thank Drs P. J. Vergamini and H. J. Wasserman for structural data on the H_2 complexes.

REFERENCES

- G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini and H. J. Wasserman, J. Am. Chem. Soc. 1984, 106, 451.
- 2. H. J. Wasserman, G. J. Kubas and R. R. Ryan, submitted to J. Am. Chem. Soc.
- M. G. Mason and J. A. Ibers, J. Am. Chem. Soc. 1982, 104, 5153.
- (a) G. J. Kubas, G. D. Jarvinen and R. R. Ryan, J. Am. Chem. Soc. 1983, 105, 1883; (b) R. R. Ryan, G. J. Kubas, D. C. Moody and P. G. Eller, Struct. Bonding 1981, 46, 47.
- 5. J. Saillard and R. Hoffmann, J. Am. Chem. Soc. 1984, 106, 2006.
- M. A. Graham, R. N. Perutz, M. Poliakoff and J. J. Turner, J. Organomet. Chem. 1982, 34, C34; J. A. Welch, K. A. Peters and V. Vaida, J. Phys. Chem. 1982, 86, 1941.
- 7. G. J. Kubas, J. Chem. Soc., Chem. Commun. 1980, 61.

- G. J. Kubas, R. R. Ryan and V. McCarty, Inorg. Chem. 1980, 19, 3003.
- W. A. Schenk and F. Baumann, Chem. Ber. 1982, 115, 2615; J. Organomet. Chem. 1983, 256, 261; 1984, 260, C6.
- D. C. Moody and R. R. Ryan, J. Chem. Soc., Chem. Commun. 1976, 503; D. C. Moody and R. R. Ryan, Inorg. Chem. 1977, 16, 2473.
- 11. D. C. Moody and R. R. Ryan, J. Chem. Soc., Chem. Commun. 1980, 1230.
- 12. D. C. Moody and R. R. Ryan, Cryst. Struct. Commun. 1976, 5, 145.
- J. Valentine, D. Valentine, Jr and J. P. Collman, Inorg. Chem. 1971, 10, 219.
- 14. G. D. Jarvinen, G. J. Kubas and R. R. Ryan, J. Chem. Soc., Chem. Commun. 1981, 305.
- 15. K. W. Muir and J. A. Ibers, Inorg. Chem. 1970, 9, 440.
- 16. S. J. LaPlaca and J. A. Ibers, Inorg. Chem. 1965, 4, 778.
- M. Sato, T. Tatsumi, T. Kodama, M. Hidai, T. Uchida and Y. Uchida, J. Am. Chem. Soc. 1978, 100, 4447; T. Tatsumi, H. Tominaga, M. Hidai and Y. Uchida, J. Organomet. Chem. 1980, 199, 63.
- 18. P. J. Brothers, Prog. Inorg. Chem. 1981, 28, 1.
- 19. H. H. Brintzinger, J. Organomet. Chem. 1979, 171, 337.
- (a) R. Sweany, J. Am. Chem. Soc. 1985, 107, 2374; (b) R. K. Upmacis, G. E. Gadd, M. Poliakoff, M. B. Simpson, J. J. Turner, R. Whyman and A. F. Simpson, J. Chem. Soc., Chem. Commun. 1985, 27; (c) S. P. Church, F.-W. Grevels, H. Hermann and K. Shaffner, *ibid*. 1985, 30.
- (a) R. H. Crabtree and M. Lavin, J. Chem. Soc., Chem. Commun. 1985, 794; (b) R. H. Morris, J. F. Sawyer, M. Shirahiarn and J. D. Zubkowski, J. Am. Chem. Soc. 1985, 107, 5581; (c) G. J. Kubas, R. R. Ryan and D. A. Wrobleski, submitted to J. Am. Chem. Soc.; (d) P. J. Vergamini, H. J. Wasserman and T. Keotzle, manuscript in preparation.
- (a) M. B. Hursthouse, D. Lyons, M. Thornton-Pett and G. Wilkinson, J. Chem. Soc., Chem. Commun. 1983, 476; (b) P. Meakin, L. J. Guggenberger, W. G. Peet, E. L. Muetterties and J. P. Jesson, J. Am. Chem. Soc. 1973, 95, 1467; (c) E. B. Lobkovskii, V. D. Makhaev, A. P. Borisov and K. N. Semenko, Zh. Strukt. Khim. 1979, 20, 944; (d) D. Gregson, J. A. K. Howard, J. N. Nicholls, J. L. Spencer and D. G. Turner, J. Chem. Soc., Chem. Commun. 1980, 572; (e) L. F. Rhodes, J. D. Zubkowski, K. Folting, J. C. Huffman and K. G. Caulton, Inorg. Chem. 1982, 21, 4185.
- B. D. Nageswara Rao and L. R. Anders, *Phys. Rev.* 1965, 140, A112.
- 24. P. J. Hay, Chem. Phys. Lett. 1984, 103, 466.
- G. J. Kubas and R. R. Ryan, Inorg. Chem. 1984, 23, 3181.
- 26. G. J. Kubas, H. J. Wasserman and R. R. Ryan, Organometallics 1985, 4, 2012.

- 27. D. A. Langs and C. R. Hare, J. Chem. Soc., Chem. Commun. 1967, 853.
- M. R. Churchill and J. Wormald, *Inorg. Chem.* 1971, 10, 572.
- T. A. George and D. D. Watkins, Jr, Inorg. Chem. 1973, 12, 398.
- (a) S. Oae, Organic Chemistry of Sulfur, Chap. 11, Plenum Press, New York (1977). (b) S. Detoni and D. Hadzi, J. Chem. Soc. 1955, 3163.
- C. A. Poffenberger and A. Wojcicki, *Inorg. Chem.* 1980, 19, 3795.
- S. Komiya and A. Yamamoto, Bull. Chem. Soc. Jpn 1976, 49, 784.
- 33. D. J. Darensbourg and R. A. Kudaroski, Adv. Organomet. Chem. 1983, 22, 129.
- (a) J. O. Kroll and A. Wojcicki, *J. Organomet. Chem.* 1974, **66**, 95; (b) M. Graziani, J. P. Bibler, R. M. Montesano and A. Wojcicki, *ibid.* 1969, **16**, 507.
- M. Rakowski DuBois, M. C. VanDerveer and R. C. Haltiwanger, *Inorg. Chem.* 1981, 20, 3064.
- N. H. Tennent, S. R. Su, C. A. Poffenberger and A. Wojcicki, J. Organomet. Chem. 1975, 102, C46; (b) C. A. Poffenberger, N. H. Tennent and A. Wojcicki, *ibid*. 1980, 191, 107; (c) P. Reich-Rohrwig, A. C. Clark, R. L. Downs and A. Wojcicki, *ibid*. 1978, 145, 57.
- (a) J. D. Dunitz, Acta Cryst. 1956, 9, 579; (b) C. Th. Kiers and A. Vos, *ibid.* 1978, **B34**, 1499; (c) A. Magnusson and L. Johnasson, Acta Chem. Scand. 1982, A36, 429.
- 38. C. Th. Keirs and A. Vos, Recl Trav. Chim. Pays-Bas 1972, 91, 127.
- 39. G. J. Kubas, H. J. Wasserman and R. R. Ryan, Organometallics 1985, 4, 419.
- G. D. Jarvinen and R. R. Ryan, Organometallics 1984, 3, 1434.
- 41. D. C. Moody, R. R. Ryan and K. V. Salazar, J. Catal. 1981, **70**, 221.
- M. Rakowski DuBois, M. C. VanDerveer, D. L. DuBois, R. C. Haltiwanger and W. K. Miller, J. Am. Chem. Soc. 1980, 102, 7456.
- 43. H. Brunner, W. Meier, J. Wachter, F. Guggolz, T. Zahn and L. Ziegler, *Organometallics* 1982, 1, 1107.
- 44. N. F. Albertson and J. P. McReynolds, J. Am. Chem. Soc. 1943, 65, 1690.
- 45. (a) D. Seyferth and R. S. Henderson, J. Organomet. Chem. 1981, 218, C34; (b) D. Seyferth and G. B. Womack, J. Am. Chem. Soc. 1982, 104, 6839; (c) D. Seyferth, G. B. Womack, L.-C. Song, M. Cowie and B. W. Hames, Organometallics 1983, 2, 928; (d) C. J. Ruffing and T. B. Rauchfuss, *ibid.* 1985, 4, 524.
- 46. R.J. Angelici and R.G. W. Gingerich, Organometallics 1983, 2, 89.
- 47. P. G. Eller and G. J. Kubas, J. Am. Chem. Soc. 1977, 99, 4346.
- 48. G. J. Kubas and R. R. Ryan, J. Am. Chem. Soc. 1985, 107, 6138.