
Parallel Computing 17 (1991) 1285-1302 1285
North-Holland

Performance of the Intel iPSC/860
and Ncube 6400 hypercubes *

T.H. D u n i g a n

Mathematical Sciences Section, Engineering Physics and Mathematics Dioision, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

Received March 1991

Abstract

Dunigan, T.H., Performance of the Intel iPSC/860 and Ncube 6400 hypercubes, Parallel Computing 17 (1991)
1285-1302.

The performance of the Intel iPSC/860 hypercube and the Ncube 6400 hypercube are compared with earlier
hypercubes from Intel and Ncube. Computation and communication performance for a number of low-level
benchmarks are presented for the Intel iPSC/1, iPSC/2, and iPSC/860 and for the Ncube 3200 and 6400. File
I /O performance of the iPSC/860 and Ncube 6400 are compared.

Keywords. Hypercubes; Intel iPSC/860; Ncube 6400; performance results; computation benchmarks; communi-
cation benchmarks.

1. Overview

1.1. Introduction

This report compares the results of a set of benchmarks run on the Intel i860-based
hypercube, the iPSC/860, and the Ncube 6400 with earlier results reported in [4] for older Intel
hypercubes (iPSC/1 and iPSC/2) and the first generation Ncube hypercube (Ncube 3200).
These hypercubes are descendants of the pioneering work done at Caltech [14]. A hypercube
parallel processor is an ensemble of small computers interconnected by a communication
network with the topology of an n-dimensional hypercube. Each processor, or node, has its
own local memory and communication channels to n other nodes. The processors work
concurrently on an application and coordinate their computation by passing messages.

We are interested in the performance of hypercubes for several reasons. First, our main area
of research is the development of algorithms for matrix computations on parallel computer
architectures. To produce algorithms that make effective use of a parallel architecture it is
necessary to understand the basic structure of the architecture and the relative performance and
capacities of the fundamental components - CPU, memory, communication (message passing),
and I /O. Second, some of our development work is done on hypercube simulators, both to
debug and to analyze our algorithms [5]. Performance results from real hypercubes enable us to
construct more accurate simulators. Finally, a set of benchmarks and performance results can
help us evaluate new implementations or architectures.

* The work was supported by the Applied Mathematical Sciences subprogram of the office of Energy Research, US
Department of Energy.

0167-8191/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

1286

Table 1
Hypercube configurations used in tests

T.H. Dunigan

Configurations for tests

iPSC/860 iPSC/1 iPSC/2 N6400 N3200

Number of nodes 128 64 64 64 64
Node CPU i860 80 286/287 80 386/387 32-bit 32-bit
Clock rate 40 MHz 8 MHz 16 MHz 20 MHz 8 MHz
Memory/node 8M 512K 4M 4M 512K
Nominal data rate 22 Mbps 10 Mbps 22 Mbps 20 Mbps 8 Mbps
Node OS NX v3.2 v3.0 NX v2.2 Vertex 2.0 Vertex v2.3
C compiler PG v2 Xenix 3.4 C-386 1.8.3A xucc v2.0 CF&G vl.0

In the remainder of this section, we summarize the hypercube configurations and programs
used in our test suite. Section 2 discusses the hypercube architectures in more detail, emphasiz-
ing the distinctive features of each implementation. The computational power and memory
capacity of the hypercubes and their message-passing performance are compared in sections 3
and 4, respectively. Section 5 examines the performance of the file system (I/O), including the
concurrent file system (CFS) of the iPSC/860 hypercube. Section 6 summarizes and reports
aggregate performance.

1.2. Test environment

Five commercially available 64-node hypercubes were used for our benchmark suite. We
have both Intel and Ncube 3200 hypercubes at Oak Ridge National Laboratory and have
access to a 64-node Ncube 6400 at Ames National Laboratory. The configurations utilized in
the tests are summarized in Table 1. In this report, ' iPSC/ I ' refers to the first generation Intel
hypercube, ' iPSC/2' refers to the second generation Intel hypercube, and 'iPSC/860' to the
new i860-based Intel hypercube. 'N6400' is used to denote the new Ncube hypercube, and
'N3200' refers to the first-generation Ncube.

The test programs were written in C (except where noted) and were run on the iPSC/1
hypercube in the first quarter of 1987. Tests of the iPSC/2 and Ncube 3200 hypercubes were
performed in the second quarter of 1988 and revised in the last quarter of 1990. The iPSC/860
and Ncube 6400 hypercubes were tested in the first quarter of 1991. The large model memory
option was used with the C compiler for the Intel iPSC/1 (-Alfu), and stack checking was
disabled for the iPSC/1 and Ncube 3200 C compilers. An optimization level of -02 was used
for C compilers for iPSC/860 and Ncube 6400. The test suite was selected for simplicity of

Table 2
Benchmark programs used in tests

Benchmark summary

Caltech
Sieve
Floatmath
Dhrystone
Whetstone
Malloc
Ring
Echo
Spincom

integer and floating point arithmetic operations + - * /
finding primes using integer arithmetic
double precision floating point arithmetic
integer arithmetic and functions
double precision floating point arithmetic and built-in functions
free memory test using 1 K malloc
Gray-code ring message passing
message echo
N iterations of a loop timed with simultaneous message routing

Performance of hypercubes 1287

implementation and widespread use, permitting us to implement the tests with few source
changes and to compare the results to other architectures reported in the literature. For the
computation tests, the call to the node clock subroutine and the code to send the result back to
the host were the only source-code changes made in porting the tests from one vendor to
another. Table 2 summarizes the test programs.

2 . C o n f i g u r a t i o n s

Each hypercube configuration consists of a hypercube attached to a host processor. The host
processor is used for program development and as an interface to the outside world for the
hypercube. A typical hypercube application program consists of one or more node programs
and usually a host program to provide input data and report results.

2.1. Intel

The first generation Intel hypercube, iPSC/1, consists of from 32 to 128 nodes attached to
an Intel 310 host processor. The host and node processors are 80286/80287 running at 8 MHz.
Each node has 512 Kb of main memory and is attached to the host via a global communication
channel. The iPSC/1 can be expanded to 4.5 Mb per node, and a vector processor option is
available as well. The host operating system is Xenix and supports the typical UNIX program
development environment. Since the host and node CPUs are the same, one compiler supports
both environments. Fortran and C are supported on the hypercube, and Lisp is supported with
the large memory option. The iPSC/1 hypercube is a single-user subsystem.

O.

o I q~
: [

30

25

20

15

10

single cached x '

Fo r t ran double

10,000 reps
stride I

I I I I I I I I
400 800 1200 1600 2000 2400 2800 3200

vector size

Fig. 1. i860 Fortran and assembler dot product performance.

1288 T.H. Dunigan

The node operating system supports message routing, asynchronous communications, and
multi-tasking within each node. A node-to-host logging facility is provided for application
debugging and diagnostics. Messages larger than 1024 bytes are broken into 1024-byte
segments. A node debugger is provided on the host as well as a simulator.

The second generation Intel hypercube, iPSC/2, consists of from 32 to 128 nodes attached
at an Intel 301 host processor. The host and node processors are 80386/80387 processors
running at 16 MHz, were each node processor has a 64 Kb cache memory. Each node has 4 Mb
of main memory, expandable to 16 Mb. Node 0 is attached to the host processor. The host
processor runs System V UNIX. Subcube allocation is supported, allowing multiple users to
access the hypercube. A debugger is also provided, and a vector processor option is available.

Node communication is supported by direct-connect routing modules on each node. Mes-
sages of 100 bytes or less travel as part of the route-acquisition protocol. The node operating
system supports multi-tasking, asynchronous communication, and remote I / O support to the
host system.

The iPSC/860 hypercube utilizes the same communication hardware as the iPSC/2, but a 40
MHz i860 RISC processor replaces the 80386/80387. The i860 has an 8 Kb data cache, 8 Mb
of main memory, and multiple arithmetic units, permitting multiple operations per cycle. The
pipe-lined floating point units are capable of a combined peak rate of 80 megaflops (32-bit) or
60 megaflops (64-bit). The present compilers are only achieving 15 megaflops, and even
hand-coded assembler routines may achieve only two-thirds of peak performance. Peak
performance is difficult to achieve because of various memory delays (cache miss, page-transla-
tion miss, DRAM access delays, etc.). Figure 1 compares the performance of a dot product in
single and double precision for both Fotran and assembler.

2.2. Ncube

The Ncube 3200 hypercube consists of from 4 to 1024 nodes attached to an 80286/80287
host. The node processor is a 32-bit chip that was designed by Ncube and runs at 8 MHz. The
chip contains both floating point and 10 communication channels. It is surrounded by 512 Kb
of memory. The processor chip is also used as the interface processor between the hypercube
and the host. The custom chip permits a large number of processors in a small form factor. For
example, a four node board is available for the IBM PC/AT. The hypercube may be divided
into logical subcubes for multi-user use [12].

The host operating system is 'UNIX-like' but still lacks many of the features of a mature
UNIX environment. Both C and Fortran compilers are provided along with a node-level
debugger. The node operating system supports message routing and asynchronous communica-
tion.

The Ncube 6400 is a 64-bit chip driven by an 80 MHz crystal supporting from I to 64 Mb of
memory. The chip contains a networking communication unit that supports 13 channels,
cut-through routing, and broadcast [11]. The host processor for our tests was a Sun 4 system.
Cross-comp•rs and linkers are provided on the Sun, along with utilities to initialize, load, and
debug the hypercube.

3. Computation benchmarks

3.1. Arithmetic tests

To compare our test results with earlier hypercube benchmarks performed at Caltech [9], we
implemented a series of tests to measure the arithmetic speeds of the CPU for integer and

Performance of hypercubes 1289

Table 3
Arithmetic operation times (microseconds)

Arithmetic times
microseconds

iPSC/860 iPSC/1 iPSC/2 N6400 N3200 VAX

INTEGER* 2 + 0.1 2.5 1.1 0.6 4.5 3.3
INTEGER*4 + 0.1 5.0 0.6 0.5 4.9 1.8
INTEGER* 2* 0.3 4.0 1.3 0.8 6.0 5.1
INTEGER*4* 0.3 36.5 1.5 0.8 6.3 2.4
REAL*4 + 0.1 38.0 5.5 0.8 16.6 7.1
REAL*8 ÷ 0.1 41.5 6.6 1.3 11.5 4.6
REAL*4* 0.1 39.5 5.9 0.8 18.5 9.3
REAL* 8" 0.1 43.0 7.0 1.5 13.5 6.5
REAL*4* + * + * 0.18 23.1 3.4 0.4 10.6 5.6
REAL*8* + * + * 0.05 24.1 3.8 0.7 7.8 4.4

floating point arithmetic. The time to perform a binary arithmetic operation and assignment in
a loop was measured for both single and double precision scalars in C. The time for the loop
overhead was subtracted, and the resulting time divided by the number of iterations to give a
rough estimate of time-per-operation. Table 3 shows the results of those tests. In the table,
Fortran notation is used for clarity to describe the data types; the tests were run in C.

For purposes of comparison, times for a DEC VAX 11/780 with FPA and running UNIX
4.3 bsd are included. The times illustrate both CPU speed and compiler differences. The last
two rows give the average operation time for a sum of three products. Such an expression
permits the arithmetic units to retain intermediate results and get improved performance. It
should also be noted that C requires that all floating point expressions be calculated in double
precision and that all integer expressions be calculated in the world size of the machine. The
default integer word size is 16 bits for the iPSC/1 and is 32 bits for the others. The degree to
which the compilers comply to the C requirement varies. For double precision floating point
computations, an Ncube 3200 node is roughly three times faster than an iPSC/1 node,
operating at 0.12 megaflops to the 80287's 0.04 megaflops. An 80387-based iPSC/2 node
operates at 0.29 megaflops. An i860 node is measured at 18 megaflops compared to 2.5
megaflops for the Ncube 6400.

3.2. Synthetic tests

The results from the arithmetic operation tests are consistent with the next level of tests
performed using a simple integer test of finding primes (sieve) and a sequence of dependent
floating point operations (floatmath). The times for 100 iterations of finding the primes from 1
to 8190 and for 256 000 repetitions of the double precision floating point arithmetic operations
are listed in Table 4. In the sieve, variables of type register int are used, which means 16-bit
arithmetic for the iPSC/1 and 32-bit arithmetic for the others.

Table 4 also shows the times for 50,000 iterations of the Dhrystone test. The test exercises
integer arithmetic, function calls, subscripting, pointers, character handling, and various
conditionals [15]. There are no floating point calculations. The times are from tests using the
register storage class of C. The test uses the type int, which means 16-bit arithmetic for the
iPSC/1 C compiler and 32-bit arithmetic for the others. The table also compares times for one
million Whetstone operations. The Whetstone test measures double precision floating point
performance, conditionals, integer arithmetic, built-in arithmetic functions, subscripting, and
function calls [2]. The iPSC/860 is three to thirteen times faster than the Ncube 6400 for the
computational kernels in Table 4.

1290

Table 4
Execution time in seconds for various test suites

T.H. Dunigan

Simple computation tests
seconds

iPSC/860 iPSC/1 iPSC/2 N6400 N3200 VAX

Sieve 0.06 29.3 5.7 0.41 21.4 13.6
Dhrystone 0.53 55.9 6.2 7.3 43.7 30.0
FIoatmath 0.41 66.3 11.6 1.3 15.2 10.3
Whetstone 0.12 5.6 0.8 0.4 2.5 2.2

Table 5
Node memory capacity and usage

Memory capacity per node
Kilobytes

iPSC/860 iPSC/1 iPSC/2 N6400 N3200

Total 8192 512 4096 4096 512
Available 7 299 366 3 717 3 831 453

The double-precision version of LINPACK [DON91] and the Livermore Loops were used to
compare the performance of Fortran. Using the pgf77 v2.0 with the -03 option, the iPSC/860
had a LINPACK rating of 6.0 megaflops and a harmonic mean of 5.7 megaflops on the
Livermore Loops. The Ncube 6400 had a LINPACK rating of 0.5 megaflops and a Livermore
harmonic mean of 0.6 megaflops using the -02 option.

3.3. Memory utilization

The amount of memory available to an application on a node was measured using the
malloc() function of C. The test program requested memory in kilobyte increments. Table 5
shows the amount of memory available to the application program compared to the total
amount of physical memory for the test configuration.

The difference between the total and available memory gives a rough measure of the amount
of memory required by the node for its operating system, message buffers, and C run-time
environment. For the 80286 architectures, memory is managed in 64 Kb segments, so there may
be additional small chunks of free memory available.

For any computer system, the amount of main memory is a critical metric, and there never
seems to be enough. For a hypercube, the amount of node memory can determine the size of
problem that might be solved. Shortage of memory is paid for in problem-solution time (due to
the I / O or message-passing delays) and in programmer time (due to the additional coding
required to multiplex the node memory).

4. Communication benchmarks

4.1. Echo tests

To measure communication data rates, an echo test was constructed. A test node sends a
message to an echo node. The echo node receives the message and sends it back to the test

Performance of hypercubes 1 2 9 1

(0

2500

2000

1500

1000

500

N N c u b e 6400

n Ncube 3200

R IPSC/860

2 IPSC/2

I IPSC/1

_ _ 1 hop

. . . . 6 hops

4

/ . " ~ / /

/ " / /

I / / /
• / / / "

6 8
message size (log2 bytes)

Fig. 2. One-hop data rates.

/
/

J
/

/
/

/
/

/

/ /
/ /

/

/

I I

10 12

node. The test node measures the time to send and receive the message N times. Sendw/recow
were used on the Intel iPSC/1, csend and creco were used on the iPSC/860 and iPSC/2, and
nwrite/nread were used on the Ncube. Figure 2 shows the data rates averaged over 100
repetitions for the five hypercubes using various message sizes, where the echoing node is one
hop away. For a message size of 8192 bytes, the hypercubes had the following utilization of the
peak hardware bandwidth. The Ncube 3200 has a peak data rate of about 380 K b / s or about
38% of its bandwidth. The Ncube 6400 has a peak data rate of about 1558 K b / s or about 62%
of its bandwidth. The iPSC/1 has a peak data rate of about 505 Kb / s or about 40% of its
maximum~bandwidth, and the iPSC/2 has a peak data rate of about 2247 K b / s or about 81%
of its bandwidth. The iPSC/860 has a peak data rate of 2605 Kb / s or about 93% of its
bandwidth. Also evident in the curve for the iPSC/1 is the distinct discontinuity at the
1024-byte message size. Recall from section 2 that the iPSC/1 breaks messages larger than
1024 bytes into 1024-byte segments. The iPSC/860 curve illustrates the faster message-passing
for messages less than 100 bytes. The tables in Appendix A detail the data exhibited in the
figures.

The dotted lines in Fig. 2 show the data rates when messages are echoed from a node six
hops away. (The tables in Appendix A give data rates for fewer hops.) The curves for the
Ncube 3200 and iPSC/1 are what would be expected from a store-and-forward network, with
the data rate decaying in proportion to the number of hops. The Ncube 6400, iPSC/2, and
iPSC/860 hypercubes use special routing hardware, relieving the node CPU of any routing
overhead and greatly reducing the penalty for multi-hop messages. For the Ncube 6400, each
additional hop adds about two microseconds to the transmission time. For the iPSC/860, each
hop adds about eleven microseconds for messages less than 100 bytes, and about 33 microsec-

1292 T.H. Dunigan

350

300

250

200

150

100

50

100000

01
" 0 ¢-

0
0

U)

2
0

E

ncube 6400: t = 154 + 0.6*n + (h-1)'2 7

1

J

J

I1<100: t = 59 + 0 . 4 ° n + (h -1) '11
IPSC/860: n:.100: t = 156 + 0.4"n + (h-1)'33

hops

~ 6

~ 4

~ 2

I ! I I I I
20 40 60 80 1 O0 120

Bytes

Fig. 3. Echo-test message latency.

o l
o

m
v

10000

1000-

~ R - - - - - - R

~ ~ N_ ~ _ _ _ _ _ . N ~ _ ~ N ~ N

100

10

I IPSC/1
2 IPSC,/2
R IPSC/860
N Ncube 6400
n Ncobe

I I I ~ ;
4 6 8 1 0 1 2

message size (log2 bytes)

Fig. 4. Node-to-self data rates.

Performance of hypercubes 1293

onds for messages greater than 100 bytes. Figure 3 shows the average message latencies for the
Ncube 6400 and iPSC/860. With the second generation routing hardware, the nodes can
almost be treated as if they were directly connected.

Measuring the time it takes a node to send a message to itself can give a rough estimate of
the amount of software overhead involved in message management, since no actual data
transmission is required. Figure 4 shows the data rates for a node sending a message to itself
for different size messages. The overhead in passing a message from one node to another is
made up of several components, some fixed and some proportional to the size of the message.
Typical components are: the application gathering the data into a contiguous area, overhead in
performing the call to the message-passing subroutine, context switch to supervisor mode,
buffer allocation, copying the user data to the buffer area, constructing routing and error
checking envelopes, obtaining the communication channel, DMA transfer with memory cycle
stealing, and interrupt processing on transmission completion. The receiving node must obtain
buffers for message receipt, usually initiated by an interrupt request, receive the data via DMA
cycle stealing, copy the data to the user area, or, if it is a message to be forwarded and if
routing is done with software, obtain a channel and initiate a DMA output request. To this is
added the delay due to the actual transmission on the hardware medium, delays due to
contention for the media, and delays due to synchronization and error checking acknowledge-
ments. For segmented address spaces, like the 80286, additional overhead may be incurred for
segment crossings. One or both of the DMA's may directly access the user data area,
eliminating a data copy operation.

Empirically, for all five hypercubes, the communication time for a one-hop message is a
linear function of the size of the message. That is, the time T to transmit to one-hop message of
length N is

T = a + flN
where a represents a fixed startup overhead and 13 is the incremental transmission time per
byte. Table 6 shows the startup and transmission time coefficients that were calculated from a
least-squares fit of the echo data for single-hop messages. As we have seen, actual transmission
times are affected by message segmentation, buffer management, and acknowledgement policy.
The fixed message-passing times for small messages on the iPSC/1 system suggest that
messages are being padded up to some minimum packet size of 32 or 64 bytes. The Intel
iPSC/2 and iPSC/860 have a smaller startup time for messages of 100 bytes or less (e.g. a
startup time of only 75 microseconds for the iPSC/860).

We also used the echo test to measure the performance of host-to-node Communications.
The test was performed with the comer node (node 0) for the iPSC/860, iPSC/2, and Ncube
machines. Node 0 was also used for the iPSC/1, though all iPSC/1 nodes are attached to a
global communication channel with the host. Figure 5 shows host-to-node data rates for
various message sizes. The host-to-node performance of the iPSC/1 is nearly six times slower
than Ncube 3200 and is nearly ten times slower than the iPSC/I ' s node-to-node speeds for
large messages. The iPSC/2 and iPSC/860 reach host-to-node speeds of nearly one million
bytes per second. The relative performance of a vendor's node-to-node and host-to-node

Table 6
Least-squares estimate of communication coefficients

Coefficients of communication
microseconds

iPSC/860 iPSC/1 iPSC/2 N6400 N3200

Startup (a) 136 (75) 862.2 697 (390) 200 383.6
Byte transfer (fl) 0.4 1.8 0.4 0.6 2.6

1294 T.H. Dunigan

m
v

1000

800

600

400

200

I IPSC/1
2 IPSC/2
R IPSC/860
n Ncube
N Ncube 6400

4 6 8 10 12
message size (log2 bytes)

Fig. 5. Host-to-node data rates.

communications clearly should affect the extent to which the host participates in a problem
solution.

4.2. Routing overhead

Two tests were constructed to measure the interaction of computat ion with communication
on the Intel and Ncube hypercubes. In the first test, an echo test was run between two nodes
that were two hops apart. The routing node between the two nodes was running an application
level program that was executing an infinite loop. In fact, for both Intel and Ncube hypercubes,
the routing algorithm is such that the return path of the echo message is different from the
initial message path, thus two routing nodes participate. With both routing nodes running the
infinite loop, data rates for the two-hop echo were calculated for various message sizes. The
data rates were the same as measured when the routing nodes were idle. Thus the computing an
application might be doing on a node will have no effect on the communicat ion throughput of
the node. This is due to the high priority given to communication interrupts on the first
generation hypercubes. On the Ncube 6400, iPSC/2, and iPSC/860, routing is handled by a
dedicated communication processor on each node.

A second test was constructed to measure the effect that routing messages had on node
computing speed. First, the time for a node program to spin a loop N times was measured with
no communications. The node program was then run on the routing nodes of the two-hop echo
test. The execution times for the loop were measured for various message sizes of the echo test.
Figure 6 shows the degradation in computing speed due to routing for various message sizes for

¢ -

0

_o

40

30

20

10

0

Performance of hypercubes

iPSC/1

I

X X X X X X X X ~ X - - - - - - N

t I I I 1

4 6 8 10 12
message size (log2 bytes)

Fig. 6. A p p l i c a t i o n s l o w d o w n d u e to rou t ing .

1295

both the Ncube and Intel hypercubes. The vertical axis is the percentage the loop program
slowed down from its speed with no communication. For small messages, the iPSC/1 and
Ncube 3200 hypercubes exhibit about a 30% loss in 'application' computation speed. As the
message size increases, the interrupt rate from incoming messages decreases, and the slowdown
diminishes. For the iPSC/1 hypercube, the interrupt rate increases again for messages larger
than 1024 bytes, since the iPSC/1 breaks messages into 1024-byte packets. However, the
Ncube 6400, iPSC/2, and iPSC/860 show no loss in computation speed, since routing is
handled by independent communication hardware.

4.3. Contention

All of the communication data rates that we have reported have been measured on idle
hypercubes. In actual applications, other message traffic may compete for the communication
channels, either from the application itself or from applications in other subcubes. Other
sub-cubes may need to use another sub-cube's communication channels to reach the host
processor, I / O processor, or other service nodes. The iPSC/2, iPSC/860, and Ncube 6400 use
circuit-switching to manage the communication channels. When a message is to be sent, a
header packet is sent to reserve the channels required. When this 'circuit' is established, the
message is transmitted, and an end-of-message indicator releases the channels.

A program was developed to measure the effect of contention on the data rate of a
communication channel. The program has node 0 continuously send messages to node 7. The
messages from node 0 to node 7 pass through node 1 and node 3. The amount of load
presented by node 0 is varied by selecting various message sizes. With a communication load
from node 0 to node 7, node 1 then sends a stream of messages to node 3. Node 3 measures the

2500

2000

1500

1000

500

I I I I

4 6 8 10 12
message size (log2 bytes)

0 0% load

x 7% load

y 47% load

z 92% load

T.H. Dunigan

. ~SJ

/ Y

1296

Fig. 7. Data-rates for the iPSC/860 with channel contention.

In ,¢

2500

2000

1500

1000

500

0 0% load

x 0 % , . ,

4 6 8 10 12
message size (log2 bytes)

Fig. 8. Data-rates for the Ncube 6400 with channel contention.

Performance of hypercubes 1297

In

5 -
6

/

%

/ / /
/ /

- - - ~ c u b o S ~ 0 / / / / / , t / ~
/ /

- - I P S C I 8 6 0 / / /
/ t

i[/

III I1 \ \ ~

/ // - - -

I/I 11/ /11~

41" data rate for concur ren t sends from 1,2,4, and s neighbors

I I I I

4 6 8 10 12
m e s s a g e s i ze (log2 bytes)

Fig. 9. Receive data rates for concurrent sends.

data rate of messages arriving from node 1 under various loads and for various message sizes.
Both the iPSC/860 (Fig. 7) and the Ncube 6400 (Fig. 8) exhibit the expected behavior, as the
load from node 0 to 7 increases, the data rate from node 1 to node 3 decreases. The effect of
contention can vary from run to run and can slow down an application. Bokhari [1] reports
more extensive contention measurements on the iPSC/860.

4.4. Concurrent communication

The message-passing performance of a node may be improved by utilizing more than one of
its communication channels at the same time. A fan-in test was constructed to measure the
aggregate data rate of a single node when one or more of its nearest neighbors are sending it
messages. Figure 9 shows the aggregate receive data rate for various size messages when 1, 2, 4,
and 6 nearest neighbors send concurrently. The iPSC/860 shows only a slight improvement in
data rate as more neighbors send messages. The data rate is still bound by the maximum
single-channel data rate of 2.8 million bytes per second. Even though the iPSC/860 channels
can operate concurrently, only one channel can be active with the node memory buffers at any
given time [13]. In contrast, the data rate measured by the receiving Ncube 6400 node increases
markedly as additional nearest neighbors transmit to it concurrently.

5. File sys tem benchmarks

Most applications require some access to secondary storage. Some computationally intensive
applications, such as mapping the human genome or global climate modeling, require fast

1298 T.H. Dunigan

G)

m

500

450

400

350

300

250

200

150

100

50

8

+

. " ...::::" Ncube 6400 to Sun host read of 1M, 4M and 8M files
.

-- ' i J ' "

....... ~ /
. . j

. . . y

.41.:"

"~:;;" IPSC4860 to NFS (thru SRM) read of 1M, 4M and 8M flies

¥
1 I I I

4096 8192 12288 16384
block size

Fig . 10. N o d e - t o - h o s t r e a d t h r o u g h p u t .

access to large amounts of secondary storage. Secondary storage for hypercube systems is
usually provided through the attached host processor. The run-time environment on the Intel
and Ncube hypercubes permit the application programmer to use the conventional I / O
constructs of C and Fortran to read and write files on the host processor. Figure 10 shows the
data rates for reading various sized host files from a hypercube node on the iPSC/860 and
Ncube 6400. The iPSC/860 host used in the test was an Intel 310, an 80386-based processor
with 8 million bytes of memory running System V version 3.2 and NFS. Data rates for reading
from the local 340 million byte SCSI drive are much worse than reading from an NFS-mounted
file system (mounted on a Sun 4/390). The Ncube 6400 host used in the test was a Sun 4/390.
Performance is affected by the host-to-node communication speed, file management (buffering,
blocking), and disk speed.

To avoid accessing files from or through the host processor, both the Intel iPSC/2 and
iPSC/860 support a concurrent disk subsystem attached directly to the hypercube. The
concurrent file system (CFS) consists of one or more I / O nodes, each with one or more disks.
The I / O nodes are 80386-based processors with 4 Mb of memory and a SCSI disk interface,
providing roughly 500 Mb of disk storage per drive. Each I / O node is attached to one of the
hypercube compute nodes. A file created on the subsystem is striped across all of the drives
using 4 Kb blocks. The node program can read and write files to the I / O subsystem in the
same manner used to access files on the host processor.

Figure 11 shows the aggregate read throughput of CFS when one or more compute nodes are
reading different files concurrently using one or more I / O nodes. The read throughput of CFS
from a single node is an order of magnitude faster than the node-to-host file system data rates.
The read throughput for a single node decreases when multiple nodes are reading from the

f.)
q)

m

4

3

Concurrent reads of 16M flies

from 1,2,4,8,1G(X) compute nodes
(1 disk per I/o node, blockslza=ak)

Performance of hypercubes 1299

I I I L I

2 4 6 8 10
number of i/o nodes

Fig. 11. CFS read throughput.

CFS. Furthermore, when the number of compute nodes doing I / O exceeds the number of I / O
nodes, aggregate throughput decreases as well. Throughput improves with larger block sizes,
and write times improve if the file space is pre-allocated with lsize().

6. Conclusions

The Ncube 6400 and Intel iPSC/860 show marked performance improvements over the
earlier hypercubes, providing an increase in both communication and computat ion speeds and
providing increased memory capacity and high-speed routing. Table 7 summarizes the perform-
ance characteristics of the five hypercubes. The data rates represent the 8192-byte transfer

Table 7
Summary performance figures

Figures of merit

iPSC/860 iPSC/1 iPSC/2 N6400 N3200

Data rate (KB/s) 2 605
Megaflops 18
8-byte transfer time (#s) 80
8-byte multiply time (#s) 0.08
Comm./Comp. 1000

504 2 247 1 558 381
0.04 0.29 2.5 0.14

1120 390 161 401
43.0 6.6 1.5 13.5
26 59 107 30

1300 T.H. Dunigan

o
v

e, t
o m

100

10

IPSCJ860

~ N - - - - - Ncube 6400 - - N ~ hi-- 7.4 N

IPSC¢2
~2__.___._-.-- 2 ~ 2 2 2

Ncube 3 2 0 0 ~

IPSC/I

200 400 600
matrix dimension

1.5 2 2 2

I I • .114

800 1000

Fig. 12. Cholesky factorization megaflops for n × n matrix (16 nodes).

speeds, and the megaflops rate is calculated from compound expression results of the Cahech
suite. The 8-byte transfer time is based on the 8-byte, one-hop, echo times. The structure of a
hypercube algorithm will be dictated by the amount of memory available on a node, the
host-to-node communication speed, and the ratio of communication speed to computation
speed. As can be seen from the table, the Ncubes, iPSC/1, and iPSC/2 have roughly equivalent
communication-to-computation ratios. (The ratio was calculated using the 8-byte transfer and
multiply times.) The ratio on the iPSC/860 (due to its much faster CPU) suggests the need for
coarser grained parallelism.

As a supplement to the component performance results presented so far, Figure 12
illustrates the aggregate performance in megaflops of the five hypercube systems in performing
a single-precision Cholesky factorization of an n × n matrix in C [7]. The Ncube 3200 system
was a 7 MHz system with only 128 Kb per node. The aggregate performance for a 1000 × 1000
matrix using 16 nodes was 45.8 megaflops for the iPSC/860 compared with 7.4 megaflops for
the Ncube 6400. As another aggregate test a parallel, double precision, Fortran implementation
of SLALOM (a program to solve a radiosity problem that includes file I / O [8]) ran at 15.6
megaflops on a 64-node Ncube 6400 and at 134.8 megaflops on a 64-node iPSC/860. The
performance of these applications is consistent with component timings in the preceding
sections.

Performance of hypercubes 1301

Appendix A Data rate tables

Intel iPSC/860 communication speeds
K b / s

Length Host Self 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

8 2.4 400 100.0 94.1 84.2 76.2 69.6 64.0
16 4.6 800 200.0 188.2 160.0 152.4 133.3 123.1
32 9.8 1600 376.5 336.8 304.8 266.7 256.0 237.1
64 20.7 3 200 640.0 581.8 533.3 492.3 457.1 412.9

128 26.9 5120 581.8 512.0 449.1 412.9 365.7 341.3
256 52.2 10240 914.3 853.3 764.2 701.4 640.0 602.4
512 105.6 17077 1 365 .3 1280.0 1 177.0 1 101.1 1034.3 966.0

1024 110.7 29 257 1780.9 1706.7 1612.6 1539.9 1462.9 1412.4
2048 369.0 37 236 2111.3 2058.3 1988.4 1941.2 1869.3 1836.8
4096 535.4 48188 2423.7 2388.3 2347.3 2301.1 2269.3 2232.2
8192 1043.6 49 649 2 604.8 2 576.1 2 556.0 2 528.4 2 509.0 2486.2

Ncube 6400 communication speeds
K b / s

Length Host Self 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

8 0.8 134.4 49.8 49.2 48.3 47.9 46.9 46.8
16 2.1 265.9 98.0 97.3 95.4 93.9 93.3 91.9
32 4.6 515.5 183.1 181.2 179.2 177.3 174.8 172.4
64 9.3 980.4 324.7 323.6 320.5 315.5 313.5 309.6

128 18.1 1801.8 542.0 537.6 530.5 529.1 520.8 518.1
256 31.5 3100.8 809.7 804.8 796.8 792.1 792.1 782.8
512 68.5 4 907.9 1084.0 1073.8 1066.7 1066.7 1049.9 1054.0

1024 112.4 6 866.9 1289.3 1287.2 1274.9 1283.1 1275.9 1268.8
2 048 257.5 8 625.3 1426.7 1426.6 1426.5 1426.5 1420.3 1423.3
4096 389.9 9 861.3 1509.4 1512.3 1510.2 1509.1 1505.5 1508.7
8192 523 .7 10631.2 1558.1 1556.4 1556.2 1554.6 1554.3 1553.6

Intel iPSC/2 communication speeds
K b / s

Length Host Self 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

8 1.9 26.2 20.5 20.0 19.5 18.8 18.6 18.2
16 3.9 42.1 40.5 40.0 39.0 37.6 36.8 36.3
32 7.9 84.2 80.0 79.0 78.0 74.4 73.5 71.9
64 15.8 168.4 160.0 156.1 152.4 147.1 145.4 143.8

128 21.7 232.8 172.9 166.2 166.0 153.3 148.8 143.8
256 43.4 441.4 324.1 316.0 306.5 289.3 282.8 275.3
512 66.0 812.7 581.8 568.9 547.6 527.8 514.6 499.5

1 024 139.2 1 402.8 961.5 939.5 922.5 886.6 867.8 849.8
2 048 301.1 2133.4 1427.2 1 397.9 1 379.1 1 338.6 1 317.0 1296.2
4096 546.1 2 989.8 1 887.6 1 870.3 1 845.0 1 812.4 1788.7 1773.2
8192 910.2 3608.8 2247.5 2238.3 2220.0 2193.3 2181.6 2164.3

Intel iPSC/1 communication speeds
K b / s

Length Host Self 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

8 0.7 7.6 7.1 5.0 3.7 2.9 2.4 2.1
16 1.3 15.3 14.2 10.0 7.4 5.8 4.9 4.2
32 2.7 30.5 28.4 19.7 14.5 11.5 9.6 8.2
64 5.3 70.0 55.6 37.1 28.1 22.3 18.4 15.8

128 10.4 116.4 108.9 70.1 51.7 41.3 34.4 29.3
256 19.8 222.6 196.9 124.9 91.4 72.1 59.9 50.9
512 36.6 409.6 320.0 202.8 147.3 115.7 95.2 80.9

1024 63.2 660.7 481.9 292.6 211.1 165.1 135.6 114.7
2048 71.4 835.9 494.5 405.5 318.7 263.4 216.1 190.5
4096 79.8 963.8 501.0 489.1 421.1 369.0 321.9 296.8
8192 82.7 1 050.1 504.1 546.1 501.4 462.8 424.4 401.1

1302 T.H. Dunigan

Ncube 3200 communication speeds
Kb/s

Length Host Self 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

8 7.4 30.9 19.8 13.5 10.2 8.2 6.9 5.9
16 14.5 48.9 37.8 25.7 19.5 15.7 13.1 11.3
32 28.1 107.9 68.5 46.9 35.7 28.8 24.1 20.7
64 51.7 185.2 116.3 80.0 61.1 49.4 41.4 35.7

128 91.1 289.0 179.1 124.0 95.0 76.9 64.6 55.7
256 147.2 401.8 245.5 171.3 131.4 106.6 89.9 77.5
512 207.3 498.4 300.2 211.3 162.5 132.3 111.5 96.3

1024 265.5 565.8 338.2 238.8 184.5 150.3 126.8 109.7
2048 303.3 607.1 361.5 255.7 197.8 161.3 136.2 117.9
4096 334.5 630.5 373.8 264.9 205.2 167.5 141.4 122.4
8192 349.7 642.6 380.6 269.6 209.2 170.7 144.2 124.8

References

[1] S. Bokhari, Communication overhead on the Intel iPSC-860 Hypercube, ICASE Interim Report 10, NASA
Langley, 1990.

[2] H.J. Curnow and B.A. Wichman, A synthetic benchmark, Comput. J. 19 (1976) 87-93.
[3] J. Dongarra, Performance of various computers using standard linear equations software in a Fortran environ-

ment, University of Tennessee, CS-89-85, January 1991.
[4] T.H. Dunigan, Performance of the Intel iPSC/860 Hypercube, Tech. Rept. ORNL/TM-11491, Oak Ridge

National Laboratory, Oak Ridge, TN, 1990.
[5] T.H. Dunigan, A message-passing multiprocessor simulator, Tech. Rept. ORNL/TM-9966, Oak Ridge National

Laboratory, Oak Ridge, TN, 1986.
[6] T.H. Dunigan, Hypercube clock synchronization, Tech. Rept. ORNL/TM-11744, Oak Ridge National Labora-

tory, Oak Ridge, TN, 1991.
[7] G.A. Geist and M.T. Heath, Matrix factorization on a hypercube multiprocessor, in: Hypercube Multiprocessors

1986, M.T. Heath, ed. (SIAM, Philadelphia, 1986) 161-180.
[8] J. Gustafson, personal correspondence, Ames Lab, 1991.
[9] A. Kolawa and S. Otto, Performance of the Mark II and Intel Hypercubes, in: Hypercube Multiprocessors 1986,

M.T. Heath, ed. (SIAM, Philadelphia, 1986) 272-275.
[10] Intel, iPSC User's guide, Intel 17455-03, Portland, Oregon, October, 1985.
[11] Ncube, Ncube 6400 processor manual, Ncube V1.0, Beaverton, OR, 1990.
[12] Ncube, Ncube handbook, Ncube, VI.1, Beaverton, OR, 1986.
[13] S.F. Nugent, The iPSC/2 direct-connect communication technology, in: Proc. Third Hypercube Conf. CACM

(1988) 51-60.
[14] C.L. Seitz, The cosmic cube, Commun. ACM 28 (1985) 22-33.
[15] R. Weicker, Dhrystone: a synthetic systems programming benchmark, Comrnun. ACM 27 (1984) 1013-1030.

