
1

Hub Miner User Manual

Hubness-aware Machine Learning for Intrinsically

High-dimensional Data

Written and Maintained by:
Nenad Tomašev

Institute Jožef Stefan
Artificial Intelligence Laboratory

Jamova 39, 1000 Ljubljana, Slovenia
nenad.tomasev@gmail.com

October 2014

Short contents

Short contents · 2

Contents · 3

List of Figures · 5

List of Tables · 8

1 Preface: What is Hub Miner? · 9

2 Motivation: Why yet another library? · 11

3 Building Hub Miner: Dependencies · 15

4 Supported Data Formats · 17

5 A Quick Guide to the Experimental Framework · 19

6 The Data Model · 37

7 Hubness-aware Implementations · 45

8 Code Examples: Using Hub Miner for Data Analysis · 53

9 Image Hub Explorer · 59

10 Overview of Hub Miner Packages · 69

11 Portability · 85

12 Scalability · 87

13 Plans for Future Releases · 89

Bibliography · 91

2

Contents

Short contents 2

Contents 3

List of Figures 5

List of Tables 8

1 Preface: What is Hub Miner? 9

2 Motivation: Why yet another library? 11
2.1 Relevance of Data Hubness for Data Analysis 11

3 Building Hub Miner: Dependencies 15

4 Supported Data Formats 17

5 A Quick Guide to the Experimental Framework 19
5.1 Batch Classifier Evaluation 19

5.1.1 OpenML Compatibility 23, 5.1.2 Viper Charts for Visualizing Classifica-
tion Results 25

5.2 Batch Clustering Evaluation 28
5.3 Batch Hubness Analysis .. 31

6 The Data Model 37

7 Hubness-aware Implementations 45
7.1 Classification . 45
7.2 Clustering . 47
7.3 Metric Learning . 48
7.4 Instance selection .. . 50

8 Code Examples: Using Hub Miner for Data Analysis 53

9 Image Hub Explorer 59
9.1 Preparing the Data for Visualization 61
9.2 Visualization and Interactive Analysis 62

3

4 CONTENTS

9.2.1 Data Overview Screen 62, 9.2.2 Class View 63, 9.2.3 Neighbor View 64
, 9.2.4 Feature Visualization and Assessment Panel 66, 9.2.5 Search and Rank-
ing 67

10 Overview of Hub Miner Packages 69
10.0.6 configuration 69, 10.0.7 data.generators 69, 10.0.8 data.imbalance 69
, 10.0.9 data.neighbors 69, 10.0.10 data.neighbors.hubness 70,
10.0.11 data.representation 71, 10.0.12 data.structures 74, 10.0.13 di-
mensionality_reduction 74, 10.0.14 distances.primary 74, 10.0.15 dis-
tances.secondary 74, 10.0.16 distances.sparse 74, 10.0.17 dis-
tances.kernel 74, 10.0.18 distances.concentration 75, 10.0.19 dis-
tances.analysis 75 , 10.0.20 draw 75 , 10.0.21 feature 75 ,
10.0.22 filters 75 , 10.0.23 graph 75 , 10.0.24 gui.images 76,
10.0.25 gui.maps 76, 10.0.26 gui.synthetic 76, 10.0.27 images.mining 77
, 10.0.28 ioformat 77, 10.0.29 learning.supervised 79, 10.0.30 learn-
ing.supervised.evaluation 79, 10.0.31 learning.supervised.meta 79,
10.0.32 learning.supervised.methods 79, 10.0.33 learning.unsupervised 80
, 10.0.34 learning.unsupervised.evaluation 80, 10.0.35 learn-
ing.unsupervised.methods 80, 10.0.36 learning.unsupervised.outliers 81,
10.0.37 linear 81, 10.0.38 networked_experiments 81, 10.0.39 optimiza-
tion.stochastic 81, 10.0.40 preprocessing.instance_selection 82, 10.0.41 prob-
ability 82 , 10.0.42 sampling 82, 10.0.43 statistics 82, 10.0.44 util 82,
10.0.45 visualization 83

11 Portability 85

12 Scalability 87

13 Plans for Future Releases 89

Bibliography 91

List of Figures

1.1 Hub Miner logo. .. 9

2.1 The change in the neighbor occurrence distribution shape with increasing dimen-
sionality, in case of Gaussian mixture data. The increasingskewness results in most
data points becomingorphansand a small number ofhubsin the long tail of the
distribution dominates the analysis. 12

2.2 An example of a bad hub in the quantized SIFT feature representation, a detrimental
center of influence. Neither of the reverse neighbors of the selected image belongs
to the same class as the image itself, so its occurrences induce label mismatches
and are semantically inconsistent. 13

5.1 Hub Miner experimental set-up for classification experiments. 20
5.2 An example of a classification configuration file. While most options are ’on’ in this

example, in practice a user would normally only use some of them. The example
merely shows that they can all in principle be combined and that all stages can be
plugged in and operate together. 21

5.3 An example of the uploaded run information in OpenML. 25
5.4 An example of the uploaded run performance measures in OpenML. 26
5.5 An example of between-classifier comparisons in OpenML.. 26
5.6 An example of a visualization of classification results in form of a lift chart, as

generated by Viper Charts. These results show the classification performance of
kNN and NHBNN on the ionosphere UCI dataset, fork = 5. NHBNN is given in
red andkNN in blue. 27

5.7 Example visualizations on ionosphere UCI data fork = 5 of classification perfor-
mance ofkNN and NHBNN from within Hub Miner framework. NHBNN is given
in red andkNN in blue. 28

(a) Kendall curve . 28
(b) PR Space . 28
(c) Rate-driven curve . 28
(d) ROC Curve . 28
(e) Recall-Precision curve .. . 28

6.1 The basic Hub Miner data model. 37

7.1 Interaction between norm and hubness, in low- and high-dimensional scenarios. . . 47
(a) Correlation between norm and hubness ford = 5 in Gaussian i.i.d. data. . . . 47

5

6 List of Figures

(b) Correlation between norm and hubness ford = 100 in Gaussian i.i.d. data. . 47
7.2 Illustrative example. The red dashed circle marks the centroid (C), yellow dotted

circle the medoid (M), and green circles denote two elements of highest hubness
(H1, H2), for neighborhood size3. In this particular example, it is clear that select-
ing hubs as cluster prototypes would go directly to the centers of local sub-groups
and speed up convergence. .. 48

7.3 Hubness-guided search for the best cluster hub-configuration in global hubness-
proportional clustering on Iris data. 49

(a) k=1 . 49
(b) k=10 . 49

7.4 An illustrative example of how secondary distances (simcoss andsimhubs) af-
fect the consistency of the reversek-nearest neighbor sets in image data and the
consistency of hub occurrences in particular. 50

7.5 The modified instance selection pipeline. An unbiased prototype occurrence profile
estimator is included between the instance selector and a huness-aware classifier. It
ought to provide more reliable hubness estimates to the hubness-aware occurrence
models. In the example we see that pointA is a neighbor to three other points
(X ,Y ,Z), but only one of them gets selected. Hence, some occurrenceinformation
is irretrievably lost. 51

9.1 The typical Image Hub Explorer use case. 60
9.2 An overview of several basic Image Hub Explorer functions. 60
9.3 The Data Overview screen of Image Hub Explorer: Visualizing the major image

hubs via multi-dimensional scaling. 63
9.4 The Class View of Image Hub Explorer: Examining point type distributions and

centers of influence for each class separately. 64
9.5 The Neighbor View of Image Hub Explorer: Exploring the nearest neighbor (NN)

and reverse nearest neighbor (RNN) lists and visualizing localkNN subgraphs. . . 64
9.6 An example of a bad hub in the quantized SIFT feature representation, a detrimental

center of influence. Neither of the reverse neighbors of the selected image belongs
to the same class as the image itself, so its occurrences induce label mismatches
and are semantically inconsistent. The same image has an equally inconsistent
occurrence profile in the quantized SURF feature representation, but it is not a hub
there, as it does not occur very often. On the other hand, the displayed image never
occurs as a neighbor in the quantized BRIEF feature representation, for the same
neighborhood size ofk = 5. 65

(a) SIFT . 65
(b) SURF . 65

9.7 Individual visual words are displayed on top of the selected image and colored
according to their overall usefulness and semantic consistency. This helps in iden-
tifying the critical regions in the images, those that contribute to making good class
distinctions and those that represent textural patterns that might occur in many dif-
ferent image classes. .. 66

(a) A regularly displayed selected image. 66
(b) An overall visualization of the critical feature regions. 66
(c) A visualization of a single visual word, one that is most beneficial for object

recognition of this image type. .. 66

List of Figures 7

9.8 The Search screen of Image Hub Explorer. Apart from supporting the basic query
functionality, the system offers label suggestions based on the output of several
kNN classification models, as well as a hubness-aware secondary re-ranking pro-
cedure. 67

10.1 Visualizing HIKNN prediction landscape in UCI Vehicledata, in 3 dimensions. For
each class, two views are generated for each axis, one for each side of the cube that
contains the projected data. 72

(a) xy-negative direction, first class. .. . 72
(b) xy-negative direction, third class. .. . 72
(c) xy-positive direction, third class. 72
(d) zx-negative direction, first class. .. . 72

10.2 Basic hub visualizations where node size corresponds to the neighbor occurrence
frequency. When comparing the two given single-cluster synthetic Gaussian exam-
ples, consequences of high data dimensionality become apparent, as a small number
of dominant hub points emerge. 73

(a) Single cluster,d = 3, k = 1. 73
(b) Single cluster,d = 100, k = 1. 73
(c) Multiple clusters,d = 5, k = 100. 73

10.3 Visualization of SIFT feature clusters in Image Manipulator. SIFT features on an
image are clustered and the clusters are drawn in different colors. Clusters can
be represented as ellipses, where the axes follow the principal components of the
clusters. 76

(a) SIFT features in the image, clustered. 76
(b) SIFT features in the image, represented as ellipses. 76

10.4 Visualization of spatially inconsistent and potentially anomalous hub sensor mea-
surements via GeospatialSensorHubnessDrawer. The redness of a node corre-
sponds to the spatial inconsistency. 77

(a) Wind speed anomalous hub measurements. 77
(b) Water temperature anomalous hub measurements. 77

10.5 Probability maps inferred fromkNN and HIKNN on synthetic data, fork = 5. Each
pixel was classified by the algorithms and assigned a probability value of belonging
to each of the two classes. Visualization was generated by Visual2DdataGenerator
from gui.synthetic package. 78

(a) The synthetic data set .. 78
(b) kNN probability map . 78
(c) HIKNN probability map . 78
(d) kNN probability map, with label noise. 78
(e) HIKNN probability map, with label noise. 78

List of Tables

8

One

Preface: What is Hub Miner?

Hub Miner is a machine learning library that focuses on experimentation with various data repre-
sentations and distance functions for effective high-dimensional data analysis. The main emphasis
of the library is on the novel hubness-aware machine learning techniques, that have been proposed
in order to deal with the phenomenon ofhubness[RNI09][RNI10a][RNI10b][Rad11] in intrinsically
high-dimensional data, a well known aspect of the curse of dimensionality.

Figure 1.1: Hub Miner logo.

In Section 2.1, the hubness phenomenon is discussed in more detail. It has to do with the
distribution of relevance within the (kNN) models in high-dimensional data, which assumes a scale-
free shape, as most decisions are being dominated by the influence of a small number of prominent
hub points. This entails a significant information loss, as well as a questionable semantic consistency
of the emerging hubs, as they can be highly detrimental in certain cases.

Hub Miner implements hubness-aware methods for classification [RNI09][TRMI11b]
[TRMI13a][TRMI11a][TM12b][TM13b], clustering [TRMI11c][TRMI13b][TRMI14], in-
stance selection [BNST11a], metric learning [ZmP04][JHS07][SFSW12][TM12a][TM14a], re-
ranking [TLM13] and other types of machine learning and datamining tasks.

Hubness visualization is possible via Image Hub Explorer [TM13c], a tool that was built for
image feature representation experimentation, metric learning and visualization of various aspects
of thekNN graph and the induced topology. It is possible to apply Image Hub Explorer not only
to image data but also to other data types, though some specific functions might not be available
in that case. A demo of Image Hub Explorer is available at the following link: https://www.
youtube.com/watch?v=LB9ZWuvm0qw. Additional information can be found here:http://
ailab.ijs.si/nenad_tomasev/image-hub-explorer/. This manual contains a chapter
devoted to Image Hub Explorer and how it can be used in variousvisualization tasks.

Despite its focus in terms of current method implementation, Hub Miner has been designed as a
general purpose machine learning library and can be used forother types of analysis as well, as it of-
fers an extensive experimental framework and supports various data types. It has been implemented
purely in Java, so it is easily portable to different platforms.

9

https://www.youtube.com/watch?v=LB9ZWuvm0qw
https://www.youtube.com/watch?v=LB9ZWuvm0qw
http://ailab.ijs.si/nenad_tomasev/image-hub-explorer/
http://ailab.ijs.si/nenad_tomasev/image-hub-explorer/

10 CHAPTER 1. PREFACE: WHAT IS HUB MINER?

Java implementations have their ups and downs, but it is actually a decent trade-off when it
comes to scientific computing, where experimentation understrict deadlines is the norm. Compared
to C++, Java code requires much less effort to produce, de-bug and deploy. This can be quite
beneficial for time-constrained projects that are typically seen in research. It is not as easy as
Python, but it falls somewhere in between. This library being in Java, the entry point to extending it
or re-using its approaches is probably not as high as it wouldhave been with C++.

This user manual will enable Hub Miner users to quickly get the gist of the basic system func-
tionality and the experimental framework. It also providesa basic overview of the algorithms them-
selves and the interfaces and implementation details. Manycode examples are used to show how
easy it is to extend the system to cover new use cases and include more baselines or apply the
implemented techniques for solving practical machine learning tasks.

For things not explicitly covered in the manual, it is possible to get information from the source
files themselves, as Hub Miner is fully documented and a lot ofeffort has been put into improving
code presentation and style. The goal of Hub Miner is to become a hub (no pun intended) for
hubness-aware machine learning, so it is important to make the code easy to use and understand.
Expect the future releases to contain even more algorithms and more flexibility.

Hub Miner implements an OpenML-compatible experimental framework (http://openml.
org/)[vRBT+13], which enables cross-system method comparisons to implementations in other
OpenML-compatible machine learning libraries, such as Weka and RapidMiner.

http://openml.org/
http://openml.org/

Two

Motivation: Why yet another library?

Hub Miner is a general machine learning library, but its implementations are focused on one partic-
ular problem - the problem of hubness in instance-based learning in intrinsically high-dimensional
data. It is, to our knowledge, the largest and most complete collection of hubness-aware methods.

Curse of dimensionality is a well-known phrase among the machine learning community and it’s
used to denote various types of problems that frequently arise when learning from high-dimensional
feature representations. This includes sparsity, redundancy, distance concentration, problematic
density estimates, less meaningful nearest neighbors, as well as hubness - the power-law-like distri-
bution of relevance in the (kNN) models. Among all the listed issues, hubness was the latest to be
observed [RNI09][Rad11]. Because of this, many instance-based systems and libraries are deployed
without any safeguards and we will see why this might prove tobe a problem in certain cases. In
fact, any system that involves working with top-K result sets or top-K most similar items (as in
collaborative filtering) can potentially be compromised ifno measures are taken to assure the se-
mantic consistency of hubs within the model. The music retrieval and recommendation community
has seen a lot of recent research advances in hubness-aware metric learning and selection.

The extensive experimental framework in Hub Miner enables researchers to evaluate various
data representations, primary or secondary metrics and kernels, classification and clustering algo-
rithms, prototype selection strategies, under various circumstances. Multiple performance measures
are supported and automated support for result summarization and statistical significance testing is
included. The details of the testing environment will be provided in Chapter 5.

Since the wordhubnesshas been used a few times already with no clarification and it is the
main issue addressed by Hub Miner, the following Section explains why the hubness phenomenon
matters and where it is expected to occur.

2.1 RELEVANCE OF DATA HUBNESS FORDATA ANALYSIS

Readers already deeply familiar with hubness can skip this Section and proceed to more technical
instructions that follow.

As already mentioned, hubness as a phenomenon has to do with askewed distribution of rel-
evance in high-dimensional models, where a small number of hub points dominates the predictive
models and influences most decisions, often in a detrimentalway. An illustration of the emerging
hubness is given in Figure 2.1, where the dimensionality of synthetic Gaussian mixtures is increased
and the distribution of neighbor occurrence frequencies assumes a long-tailed shape.

The most natural question to ask is: ’Ok, so what? This is interesting, but why is this a bad
thing?’. In most practical cases (in our experience) this distribution of neighbor occurrence frequen-
cies is not scale-free, but rather converges towards a scale-free distribution as the dimensionality is

11

12 CHAPTER 2. MOTIVATION: WHY YET ANOTHER LIBRARY?

Figure 2.1: The change in the neighbor occurrence distribution shape with increasing dimensional-
ity, in case of Gaussian mixture data. The increasing skewness results in most data points becoming
orphansand a small number ofhubsin the long tail of the distribution dominates the analysis.

increased. Yet, even if it were entirely scale-free, would this be a bad thing? Many scale-free net-
works exist in the real world and they seem to operate normally. A typical example is the Internet
or social network popularity like the distribution of the number of Twitter followers or in-degrees
in co-authorship research networks. Scale-free networks arise in the natural world as well, like
protein-protein-interaction networks.

The main difference between real-world hub-harbouring networks and thekNN networks that
we are considering is in the distribution of noise and inconsistencies and their influence on the
systems. Scale-free networks have been shown to be more robust to uniformly random noise, but
substantially more sensitive to any inconsistency contained within the hubs. Hub-centered
errors can propagate quickly throughout the system, with dire consequences. Naturally occurring
networks arise through self-organizing mechanisms that assure that hubs are at least as ’safe’ as
other points and often much more so. They are the Achilles heel, so they must be protected from
noise (or malicious attacks, in case of the Internet).

However, the consistency of hubs inkNN graphs is not guaranteed, as their distribution depends
on high-dimensional geometry and the particular choice of data representation and metric. Different
pairs of metrics and data representations yield different degrees of overall hubness and a different
selection of hub-points. In fact, it has been shown [Rad11][TRMI13b] that points that lie closer to
local cluster means in high-dimensional data are much more likely to become hubs and they have a
much higher expected occurrence frequency. As most high-dimensional data lies approximately on
hyper-spheres around such cluster means, points closer to the center become close to many points
on the hyper-sphere surface and this small difference coupled with distance concentration results
in the emergence of hub points. In borderline regions, the emerging hubs often become semantic
singularities and occur as neighbors to points from many different classes. This can be highly
detrimental. An example is shown in Figure 9.6.

Most neighbor occurrences in high-dimensional data are huboccurrences and most bad occur-
rences are hub occurrences as well. The influence of a particular hub point can be either good or
bad or - most likely - something in between. If hubs were strictly good or bad, a natural solution
to the problem would be to try eliminating bad hubs entirely during data pre-processing. However,
this is not the case - and even if it were - removing any highly influential neighbor point creates

2.1. RELEVANCE OF DATA HUBNESS FOR DATA ANALYSIS 13

Figure 2.2: An example of a bad hub in the quantized SIFT feature representation, a detrimental
center of influence. Neither of the reverse neighbors of the selected image belongs to the same class
as the image itself, so its occurrences induce label mismatches and are semantically inconsistent.

holes inkNN sets that are filled in with new neighbor occurrences and some of these in turn might
lead to the emergence of new bad hubs. The problem of finding the minimal set of prototype that
properly covers all the training data has been shown to be NP-complete [BNST11b]. So, things are
not as easy as they might initially seem.

Given that hubness arises naturally in textual data representation, image representations, time
series and many other frequently encountered and intrinsically high-dimensional data types, it is an
important issue in robust data analysis. As mentioned before, even systems that don’t explicitly rely
on kNN methods as such might be affected, especially if they use some internal ranking or queries
for the most relevant results. While these functions often do not use explicit distance functions,
implicitly it makes little difference.

Therefore, there are two things that we can try to do, as researchers or developers. We can try
to somehow reduce the hubness of the data by a careful choice of data representations and met-
rics or we can try to design novel analytic methods that are intrinsically hubness-aware and robust.
Hub Miner library contains both types of approaches and it can be shown that these two strategies
are in fact not mutually exclusive, especially since metriclearning and/or dimensionality reduction
often merely reduce the hubness of the data instead of eliminating it completely. A complete reduc-
tion in hubness can usually be achieved only by reducing the intrinsic dimensionality of the data
representation, which entails information loss and possibly lower predictive or descriptive system
performance.

Have in mind that we are talking about theintrinsic dimensionality of the data here, not the
number of features used to describe the data in the explicit representation, as many features are
usually correlated in some way and they partially encode thesame information. In fact, it is possible
to observe very high-dimensional data with a low intrinsic dimensionality, that has no significant
hubness. This is especially the case for some time series that do not vary much and consecutive
sensor measurements are highly correlated.

Three

Building Hub Miner: Dependencies

Hub Miner is written in Java, so it shouldn’t be difficult to build. You will need an up-to-date
version of Java, though. Hub Miner has been developed under jdk1.7.0_21, but new features will be
added that are compliant with newer versions as well, in future releases, so try having an up-to-date
JRE or SDK on your machine if running or building Hub Miner. You should include the following
dependencies in the CLASSPATH variable in order to be able tobuild and use Hub Miner code:

apiconnector-fat.jar
collections-generic-4.01.jar
colt-1.2.0.jar
commons-codec-1.3.jar
commons-httpclient-3.0.1.jar
commons-logging-1.1.jar
concurrent-1.3.4.jar
gson-2.3.jar
guice-3.0.jar
iText-2.1.7_mx-1.0.jar
Jama-1.0.2.jar
jcommon-1.0.17.jar
jdom.jar
jetty-6.1.1.jar
jetty-util-6.1.1.jar
jfreechart-1.0.14.jar
jgraph.jar
jgraphx.jar
json.jar
jsoup-1.7.2.jar
jtidy-r7.jar
jung-algorithms-2.0-beta1.jar
jung-api-2.0-beta1.jar
jung-graph-impl-2.0-beta1.jar
jung-jai-samples-2.0-beta1.jar
jung-visualization-2.0-beta1.jar
junit-4.7.jar
mdsj.jar
mxgraph-all.jar
rome-0.8.jar

15

16 CHAPTER 3. BUILDING HUB MINER: DEPENDENCIES

servlet-api-2.5-6.1.1.jar
servlet.jar
swing-layout-1.0.3.jar
swingx-1.6.jar
swingx-beaninfo-1.6.jar
swingx-ws-1.0.jar
TGGraphLayout.jar
xercesImpl.jar
xmlunit1.0.jar

A dependency on OpenML is apiconnector-fat.jar and it can bedownloaded from
http://openml.org/downloads/apiconnector-fat.jar .

That being said, there are some limited experimental parts of the code that rely on some other
external dependencies. Image feature extraction components use SIFT features and expect to extract
them via the SiftWin binary that is to be accessible from the command line so it has to be contained
within the PATH variable. The same goes for Image Magick, which is used mainly for conversions
of JPG images to PGM format that SiftWin expects. In almost all cases, you will not be invoking
these functions since Hub Miner is not about image feature extraction and does not intend to become
a pipeline for that. However, expect to see this dependency disappear in some later Hub Miner
release, as I intend to switch to Java-based image feature extraction libraries and also introduce
more compatibility with OpenCV.

Other than the mentioned image feature extraction dependency, the rest of Hub Miner code is
currently portable and should be usable on different platforms without any additional difficulty.

Four

Supported Data Formats

Hub Miner supports working with data files in the ARFF, CSV andTSV formats. It also offers
support for configuration file load/save and cross-validation folds import via JSON. Of course, since
JSON is very strict and sometimes difficult to read for largerconfiguration files, there exists a
custom human-readable easy-to-use default format for specifying the experimental configurations.
The configuration file format will be reviewed in the following section.

For readers not already familiar with the ARFF file format (also used by Weka and OpenML),
here is an example of a small ARFF data file:

@RELATION Ionosphere3DProjectionSample
@ATTRIBUTE fAtt0 real
@ATTRIBUTE fAtt1 real
@ATTRIBUTE fAtt2 real
@ATTRIBUTE class string
@DATA
0.08901424,-0.10969148,0.0032827153,’1’
-0.044016507,-0.1379753,-0.10553418,’0’
0.10856112,-0.039936334,0.044553082,’1’
-0.066826984,0.07276285,-0.039159104,’0’
-9.745792E-4,-0.09848936,0.017975774,’1’
-0.13074261,-0.022526562,-0.101753585,’0’
0.054415386,-0.20338419,-0.0049496056,’1’
-0.041923035,-0.0017737036,-0.17944402,’0’
0.15486263,-0.17194971,0.012484646,’1’
-0.13705792,-7.132998E-4,-0.10510041,’0’
0.13835455,-0.21733429,0.018616,’1’
0.24783619,-0.10117917,0.0027347172,’0’
0.17932422,-0.14469129,0.03308493,’1’
0.21689402,-0.049687877,0.020258931,’0’
0.2064358,0.10299684,0.031745467,’1’
0.006842114,-0.055629272,-0.14137895,’0’

There is a header that defines the feature names and feature types - and this is followed by a
data section, that presents data in a comma-separated fashion, with label information at the end. In
Hub Miner there is a convention that in the ARFF files the labelattribute is named ’class’ and of
type ’string’, so make sure to follow the same convention in the data files that you will use in the
experiments.

17

18 CHAPTER 4. SUPPORTED DATA FORMATS

As for CSV files, here is an example of a sample of the classicalIris data presented in a Hub
Miner - compatible CSV form.

4.4,3.0,1.3,0.2,0
5.1,3.4,1.5,0.2,0
5.0,3.5,1.3,0.3,0
4.5,2.3,1.3,0.3,0
4.4,3.2,1.3,0.2,0
5.0,3.5,1.6,0.6,0
5.1,3.8,1.9,0.4,0
4.8,3.0,1.4,0.3,0
5.1,3.8,1.6,0.2,0
4.6,3.2,1.4,0.2,0
5.3,3.7,1.5,0.2,0
5.0,3.3,1.4,0.2,0
7.0,3.2,4.7,1.4,1
6.4,3.2,4.5,1.5,1
6.9,3.1,4.9,1.5,1
5.5,2.3,4.0,1.3,1
6.5,2.8,4.6,1.5,1
5.7,2.8,4.5,1.3,1
6.3,3.3,4.7,1.6,1
4.9,2.4,3.3,1.0,1
6.6,2.9,4.6,1.3,1
5.2,2.7,3.9,1.4,1
5.0,2.0,3.5,1.0,1
5.6,2.9,3.6,1.3,1

The label is the last value in each line. It should be noted here, though - that it does not need to
be a number, strings containing class names are also acceptable. In case of CSV files, all features
are loaded as float features. This is somewhat less flexible than in the ARFF case.

Also, one should keep in mind that while the last value is treated as class value by default,
the loaded has both a supervised and an unsupervised save/load modes - and that it doesn’t know
in principle which one should be used in which occasion. Therefore, take care when working with
CSV files to use the proper mode. Supervised is default in mostcases, even in Clustering evaluation,
since labeled data is also used there, where labels are used for calculating cluster configuration
homogeneity.

Five

A Quick Guide to the Experimental
Framework

Hub Miner supports batch experimentation by running multiple algorithms on multiple datasets
under varying conditions in a multi-threaded way with optimized object sharing for distance ma-
trices andkNN sets to avoid redundant calculations. Such batch task processing is available for
classification, clustering and exploratory hubness data analysis.

5.1 BATCH CLASSIFIER EVALUATION

The class that runs batch classifier evaluation in Hub Miner is available at
learning.supervised.evaluation.cv.BatchClassifierTester and most logic is implemented in learn-
ing.supervised.evaluation.cv.MultiCrossValidation.

For classifier evaluation, Hub Miner uses X-time Y-fold cross validation. I have personally al-
ways used 10-times 10-fold cross-validation, though otherset-ups are possible for large datasets and
initial exploratory runs. The general design of the experimental framework is shown in Figure 5.1.

The classification evaluation framework supports metric learning, instance selection, learning
with label noise, learning with feature noise, varying neighborhood sizes, biased and ubiased proto-
type occurrence modeling, etc. Despite its many options, the basic process is quite simple.

The data is loaded and feature normalization is performed, if specified. The primary distance
matrix is calculated once for the entire data and divided up into sub-matrices during cross-validation,
based on the generated data splits. In case of primarykNN sets (when no metric learning is used),
thek-nearest neighbor sets are also calculated once for all dataand a slightly larger neighborhood
size and are then sub-sampled and restricted on the trainingdata in each experimental iteration.
In most cases, no additional re-calculations are required,though rarely the system has to run a
few fast additional queries. Instance selection is easily integrated with this framework and doesn’t
complicate things at all.

The calculated objects are distributed to all the algorithms that require them, which is declared
by implementing appropriate interfaces in the code. In caseno algorithm required distances or
k-nearest neighbor sets, none are calculated.

Each algorithm runs in its own thread and all threads are synchronized. The experiment ends
when the last algorithm finishes.

It is possible also to run experiments with the approximatekNN sets and recursive Lanczos
bisections are used as a default approach for this in the current implementation, though this will
probably change in future versions, where I intend to introduce more flexibility.

In case of metric learning, it is not possible to apply the exact same framework as above, as
the global distance matrix would then be a result of using both training and test data, which would

19

20 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

Figure 5.1: Hub Miner experimental set-up for classification experiments.

constitute an information leak. The experiments with metric learning are therefore usually much
slower, as both the distance matrix and thek-nearest neighbor sets need to be calculated on each
training iteration separately.

Each test run in each CV iteration produces a learning.supervised.evaluation.ClassificationEstimator
instance. These classification estimators calculate the quality measures like accuracy, precision,
recall, f-score, Matthews correlation coefficient and the likes (micro and macro-averaged where
necessary). These results are then persisted to the specified files and summarized automatically
to produce brief and readable experimental summaries. Statistical significance testing is done
on-the-fly with the corrected re-sampledt-test.

An example configuration file for running the evaluation is shown in Figure 5.2.
Users can specify the desired fold scheme, the number of common threads to use when calcu-

lating the distance matrices andkNN sets, the directory structure, instance selection strategies (op-
tional), secondary distances (optional), a list of classification algorithms to compare, the range of
neighborhood sizes to test for, approximatekNN set quality (optional, exactkNN sets are default),
ranges of feature and label noise rates to test for, weights for weight-proportional noise (optional),
the feature normalization strategy and finally, a list of datasets from the data directory to run the
experiments on, paired with the appropriate metric objects.

Let us go through all options one by one.

• @cross_validationis an option that specifies how many folds and runs to use in thecross-
validation procedure. It is pretty self-explanatory. If omitted, 10-times 10-fold cross-
validation is used as default.

5.1. BATCH CLASSIFIER EVALUATION 21

Figure 5.2: An example of a classification configuration file.While most options are ’on’ in this
example, in practice a user would normally only use some of them. The example merely shows that
they can all in principle be combined and that all stages can be plugged in and operate together.

• @common_threadsis used for specifying the number of threads to use for calculating shared
objects in the experimental framework, like primary and secondary distance matrices and
primary and secondaryk-nearest neighbor sets.

• @in_directory is used for specifying the data directory. The easiest approach is to simply
have all data in one directory, in appropriate subdirectories. The following @dataset com-
mands accept relative paths w.r.t. this specified top directory.

• @out_directory specifies the primary evaluation output target, where most raw classification
results will be persisted. These detailed results are useful for later analysis, but the users will
usually first review the classification summaries for each dataset (see below).

• @summary_directory specifies the directory where classification summaries willbe gener-
ated from the raw test data, for each dataset. Statistical tests are also run at this point, to detect
statistical significance in the differences between the algorithms.

• @distances_directoryspecifies where the distance matrices are to be saved or loaded from.
Pre-calculated distance matrices can be loaded into the framework if provided at the ex-
pected location and the calculated distance matrices can also be saved for a later load.
For instance, assume that I specify the distance directory as: K:\EXPERIMENTS\DMAT.

22 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

The distance matrix for dataset0 if no normalization is donewill be expected at
K:\EXPERIMENTS\DMAT\dataset0\NO\distances.primary.Manhattan location. The type of
normalization is included in the path, so take care which feature normalization you spec-
ify. This is especially useful if you need to ’hack’ the library to load a distance matrix for a
distance that is not actually implemented in the library - but you need to use it in some exper-
iments and you can calculate it externally. It is recommended to define a dummy class in the
primary metrics directory and to specify that dummy metric for the datasets in question. You
could in principle try to trick the system and present the distance matrix as originating from
some of the standard metrics - but that is not a good approach,as you might also want to use
standard metrics on the same data and you might forget about the hack in time and confuse
the distance matrices in a few weeks when you get back to the experiment. Therefore, try to
be as consistent and precise as possible. Another importantdetail is that - since the distance
matrices are loaded if the system detects that they exist at the expected path - it is possible
to encounter problems if you have datasets that share the exact same name, so try to avoid
that scenario by either using separate distance directories in those cases (recommended) or
deleting the matrices after a while. If the distance directory is left unspecified, the distances
will be calculated on the fly and will not be saved for later use.

• @fold_directory Data folds can be saved and loaded, in JSON format - and this option spec-
ifies the target directory that contains the data folds for all datasets.

• @instance_selectionspecifies the instance selection approach to use, if needed in the exper-
iments. Note that you do not have to specify the full path to the class (you can, of course).
You can check which abbreviations and synonyms are used for different methods in the pre-
processing.instance_selection.ReducersFactory class.

• @proto_hubnesshas two options: biased and unbiased. This one might be a bit difficult
at first, but it is used only with instance selection and only if hubness-aware classification
methods are present. Namely, instance selection implements a certain selection bias, so the
neighbor occurrence models learned from the reduced data also reflect that bias. In order to
correct the bias in the models, an in-between step that re-calculates thekNN sets on the entire
training data with using only the selected prototypes as potential neighbors can be inserted
and this is what the unbiased option in @proto_hubness does,if selected. It leads to a slightly
better classification performance.

• @secondary_distancespecifies which secondary distance type to use, if doing metric learn-
ing in form of secondary distances in the experiments. The options are as follows: simcos,
simhub, mp, ls, nicdm. If you are unsure about this option or options in general, you can look
at configuration.BatchClassifierConfig to see how the parsing is done and which values are
expected. This option takes an optional second parameter that is the secondary neighborhood
size to use for calculating the secondary distances, as someof them explicitly require this
parameter. If omitted, a default value is used, which may or may not be appropriate for your
data, so it is recommended to always specify it explicitly.

• @algorithm specifies an algorithm to use in the testing and multiple occurrences of the option
specify multiple algorithms to test at the same time, in a multi-threaded way, each algorithm
being a single thread. You can look at all the abbreviations and synonyms for specifying
classification algorithms in learning.supervised.ClassifierFactory class. If you specify an al-
gorithm by its class path, that should also work. Additionalparameters can be set for each
algorithm via a JSON string, as in the following example.

@algorithm DWHFNN {"mValue":3.5,"thetaCutoff":3}

5.1. BATCH CLASSIFIER EVALUATION 23

• @k_rangespecifies the range of neighborhood sizes to test for. It has three parameters - the
minimal value, the maximal value and the increment.

• @noise_rangespecifies the range of feature noise rates to test for. It has three parameters -
the minimal value, the maximal value and the increment.

• @mislabeled_rangespecifies the range of label noise rates to test for. It has three parameters
- the minimal value, the maximal value and the increment.

• @approximateNNannounces that recursive Lanczos bisections will be used for approximat-
ing thek-nearest neighbor sets. It also takes a quality parameter between 0 and 1. This option
is currently not used for actual scalability, but rather to evaluate the robustness of certain
kNN-based approaches under approximatekNN sets of varying quality. Omit this option in
order to use the exactkNN sets - recommended and default.

• @mislabeling_weights_dir is an optional parameter used to specify weights for weight-
proportional random label noise. This option has been used for testing hubness-proportional
random label noise in past experiments.

• @normalization specifies which normalization scheme to use. The permitted values are: no,
normalizeTo01, standardize, tfidf.

• @datasetspecifies a dataset to run the experiments on. Multiple occurrences of this option
are used to specify multiple datasets for the experiments, so that they run in a batch mode.
The first parameter is the relative path to the dataset in ARFFor CSV or TSV format, w.r.t.
to the global data directory and the second and third parameter are metrics to be used for
integer and float variables, respectively, given by their class path. A CombinedMetric object
is then formed from these two feature-type specific metric objects. All features from CSV
files are loaded into float feature arrays as default, but features from ARFF files can also be
loaded as integers specifically, so this is why there are two separate metrics here. Also, some
categorical variables that are represented as integers make no sense to use in standard float
metrics, so this is a useful separation.

You are encouraged to look at configuration.BatchClassifierConfig for more details on the con-
figuration file and its parsing. Note that it is possible to save the configuration object to JSON and
load it from JSON. This is useful, since JSON is much easier togenerate automatically and this
allows the experimentation protocols to be invoked by otherclasses in the library or remotely. The
framework accepts a configuration object, so it can also be instantiated from within the code. As
for manual experimentation, the custom format that was presented above is much easier and more
readable.

Any line in the configuration file that doesn’t start with a valid option will be ignored. You can
therefore easily comment out the options that you are currently not using (but will be using later) by
using any standard comment notation. I use this all the time to comment out datasets or algorithms
and then bring them back in, while doing initial tests.

5.1.1 OpenML Compatibility

Hub Miner is an OpenML-compatible library and it is possibleto perform cross-validation clas-
sification experiments according to OpenML standards. OpenML http://openml.org/ is a
networked science project that aims to bridge the gap between scattered method evaluations across
different studies. This service stores data and the fold train and test splits and offers it at request.
The library then runs the experiments on the specified splitsand uploads the point-wise predictions
during all runs, for all tested algorithms. Algorithm registration at OpenML is performed automat-
ically, which also includes a set of possible parameters, parameter descriptions, types and default

http://openml.org/

24 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

values. The exact values used in the run are uploaded along with the predictions, so that it is possible
to compare different parametrizations online.

After all the predictions are uploaded, OpenML calculates various performance measures and
stores all this into a database. It is therefore possible to compare algorithms implemented in differ-
ent libraries and OpenML offers many visualizations of suchcomparisons. Therefore, algorithms
implemented in Hub Miner can now be easily compared with algorithm implementations in Weka, R
or Rapid Miner. This is very useful for all future Hub Miner users and developers, as they can easily
compare the implemented approaches to baselines that are not yet contained within Hub Miner.

There are plans in OpenML to introduce support for experiments that involve learning with
label or feature noise, though these experiments are not currently supported (October 2014). Also,
clustering flows will become available soon and this will be supported in Hub Miner as well.

So, how does one specify an OpenML data source in a Hub Miner batch classification configu-
ration file? This involves a very minor modification of what was already shown. It is necessary to
authenticate for using the OpenML service, so all users thatwant to use this feature have to open
an OpenML account and receive credentials. The use of these credentials is to be specified in the
following way.

@openml_authentication username password

OpenML data sources are specified similarly to local datasets. Here is an example, with some
common UCI classification tasks.

@openml_task openml-data\iris.arff null distances.primary.MinkowskiMetric 1939
@openml_task openml-data\mfeat-zernike.arff null distances.primary.MinkowskiMetric 1902
@openml_task openml-data\mfeat-morphological.arff null distances.primary.MinkowskiMetric 1898
@openml_task openml-data\sonar.arff null distances.primary.MinkowskiMetric 1919
@openml_task openml-data\diabetes.arff null distances.primary.MinkowskiMetric 1917
@openml_task openml-data\breast-w.arff null distances.primary.MinkowskiMetric 1895
@openml_task openml-data\ionosphere.arff null distances.primary.MinkowskiMetric 1937
@openml_task openml-data\mfeat-fourier.arff null distances.primary.MinkowskiMetric 1894
@openml_task openml-data\glass.arff null distances.primary.MinkowskiMetric 1920
@openml_task openml-data\ecoli.arff null distances.primary.MinkowskiMetric 1918

Instead of@dataset, the@openml_taskcommand is used. What follows is the path where
the data will be saved locally after the download, as well as the metrics to use for integers and
floats. The final item on each line is the task ID. Make sure thatyou use the task ID here, not the
data ID, otherwise, this won’t work. The task ID has to correspond to a cross-validation task and
these tasks shown in the example are for 10-times 10-fold cross-validation. If you are using the
@cross_validationcommand in the configuration file, make sure that the number ofrepeats and
folds in that specification matches the one in the task that you are specifying. Mismatches will cause
errors.

Figure 5.3 shows an example of the uploaded run information for a specific algorithm. Along
with the uploaded predictions, it is possible to view the performance measures, as shown in Fig-
ure 5.4.

It is easy to compare algorithm runs, as shown in Figure 5.5.
In order to obtain the desired task IDs for your experiments,go to the dataset list at OpenML

data page:http://openml.org/d. Browse for the desired dataset and select the appropriate
task and copy its task ID into the Hub Miner batch classification configuration file.

http://openml.org/d

5.1. BATCH CLASSIFIER EVALUATION 25

Figure 5.3: An example of the uploaded run information in OpenML.

5.1.2 Viper Charts for Visualizing Classification Results

Hub Miner can be used for visualizing the generated classification results in its experimental frame-
work by invoking the Web API of Viper chartshttp://viper.ijs.si/, a great tool that can be
used to produce various type of classification performance charts and comparisons.

The API connector is located in visualization.ViperChartAPICall and it exposes a command line
interface for providing it with the selected algorithm result directories, in order to visual selected
algorithms on the examined data and produce the specified chart type.

For instance, here is a simple call that I have used locally togenerate a lift chart comparison
betweenkNN and NHBNN on the standard ionosphere UCI dataset. It has been broken down into
multiple lines for readability.

java visualization.ViperChartAPICall
-inDataFile::K:\DATA_MINING\DATA\uci-data\ionosphere-num.csv
-inAlgorithmDir::K:\EXPERIMENTS\viperDemoTests\ionosphere-num\k5\ml0.0\noise0.0\KNN
-inAlgorithmDir::K:\EXPERIMENTS\viperDemoTests\ionosphere-num\k5\ml0.0\noise0.0\NHBNN
-positiveClassIndex::1
-chartTypeStringCode::lift

http://viper.ijs.si/

26 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

Figure 5.4: An example of the uploaded run performance measures in OpenML.

Figure 5.5: An example of between-classifier comparisons inOpenML.

Notice that the -inAlgorithmDir can be specified multiple times and this is how multiple al-
gorithms are compared. It is a feature in the CommandLineParser class, that allows multi-valued
parameters if it is specified in the parsing configuration.

5.1. BATCH CLASSIFIER EVALUATION 27

The original data is also provided, in order to obtain the correct label assignments, the ground
truth. The user also needs to specify which class is to be usedas the positive class. This is especially
important in the multi-class case, as most charts were builtwith binary classification problems in
mind. Finally, the chart type is also specified by its code, inthe same way as in the Viper Charts
online documentation. This information is also easily readable from the source file, as there is a
dictionary of String codes that correspond to different chart types.

The lift chart that was generated for the given command line call is given in Figure 5.6.

Figure 5.6: An example of a visualization of classification results in form of a lift chart, as generated
by Viper Charts. These results show the classification performance ofkNN and NHBNN on the
ionosphere UCI dataset, fork = 5. NHBNN is given in red andkNN in blue.

It is possible to configure to show legend and grind lines or isolines for every chart, while
working on the generated URL in the browser. There is an option in the ViperChartAPICall class
command line call named "-openInBrowser" which opens the URL in the default browser automat-
ically if set to true. False value is currently default, as the users might want to call the Viper API
automatically from within other classes and experimental protocols, so it would not make sense to
do this in those cases.

Other visualizations for different chart types on the same data and for the same algorithms are
given in Figure 5.7.

The comparisons clearly show that NHBNN outperformskNN for the selected neighborhood
size on ionosphere, as it has a lower expected loss, which is shown in Kendall and rate-driven
curves, a higher AUC score which can be seen from the ROC chart, NHBNN is located beyond a
higher F-isoline in PR-space, etc.

Since the charts are generated in Javascript and a URI is provided on the Viper Charts web page
with the visualization, users can easily share their findings with others by just sharing the link.

28 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

(a) Kendall curve (b) PR Space

(c) Rate-driven curve (d) ROC Curve

(e) Recall-Precision curve

Figure 5.7: Example visualizations on ionosphere UCI data for k = 5 of classification performance
of kNN and NHBNN from within Hub Miner framework. NHBNN is given in red andkNN in blue.

There is a daily usage limit for Viper Charts, though. It is currently set to 100 per user (as
identified by IP). However, you will probably not be in need ofmore than 100 charts a day anyway,
so this is not very restrictive.

5.2 BATCH CLUSTERING EVALUATION

The Hub Miner batch clustering experimentation framework is quite similar to the classification
framework in terms of configuration syntax and also in terms of internal optimization and speed-
ups. We will review all the options one by one. Descriptions for options that we have already

5.2. BATCH CLUSTERING EVALUATION 29

mentioned previously will be repeated so that you do not haveto scroll back up to look for them. A
bit redundant, but more readable.

• @timesThe number of times a clustering is to be done on a single dataset by an algorithm.
Since some clustering methods use random initialization and can converge to multiple optima,
it is necessary to test the clustering algorithm performance by repeating the clustering process
multiple times.

• @iter The maximal number of iterations for iteration-based algorithms. This prevents some
very long and slow converging processes from taking too muchtime. Use with care.

• @num_clustersSome clustering algorithms need a pre-defined number of clusters to cluster
for, while other try to discover the optimal number of clusters automatically. For those that
require an explicit parameter, this option is used to set it.It is also possible to specify "natural"
(without the enclosing quotes) as an option value here, which will set the number of clusters
to the number of classes in the data defined by the loaded labels, automatically.

• @split_training specifies whether to split the data into training and test data or not. Optional
and the system does not perform any training/test splits forclustering evaluation, naturally.
Some people prefer to do the split (and this was actually implemented in response to a re-
viewer’s request for one of the papers on hubness-based clustering) and this allows it to be
specified. The problem with this is that it is not altogether clear how to assign test points to
a trained clustering model. For some algorithms, like K-means, this might be obvious and
straightforward - but more complex algorithms with complexmodels do not always permit
such easy solutions for incrementally adding test points.

• @common_threadsis used for specifying the number of threads to use for calculating shared
objects in the experimental framework, like primary and secondary distance matrices and
primary and secondaryk-nearest neighbor sets.

• @in_directory is used for specifying the data directory. The easiest approach is to simply
have all data in one directory, in appropriate subdirectories. The following @dataset com-
mands accept relative paths w.r.t. this specified top directory.

• @out_directory specifies the primary evaluation output target, where clustering results will
be persisted. There is no additional summary directory for clustering.

• @distances_directoryspecifies where the distance matrices are to be saved or loaded from.
Pre-calculated distance matrices can be loaded into the framework if provided at the ex-
pected location and the calculated distance matrices can also be saved for a later load.
For instance, assume that I specify the distance directory as: K:\EXPERIMENTS\DMAT.
The distance matrix for dataset0 if no normalization is donewill be expected at
K:\EXPERIMENTS\DMAT\dataset0\NO\distances.primary.Manhattan location. The type of
normalization is included in the path, so take care which feature normalization you specify.
While it was possible to ’hack’ the batch classification experimental framework by using dis-
tance matrices from non-implemented metrics, it isnot possible to use distances from non-
implemented metrics in clustering. The reason is simple, since algorithms like K-means
calculate centroids and need to calculate the distance in the specified metric from the centroid
to all other points in the data. If a proper metric object is not provided, this is simply not going
to work. Another important detail is that - since the distance matrices are loaded if the system
detects that they exist at the expected path - it is possible to encounter problems if you have
datasets that share the exact same name, so try to avoid that scenario by either using separate
distance directories in those cases (recommended) or deleting the matrices after a while. If
the distance directory is left unspecified, the distances will be calculated on the fly and will
not be saved for later use.

30 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

• @secondary_distancespecifies which secondary distance type to use, if doing metric learn-
ing in form of secondary distances in the experiments. The options are as follows: simcos,
simhub, mp, ls, nicdm. If you are unsure about this option or options in general, you can look
at configuration.BatchClusteringConfig to see how the parsing is done and which values are
expected. This option takes an optional second parameter that is the secondary neighborhood
size to use for calculating the secondary distances, as someof them explicitly require this
parameter. If omitted, a default value is used, which may or may not be appropriate for your
data, so it is recommended to always specify it explicitly.

• @algorithm specifies an algorithm to use in the testing and multiple occurrences of the option
specify multiple algorithms to test at the same time, in a multi-threaded way, each algorithm
being a single thread. You can look at all the abbreviations and synonyms for specifying
classification algorithms in learning.unsupervised.ClustererFactory class. If you specify an
algorithm by its class path, that should also work. Direct JSON parametrization is possible,
as in classification.

• @k_rangespecifies the range of neighborhood sizes to test for. It has three parameters - the
minimal value, the maximal value and the increment.

• @noise_rangespecifies the range of feature noise rates to test for. It has three parameters -
the minimal value, the maximal value and the increment.

• @mislabeled_rangespecifies the range of label noise rates to test for. It has three parameters
- the minimal value, the maximal value and the increment.

• @approximateNNannounces that recursive Lanczos bisections will be used for approximat-
ing thek-nearest neighbor sets. It also takes a quality parameter between 0 and 1. This option
is currently not used for actual scalability, but rather to evaluate the robustness of certain
kNN-based approaches under approximatekNN sets of varying quality. Omit this option in
order to use the exactkNN sets - recommended and default.

• @mislabeling_weights_dir is an optional parameter used to specify weights for weight-
proportional random label noise. This option has been used for testing hubness-proportional
random label noise in past experiments.

• @normalization specifies which normalization scheme to use. The permitted values are: no,
normalizeTo01, standardize, tfidf.

• @kernel specifies the kernel to use in kernel clustering methods. Provide the class path to
the desired kernel class. Optional.

• @datasetspecifies a dataset to run the experiments on. Multiple occurrences of this option
are used to specify multiple datasets for the experiments, so that they run in a batch mode.
The first parameter is the relative path to the dataset in ARFFor CSV or TSV format, w.r.t.
to the global data directory and the second and third parameter are metrics to be used for
integer and float variables, respectively, given by their class path. A CombinedMetric object
is then formed from these two feature-type specific metric objects. All features from CSV
files are loaded into float feature arrays as default, but features from ARFF files can also be
loaded as integers specifically, so this is why there are two separate metrics here. Also, some
categorical variables that are represented as integers make no sense to use in standard float
metrics, so this is a useful separation.

The achieved clustering configuration quality for each algorithm on each dataset is calculated
via several clustering quality indexes. While more qualityindexes are implemented in the library, a
default set of quality indexes used in the batch clustering evaluation framework is as follows: Rand
quality index, Rand stability index, isolation index, Dunnindex, Silhouette index, average squared

5.3. BATCH HUBNESS ANALYSIS 31

error and average cluster entropy. Silhouette index ’a’ and’b’ values are also given for hubs, anti-
hubs and regular points separately. This is done in order to better evaluate how different types of
points in intrinsically high-dimensional data are clustered.

As with classification, this configuration specification canbe saved to JSON and loaded from
JSON, in order to make it easy to automatically invoke the experimentation framework from a
different class or remotely. A configuration object is also acceptable.

5.3 BATCH HUBNESSANALYSIS

Apart from doing classification and clustering experimentation and evaluation, it is sometimes use-
ful to do some exploratory analysis of the data and extract useful statistics.

When it comes to analyzing hubness, these statistics have todo with thek-nearest neighbor sets
and the neighbor occurrence frequencies. There is a class that does batch data analysis of this type,
with a similar configuration syntax to that of classificationor clustering. These are the allowed
options.

• @in_directory is used for specifying the data directory. The easiest approach is to simply
have all data in one directory, in appropriate subdirectories. The following @dataset com-
mands accept relative paths w.r.t. this specified top directory.

• @out_directory specifies the primary evaluation output target, where results of the ex-
ploratory analysis are to be persisted.

• @k_max specifies the maximum neighborhood size to consider. All values in the range
{1 . . . kmax} will be tried. Essentially,kmax-neighbor sets will be calculated initially and
then the stats will be dynamically re-calculated for all smaller neighborhoods.

• @noise_rangespecifies the range of feature noise rates to test for. It has three parameters -
the minimal value, the maximal value and the increment.

• @mislabeled_rangespecifies the range of label noise rates to test for. It has three parameters
- the minimal value, the maximal value and the increment.

• @mislabeling_weights_dir is an optional parameter used to specify weights for weight-
proportional random label noise. This option has been used for testing hubness-proportional
random label noise in past experiments.

• @common_threadsis used for specifying the number of threads to use for calculating the
primary and secondary distance matrices and primary and secondaryk-nearest neighbor sets.

• @secondary_distancespecifies which secondary distance type to use, if doing metric learn-
ing in form of secondary distances in the experiments. The options are as follows: simcos,
simhub, mp, ls, nicdm. If you are unsure about this option or options in general, you can
look at configuration.BatchHubnessAnalysisConfig to see how the parsing is done and which
values are expected. This option takes an optional second parameter that is the secondary
neighborhood size to use for calculating the secondary distances, as some of them explicitly
require this parameter. If omitted, a default value is used,which may or may not be appropri-
ate for your data, so it is recommended to always specify it explicitly.

• @normalization specifies which normalization scheme to use. The permitted values are: no,
normalizeTo01, standardize, tfidf.

• @distances_directoryspecifies where the distance matrices are to be saved or loaded from.
Pre-calculated distance matrices can be loaded into the framework if provided at the ex-
pected location and the calculated distance matrices can also be saved for a later load.
For instance, assume that I specify the distance directory as: K:\EXPERIMENTS\DMAT.
The distance matrix for dataset0 if no normalization is donewill be expected at

32 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

K:\EXPERIMENTS\DMAT\dataset0\NO\distances.primary.Manhattan location. The type of
normalization is included in the path, so take care which feature normalization you spec-
ify. This is especially useful if you need to ’hack’ the library to load a distance matrix for a
distance that is not actually implemented in the library - but you need to use it in some exper-
iments and you can calculate it externally. It is recommended to define a dummy class in the
primary metrics directory and to specify that dummy metric for the datasets in question. You
could in principle try to trick the system and present the distance matrix as originating from
some of the standard metrics - but that is not a good approach,as you might also want to use
standard metrics on the same data and you might forget about the hack in time and confuse
the distance matrices in a few weeks when you get back to the experiment. Therefore, try to
be as consistent and precise as possible. Another importantdetail is that - since the distance
matrices are loaded if the system detects that they exist at the expected path - it is possible
to encounter problems if you have datasets that share the exact same name, so try to avoid
that scenario by either using separate distance directories in those cases (recommended) or
deleting the matrices after a while. If the distance directory is left unspecified, the distances
will be calculated on the fly and will not be saved for later use.

• @datasetspecifies a dataset to run the experiments on. Multiple occurrences of this option
are used to specify multiple datasets for the experiments, so that they run in a batch mode.
The first parameter is the relative path to the dataset in ARFFor CSV or TSV format, w.r.t.
to the global data directory and the second and third parameter are metrics to be used for
integer and float variables, respectively, given by their class path. A CombinedMetric object
is then formed from these two feature-type specific metric objects. All features from CSV
files are loaded into float feature arrays as default, but features from ARFF files can also be
loaded as integers specifically, so this is why there are two separate metrics here. Also, some
categorical variables that are represented as integers make no sense to use in standard float
metrics, so this is a useful separation.

As in other cases, configuration.BatchHubnessAnalysisConfig can be saved to JSON and loaded
from a JSON string or file and the configuration object is then passed on to the batch hubness anal-
ysis experimental framework. This can automate some types of analysis. For manual experimenta-
tion, the human-readable format that we have described works better, as it is easier to modify and
comments are also possible.

An example of the output of a hubness analysis on a dataset is given below. Apart from the basic
stats like the number of instances and categories in the data, the number of zero vectors (to look for
feature extraction problems), class priors, relative class imbalance and the number of dimensions,
the analyzer calculateskNN-related stats. Items under stDevArray, skewArray, kurtosisArray cor-
respond to the neighbor occurrence frequency for the specified k-range and ’bad hubness’ lists the
mislabeling percentages for different neighborhood sizes. Direct and reverse neighbor set entropy
distributions follow, along with the percentage of points occurring above some small threshold, di-
ameters of top hub sets, within-cluster distances of hub points, top hub occurrence frequencies, as
well as a list of class-to-class neighbor occurrence matrices for eachk value.

dataset: dataset0.arff
k_max: 10
noise: 0.0
ml: 0.0
instances: 1244
numCat: 10
nZeroVects: 0
class priors: 0.152 0.06 0.202 0.057 0.182 0.147 0.064 0.023 0.081 0.031

5.3. BATCH HUBNESS ANALYSIS 33

RelativeImbalance 0.20435232
dim: 100

stDevArray:
2.831,5.11,7.432,9.518,11.532,13.552,15.323,17.183,19.071,21.005

skewArray:
8.723,8.174,8.132,7.797,7.441,7.419,7.05,6.921,6.764,6.679

kurtosisArray:
105.12,93.226,92.541,86.821,80.346,80.084,72.869,70.639,67.442,65.616

bad hubness:
0.491,0.501,0.508,0.514,0.518,0.519,0.524,0.527,0.532,0.535

kEntropyMeans:
0.0,0.401,0.595,0.698,0.774,0.825,0.868,0.9,0.934,0.957

kEntropyStDevs:
0.0,0.49,0.528,0.545,0.547,0.549,0.543,0.55,0.557,0.562

kEntropySkews:
0.0,0.403,0.068,0.029,0.004,-0.047,-0.089,-0.069,-0.069,-0.107

kEntropyKurtosis:
0.0,-1.837,-1.254,-0.932,-0.647,-0.637,-0.552,-0.522,-0.473,-0.529

kRNNEntropyMeans:
0.149,0.283,0.374,0.457,0.523,0.583,0.645,0.693,0.737,0.766

kRNNEntropyStDevs:
0.445,0.578,0.673,0.737,0.771,0.797,0.812,0.828,0.838,0.849

kRNNEntropySkews:
2.908,1.916,1.529,1.298,1.129,0.974,0.849,0.762,0.687,0.652

kRNNEntropyKurtosis:
8.195,2.772,1.322,0.565,0.134,-0.263,-0.467,-0.643,-0.749,-0.793

kEnt - khEnt avgs:
-0.149,0.118,0.221,0.241,0.251,0.242,0.223,0.207,0.197,0.191

Hubness above zero percentage Array:
0.37,0.51,0.6,0.65,0.69,0.73,0.76,0.78,0.8,0.82

Hubness above one percentage Array:
0.19,0.32,0.42,0.48,0.53,0.57,0.61,0.64,0.66,0.68

Hubness above two percentage Array:
0.11,0.22,0.3,0.37,0.43,0.47,0.51,0.55,0.57,0.59

Hubness above three percentage Array:
0.06,0.15,0.22,0.29,0.34,0.38,0.42,0.46,0.49,0.52

Hubness above four percentage Array:
0.04,0.11,0.17,0.23,0.28,0.32,0.36,0.39,0.42,0.45

Top ten hubs diam:
47.75,46.13,46.13,46.13,46.13,46.13,46.13,39.45,33.78,33.78

Top ten hubs avg within cluster dist:
36.02,34.25,34.25,34.25,34.25,34.25,34.25,32.94,32.23,32.23

Top five hubs diam:
32.08,32.08,32.08,32.08,32.08,32.42,32.42,32.42,32.42,32.42

Top five hubs avg within cluster dist:
29.89,29.89,29.89,29.89,29.89,29.61,29.61,29.61,29.61,29.61

Highest occurrence frequencies (each line is for one k value, lines go from zero to k_max):

34 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

k: 1:: 10.0,11.0,11.0,11.0,12.0,13.0,16.0,16.0,17.0,18.0,24.0,25.0,37.0,41.0,44.0
k: 2:: 18.0,19.0,22.0,22.0,23.0,27.0,29.0,29.0,31.0,34.0,37.0,50.0,68.0,70.0,76.0
k: 3:: 28.0,29.0,32.0,34.0,35.0,37.0,38.0,42.0,44.0,48.0,52.0,83.0,89.0,99.0,115.0
k: 4:: 35.0,38.0,39.0,42.0,43.0,50.0,52.0,55.0,56.0,60.0,69.0,104.0,104.0,127.0,147.0
k: 5:: 45.0,45.0,51.0,52.0,55.0,61.0,61.0,65.0,67.0,80.0,86.0,114.0,121.0,152.0,177.0
k: 6:: 55.0,57.0,60.0,60.0,61.0,68.0,72.0,75.0,81.0,89.0,95.0,128.0,151.0,185.0,203.0
k: 7:: 63.0,65.0,69.0,70.0,73.0,76.0,77.0,85.0,92.0,101.0,107.0,139.0,169.0,209.0,220.0
k: 8:: 72.0,73.0,80.0,80.0,81.0,81.0,84.0,99.0,99.0,113.0,128.0,154.0,184.0,234.0,245.0
k: 9:: 84.0,85.0,85.0,86.0,89.0,92.0,95.0,108.0,119.0,127.0,138.0,170.0,204.0,256.0,268.0
k: 10:: 91.0,93.0,93.0,94.0,99.0,100.0,106.0,120.0,136.0,138.0,161.0,177.0,229.0,280.0,291.0

Global class to class hubness matrices for all K-s:
k = 1
0.519 0.065 0.165 0.057 0.06 0.051 0.029 0.011 0.028 0.015
0.0 0.701 0.0 0.0 0.146 0.076 0.014 0.007 0.056 0.0
0.005 0.0 0.922 0.005 0.005 0.002 0.0 0.0 0.005 0.056
0.01 0.0 0.019 0.951 0.0 0.0 0.0 0.0 0.01 0.01
0.0 0.004 0.0 0.0 0.724 0.143 0.081 0.028 0.021 0.0
0.0 0.0 0.0 0.0 0.0 0.875 0.0 0.0 0.125 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.999 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.029 0.0 0.969 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.008 0.0 0.0 0.991 0.0
0.0 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.975

k = 2
0.437 0.072 0.189 0.065 0.076 0.06 0.035 0.012 0.031 0.023
0.0 0.603 0.0 0.0 0.177 0.105 0.034 0.014 0.067 0.0
0.007 0.004 0.882 0.014 0.005 0.002 0.002 0.002 0.007 0.075
0.008 0.0 0.039 0.938 0.0 0.0 0.0 0.0 0.008 0.008
0.0 0.005 0.0 0.0 0.65 0.185 0.092 0.04 0.028 0.0
0.0 0.0 0.0 0.0 0.0 0.814 0.003 0.0 0.183 0.0
0.0 0.0 0.0 0.0 0.018 0.0 0.981 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.028 0.028 0.0 0.942 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.007 0.0 0.0 0.993 0.0
0.0 0.0 0.043 0.0 0.0 0.0 0.0 0.0 0.021 0.934

k = 3
0.402 0.078 0.194 0.07 0.092 0.058 0.036 0.013 0.036 0.023
0.004 0.529 0.0 0.0 0.205 0.108 0.05 0.025 0.079 0.0
0.01 0.004 0.859 0.014 0.005 0.005 0.003 0.001 0.01 0.09
0.013 0.0 0.057 0.911 0.0 0.0 0.006 0.0 0.006 0.006
0.0 0.005 0.0 0.0 0.606 0.21 0.105 0.042 0.031 0.0
0.0 0.0 0.0 0.0 0.0 0.795 0.004 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.017 0.0 0.983 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.025 0.025 0.025 0.923 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.005 0.0 0.0 0.994 0.0
0.0 0.0 0.059 0.0 0.0 0.0 0.0 0.0 0.02 0.92

k = 4
0.381 0.082 0.193 0.072 0.097 0.062 0.036 0.014 0.041 0.021
0.003 0.485 0.003 0.0 0.214 0.125 0.054 0.021 0.095 0.0
0.01 0.007 0.835 0.02 0.007 0.009 0.004 0.001 0.011 0.098
0.011 0.0 0.057 0.909 0.0 0.0 0.006 0.0 0.011 0.006
0.0 0.004 0.0 0.0 0.584 0.221 0.114 0.044 0.033 0.0
0.0 0.0 0.0 0.0 0.0 0.787 0.004 0.0 0.209 0.0
0.0 0.0 0.0 0.0 0.023 0.0 0.976 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.022 0.045 0.022 0.909 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.005 0.0 0.0 0.995 0.0
0.0 0.0 0.053 0.0 0.0 0.0 0.0 0.0 0.035 0.911

k = 5
0.369 0.08 0.197 0.073 0.102 0.062 0.037 0.016 0.042 0.022
0.002 0.464 0.002 0.0 0.24 0.119 0.056 0.017 0.1 0.0
0.013 0.007 0.826 0.018 0.006 0.01 0.006 0.001 0.013 0.1
0.024 0.005 0.056 0.873 0.005 0.005 0.005 0.0 0.009 0.019
0.0 0.005 0.0 0.0 0.564 0.234 0.118 0.045 0.034 0.0
0.0 0.0 0.0 0.0 0.0 0.769 0.003 0.002 0.226 0.0
0.0 0.0 0.0 0.0 0.035 0.0 0.965 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.021 0.042 0.021 0.894 0.021 0.0
0.0 0.0 0.0 0.0 0.0 0.009 0.0 0.0 0.991 0.0

5.3. BATCH HUBNESS ANALYSIS 35

0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.033 0.915

k = 6
0.36 0.081 0.194 0.074 0.104 0.067 0.038 0.016 0.043 0.024
0.006 0.447 0.002 0.0 0.24 0.125 0.058 0.017 0.102 0.002
0.013 0.006 0.82 0.02 0.008 0.011 0.006 0.002 0.017 0.097
0.033 0.004 0.058 0.859 0.004 0.008 0.004 0.0 0.008 0.021
0.0 0.005 0.0 0.0 0.555 0.237 0.12 0.047 0.037 0.0
0.0 0.0 0.0 0.0 0.003 0.754 0.005 0.002 0.236 0.0
0.0 0.0 0.0 0.0 0.032 0.0 0.961 0.006 0.0 0.0
0.0 0.0 0.0 0.0 0.019 0.058 0.019 0.864 0.039 0.0
0.0 0.0 0.0 0.0 0.0 0.012 0.0 0.0 0.988 0.0
0.0 0.0 0.075 0.0 0.0 0.0 0.0 0.0 0.03 0.894

k = 7
0.353 0.084 0.197 0.073 0.106 0.068 0.038 0.016 0.043 0.022
0.009 0.41 0.004 0.0 0.254 0.143 0.059 0.014 0.106 0.002
0.014 0.007 0.807 0.021 0.008 0.01 0.006 0.001 0.021 0.104
0.033 0.004 0.066 0.854 0.004 0.007 0.007 0.0 0.007 0.018
0.0 0.005 0.0 0.0 0.546 0.241 0.123 0.047 0.039 0.0
0.0 0.0 0.0 0.0 0.004 0.744 0.005 0.001 0.245 0.0
0.0 0.0 0.0 0.0 0.03 0.006 0.952 0.006 0.006 0.0
0.0 0.0 0.0 0.0 0.018 0.053 0.018 0.876 0.035 0.0
0.0 0.0 0.0 0.0 0.0 0.015 0.0 0.0 0.985 0.0
0.0 0.0 0.071 0.0 0.0 0.0 0.0 0.0 0.029 0.899

k = 8
0.348 0.084 0.197 0.072 0.109 0.068 0.039 0.016 0.043 0.023
0.008 0.395 0.003 0.0 0.25 0.15 0.062 0.014 0.11 0.006
0.014 0.007 0.801 0.023 0.009 0.011 0.006 0.002 0.024 0.104
0.042 0.007 0.068 0.837 0.003 0.007 0.007 0.0 0.013 0.016
0.0 0.005 0.0 0.0 0.539 0.243 0.125 0.049 0.039 0.0
0.0 0.0 0.0 0.0 0.005 0.738 0.005 0.001 0.251 0.0
0.0 0.0 0.0 0.0 0.028 0.006 0.954 0.006 0.006 0.0
0.0 0.0 0.0 0.0 0.017 0.05 0.033 0.849 0.05 0.0
0.0 0.0 0.0 0.0 0.0 0.014 0.0 0.0 0.986 0.0
0.0 0.0 0.069 0.0 0.0 0.0 0.0 0.0 0.028 0.902

k = 9
0.341 0.083 0.197 0.072 0.112 0.069 0.04 0.017 0.045 0.023
0.009 0.388 0.003 0.0 0.251 0.156 0.062 0.014 0.112 0.006
0.016 0.008 0.791 0.025 0.011 0.012 0.007 0.002 0.023 0.104
0.039 0.009 0.069 0.834 0.006 0.006 0.006 0.0 0.015 0.015
0.0 0.007 0.0 0.0 0.531 0.248 0.127 0.048 0.04 0.0
0.0 0.0 0.0 0.0 0.009 0.729 0.006 0.001 0.255 0.0
0.0 0.0 0.0 0.0 0.028 0.011 0.95 0.006 0.006 0.0
0.0 0.0 0.0 0.0 0.016 0.046 0.062 0.83 0.046 0.0
0.0 0.0 0.0 0.0 0.0 0.013 0.0 0.0 0.987 0.0
0.0 0.0 0.079 0.0 0.0 0.0 0.0 0.0 0.026 0.894

k = 10
0.337 0.083 0.198 0.072 0.113 0.07 0.04 0.017 0.046 0.025
0.008 0.369 0.003 0.0 0.253 0.169 0.063 0.017 0.114 0.005
0.017 0.009 0.787 0.027 0.01 0.014 0.007 0.002 0.024 0.102
0.042 0.008 0.076 0.823 0.006 0.008 0.006 0.0 0.014 0.017
0.0 0.006 0.0 0.0 0.527 0.249 0.127 0.048 0.042 0.0
0.0 0.0 0.0 0.0 0.009 0.727 0.005 0.001 0.258 0.0
0.0 0.0 0.0 0.0 0.026 0.01 0.953 0.005 0.005 0.0
0.0 0.0 0.0 0.0 0.015 0.045 0.06 0.835 0.045 0.0
0.0 0.0 0.0 0.0 0.0 0.015 0.0 0.0 0.984 0.0
0.0 0.0 0.076 0.0 0.0 0.0 0.0 0.0 0.025 0.898

Six

The Data Model

The current Hub Miner data model is simple, yet flexible. At the same time, it is not too complicated
to use. In case that additional representational capacity is needed for an application, it is always
possible to extend the corresponding classes in a straightforward way. The basic class hierarchy for
data representation is shown in Figure 6.1. Additional classes in data.representation.images extend
the basic dense data holders.

Figure 6.1: The basic Hub Miner data model.

The idea is simple. DataSet objects represent dense datasets as lists of DataInstance objects.
Also, DataSet objects hold the representation definition interms of feature names. What follows are
the current variable declarations in DataSet objects:

public class DataSet implements Serializable {

private static final long serialVersionUID = 1L;
private String name;
// The corresponding DataSet object holding the identifiers of these
// feature representations, represented as DataInstances. This way of
// representing the data is optional, but allows for more complex keys and
// splitting the features that machine learning is to be based upon from
// the auxiliary data features that can still be contained within the
// identifier context.
public DataSet identifiers = null;

37

38 CHAPTER 6. THE DATA MODEL

// Feature names.
public String[] iAttrNames = null;
public String[] fAttrNames = null;
public String[] sAttrNames = null;
// A map between feature names and their indexes.
private HashMap<String, Integer> attNameMappings;
// A list of data instances.
public ArrayList<DataInstance> data;
private static final int DEFAULT_INIT_CAPACITY = 1000;
private int initCapacity;

The basic data holders can handle three different feature types: float features, integer features
and nominal features. Of course, categorical values can also be represented as integers, but then
special care should be taken with regards to how distance measures are used and which can be
applied to which feature. The Hub Miner version of ARFF file format supports the keywordinteger
for a feature type and these features are then loaded into theinteger part of the data representation.
This is a slight extension of the original ARFF format, as allnumbers are treated equally there.

DataSet class implements many useful methods for data handling. Method addDataInstance in-
serts a new data instance into the DataSet. A copy of the current data definition in terms of feature
names can be produced via the cloneDefinition method, which outputs an empty DataSet object
with the same feature specification. If the data is to be copied as well, the copy method is avail-
able. It is possible to normalize features via normalizeFloats and standardizeAllFloats methods.
Checking for missing values in the data is trivial, as there is a hasMissingValues method. Intro-
ducing label noise into the data for experiments can be done by invoking the induceMislabeling
method. Embedding the data into a single cluster can be achieved by makeClusterObject. Merg-
ing two disjoint views of the same data, two different feature representations, can be done via the
mergeDisjointRepresentations method. It is possible to directly calculate the distance matrix by
invoking calculateDistMatrix and there is also a multi-threaded variant readily available. There are
many more methods implemented within DataSet and also many auxiliary methods for handling
DataSet objects that are available in other Hub Miner classes.

Creating a DataInstance object that conforms to a particular feature representation defined in the
DataSet object is easily done by using the proper DataInstance constructor, as follows.

DataSet dset = new DataSet();
dset.fAttrNames = new String[2];
dset.fAttrNames[0] = "Height";
dset.fAttrNames[1] = "Width";
DataInstance instance = new DataInstance(dset);

This creates a DataSet feature representation that consists of two float features: height and
width. The subsequent DataInstance constructor then generates a DataInstance object that has a
float feature value array of length two, corresponding to thefeature representation of the DataSet.
However, the instance is not automatically included in the collection and the data context in the
DataInstance object is not automatically set. If one wishesto include the instance, the following
code should be included.

// Set the data context.
instance.embedInDataSet(dset);

39

// Include the instance into the dataset list.
dset.addDataInstance(instance);

DataInstance objects have the following variable declarations.

public class DataInstance implements Serializable {

private static final long serialVersionUID = 1L;
// The DataSet that defines the feature types for this data instance.
private DataSet dataContext = null;
// The label of the data instance.
private int category = 0;
// Support for fuzzy labels is slowly being added throughout the code. Most
// methods work with crisp labels, as is customary.
public float[] fuzzyLabels = null;
// Feature values.
public int[] iAttr = null;
public float[] fAttr = null;
public String[] sAttr = null;
// Identifier, which can be composed of multiple values and is thus also
// represented as a data instance.
private DataInstance identifier = null;

Three feature value arrays correspond to the three feature name arrays in the DataSet object.
The dataContext variable holds a link to the parent DataSet object. It can be used either to signal
where the feature representation definition is or to signal that the instance is contained within the
object. The feature arrays in the DataInstance need to correspond to those in the DataSet object that
is the dataContext and that contains the instance. If there is a mismatch in lengths, errors may occur
- since this is not a valid object state.

Instance label is contained in the category field. There is also a fuzzyLabels field if fuzzy labels
are to be defined, but this is still experimental and not fullysupported in the current Hub Miner
release. Users are encouraged to include it in their own applications and extend the basic Hub
Miner functionality, if they require fuzzy training labelsin their own experiments.

The identifier field is also of DataInstance type and it is usedto hold multi-values primary keys
for the instances, in cases when such keys exist, when instances are pulled from a database. If you
are simply analyzing a UCI dataset, this field will not be utilized. It might, however, be useful in
some practical applications.

DataInstance class implements many useful methods for datahandling. These include equality
checks, checks for missing values and noise, consistency checks, as well as other utility methods. It
is also possible to add or average a list of DataInstance objects, which is useful in many calculations.
There is also a toString() method, which means that DataInstance objects can easily be printed to
any standard output. This is very useful during de-bugging,though it can be used to easily persist
the results. In general, for results I/O, classes in the ioformat package are to be preferred, as they
enable save/load in/from ARFF, CSV and TSV formats.

While DataSet and DataInstance objects make convenient representations for dense data, they
would not be appropriate for sparse data representations, like for instance bag-of-words in text
mining. Therefore, Hub Miner offers BOWDataSet and BOWInstance objects for this particular
purpose. For instance, here are the declarations in case of BOWDataset:

public class BOWDataSet extends DataSet {

40 CHAPTER 6. THE DATA MODEL

public static final int DEFAULT_INIT_WORDS = 20000;
// The number of words in the vocabulary.
private int numWords = -1;
// Map of words to their indexes in the vocabulary.
private HashMap<String, Integer> vocabularyHash;
// Vocabulary of all the represented words.
private ArrayList<String> vocabulary = null;
// Word frequencies.
private ArrayList<Float> wordFrequencies = null;

This class extends the DataSet class, so mixed data can be easily represented, as multimedia
data in particular can often contain both sparse and dense representation parts. Consider images
with their captions or associated comments and descriptions. The textual part of the representation
is usually sparse (unless we consider tags), but image features are usually not. The sparse repre-
sentation is simple. A single HashMap could also have been used, but it is often useful to have
immediate access to the vocabulary, so there is one HashMap that maps a word to an index in the
frequency and vocabulary list - and these lists are maintained separately. Methods for easily insert-
ing words and instances into the sparse dataset are available, so users do not have to think about
doing these updates manually. BOWInstance objects also extend DataInstance objects.

public class BOWInstance extends DataInstance {

public static final int INIT_HASH_SIZE = 500;
// This map stores the mapping between word indexes from the vocabulary
// and their weights or counts in the current document.
private HashMap<Integer, Float> wordIndexHash =

new HashMap<>(INIT_HASH_SIZE);
// The data context variable here is named corpus.
public BOWDataSet corpus;
// Name or path of the document from which the data was extracted, if
// available.
public String documentName;

Each BOWInstance contains a HashMap that maps word indexes to their weight, which is the
standard bag-of-words representation. For readability, an additional data context variable named
corpus that is of the BOWDataSet type is introduced and returned in the context query methods. An
additional String value is present to mark document names, when necessary. BOWInstance objects
do not store raw text, as this is rarely needed at this stage inthe analysis. Such data can be stored
separately.

While it is certainly true that integer features can be used to represent value ranges when float
features are discretized according to pre-computed divisions, this is not the most fortunate generic
solution. This is why Hub Miner allows for a more fine-grainedcontrol over discretized features
and this is achieved in DiscretizedDataSet and DiscretizedDataInstance. Unlike their sparse coun-
terparts, the design decision here was not to let them directly extend DataSet and DataInstance -
since the discretized data is not usable in same types of methods as non-discretized data, which
was not the case with sparse data. Namely, it makes little sense to applykNN to discretized data
(while it is still possible with some carefully chosen metric), but other types of methods like decision
trees expect discretized data as input. This rather clear separation has lead to separate pipelines for
discretized and non-discretized data within Hub Miner. Separate types of classification algorithms
implement the predictive interfaces for these different types of instances and datasets.

41

public class DiscretizedDataSet implements Serializable {

private static final long serialVersionUID = 1L;

// Original DataSet from which this one was created.
private DataSet originalData;
// Data points.
public ArrayList<DiscretizedDataInstance> data = null;
// Discretization structures.
private HashMap<String, Integer>[] nominalHashes = null;
private int[] hashSizes = null;
private ArrayList<String>[] nominalVocabularies = null;
// By convention, they define [) intervals and are supposed to be ordered.
// IMPORTANT: Float/Integer -MAX_VALUE / MAX_VALUE are supposed to be at the
// front and the back of the interval definitions. This is implicitly
// assumed in the methods defined below.
private int[][] intIntervalDivisions = null;
private float[][] floatIntervalDivisions = null;

The original DataSet reference is present in DiscretizedDataSet variables, as all discretized
dataset representations in Hub Miner are expected to be derived from some specific continuous
representation. If this is not the case and the data was externally loaded, this can be generically
filled or left as null. Like DataSet, DiscretizedDataSet also contains a list of instances, only Dis-
cretizedDataInstance objects in this case. It also holds the discretization definitions, the value ranges
for float and integer variables - and a HashMap for nominal values, which are replaced by the cor-
responding indexes in their feature vocabularies.

public class DiscretizedDataInstance implements Serializable {

private static final long serialVersionUID = 1L;

private DiscretizedDataSet dataContext = null;
private DataInstance originalDataInstance;
private int category = -1;
private float[] fuzzyLabels = null;
// Discrete arrays all have discrete index values pointing to certain
// ranges of values in the original continous spectrum. The definition of
// the ranges can be found in the embedding dataContext.
public int[] integerIndexes = null;
public int[] floatIndexes = null;
public int[] nominalIndexes = null;

DiscretizedDataInstance object are designed in a similar fashion to DataInstance objects. They
contain separate discretized value index arrays for floats,integers and nominal variables, as well as
crisp and fuzzy labels. A reference to the embedding discrete data context and a reference to the
original DataInstance that the DiscretizedDataInstance was derived from are also present.

So, how does one automatically generate a DiscretizedDataInstance from a DataInstance object?
In fact, there are methods in Hub Miner that enable the users to automatically discretize entire
datasets.

For instance, consider the class EntropyMDLDiscretizer that is located in
data.representation.discrete.tranform package.

DataSet dset = ... \\ Some data load code here ;

42 CHAPTER 6. THE DATA MODEL

DiscretizedDataSet dsetDisc = new DiscretizedDataSet(dset);
EntropyMDLDiscretizer discretizer = new EntropyMDLDiscretizer(dset, dsetDisc, 10);
// Use the discretizer to discretize the data.
discretizer.discretizeAll();
dsetDisc.discretizeDataSet(dset);

Like the discretizedAll method in EntropyMDLDiscretizer,there is also discretizeAllBinary, as
well as separate discretization methods for each feature type. The former tries to find the optimal
number of splits for each variable, while the latter always splits the value range into two interval
sub-ranges. Certainly, the entropy minimum-description-length discretized implemented in Hub
Miner is not the only such transformation filter that could beused and additional discretization
filters might be introduced in the future.

Hub Miner offers basic support for operations on graphs, as hubness is a phenomenon onk-
nearest neighbor graphs in intrinsically high-dimensional data. While these graphs are rarely ex-
plicitly represented in hubness-aware analysis, it is sometimes useful to be able to visualize them
and analyze them as graphs. The support for graph data representations in Hub Miner is currently
basic and it will be modified and extended in future releases,even though it is not the top priority
since graph analysis is a vast field with many methods - and these methods are not the focus of the
Hub Miner library nor the researchers performing research on hubness and high-dimensional data
mining.

public class DMGraph {

public DataSet vertices;
public DMGraphEdge[] edges;
public String networkName;
public String networkDescription;
// Copying a DMGraph object will not copy the JGraph reference, by default.
// JGraph is only used when the results are to be displayed on the screen.
// JGraph is not always used for graph drawing in this library, so this is
// more of a backward-compatibility thing.
public JGraph visGraph = null;

The basic supported static graph representation is very simple. DataInstance objects are used
as vertices, which makes it easy to find correspondence between graph nodes and the underly-
ing representation, in case ofk-nearest neighbor graphs. DMGraphEdge is the name of the class
that represents weighted edges between different nodes. Graphs can also contain names and de-
scriptions, as well as a reference to a JGraph visualizationcontext, in case that JGraph is used for
visualization. Image Hub Explorer relies on JUNG, for instance.

public class DMGraphEdge implements Serializable {

public double weight = 0;
public int first;
public int second;
// Edges are maintained as linked lists.
public DMGraphEdge next = null;
public DMGraphEdge previous = null;

DMGraphEdge objects are very simple. They are connected as doubly linked lists and contain
start and end vertex indices, as well as the associated weight. In DMGraph, each element in the

43

edges array corresponds to a start of a list holding the edgesthat start at a given node. This makes it
easy to access all edges corresponding to a specified vertex.

While not the optimal graph representation, these basic graph classes in Hub Miner enable
for some analysis to be done along with the visualization. The graph.subgraphs package contains
classes that enable users to find the connected components ina graph, perform cuts and select sub-
graphs. The graph.calc.GraphStatistics class contains methods for calculating degree and closeness
centrality for vertices in the graph.

Since this initial support may not suffice for all applications, it is possible to export DMGraph
objects in Pajek-compatible format, which means that it is possible to use Pajek (http://pajek.
imfm.si/doku.php?id=pajek), a well-known network analysis tool, for subsequent analysis
of kNN graphs on intrinsically high-dimensional data. This export was the original intent of intro-
ducing the DMGraph structure in Hub Miner.

http://pajek.imfm.si/doku.php?id=pajek
http://pajek.imfm.si/doku.php?id=pajek

Seven

Hubness-aware Implementations

Since Hub Miner is primarily a library for hubness-aware machine learning and data analysis, spe-
cial attention is given to hubness-aware implementations.This chapter covers hubness-aware meth-
ods for classification, clustering, metric learning and instance selection. It does not cover the ex-
ploratory framework for analysing hubness in intrinsically high-dimensional data, that is also part
of Hub Miner.

The current draft of this manual omits the equations used to infer hubness-aware models, as
they are available in the cited papers where the methods werefirst proposed. Instead, this chapter
gives a brief overview of the ideas behind each algorithm, aswell their location in the Hub Miner
class hierarchy. Interested readers are encouraged to lookup the details in external material, which
is freely available online.

7.1 CLASSIFICATION

Several hubness-aware classification methods have recently been proposed [RNI09][TRMI11b]
[TRMI13a][TRMI11a][TM12b][TM13b] and Hub Miner containstheir implementations.

The initial way of dealing with detrimental hub points inkNN votes was to assign them a
lower voting weight. This was proposed in hw-kNN [RNI09], a simple yet effective algorithm
that was a proof of concept that hubness-aware methods can bemade and that the negative effects
of hubness in the data can be reduced. This algorithm is implemented in HwKNN class in learn-
ing.supervised.methods.knn package. Other hubness-awarekNN methods are contained within the
same package.

The initial hw-kNN algorithm did not take into account class-conditional neighbor occurrences
and this was rectified in the hubness-aware extension of the fuzzyk-nearest neighbor framework,
h-FNN [TRMI11b][TRMI13a]. The weighted counterpart of h-FNN, dwh-FNN, usually achieves
comparable, though slightly higher accuracy. These algorithms are implemented in HFNN and
DWHFNN classes in the learning.supervised.methods.knn package. Since it is impossible to form
hubness-based fuzzy votes for orphan and anti-hub points directly, a special anti-hub handling mech-
anism needs to be employed in order to properly define votes for such points, since they occasionally
do occur as neighbors on the test data, despite the fact that they were never observed as neighbors
on the training data.

A later extension of h-FNN and dwh-FNN took into account the differences in the informa-
tion content of different neighbor occurrences, as hubs have been judged as less informative in
general. This algorithm was named hubness-informationk-nearest neighbor (HIKNN) [TM12b]
and it included absolute and relative surprise factors for forming neighbor votes without the anti-
hub θ threshold of h-FNN and dwh-FNN. Two variants of the HIKNN approach are present in
learning.supervised.methods.knn package. One variant does not employ additional distance-based

45

46 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

weighting and it is given in the class HIKNNNonDw. The weighted counterpart is implemented in
HIKNN class.

The naive Bayesian re-interpretation ofk-nearest neighbor sets was shown to yield very good re-
sults in intrinsically high-dimensional data under the assumption of hubness, especially in presence
of class imbalance. This method was named NHBNN (naive hubness-Bayesiank-nearest neigh-
bor) [TRMI11a] and it is present in the NHBNN class in the samelearning.supervised.methods.knn
package.

An extension of NHBNN was proposed that takes neighbor co-occurrences into account and
that is able to outperform NHBNN on high-hubness datasets for larger neighborhood sizes. This
extension was named the augmented naive hubness-Bayesiank-nearest neighbor [TM13b]. Across
a wider range of datasets, though, NHBNN still proves more robust in our experiments. However,
this has to do with the current ANHBNN design and it is possible to learn different types of hub
co-occurrence models, some of which might be more robust in absence of co-occurrence informa-
tion for most neighbor pairs. Namely, high data hubness actually increases the number of pairs for
which the algorithm is able to derive meaningful class-conditional co-occurrence probabilities and
therefore calculate proper mutual information and relatedmeasures. It might also be the case that
better handling of those low-or-no-information cases for pair co-occurrences could improve AN-
HBNN performance on low-hubness datasets. Nevertheless, as it was designed for classification
under the assumption of hubness, the algorithm is quite useful in those cases where it is applicable,
in its current form. The algorithm is given in ANHBNN class, in the same package as the rest.

It is possible to perform neighbor re-ranking ink-nearest neighbor sets based on their hubness
and their bad hubness in particular. This was exploited in RRKNN (re-rankedk-nearest neigh-
bor) [TM14b]. RRKNN employs secondary re-ranking ofk-nearest neighbor sets that was first
proposed for improved bug report duplicate detection [TLM13] in presence of high hubness in
textual bug report data. The algorithm performs secondary re-ranking on the originalk-nearest
neighbor set and then learn a set of secondary local distances that are used to re-rank the neigh-
bors. Since this does not change the content of the originalk-nearest neighbor set (the distances
are only re-computed locally for the neighbors), a smaller neighborhood size (usuallyk/2) is used
to perform the actual voting. The algorithm is available in RRKNN class in the same learn-
ing.supervised.methods.knn package.

In principle, RRKNN approach could be applied not only tokNN but also to other hubness-
aware methods and we have experimented with this, but - the accuracy gains were mostly insignifi-
cant. These prototype classes were therefore not included in the current Hub Miner release.

It was recently demonstrated that it is possible to boost hubness-aware classifiers and that cer-
tain types of boosting result in implicit inner ensembles ina sense that the resulting classifier
has the same model form as the base hubness-aware approaches. While they are not weak clas-
sifiers, it is still possible to effectively boost hubness-aware approaches due to the fact that the
k-nearest neighbor sets need only be calculated once on the training data and boosting can be
done via iterative instance re-weighting without re-sampling [Tom14]. These initial experiments
were performed within the boosting framework of Adaboost.M2, which is present as AdaBoostM2
in learning.supervised.meta.boosting package. Boostable implementations of hubness-aware base
learners that support instance weighting and can thereforebe used within the framework are given in
learning.supervised.meta.boosting.baselearners. In particular, classes HFNNBoostable, DWHFNN-
Boostable, HIKNNBoostable and HwKNNBoostable.

Classification experiments in Hub Miner can be performed under introduced random label noise.
This type of experiments is used to determine the algorithm robustness in noisy data under controlled
noise rates. While the default protocol is to use the uniformrandom label noise in such experiments,

7.2. CLUSTERING 47

it is also possible to use weight-proportional random labelnoise and this was used to conduct exper-
iments with hubness-proportional random label noise in onerecent publication. This is a somewhat
unique feature of Hub Miner, to have this option already included and available in the default clas-
sification evaluation protocol and configuration files. Hubness-proportional random label noise can
be used to test for predicted worst-case classifier performance in noisy data, as hub-centered noise
induces a much higher misclassification rate than uniform noise [TB14].

7.2 CLUSTERING

It was experimentally shown that point-wise hubness (neighbor occurrence frequency) is highly cor-
related with local cluster centrality in intrinsically high-dimensional data and this has been exploited
for clustering. An example is shown in Figure 7.1, for synthetic zero-centered i.i.d. Gaussian data.
Not only does point-wise hubness become a good indicator of closeness to local cluster centers,
but density becomes less correlated with centrality with increasing data dimensionality. In a sense,
hubness is used as a replacement for density estimates in many dimensions.

0 1000 2000 3000 4000 5000

0
5

10
15

20
−1

−0.8

−0.6

−0.4

−0.2

No. of data points

Correlation between norm and hubness: d = 5

k

co
rr

(n
or

m
, N

k)

(a) Correlation between norm and hubness ford = 5 in
Gaussian i.i.d. data.

0
1000

2000
3000

4000
5000

0
5

10
15

20
−1

−0.8

−0.6

−0.4

−0.2

No. of data points

Correlation between norm and hubness: d = 100

k

co
rr

(n
or

m
, N

k)

(b) Correlation between norm and hubness ford = 100

in Gaussian i.i.d. data.

Figure 7.1: Interaction between norm and hubness, in low- and high-dimensional scenarios.

Hubs have been shown to make promising candidates for cluster representatives and selecting
a set of hubs instead of centroids or medoids can lead either to faster convergence or better cluster
configurations, in certain high-dimensional settings [TRMI11c][TRMI13b][TRMI14]. An illustra-
tive low-dimensional example of why hubs might be preferable as prototype points is shown in
Figure 7.2.

Hub Miner implements several hubness-based clustering methods that exploit this newly discov-
ered property in many dimensions. These methods are locatedin the learning.unsupervised.methods
package. LKH (Local K-hubs) and GKH (Global K-hubs) are the simplest hubness-based methods,
proof-of-concept-like. They are not very effective in practice, as they sometimes get stuck in sub-
optimal hub configurations and they converge very quickly. These methods are simple extensions of
K-means. The stochastic variants of the two methods, LHPC (local hubness-proportional clustering)
and GHPC (global hubness-proportional clustering) perform much better, as they avoid local cluster
configuration optima. GHPKM is a further exension of GHPC, where centroids are selected in de-
terministic iterations and hubs in stochastic iteration, via a square-hubness-proportional stochastic

48 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

Figure 7.2: Illustrative example. The red dashed circle marks the centroid (C), yellow dotted circle
the medoid (M), and green circles denote two elements of highest hubness (H1, H2), for neighbor-
hood size3. In this particular example, it is clear that selecting hubsas cluster prototypes would go
directly to the centers of local sub-groups and speed up convergence.

framework. This hybrid method combines the advantages of two different types of approaches and
outperforms both in many real-world examples.

LKH, GKH, LHPC, GHPC and GHPKM have been shown to perform wellin many cases and
to be quite robust to high rates of uniform noise. However, they are incapable of detecting non-
hyper-spherical clusters by design. Therefore, in order toenable clusters of more arbitrary shapes
to be formed in a hubness-based framework, an extension of kernel K-means was proposed, kernel-
GHPKM [TRMI14]. This algorithm is (logically) implementedin the KernelGHPKM class in the
learning.unsupervised.methodspackage. In the clustering evaluation experimental framework, users
can experiment with different types of kernels in order to test and evaluate both kernel-GHPKM and
kernel K-means.

Hub Miner also implements some tools for clustering progress visualization in case
of stochastic hubness-proportional clustering methods. An example is given in the learn-
ing.unsupervised.visualization package, in the HPCVisualizer class. This class generates visualiza-
tions like the one shown in Figure 7.3. It can be seen that the cluster prototype search goes mostly
through central cluster regions (even in this low-dimensional case) and that many configurations are
tested in the process.

7.3 METRIC LEARNING

Hubness arises in many commonly used metrics in high-dimensional data. Euclidean, Manhattan
and cosine are among the most commonly used distance/similarity measures and they are known to
exhibit substantial hubness in many dimensions. Fractional distances might lead to slight improve-
ments occasionally, but not enough to really be a game-changer. Also, dimensionality reduction
does not really help. Reducing the number of dimensions enough to suppress hubness in the data
entails substantial information loss and the effectiveness of the methods is affected in different ways.

While different feature representations and different primary distance or similarity measures
might induce varying degrees of hubness in the data - it is often impractical to test all possible

7.3. METRIC LEARNING 49

(a) k=1

(b) k=10

Figure 7.3: Hubness-guided search for the best cluster hub-configuration in global hubness-
proportional clustering on Iris data.

feature extraction pipelines and distance measures in order to reach the optimal system configura-
tion. Furthermore, sometimes a satisfactory configurationwould not even be available among the
tested primary approaches. This is why metric learning in form of secondary distance measures
has been proposed as a way of reducing hubness in the data and handling high-hubness data in
similarity-based systems in general [ZmP04][JHS07][SFSW12][HKK+10][TM12a][TM14a].

Hub Miner implements several secondary metrics that help with learning in intrinsically high-
dimensional data, in presence of hubness. Two local techniques, local scaling and NICDM, are

50 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

implemented in the distances.secondary package, in classes LocalScalingCalculator and NICDM-
Calculator. Mutual Proximity is a global scaling approach based on mutual neighbor relation prob-
abilities and it is given in MutualProximityCalculator class in the same package. These calculator
classes permit both single-threaded and multi-threaded calculations. Mutual proximity is an es-
pecially promising approach that was shown to substantially reduce hubness in many real-world
high-dimensional datasets.

Shared-neighbor secondary similarities are available in the distances.secondary.snd package,
though shared neighbor calculations are actually performed by the SharedNeighborFinder class
in data.neighbors. Bothsimcoss andsimhubs are represented by the SharedNeighborCalculator
class. Sincesimhubs is a weighted extension ofsimcoss, it was natural to group the two im-
plementations together in the same class. The effectiveness of simhubs andsimcoss in not only
reducing the hubness in the data but also improving the semantical consistency among the neighbor
sets can be glimpsed from an illustrative example in Figure 7.4.

Figure 7.4: An illustrative example of how secondary distances (simcoss and simhubs) affect
the consistency of the reversek-nearest neighbor sets in image data and the consistency of hub
occurrences in particular.

Underwater sea moss images are often confused with fire images taken in the dark and the
Example in Figure 7.4 shows how the sea moss photoX14 acts as a neighbor. In the primary
L1 distance, it is a detrimental hub image, a neighbor to many points in the fire images class.
Application ofsimcos50 andsimhub50 in turn reduces both the neighbor occurrence frequency of
X14 as well as the frequency of semantically incorrect occurrences.

7.4 INSTANCE SELECTION

Instance selection is often used in conjunction withk-nearest neighbor classification, askNN meth-
ods do not scale well unless approximatekNN calculations are used. Also, careful instance selection
strategies can sometimes even improvekNN performance.

7.4. INSTANCE SELECTION 51

Neighbor occurrence frequency has been pinpointed as a useful instance selection criterion in
high-dimensional data, which gave rise to some reverse-neighbor-based selection methods [DH11],
as well as hubness-aware instance selection [BNST11a]. Theformer is implemented in the
RNNR_AL1 class and the latter in INSIGHT, both of which are contained in the preprocess-
ing.instance_selection package.

Apart from the two selection methods that are directly basedon hubness, Hub Miner also im-
plements a general hubness-aware instance selection pipeline that extends the functionality of all
implemented instance selection methods, whether they wereconceived as hubness-aware or not.

Namely, past experiments have shown that combining certainhubness-aware classification
methods with certain instance selection methods can be quite promising, but that the instance se-
lection bias of the selection methods negatively affects the class-conditional neighbor occurrence
models learned on the reduced data. Therefore, in order to improve the performance of hubness-
aware classifiers and train unbiased models, an in-between step was inserted that calculates the
class-conditional selected prototype occurrence frequencies on all training data. This is shown in
Figure 7.5.

Figure 7.5: The modified instance selection pipeline. An unbiased prototype occurrence profile
estimator is included between the instance selector and a huness-aware classifier. It ought to provide
more reliable hubness estimates to the hubness-aware occurrence models. In the example we see
that pointA is a neighbor to three other points (X ,Y ,Z), but only one of them gets selected. Hence,
some occurrence information is irretrievably lost.

The unbiased hubness estimation pipeline has been shown to yield much better results and this
approach is applicable regardless of the underlying instance selection strategy.

Eight

Code Examples: Using Hub Miner for Data
Analysis

Hub Miner is very easy to use for various analytic tasks. Thisis simplest to demonstrate in case of
classification. Assume we have some data and we would like to see if we can perform learning and
classification by some approach on this data. An illustrative examples is given in the class learn-
ing.supervised.example.ClassifierUsageExample. The code is copied below (without the copyright
statement). An explanation follows immediately afterwards.

package learning.supervised.example;

import data.representation.DataSet;
import distances.primary.CombinedMetric;
import ioformat.SupervisedLoader;
import java.io.File;
import learning.supervised.evaluation.ClassificationEstimator;
import learning.supervised.methods.knn.AKNN;
import util.CommandLineParser;

/**
* This class gives a usage example for classification - how to load the data,
* train a classification model and save the results to a file. As an example,
* the adaptive k-nearest neighbor classifier (AKNN) is used.
*
* @author Nenad Tomasev <nenad.tomasev at gmail.com>
*/

public class ClassifierUsageExample {

public static void main(String[] args) throws Exception {
// Specify the command line parameters. While it is possible to write
// custom command line parsing methods for each class, the utility
// CommandLineParser class makes it easy in HubMiner.
CommandLineParser clp = new CommandLineParser(true);
clp.addParam("-inFileTrain", "Path to the input training data file.",

CommandLineParser.STRING, true, false);
clp.addParam("-inFileTest", "Path to the input test data file.",

CommandLineParser.STRING, true, false);
clp.addParam("-outFile", "Path to the output file.",

CommandLineParser.STRING, true, false);
// The parser parses the command line to extract the parameter values.
clp.parseLine(args);
// We assign the in/out train and test file path values to the
// respective variables.
File inFileTrain =

53

54 CHAPTER 8. CODE EXAMPLES: USING HUB MINER FOR DATA ANALYSIS

new File((String) clp.getParamValues("-inFileTrain").get(0));
File inFileTest =

new File((String) clp.getParamValues("-inFileTest").get(0));
File outFile = new File((String) clp.getParamValues("-outFile").get(0));
// Data load is simple when done via the SupervisedLoader class. It
// can handle .arff, .csv and .tsv files. It can also load data from the
// sparse modifications of the .arff format that are used in HubMiner.
// It detects and loads the proper format automatically.
DataSet datasetTrain = SupervisedLoader.loadData(inFileTrain, false);
DataSet datasetTest = SupervisedLoader.loadData(inFileTest, false);
// We use a default metric here, the Euclidean distance.
CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
// We choose a desired neighborhood size.
int k = 5;
// Initialization of the classifier.
AKNN classifier = new AKNN(datasetTrain, cmet, k);
// Model training.
classifier.train();
// An aggregate ClassificationEstimator object is generated when the
// predictions are compared on the test set.
ClassificationEstimator estimator = classifier.test(datasetTest);
// The estimator values are output to a file.
estimator.printEstimatorToFile(outFile);

}
}

The script takes the paths to the input training data, the input test data and the output
file target as its command line parameters. These parametersare conveniently parsed by the
util.CommandLineParser class. Users can use this class to specify the expected parameter and
parameter types, which is especially useful for type checking. Parameters are allowed to accept
multiple values.

Once the command line parameters have been parsed, we load the train and test data into corre-
sponding DataSet objects by a single call of ioformat.SupervisedLoader.

Since we are using ak-nearest neighbor approach, we need to select a metric and
here we take Euclidean distance as default, as a constant predefined object within dis-
tances.primary.CombinedMetric class. This object will handle both integer and float features prop-
erly. If we wanted to ignore integer features and calculate distances only from the floats, we would
have used CombinedMetric.FLOAT_EUCLIDEAN instead.

The adaptivek-nearest neighbor algorithm [WNC07] is initialized by passing in the training
data, the desired neighborhood size and the metric object.

Training is performed by a single call to the classifier, classifier.train(). We could also have
inserted a pre-calculated distance matrix or thek-nearest neighbor sets, if we had them ready from
another context. If they are not provided to the classifier, it calculates them implicitly. Take note
that if we calculate them externally, we can set them to multiple classifiers at no additional cost,
since they do not modify these structures. This achieves a considerable speed-up and is the way in
which the experimental framework is currently implemented.

Classifier testing and evaluation is performed compactly ina single line: ClassificationEstimator
estimator = classifier.test(datasetTest). The ClassificationEstimator object contains all the necessary
performance measures, as well as methods for saving and loading this data. This is exactly how we
reach the desired output, by calling estimator.printEstimatorToFile(outFile).

It is also possible to save and load learned models via serialization and it is very simple.

55

// Save a model.
classifier.save(ourFile);
// Load a model.
Classifier loadedModel = Classifier.load(inFile);

Of course, you would need to cast the loaded model into its proper type if you need to do
something other than basic prediction with it, but that’s not an issue.

Similarly, assume we wanted to perform clustering and that we have already parsed the param-
eters, similar to the previous example. We can cluster the data and output the results as shown
below.

CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
DataSet dset = SupervisedLoader.loadData(inFile, false);
int numClusters = dset.countCategories();
ClusteringAlg = new FastKMeans();
clust.setCombinedMetric(cmet);
clust.setDataSet(dset);
clust.setNumClusters(numClusters);
clust.cluster();
Cluster[] clusters = clust.getClusters();
Cluster.writeConfigurationToFile(outFile, clusters, dset);

Of course, the shown code snippet could be presented even more compactly, since the data, the
metric and the number of clusters can be passed in the constructor of FastKMeans. Again we see
that there are existing methods for writing output to a file, which saves us the time of having to write
some I/O code for each use case.

This example can easily be extended to include some evaluation of the produced data clustering.
Let us use the well-known Silhouette index to quantify the quality of the produced clustering. We
would continue by doing the following:

QIndexSilhouette silIndex = new QIndexSilhouette(
numClusters, clust.getClusterAssociations(),
dset);

float clusteringQuality = silIndex.validity();

If we had an externally calculated distance matrix, we couldset it to the quality index object.
This way, it is calculated implicitly. Either way, we obtainan estimate of our clustering quality in
two lines of code.

Let us suppose that we are not that interested in prediction.How do we analyze data? In prin-
ciple, BatchHubnessAnalyzer is a useful tool for batch analysis across various datasets. However, a
user might want to do some custom analysis. Let us set up a couple of examples. First of all, what
if a user simply want to see what the major hubs in the data are.

CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
DataSet dset = SupervisedLoader.loadData(inFile, false);
float[][] dMat = dset.calculateDistMatrix(cmet);
HubFinder hFinder = new HubFinder(dset, dMat, cmet);
// We will look at 1-neighbor sets, so only nearest neighbors.

56 CHAPTER 8. CODE EXAMPLES: USING HUB MINER FOR DATA ANALYSIS

int k = 1;
ArrayList<Integer> hubIndexes = hFinder.findHubsForK(k);
SOPLUtil.printArrayList(hubIndexes);

There is already a class responsible for extracting hubs. HubFinder implicitly calculates the
kNN sets via NeighborSetFinder, observes the neighbor occurrence frequencies, calculates the mean
and the standard deviation and outputs those hub points thathave occurrence frequencies that exceed
mean by more than two standard deviations. SOPLUtil is a useful utility class for quickly printing
out some stuff to the command line and/or Writer objects.

Metric learning is often used for improving the performanceof similarity-based methods and
Hub Miner implements support for secondary distances that have been demonstrated as useful in
high-dimensional data. Learning secondary distances in Hub Miner is fairly simple. Let us look
at an example showing how to calculatesimhubs for s = 50 andk = 10 on all training data and
initialize a metric object for use in calculating future distances according to the query results against
the training set.

// Initialize the primary metric object.
CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
// Load the data from a specified input file (assume this as given).
DataSet dset = SupervisedLoader.loadData(inFile, false);
// Calculate the primary distance matrix.
float[][] dMat = dset.calculateDistMatrix(cmet);
int numClasses = dset.countCategories();
// Specify the secondary neighborhood size for calculating shared neighbors.
int secondaryK = 50;
// Initialize the kNN finder object.
NeighborSetFinder nsfSecK = new NeighborSetFinder(dset, dMat, cmet);
// Calculate the kNN sets for k = 50.
nsfSecK.calculateNeighborSets(secondaryK);
// Specify the target neighborhood size to be used in classification.
int kValue = 10;
// Initialize the object that does the shared neighbor calculations.
SharedNeighborFinder snf = new SharedNeighborFinder(nsfSecK, kValue);
snf.setNumClasses(numClasses);
// Specify that hubness information weights are to be used, defining simhub and not simcos.
snf.obtainWeightsFromHubnessInformation(0);
// Calculate the shared neighbor sets.
snf.countSharedNeighborsMultiThread(numCommonThreads);
// First fetch the similarities.
float[][] dMatSec = snf.getSharedNeighborCounts();
// Then transform them into distances.
for (int indexFirst = 0; indexFirst < dMatSec.length; indexFirst++) {

for (int indexSecond = 0; indexSecond < dMatSec[indexFirst].length; indexSecond++) {
dMatSec[indexFirst][indexSecond] = secondaryK - dMatSec[indexFirst][indexSecond];

}
}
// Initialize the secondary metric object for later use.
SharedNeighborCalculator snc = new SharedNeighborCalculator(

snf, SharedNeighborCalculator.WeightingType.HUBNESS_INFORMATION);

Calculating other secondary distance types is even easier,as demonstrated on an example in-
volving mutual proximity.

// Initialize the primary metric object.
CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
// Load the data from a specified input file (assume this as given).
DataSet dset = SupervisedLoader.loadData(inFile, false);
// Calculate the primary distance matrix.
float[][] dMat = dset.calculateDistMatrix(cmet);

57

int numClasses = dset.countCategories();
// Specify the secondary neighborhood size for calculating shared neighbors.
int secondaryK = 100;
// Initialize the kNN finder object.
NeighborSetFinder nsfSecK = new NeighborSetFinder(dset, dMat, cmet);
// Calculate the kNN sets for k = 100.
nsfSecK.calculateNeighborSets(secondaryK);
// Initialize the mutual proximity calculator.
MutualProximityCalculator calc = new MutualProximityCalculator(

nsfSecK.getDistances(), nsfSecK.getDataSet(), nsfSecK.getCombinedMetric());
// Calculate the secondary distance matrix.
dMatSec = calc.calculateSecondaryDistMatrixMultThr(secondaryK, 8);

Ok, let’s look at something a bit more mundane. We will use HubMiner to calculate the infor-
mation value of different features in the data, used for calculating information gain.

DataSet dset = SupervisedLoader.loadData(inFile, false);
// We will look at an integer attribute.
int featureType = DataMineConstants.INTEGER;
// We will look at the first float feature;
int featureIndex = 0;
int numCategories = dset.countCategories();
DiscretizedDataSet discDSet = new DiscretizedDataSet(dset);
EntropyMDLDiscretizer discretizer =

new EntropyMDLDiscretizer(
dset, discDSet, numCategories);

discretizer.discretizeAll();
discDSet.discretizeDataSet(dset);
DiscreteAttributeValueSplitter splitter = new DiscreteAttributeValueSplitter(discDSet);
DiscreteAttributeEvaluator evaluator = new Info(splitter, numCategories);
float informationValue = evaluator.evaluate(featureType, featureIndex);

This kind of analysis is done in the decision tree implementation in Hub Miner.
We have seen that it is possible to do analysis in Hub Miner in afew lines of code. However,

as we will see, in order to perform useful data analysis with Hub Miner, it is not necessary to write
any lines of code, there are many useful tools and scripts andexisting frameworks. One such tool
that we will have a closer look at in the following chapter is Image Hub Explorer.

Nine

Image Hub Explorer

When handling image data, there is a wide choice of possible feature representations and processing
pipelines, as well as a wide choice of metrics that can be usedto measure image similarity and run
queries on the database. This is partly due to the semantic gap and the fact that it is not that easy to
choose the optimal representation, within a given context.

Images are very high-dimensional in nature, as many features are required in order to properly
encode all the objects in the scene and their properties. A usual approach consists of extracting
a set of local image features from each image, creating a codebook vocabulary, and then generat-
ing histogram representations to describe each individualimage, as bag-of-visual-words, similar to
text. In practice, large vocabularies are used, so there arepotentially hundreds of features in the
representation.

In presence of captions, tags and comments, it is not that unusual to form an associated textual
image meta-description as well and possibly concatenate itwith the dense image feature part of the
representation.

It has been experimentally shown that quantized image representations are highly
susceptible to hubness under commonly used similarity measures and normalization ap-
proaches [TBMN11][PTR+11]. Therefore, hubness is expected to greatly impact image-based
and description-based image querying, as well as certain types of object recognition from images.

In order to help users with visualizing hubness in their image databases in order to choose the
most appropriate representation and similarity measure, Image Hub Explorer was built and it is
included in the gui.images package in Hub Miner. A typical Image Hub Explorer use case is shown
in Figure 9.1.

A demo videoof how Image Hub Explorer is used in practice is available athttp://youtu.
be/LB9ZWuvm0qw.

Image Hub Explorer has been designed to help with analyzing close-to-scale-free distributions
of image relevance ink-nearest neighbor graphs of large processed image datasets. Image Hub
Explorer can also be applied to other data types, with most ofits original functionality. This is the
first publicly available tool for hubness visualization andexploration. An overview of the essential
types of functions that Image Hub Explorer provides is shownin Figure 9.2.

Image Hub Explorer enables the users to experiment with several state-of-the-art hubness-aware
metric learning techniques [ZmP04][JHS07][SFSW12][HKK+10][TM12a][TM14a], hubness-
aware classification methods [RNI09][TRMI13a][TRMI11a][TM12b], standard kNN base-
lines [FH51][KGG85][WNC07][Tan05] and a recently proposed query result re-ranking proce-
dure [TLM13].

The users need to provide the images for visualization and their feature representation or a pre-
computed distance matrix. The system then calculates thek-nearest neighbor sets in the specified
metric for a range ofk-values and calculates the most important hubness-relatedstats. It also per-

59

http://youtu.be/LB9ZWuvm0qw
http://youtu.be/LB9ZWuvm0qw

60 CHAPTER 9. IMAGE HUB EXPLORER

Figure 9.1: The typical Image Hub Explorer use case.

Figure 9.2: An overview of several basic Image Hub Explorer functions.

forms class-specific hubness analysis and estimates which classes are the most critical sources of
detrimental influence and which classes suffer most semantic inconsistency. Users are able to focus
on certain parts of thekNN graph and explore the local similarity structure. In order to be able to
interpret why some images act as hubs and which parts of the image are responsible for this influ-
ence being beneficial or detrimental, feature visualization and analysis is also available. We will go
through all these functions individually and also discuss the file structure and how it should be set
up in order to use Image Hub Explorer properly.

While most of Image Hub Explorer’s functionality is based onHub Miner, there are also some
external dependencies. Multi-dimensional scaling for data overview is performed by the MDSJ
library developed at the University of Konstanz [Pic09]. The JUNG library (http://jung.
sourceforge.net/) is used for graph drawing. Charts that are used to illustrate certain data
properties are displayed via JFreeChart (http://www.jfree.org/jfreechart/).

There are several types of data views in Image Hub Explorer and they all hold the references to
the same underlying set of data structures. These views are updated automatically when some of

http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://www.jfree.org/jfreechart/

9.1. PREPARING THE DATA FOR VISUALIZATION 61

the shared objects are modified.
The shared objects include the currently selected image, browsing history, the primary and sec-

ondary distance matrices, feature representations (if available), the list ofkNN graphs over a range
of different neighborhood sizes, as well ask-dependent lists of hubness-related statistics and charts.
The images for display are loaded in batches from the disk.

Custom JPanel classes are used to interactively display theimage content. The Image Hub
Explorer GUI does not in itself contain any explicit data mining code. All modeling is performed
by invoking the appropriate classes and methods in the underlying Hub Miner library.

The following examples were computed on images taken from the Leeds But-
terfly dataset [WME09] (http://www.comp.leeds.ac.uk/scs6jwks/dataset/
leedsbutterfly/).

9.1 PREPARING THEDATA FOR V ISUALIZATION

Each dataset that is assigned a separate workspace and the user gets to select the workspace directory
from the drop-down menu. This is what the workspace directory structure needs to look like:

codebook
distancesNNSets
photos
representation
thumbnails
tmp

classNames.txt

The classNames.txt file should contain a comma-separated list of class names in a single line,
like for instance:

Danaus plexippus,Heliconius charitonius,Heliconius erato, Junonia coenia,
Junonia phlaeas, Nymphalis antiopa, Papilio cresphontes, Pieris rapae,
Vanessa atalanta, Vanessa cardui

The codebook directory stores the codebook used to generatethe quantized image representation
that is being analyzed. This is used for feature assessment and is not necessary otherwise. Two files
are to be stored in the directory, codebook.txt and codebookProfile.txt. Both of these files are loaded
manually by the user from the drop-down menu in the UI. The fileformats correspond to Hub Miner
codebook and codebook profile file formats and are quite simple. The codebook file has a single
header line like: "codebook_size:400", indicating the size of the vocabulary, in this case 400. What
follows afterwards is (in this case) 400 lines, each line corresponding to a single codebook vector,
comma-separated. As for the codebook profile file, on the firstheader line it has a single number,
also 400 in this case. This is followed again by 400 lines, each corresponding to the class-conditional
occurrence profile of the respective codebook vector (so thenumber of items in the line equals the
number of classes in the data), comma-separated.

The distancesNNSets directory contains a sub-directory for each metric that the users exper-
iment with. It can be empty in the beginning, as Image Hub Explorer can automatically calcu-
late the distance matrix and thekNN sets. If the users have them pre-computed, they can also be
loaded if placed in an appropriate place in the directory structure. For instance, the directory dis-
tancesNNSets\distances.primary.CosineMetric containsthe distance matrix for the cosine distance

http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/
http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/

62 CHAPTER 9. IMAGE HUB EXPLORER

and the associatedkNN sets. The two files follow the standard distance matrix andkNN set file
format in Hub Miner. Interested users can easily discern thespecifics from the corresponding I/O
classes. However, unless the users want to load their own distances and neighbor sets, this is not
necessary. It is system-internal.

The photos directory contains the actual full-size photos,in the appropriate class directories.
The same goes for the thumbnails directory. In case of the Leeds butterfly dataset, this is the class
directory structure:

DanausPlexippus
HeliconiusCharitonius
HeliconiusErato
JunoniaCoenia
JunoniaPhlaeas
NymphalisAntiopa
PapilioCresphontes
PierisRapae
VanessaAtalanta
VanessaCardui

Make sure that the directory names correspond to the class names provided in the classNames.txt
file.

The representation directory has two sub-directories, as follows:

raw_representation
quantized

The raw_representation directory contains the raw features extracted from the images. The
directory structure is the same as with photos or thumbnailsdirectories, image feature files are
contained in the corresponding class directories. The system supports both OpenCV and SiftWin
feature file formats. In case of SiftWin, it is one file per image. In case of OpenCV, one keypoint
*.kp file and one descriptor *.desc file. Based on the extension, the system invokes the appropriate
load mechanism.

The quantized directory contains the actual quantized image representation to use in Image Hub
Explorer exploratory analysis and visualization. A singleARFF file is expected here and it will be
loaded regardless of its name.

9.2 VISUALIZATION AND INTERACTIVE ANALYSIS

Image Hub Explorer has four main screens: Data Overview, Class View, Neighbor View and Search.
The Feature Assessment panel can be invoked for individual images through the menus above.

9.2.1 Data Overview Screen

The Data Overview screen gives a high-level overview of the data and its main properties under the
current feature representation and metric.

The Projection Panel shows a 2D visualization of the image data and allows the users to browse
through the central data points. The projection is currently achieved by multi-dimensional scaling
(MDS) [BG05]. An example can be seen in Figure 9.3.

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 63

Figure 9.3: The Data Overview screen of Image Hub Explorer: Visualizing the major image hubs
via multi-dimensional scaling.

After calculating the neighbor occurrence frequencies forall images, a fixed number of hub
images is displayed in the Projection Panel. Only the most influential images are shown, those that
have the potentially highest impact on system performance.

The background landscape is calculated based on the averagegood and bad hubness of different
regions in the projected feature space. The green color corresponds to good hubness and the red one
to bad hubness. The landscape is generated in two steps. The first step is a sort of a Gaussian blur
as implemented in [FGM05] and the second step is a two-pass box blur. For more details on how
the landscape is calculated, see [TM14b].

One such landscape is generated for each neighborhood sizek, as it depends on good and bad
hubness that arek-dependent quantities. The users can use theslider-selectorfor neighborhood
size to quickly change among differentk-values and observe the differences in all quantities and all
tabular views of the application.

All images are shown within the frames that are colored according to their class. This makes
distinguishing between different classes easier for smalldisplayed thumbnails in various screens.
All images are selectable by a simple mouse click.

9.2.2 Class View

The Class View (Figure 9.4) enables the users to inspect different classes separately. A comparison
of class-specific point type distributions [NS12] often reveals why some classes are more susceptible
to misclassification in the current metric and feature representations. Lists of major good and bad
hubs are also computed and shown to the user.

Some pairs of classes are more difficult to distinguish than others and this can be observed in
the class-to-classk-neighbor occurrence matrix, which is shown on the right side of the Class View.
The cells in the table are colored according to the type and intensity of the pairwise interaction. Red
cells mark the principal gradients of misclassification.

64 CHAPTER 9. IMAGE HUB EXPLORER

Figure 9.4: The Class View of Image Hub Explorer: Examining point type distributions and centers
of influence for each class separately.

9.2.3 Neighbor View

User can quickly pinpoint the critical subsets of hub pointsin the Neighbor View. An example is
shown in Figure 9.5.

Figure 9.5: The Neighbor View of Image Hub Explorer: Exploring the nearest neighbor (NN) and
reverse nearest neighbor (RNN) lists and visualizing localkNN subgraphs.

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 65

Any selected image can be inserted into the local visualizedsubgraph of thekNN graph of the
data. The visualization is automatically updated in case ofchanges in neighborhood size selection.
It is possible to batch-insert all the neighbors or reverse neighbors of the selected image. The
weights on the edges correspond to the distance between the selected points in the selected metric.

In order to be able to decide whether to include the current selection in the view, its neighbor
occurrence profile is shown in the upper right corner, as wellas the lists of direct and reversek-
nearest neighbors.

The Neighbor View helps in visualizing the influence of hub points, as shown in Figure 9.6,
where one bad hub image is shown, along with a set of its reversek-nearest neighbors. In this case
theArtogeia rapaeimage that is shown in the middle acts as a neighbor only to points that are not
from its own class (species), which is obviously detrimental to kNN-based analysis. The comparison
between two different feature representations reveals that the influence of images changes drastically
when the underlying feature representation changes. This shows that the induced pseudo-relevance
of images does not correspond well to their actual relevancein the considered semantic context.

(a) SIFT (b) SURF

Figure 9.6: An example of a bad hub in the quantized SIFT feature representation, a detrimental
center of influence. Neither of the reverse neighbors of the selected image belongs to the same
class as the image itself, so its occurrences induce label mismatches and are semantically inconsis-
tent. The same image has an equally inconsistent occurrenceprofile in the quantized SURF feature
representation, but it is not a hub there, as it does not occurvery often. On the other hand, the
displayed image never occurs as a neighbor in the quantized BRIEF feature representation, for the
same neighborhood size ofk = 5.

66 CHAPTER 9. IMAGE HUB EXPLORER

9.2.4 Feature Visualization and Assessment Panel

Not all features are equally informative and it is possible to use Image Hub Explorer for feature
assessment in quantized feature representations. Within Image Hub Explorer, users can inspect
individual visual words and their class-conditional occurrence profiles, that are displayed in form of
pie charts. More importantly, Image Hub Explorer offers a possibility to visualize the distribution
of informativeness on each image individually. For detailson how this is actually calculated, see
the original paper [TM14b].

Figure 9.7 shows an example of feature informativeness visualization in an image. The green
color in the informativeness landscape is used to denote regions with high discriminative informa-
tion content and the red one for the regions that do not contribute to object recognition.

(a) A regularly displayed selected image. (b) An overall visualization of the critical feature re-
gions.

(c) A visualization of a single visual word, one that
is most beneficial for object recognition of this image
type.

Figure 9.7: Individual visual words are displayed on top of the selected image and colored according
to their overall usefulness and semantic consistency. Thishelps in identifying the critical regions in
the images, those that contribute to making good class distinctions and those that represent textural
patterns that might occur in many different image classes.

Figure 9.7 shows how the feature assessment and visualization components works for SIFT fea-
tures in case of recognizingDanaus plexippusbutterfly specimens. The textural regions around
the black veins on the butterfly’s wings are judged to be the most informative by the system. This
is indeed a highly distinctive feature of the particular species. Similarly, forHeliconius charito-
nius the system determines that the white stripes on otherwise black butterfly’s wings carry highly

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 67

discriminative visual information.

9.2.5 Search and Ranking

It is possible to use Image Hub Explorer for querying the image database. This is currently set
up to work with SIFT features. SIFT features are extracted for the query image and a histogram
representation is formed. An overview of the search interface is shown in Figure 9.8.

Figure 9.8: The Search screen of Image Hub Explorer. Apart from supporting the basic query
functionality, the system offers label suggestions based on the output of severalkNN classification
models, as well as a hubness-aware secondary re-ranking procedure.

In order to use this function, the codebook needs to be loadedand SiftWin needs to be in the
system path, as well as ImageMagick, for JPG to PGM conversion prior to SIFT extraction.

The search panel also makes an attempt to predict the label ofthe image query, based on
severalk-nearest neighbor models trained on the loaded images: kNN [FH51], FNN [KGG85],
NWKNN [Tan05], AKNN [WNC07], hw-kNN [RNI09], h-FNN [TRMI13a], HIKNN [TM12b]
and NHBNN [TRMI11a]. This allows the users to compare how different classification approaches
handle certain types of points, in order to select the most appropriate approach for future deployment
in the IR/OR system.

It is also possible to re-rank the images based on a recently proposed hubness-aware self-
adaptive secondary re-ranking method [TLM13]. This procedure can improve the semantic con-
sistency of the results and move the images from the same class closer to the query.

Ten

Overview of Hub Miner Packages

10.0.6 configuration

This package contains the classes that represent the configuration files for Hub Miner’s experi-
mentation framework for classification, clustering and exploratory hubness-related statistical data
analysis. The configuration classes are BatchClassifierConfig, BatchClusteringConfig and Batch-
HubnessAnalysisConfig.

The experimental configuration classes contains I/O methods for parsing configuration files, as
well as serializing/deserializing the configuration information to/from JSON.

10.0.7 data.generators

The data.generators package contains the logic for automatically generating synthetic datasets for
experimentation. All generators are to implement the DataGenerator interface that contains the
methods for generating an array of float or integer values based on some underlying protocol.

It is possible to combine multiple generators for generating a single dataset, as enabled by
MixtureOfFloatGenerators class.

The data.generators.util subpackage contains several concrete implementations that were used
for generating some data in our past experiments.

Apart from the generators, there is also the BasicGaussianDatasetExtender class that builds a
Gaussian model for each category in the data and extends existing data by generating synthetic data
instances.

10.0.8 data.imbalance

The initial implementation of the data.imbalance package contains a script for analyzing class-
imbalanced data and also evaluating the performance of someimplemented hubness-aware tech-
niques on such data. Hubness-aware metric and hubness-aware classification algorithms are com-
pared, in several regards. A detailed comparison of the point type (safe, borderline, rare, outlier)
distribution is given for each employed metric and algorithm precision.

Hubness-aware methods work very well on class-imbalanced high-dimensional
datasets [TM13a]. More types of analysis of the class imbalance problem from the perspec-
tive of high-dimensional data classification are thereforegoing to be introduced in future Hub
Miner releases.

10.0.9 data.neighbors

This package deals with the extraction ofk-nearest neighbor sets and their analysis in
high-dimensional data. It also has two sub-packages, data.neighbors.approximate and
data.neighbors.hubness.

69

70 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

NeighborSetFinder is one of the most used classes in Hub Miner. It contains a simple implemen-
tation of exactk-nearest neighbor set calculations and can be extended to indexed or approximate
implementations. No index is used by default, since it is difficult to set up universally good NN-
search indexes in very high-dimensional data and also different index structures might be preferable
in lower-dimensional datasets or different data domains. NeighborSetFinder class therefore offers
the ’vanilla’ implementation fork-nearest neighbor set extraction and should be extended formore
efficient extractions in cases when a better approach is known.

Apart from extracting thek-nearest neighbor sets, NeighborSetFinder objects store them and
store some basic statistics. There are methods for inferring the class-conditional occurrence prob-
abilities for the neighbor occurrence models, as well as methods for generating hubness-based
weighting that is used in multiple places in the library. As for kNN search itself, NeighborSetFinder
can also perform tabu-search, where some instances are not considered as neighbors.

NeighborSetFinder objects implement the logic for varyingthe neighborhood size and taking
sub-kNN sets, calculating their stats and producing new objects to represent the restricted informa-
tion.

NeighborSetFinder object is the main unit for sharingkNN information between algorithms in
Hub Miner.

SyntheticKNNExtender is a class that can be used to extend the data with some synthetic exam-
ples in order to better estimate the neighbor occurrence frequencies of the given data points.

NeighborSetUserInterface declares methods for setting and getting NeighborSetFinder objects
and is used to set thekNN information to all algorithms that require it during classification, cluster-
ing or instance selection.

The data.neighbor.approximate.AppKNNGraphLanczosBisection class implements approxi-
matekNN set calculations based on recursive Lanczos bisections and has been used for testing
the robustness of hubness-aware approaches to approximatekNN sets.

10.0.10 data.neighbors.hubness

This is the package with exploratory methods for establishing the level of hubness in high-
dimensional data and uncovering important properties of the k-nearest neighbor occurrence fre-
quency distribution and thek-nearest neighbor graph in general.

BatchHubnessAnalyzer is a class that enables batch-analysis of hubness across many datasets
over a range of neighborhood sizes, for the specified metrics. It operates based on the provided
configuration file. More details on this have already been given in the previous chapters. There is
also the MultiLabelBatchHubnessAnalyzer, for datasets with multiple classification tasks defined on
them, so that all the distances and neighbor sets are only calculated once for each data representation
and then different label assignments are considered in turn.

BucketedOccDistributionGetter can be used to obtain a histogram of the neighbor occurrence
frequency distribution.

HubFinder can be used to quickly output a list of hubs in the data, based on the calculated
k-nearest neighbor sets, for the desired neighborhood size.

HubOrphanRegularPercentagesCalculator calculates the percentages of hubs, anti-hubs and or-
phans, as well as regular points, among the training data. The higher the hubness in the data, the
lower the percentage of regular points.

HubnessAboveThresholdExplorer is similarly used to analyze the percentages of points above
or below some pre-defined neighbor occurrence frequency threshold. This is especially useful for
estimating the influence of anti-hub handling strategies insome hubness-aware implementations
that contain a special anti-hub handling case for a specifiedthreshold value.

71

HubnessExtremesGrabber is similar to HubFinder. It calculates and returns a pre-defined num-
ber of most frequent neighbors, over a range of neighborhoodsizes. The difference is that this list
does not necessarily contain all hubs in the data, but it could contain something like top-5 hubs.
Also, if the specified number of points to return is large enough, some non-hub points might be
contained as well.

HubnessSkewAndKurtosisExplorer calculates the third andfourth standard moment of the
neighbor occurrence frequency distribution (skew and kurtosis) in a batch way, over a range of
neighborhood sizes. Similarly, HubnessVarianceExplorercalculates the variance of the occurrence
frequency distribution over a range of specified neighborhood sizes.

KNeighborEntropyExplorer calculates the average entropyof k-nearest neighbor sets and the
average entropy of the reversek-nearest neighbor sets. This helps with estimating the semantic
consistency of the direct and reversek-nearest neighbor relation.

TopHubsClusterUtil implements the methods for batch-calculating the diameters and average
intra-cluster distances of top hub clusters over a range of neighborhood sizes. This enables us to
determine how compact the hubs in the data are, whether they are all close to each other or dispersed.

The data.neighbors.hubness.experimental sub-package implements several experiment scripts
that reflect what can be done with the exploratory hubness framework. GaussianHubnessLocal-
izer was used to determine the correlation between point-wise hubness and local cluster centrality
in intrinsically high-dimensional Gaussian data. This is further extended in the MultiGaussianLo-
calityExplorer. The two HubnessRiskEstimator classes were used to determine hubness risk over
multiple samplings from the same underlying distribution.

The data.neighbors.hubness.util sub-package offers somemore exploratory scripts, for quickly
getting the neighbor occurrence frequency arrays, reverseneighbor lists or frequent neighbor pairs
on output.

The data.neighbors.hubness.visualizationpackage implements several default ways for visualiz-
ing hubness in synthetic and real-world data, as well as classifier performance under hubness. Some
examples are shown in Figure 10.1 and Figure 10.2, though different types of visualizations are also
possible and implemented in the corresponding classes.

The point of the 3D visualization in Figure 10.1, apart from it just looking awesome, is that it
is very difficult to give illustrative examples in 2D, since no hubness can be observed in 2D as the
maximal neighbor occurrence frequency is geometrically very constrained. Well, it’s not like 3D
is much better, but it might be somewhat easier to see some consequences of hubness visualized
there when projecting the original spaces via MDS or PCA, since more of the original structure
is preserved. Visualizing data in high-dimensional spacesis never easy, so any help is welcome.
As for Figure 10.2, it shows some basic ways of visualizing the emerging hubs in the data with
increasing dimensionality and the distribution and localization of neighbor occurrence frequency.

10.0.11 data.representation

This package contains all data representation classes in Hub Miner. It implements the basic support
for dense, sparse and discretized data instances and datasets. More details on each of these can be
found in Chapter 6.

DataSet and DataInstance classes are the basic data holdersin Hub Miner and are used
throughout the library. DiscretizedDataSet and DiscretizedDataInstance objects from the
data.representation.discrete package are the discretized versions of the default data holders and
are used for algorithms that operate on discrete values and value ranges, such as decision trees.
The data.representation.discrete.transform sub-package contains the discretization methods. The
data.representation.sparse sub-package contains BOWDataSet and BOWInstance classes that are

72 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

(a) xy-negative direction, first class. (b) xy-negative direction, third class.

(c) xy-positive direction, third class. (d) zx-negative direction, first class.

Figure 10.1: Visualizing HIKNN prediction landscape in UCIVehicle data, in 3 dimensions. For
each class, two views are generated for each axis, one for each side of the cube that contains the
projected data.

used for representing bag-of-words sparse data. The data.representation.images package holds
classes used for representing quantized image data, SIFT features, as well as color histograms.
While these image representations could easily by put into the default representational framework,
there are some benefits to constraining the structure and ascertaining that it conforms to the defined
image representation.

73

(a) Single cluster,d = 3, k = 1.

(b) Single cluster,d = 100, k = 1.

(c) Multiple clusters,d = 5, k = 100.

Figure 10.2: Basic hub visualizations where node size corresponds to the neighbor occurrence fre-
quency. When comparing the two given single-cluster synthetic Gaussian examples, consequences
of high data dimensionality become apparent, as a small number of dominant hub points emerge.

74 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

10.0.12 data.structures

This package is meant to contain all the auxiliary data structures that are used in Hub Miner imple-
mentations. Currently it holds a K-D tree implementation. It will be extended in future releases.

10.0.13 dimensionality_reduction

Dimensionality reduction is commonly used in high-dimensional data analysis and this package
offers two standard approaches to dimensionality reduction - principal component analysis and ran-
dom projections, which are implemented in the PrincipalComponentAnalysis and RandomProjec-
tion classes, respectively.

10.0.14 distances.primary

The most important class to note in the distance.primary package is CombinedMetric. Data in Hub
Miner can have float or integer features - and this combined metric object allows us to use different
metrics for integers and floats and combine them in some smartway. Initially this was implemented
to also consider nominal features, but has been simplified inthe meantime and it is, of course,
possible to extend the class in the future, if needed for someconcrete applications and projects.

The remaining classes in this package are all distance measures that can be applied to integer and
float parts of the feature representation. There are many metrics in the package, standard metrics and
less standard metrics. Users can find anything from Euclidean and Manhattan, Canberra, Tanimoto
or Bray-Curtis to symmetrized Kullback-Leibler divergence. There are also two dummy metrics
(placeholders) for some metrics that we have used in past projects, namely dynamic time-warping
and Mandel-Ellis. The purpose of these placeholders is to use them when loading the appropriate
distance type externally. Dummy metric objects will be initialized, but external distances will be
used instead. In future releases, an implementation will probably be included for these, at least for
DTW. So, stay tuned.

10.0.15 distances.secondary

Secondary distances are a metric learning approach to dealing with high hubness in intrin-
sically high-dimensional data and this package implementsseveral state-of-the art secondary
similarity/distance approaches. Local scaling [ZmP04], NICDM [JHS07] and mutual proxim-
ity [SFSW12] are implemented in distances.sparse andsimcoss andsimhubs [TM12a][TM14a]
in distances.sparse.snd, though the shared neighbor sets themselves are calculated via the Shared-
NeighborFinder class in data.neighbors.

10.0.16 distances.sparse

This package contains the SparseCombinedMetric class thatcorresponds to the CombinedMetric
class in distances.primary. It is an extension of that class, so it combines distances calculated on
dense and sparse parts of a data representation. The packagealso contains implementations of
standard metrics, for sparse data.

10.0.17 distances.kernel

Kernels allow for non-linear types of learning to be performed and Hub Miner offers a wide
spectrum of kernel functions to use in data analysis and learning. The classes in this package
include ChiSquaredKernel, ANOVAKernel, CauchyKernel, ExponentialKernel, GaussianKernel,
MultiQuadraticKernel, RBF, PolynomialKernel, SigmoidKernel - and many others.

75

10.0.18 distances.concentration

The class ConcentrationCalculator can be used to examine distance concentration in the data. Dis-
tance concentration is related to hubness and is yet anotheraspect of the well known curse of di-
mensionality. This class implements methods for calculating distance mean, variance and relative
contrast, es well estimating the intrinsic dimensionalityof the data.

10.0.19 distances.analysis

MetricsAnalyzer class in this package implements two important methods for evaluating new dis-
tance measures, including the newly proposed secondary distance measures. Some of these pro-
posed distances are actually pseudo-metrics in a sense thatthe triangle inequality might occasion-
ally be breached. One of the methods in this class calculatesthe percentage of triangle inequality
breaches. Another method calculates the Goodman-Kruskal concordance index that enables the
users to estimate how concordant the distances are w.r.t. the classes in the data.

10.0.20 draw

Hub Miner contains some visualization and data explorationcomponents and the draw package
contains some of the basic building blocks used in those visualizations. This includes the BoxBlur
class that is used in MDS landscape calculations in Image HubExplorer, as well as RotatedEllipse
used in SIFT feature cluster visualizations. PieRenderer class in draw.charts enables easy drawing
of pie charts in Hub Miner.

10.0.21 feature

This package implements classes that enable basic feature evaluation and assessment. The fea-
ture.correlation package contains implementations of Pearson and Spearman correlation coeffi-
cients, as well as distance correlation. For discrete features, there is MutualInformation class in
feature.correlation.discrete. The feature.evaluation package contains information gain (IG) and gain
ratio (GR) implementations. ApplyWeights class in feature.weighting makes it easy to apply feature
weights to a DataSet.

10.0.22 filters

Sometimes it is necessary to apply a transformation to a DataSet and this is what the filters package
is for. It currently offers some basic filtering implementations, like TF-IDF (term frequency - inverse
document frequency), shuffling and sub-sampling.

10.0.23 graph

Hub Miner offers some basic support for working with graph data representations, as hubness anal-
ysis is in fact based on working withk-nearest neighbor graphs, even if mostly implicitly by consid-
ering the node degree distribution. A simple graph representation is available in graph.basic, in DM-
Graph, DMGraphEdge and VertexInstance classes. Some basicgraph properties can be derived by
applying methods from GraphGeodisic and GraphStatistics in graph.calc sub-package. Node place-
ment for visualization can be deduced by using several methods from graph.drawing, implemented
in the following classes: BarycentricCoordinateFinder, FRCoordinateFinder and RandomCoordi-
nateFinder. PajekFormatIO class in graph.io allows the users to export DMGraph objects into Pajek
data format (http://pajek.imfm.si/doku.php?id=pajek). Since Pajek is a well-known
environment for graph/network analysis, this means that Hub Miner users will be able to delegate
some of the analysis to Pajek, in case more than what is currently available in Hub Miner itself is

http://pajek.imfm.si/doku.php?id=pajek

76 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

needed. Indeed, many types of analysis could be conducted onk-nearest neighbor graphs in high-
dimensional data and are looking forward to seeing more interesting results in the future. Selecting
subgraphs or calculating the connected components is possible by invoking methods implemented
in classes from the graph.subgraphs package.

10.0.24 gui.images

Image Hub Explorer [TM13c][TM14b] is a great tool for exploration of hubness in high-
dimensional data. Its primary purpose it to be used for analyzing different quantized image feature
representations, but it can also be applied to different data types. For details, see Chapter 9. It
allows for experimentations with feature representationsand metrics and enables the users to study
the consequences of their choices in great detail.

Apart from Image Hub Explorer, gui.images package containstwo basic image handling GUI-s.
ImageCollectionHandler allows for batch SIFT feature extraction via SiftWin, followed by code-
book calculations via K-means clustering and quantization. ImageManipulator allows for visualiz-
ing SIFT feature clusters in images, as well as visualizing SRM segmentation. A partial example is
shown in Figure 10.3.

(a) SIFT features in the image, clustered. (b) SIFT features in the image, represented as ellipses.

Figure 10.3: Visualization of SIFT feature clusters in Image Manipulator. SIFT features on an
image are clustered and the clusters are drawn in different colors. Clusters can be represented as
ellipses, where the axes follow the principal components ofthe clusters.

10.0.25 gui.maps

Hubness can sometimes be exploited for semi-automatic anomaly detection and gui.maps shows an
application of hubness analysis for anomaly detection in oceanographic sensor data. Hub points
with spatially inconsistent profiles were marked as potentially anomalous. The GeospatialSen-
sorHubnessDrawer UI has then been used to generate images representing the anomalous sensor
locations, with node size being proportional to the hubnessof the measurement arrays. An example
is shown in Figure 10.4.

10.0.26 gui.synthetic

Visual2DdataGenerator class can be used for manually generating 2D datasets, as examples for
application of some data mining and machine learning methods. It is possible to either insert the

77

(a) Wind speed anomalous hub measurements. (b) Water temperature anomalous hub measure-
ments.

Figure 10.4: Visualization of spatially inconsistent and potentially anomalous hub sensor mea-
surements via GeospatialSensorHubnessDrawer. The redness of a node corresponds to the spatial
inconsistency.

points manually or to insert a sample from a Gaussian distribution of specified mean and variance.
After insertion, it is possible to generate images of predictive performance of different classification
methods on the generated data. An example is shown in Figure 10.5.

It can be seen that hubness-aware approaches generate smoother probability maps in borderline
regions between different classes and that they are less prone to over-fitting in presence of label
noise.

10.0.27 images.mining

This package contains the basic logic for handling quantized image feature representations. Code-
book calculations are done by classes in the images.mining.codebook sub-package, either for SIFT
or generic codebooks. There is also logic for calculating the visual word entropy distribution. Class-
conditional codebook occurrence profiles can be calculatedby using the CodebookProfileCalc class
in images.mining.calc. Average colors in neighborhoods ofcertain points can be calculated by
AverageColorGrabber within the same package. In images.mining.clustering, there are some ex-
perimental classes that aim to optimize inta-image SIFT clustering by optimizing the coefficients
so that they conform to SRM image segmentation as much as possible. The remaining classes in
images.mining are utility classes for quick data processing.

10.0.28 ioformat

Hub Miner operates with various data formats for dealing with input data and intermittent results.
Classes needed to properly load and store all such data are located in the ioformat package. IOARFF
class is used for dealing with ARFF data formats, dense and sparse. IOARFFDiscretized saves and
loads discretized datasets in ARFF-like format, specific toHub Miner. IOCSV is used for saving
and loading CSV files. SupervisedLoader combines all data loads in a single interface and attempts
to automatically guess the underlying data format during the load.

78 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

(a) The synthetic data set

(b) kNN probability map (c) HIKNN probability map

(d) kNN probability map, with label noise. (e) HIKNN probability map, with label noise.

Figure 10.5: Probability maps inferred fromkNN and HIKNN on synthetic data, fork = 5. Each
pixel was classified by the algorithms and assigned a probability value of belonging to each of the
two classes. Visualization was generated by Visual2DdataGenerator from gui.synthetic package.

FileUtil class implements some utility file methods, like for instance creating a file in a path that
does not yet exist. The method then recursively goes up the abstract path hierarchy until it finds an
existing directory and generates all the directories in between, including the target file.

DistanceMatrixIO includes methods for distance matrix save and load. Distance matrices in Hub
Miner are represented as upper triangular matrices, so onlythe part above the diagonal is stored into
the file. Each consecutive row is therefore one item shorter.

In ioformat.images, there are various utility classes for handling image data, embedding some
frequently invoked functions. This includes the ThumbnailMaker, ImageFromRaster and SiftUtil.

79

Users can automatically summarize their experiments by invoking the BatchStatSummarizer
class from ioformat.results on the command line. This classis automatically invoked at the end of
the experimental run of BatchClassifierTester.

Most researchers prefer to use LaTeX for preparing their submissions to journals and confer-
ences and Hub Miner contains some basic result summarizing capabilities for automatically gen-
erating LaTeX result tables for classification accuracy. Inparticular, LatexTableClassificationSum-
marizer and InstanceSelectionLatexTableSummarizercan be used to this end. In case the users need
additional flexibility, they are free to either extend the existing framework or request certain updates
in the future.

10.0.29 learning.supervised

Category and DiscreteCategory classes represent categories in the data and refer to collections of
DataInstance objects and DiscretizedDataInstance objects, respectively. Classifier and Discrete-
Classifier are abstract classes that classification algorithm implementations need to extend.

Several interfaces that allow for experimental optimizations in terms of requesting certain ob-
jects from the environment are available in learning.supervised.interfaces. These include DistMa-
trixUserInterface for algorithms that require distance matrices on the training data, NeighborPoints-
QueryUserInterface for algorithms that runkNN queries of test data against the training data, etc.

10.0.30 learning.supervised.evaluation

For details about running experimental evaluation in Hub Miner, see Chapter 5. The learn-
ing.supervised.evaluation package contains classes thatimplement most of the logic behind clas-
sifier evaluation. ValidateableInterface declares methods that classes need to implement in order to
be eligible for evaluation in the framework. ClassificationEstimator calculates and stores the classi-
fier performance metrics and the confusion matrix. ClassifierParametrization deals with listing and
setting parameter lists and parameter-value maps for classification algorithms.

CVFoldsIO is responsible for loading and saving data splitsfor all iterations. ExternalExperi-
mentalContext holds distance matrices andkNN sets to be used by algorithms in MultiCrossValida-
tion while performing grid search over specified environment parameter ranges. The stored objects
are the primary distance matrix and primarykNN sets. Secondary distance matrices are training
split dependent and are calculated within MultiCrossValidation. The same goes for secondarykNN
graphs. Distance matrices previously calculated for the same data under the same feature normaliza-
tion scheme are loaded from the disk. BatchClassifierTesteriterates over the environment parameter
ranges and invokes cross validation runs in each tested case.

10.0.31 learning.supervised.meta

This package contains an implementation of AdaBoost.M2, aswell as boostable hubness-aware base
classifier implementations. Boosting does not always improve hubness-aware classification, but it
can potentially lead to classification performance improvements in intrinsically high-dimensional
data.

10.0.32 learning.supervised.methods

Since the main focus of the library is on evaluating the consequences of hubness in the data, most
of the available classifiers are different types ofk-nearest neighbor classifiers. However, other
standard baselines are also implemented, for comparisons.For those baselines that are not cur-
rently supported, statistically correct comparisons are possible via OpenML (http://openml.
org/)[vRBT+13].

http://openml.org/
http://openml.org/

80 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

As for kNN methods, this package contains many methods, including:kNN [FH51], dw-
kNN, PNN [HA02], FNN [KGG85], NWKNN [Tan05], CBWKNN [DP13], AKNN [WNC07],
hw-kNN [RNI09], h-FNN [TRMI13a], dwh-FNN [TRMI13a], HIKNN [TM12b], nondw-
HIKNN [TM12b], NHBNN [TRMI11a], ANHBNN [TM13b], RRKNN [TM14b]. These imple-
mentations include both the recently proposed hubness-awarek-nearest neighbor classification ap-
proaches as well as some standard and less standard hubness-unawarekNN baselines.

Apart fromk-nearest neighbor classifiers, Hub Miner offers some other standard classifiers like
Naive Bayes, OneRule, KNNNB, LWNB, ID3 decision trees and robust stochastic learning vector
quantization (RSLVQ).

10.0.33 learning.unsupervised

Clustering configurations in Hub Miner are often represented as integer cluster assignment arrays,
but there is also the Cluster class that contains a list of indexes belonging to the cluster and imple-
ments many useful methods that make cluster processing easier, so that clustering configurations
are often also presented as Cluster lists or arrays. For instance, within the Cluster class, there are
methods for calculating the cluster diameter, the average intra-cluster distance and the centroid.
ClusteringAlg class is an abstract class that the clustering algorithm implementations are to extend
in order to be properly handled within the experimental framework.

10.0.34 learning.unsupervised.evaluation

The class responsible for running the clustering experiments is the BatchClusteringTester that runs
a grid search over a batch of datasets for a list of clusteringalgorithms in a multi-threaded way.
An automated approach for determining the optimal number ofclusters in cluster range tests is
available in LMethod implementation of the well known L-method approach for finding a ’knee’ in
the clustering quality index curve over the cluster number range [SC04]. BasicClusteringEvaluator
is also available for initial testing of new implementations.

The learning.unsupervised.evaluation.quality sub-package contains implementations of various
clustering quality indices. It is possible to evaluate the resulting cluster configurations by any of the
following classes: QIndexCIndex, QIndexDaviesBouldin, QIndexDunn, QIndexGoodmanKruskal,
QIndexIsolation, QIndexJaccard, QIndexRS, QIndexRand, QIndexSD, QIndexSilhouette. All of
these classes extend the ClusteringQualityIndex class. OptimalConfigurationFinder helps with find-
ing the best cluster configuration over multiple runs.

After the clustering has already been performed, it is possible to improve the final assignments
by performing clustering refinement. PantSAStar algorithmis available for cluster refinements in
learning.unsupervised.refinement [IER10].

Several one-off experimental scripts are included, like for instance clustering in presence of
uniform noise. These scripts are included not only for result reproducibility, but also in order to
demonstrate how similar scripts can be put together by Hub Miner users in their own experiments
for their own research purposes.

10.0.35 learning.unsupervised.methods

Many clustering algorithms are available in learning.unsupervised.methodspackage, though this list
is currently being extended by including even more implementations.

Several K-means variants are implemented in this package, including K-means, K-
means++ [AV07], K-means-pruning [Als98], Harmonic K-means [Zha01], Kernel K-
means [DGK04] and K-medoids. These partitional clusteringapproaches are commonly used
in practice and make for good baselines for comparisons withmore complex approaches.

81

DBScan [EpKSX96] is also implemented in the package, in order to enable users to perform
density-based clustering. Density-based methods do not perform as well in intrinsically high-
dimensional data, though it is possible to use smarter density estimates and reach reasonable per-
formance.

Hub Miner also offers several recently proposed hubness-based clustering approaches for effec-
tive clustering in intrinsically high-dimensional data. These approaches are mostly extensions of
the K-means partitional iterative framework and revolve around a recent observation that neighbor
occurrence frequencies tend to be highly correlated with local cluster centrality when clustering in
many dimensions. Therefore, hubs can be taken as prototypesduring the iterations or used to guide
the centroid search to more promising regions of the featurespace. In either case, this usually im-
proves clustering performance and has been shown to be much more robust to noise and capable of
detecting the underlying structure of the data even in presence of large quantities of noise.

The hubness-based clustering implementations in this package include LKH, GKH, LHPC,
GHPC [TRMI11c], GHPKM [TRMI13b] and Kernel-GHPKM [TRMI14]. These algorithms do
not perform well in absence of hubness, but excel in high-hubness data, contrary to standard clus-
tering approaches. There are more ways to exploit hubness inclustering and more new approaches
will be included in future releases.

10.0.36 learning.unsupervised.outliers

All outlier detection approach implementations extend theabstract class OutlierDetector. The cur-
rently available implementations include the iterative clustering outlier detection, local outlier fac-
tor [BKNS00] and local correlation integral [PKGF03].

10.0.37 linear

This package contains basic support for linear operations,linear subspaces and matrix decomposi-
tion. It also declares a DataMatrixInterface that allow theusers to implicitly represent other object
types as matrices, like DataSet objects, for instance.

10.0.38 networked_experiments

In order to support networked experiments via OpenML (http://openml.org/)[vRBT+13],
this package implements classes and methods for connectingto OpenML services, requesting data
and training/test splits, registering implementations and uploading run descriptions and experi-
mental results. HMOpenMLConnector handles authentication issues, DataFromOpenML holds the
fetched data about the number of splits, repetitions, training and test split indexes for all repetitions,
as well as the fetched DataSet from the ARFF stream. ClassifierRegistrationOpenML performs
implementation registration and fetches the implementation ID for the used algorithms. Classifica-
tionResultHandler deals with preparing the results for upload to OpenML, along with the meta-data.

10.0.39 optimization.stochastic

Stochastic optimization is a useful tool in various optimization tasks and can also be used for data
mining, whether for clustering or feature selection or instance selection. Genetic and evolutionary
approaches have been successfully applied to these problems in the past, in various forms.

Hub Miner supports several types of stochastic optimization algorithms and these are available
in the optimization.stochastic package. Most of these approaches revolve around the notion of solu-
tion fitness and a fitness function in Hub Miner needs to satisfy the FitnessEvaluator interface that
is located in optimization.stochastic.fitness. Another important feature is the ability to mutate the
current solution or solution population into the next iteration. Hub Miner includes several types of

http://openml.org/

82 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

mutation operators and these need to satisfy the appropriate mutation interfaces, like for instance:
MutationInterface, RecombinationInterface, TwoDevsMutationInterface, HeterogenousMutationIn-
terface.

In terms of stochastic optimization algorithms, several standard approaches are available in the
optimization.stochastic.algorithms package. This includes simulated annealing, hill climbing, dif-
ferent types of genetic algorithms, differential evolution and predator-prey particle swarm optimiza-
tion. Each algorithm is implemented in a separate class.

10.0.40 preprocessing.instance_selection

Instance selection is often used in conjunction withk-nearest neighbor classification. This has to do
with scalability, as well as sensitivity of the basickNN classifier to noise, due to its high specificity
bias. Various prototype selection strategies can be used inorder to filter out noise from the data
and/or reduce the size of the training set.

Several standard instance selection techniques are available in the preprocess-
ing.instance_selection package. All approaches extend the abstract InstanceSelector class. The
implemented approaches include ENN [Wil72], CNN [PE68], GCNN [CKC06], RT3 [WM97],
AL1 [DH11] and INSIGHT [BNST11b]. Random selection is also available, as a baseline for
comparisons.

All of the implemented instance selectors can be used from within the batch classifi-
cation experimentation framework in BatchClassifierTester and MultiCrossValidation in learn-
ing.supervised.evaluation.cv. They can be used in abiasedandunbiasedmode, w.r.t. prototype
hubness estimation in hubness-aware classifiers.

10.0.41 probability

The probability package contains implementations of some basic probabilistic inference approaches.
A simple mixture model is available in the GaussianMixtureModel class. It combines several

individual GaussianModel classes. Kullback-Leibler divergence can be calculated via the KLDiver-
gence class. Perplexity class contains methods for calculating the model perplexity on the test
data. NormalDistributionCalculator can be used for calculations regarding the normal distribution.
VectorQuantization class implements methods for a vector quantization approximation of the un-
derlying probability distribution.

10.0.42 sampling

Classes in the sampling package can be used to quickly samplethe data.

10.0.43 statistics

The statistics package currently implements the logic for calculating distribution moments, fea-
ture variance and data covariance. CorrelationRatio classcan be used to measure the relationship
between the statistical dispersion within individual categories and the dispersion across the entire
data sample. The package also contains an implementation ofthe corrected re-sampledt-test for
statistical testing in cross-validation.

10.0.44 util

Many utility classes are grouped together in the util package. This includes CommandLineParser
that is used for lots of command line parameter parsing throughout the library. DataSetJoiner can
be used to quickly join arrays of DataSet objects. SOPLUtil can quickly print out arrays so it is
also very useful in de-bugging. HTTPUtil can be used for HTTPrequests. ReaderToStringUtil can

83

take a Reader and output a single String representing the content, which is very useful in JSON
parsing. AuxSort contains sorting methods that return the index permutation along with sorting the
arrays and ArrayList objects. ArrayUtil implements the binary search on arrays, as well as min/max
operations and standardization.

The util.fileFilters sub-package contains some common filename filters for quick selections in
the file system.

The most important class in util.text is IncrementalNGramBuilder that reads text and incre-
mentally generates the n-gram vocabulary and builds a representation for each newly processed
document or textual object.

10.0.45 visualization

This package contains the class that handles ViperCharts (viper.ijs.si) API calls for visu-
alizing classification evaluation results, ViperChartAPICall. There are many visualization types
available and the users can specify any chart type that they would like to see.

viper.ijs.si

Eleven

Portability

Hub Miner is entirely implemented in Java and was developed with Java 7, so Java 7 or newer is
required in order to properly build and run this project. Allfile paths in the code use platform-
independent file separators, so there should be no file systemspecific problems on different plat-
forms.

A small portion of image feature extraction specific code is currently tied to the Windows plat-
form, in cases when SiftWin is used for SIFT feature extraction and when ImageMagick is used
for image type conversion for this particular extraction. This dependency does not affect any of
the major parts of the code and is not a requirement for running any of the experimental evaluation
frameworks in Hub Miner nor for performing hubness-aware data analysis. This dependency will
soon be entirely removed by switching to a purely Java-basedimage feature extraction library and
increasing the support for OpenCV feature formats.

In the current release, it is possible to use Hub Miner for experimenting with hubness-aware
classification, clustering, metric learning and instance selection or for performing data analysis
and visualization, on all platforms assuming all Java dependencies are stated and present in the
CLASSPATH variable. This makes for easy deployment and portability should not be an issue.

85

Twelve

Scalability

The implementation of Hub Miner’s experimentation framework was made with speed in mind,
so algorithms were made to re-use and share certain types of objects likekNN sets and distance
matrices. There are also multiple internal optimizations for secondary distances and grid search over
a range of possible parameter values. This is further improved by the multi-threaded experimental
design.

While the experiments on small-to-medium scale problems run quite fast, it is not yet possible to
run Hub Miner on genuinely large-scale datasets that contain hundreds of thousands or millions of
examples. The bottleneck of most hubness-aware approachesin terms of computational complexity
is thekNN graph construction on the training data. If the exactkNN sets are to be computed, storing
the entire distance matrix in-memory can also be quite troublesome.

Hub Miner implements some initial support for large-scale experiments in terms of a generic
fast approximatekNN graph construction via recursive Lanczos bisections. However, this is not
really enough and future Hub Miner releases (See Chapter 13 for details) are to include several
different approaches for scalablekNN search andkNN graph construction. Scalability is among the
top priorities in terms of future implementation work.

While large-scale problems are obviously quite challenging and important, Hub Miner is very
useful for dealing with another challenging issue: sparse high-dimensional data. Small and medium-
sized datasets of this sort arise frequently in the biomedical domain, where generating labeled ex-
amples is either expensive or constrained by physical processes. Most of these problems are difficult
and have a genuine real-world impact.

That being said, Hub Miner users can expect to see large-scale experimental support in future
releases.

87

Thirteen

Plans for Future Releases

Hub Miner currently contains implementations of many useful machine learning and data mining
algorithms, data processing techniques, data visualization UIs and an extensive experimental frame-
work. However, I consider the current release to be merely a first step towards a more complete
library geared for instance-based learning in intrinsically high-dimensional data. Of course, high-
dimensional data mining is a vast field and there are many directions to consider. What follows is a
list of features that the users can expect to see in future HubMiner releases, hopefully very soon.

Improve scalability. Changes will be introduced throughout Hub Miner in order to enable large-
scale data analysis, at least in certain contexts. Hubness-aware techniques have not yet been
applied to large-scale datasets and enabling this should beone of the priorities in future im-
plementation work.

Include indexing techniques for fastkNN search. In order to improve scalability, Hub Miner
will include various fast approximatekNN graph construction and query approaches in future
releases. This might be a substantial effort, but it would allow users to perform large-scale
hubness-aware data analysis.

Include more intrinsic dimensionality estimators. Hub Miner currently implements one ap-
proach to estimating the intrinsic dimensionality of the data, but this is a vibrant field where
many advances have happened in recent years and more intrinsic dimensionality estimators
should be included in future releases.

Additional clustering implementations. Future Hub Miner releases will include some more com-
plex and less standard clustering approaches.

Additional classifier implementations. While comparisons to other classifier implementations
can easily be done through OpenML and the same will soon hold for clustering, the ex-
perimental framework of Hub Miner directly allows some types of experiments that are not
present in other libraries, so this can not entirely eliminate the need for having more baselines.
For instance, comparisons would not be that easy when secondary distances are used or when
label and feature noise is to be introduced, especially non-uniform noise. Therefore, more
baselines will be introduced to Hub Miner, in order to increase its experimental potential and
usefulness.

Support for clustering via OpenML. While writing this, the clustering task is slowly being in-
cluded in OpenML and will currently become available. As soon as it becomes available, it
will be supported in Hub Miner as well.

Additional instance selection implementations.There are currently many instance selection
methods that are supported in Hub Miner, but more will be added in the future as well.

Remove all SiftWin and ImageMagick dependencies.In order to make Hub Miner fully
portable, all SiftWin and ImageMagick dependencies will beremoved. They are currently

89

90 CHAPTER 13. PLANS FOR FUTURE RELEASES

only present in non-central and less used parts of the code, but having any such dependen-
cies is not a good thing, so this will be corrected. As for hubness-aware analysis itself and
experimental evaluation for classification, clustering, instance selection, metric learning, etc.
- none of these depend on image processing, so Hub Miner can already be used on different
platforms. However, switching to a Java image feature extraction library will make the image
processing pipeline portable as well, which would be an added value to the current library
release.

Support various image feature extraction pipelines.Hub Miner is not an image feature extrac-
tion pipeline and image.mining packages are there more as convenience and examples of how
it can be used to handle image data. Nevertheless, since images are a prime example of high-
hubness data in many feature representations, Hub Miner support for handling different image
feature types will be significantly extended in future releases.

Support semi-supervised classification.Semi-supervised classification is not currently explicitly
supported in the experimental framework and this is soon going to change.

Support for ensemble methods in classification.Explicit support for building classifier ensem-
bles will be included.

Include more boosting approaches.Future Hub Miner releases will include more boosting tech-
niques, including some recently proposed approaches.

Support fuzzy methods. Learning from fuzzy labels is currently not supported in classification
and clustering and fuzzy classification and clustering methods will be included, as well as a
fuzzy experimental framework.

Bibliography

[Als98] Khaled Alsabti. An efficient k-means clustering algorithm. In In Proceedings of
IPPS/SPDP Workshop on High Performance Data Mining, 1998.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1027–1035, Philadelphia, PA, USA, 2007. SIAM.

[BG05] I. Borg and P.J.F. Groenen.Modern Multidimensional Scaling: Theory and Applica-
tions. Springer-Verlag, Berlin, Germany, 2005.

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T.Ng, and Jörg Sander. Lof: Iden-
tifying density-based local outliers.SIGMOD Rec., 29(2):93–104, May 2000.

[BNST11a] Krisztian Buza, Alexandros Nanopoulos, and LarsSchmidt-Thieme. Insight: efficient
and effective instance selection for time-series classification. In Proceedings of the
15th Pacific-Asia conference on Advances in knowledge discovery and data mining -
Volume Part II, PAKDD’11, pages 149–160, Berlin, Germany, 2011. Springer-Verlag.

[BNST11b] Krisztian Buza, Alexandros Nanopoulos, and LarsSchmidt-Thieme. Insight: efficient
and effective instance selection for time-series classification. In Proceedings of the
15th Pacific-Asia conference on Advances in knowledge discovery and data mining
- Volume Part II, PAKDD’11, pages 149–160, Berlin, Heidelberg, 2011. Springer-
Verlag.

[CKC06] Chien-Hsing Chou, Bo-Han Kuo, and Fu Chang. The generalized condensed nearest
neighbor rule as a data reduction method. InProceedings of the 18th International
Conference on Pattern Recognition - Volume 02, ICPR ’06, pages 556–559, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[DGK04] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis.Kernel k-means: spectral clus-
tering and normalized cuts. InProceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 551–556, 2004.

[DH11] Bi-Ru Dai and Shu-Ming Hsu. An instance selection algorithm based on reverse
nearest neighbor. InProceedings of the 15th Pacific-Asia conference on Advances
in knowledge discovery and data mining - Volume Part I, PAKDD’11, pages 1–12,
Berlin, Heidelberg, 2011. Springer-Verlag.

[DP13] Harshit Dubey and Vikram Pudi. Class based weighted k-nearest neighbor over im-
balance dataset. In Jian Pei, VincentS. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu, editors,Advances in Knowledge Discovery and Data Mining, volume
7819 ofLecture Notes in Computer Science, pages 305–316. Springer Berlin Heidel-
berg, 2013.

91

92 BIBLIOGRAPHY

[EpKSX96] Martin Ester, Hans peter Kriegel, Jörg S, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996.

[FGM05] Blaz Fortuna, Marko Grobelnik, and Dunja Mladenić. Visualization of text document
corpus.Informatica, pages 497–502, 2005.

[FH51] E. Fix and J. Hodges. Discriminatory analysis, nonparametric discrimination: con-
sistency properties. Technical report, USAF School of Aviation Medicine, Randolph
Field, 1951.

[HA02] C. C. Holmes and N. M. Adams. A probabilistic nearest neighbor method for statistical
pattern recognition.Journal of the Royal Statistical Society: Series B, 64:295–306,
2002.

[HKK +10] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur
Zimek. Can shared-neighbor distances defeat the curse of dimensionality? InProc.
of the 22nd int. conf. on Scientific and statistical databasemanagement, SSDBM’10,
pages 482–500. Springer-Verlag, 2010.

[IER10] Diego Ingaramo, Marcelo Errecalde, and Paolo Rosso. A general bio-inspired method
to improve the short-text clustering task. InProceedings of the 11th International Con-
ference on Computational Linguistics and Intelligent TextProcessing, CICLing’10,
pages 661–672, Berlin, Heidelberg, 2010. Springer-Verlag.

[JHS07] H. Jegou, H. Harzallah, and C. Schmid. A contextual dissimilarity measure for accu-
rate and efficient image search. InComputer Vision and Pattern Recognition, pages
1–8, New York, NY, USA, 2007. IEEE.

[KGG85] James E. Keller, Michael R. Gray, and James A. Givens. A fuzzy k-nearest-neighbor
algorithm. IEEE Transactions on Systems, Man and Cybernetics, pages 580–585,
1985.

[NS12] Krystyna Napierala and Jerzy Stefanowski. Identification of different types of mi-
nority class examples in imbalanced data. In Emilio Corchado, Vaclav Snasel, Ajith
Abraham, Michal Wozniak, Manuel Graña, and Sung-Bae Cho, editors, Hybrid Arti-
ficial Intelligent Systems, volume 7209 ofLecture Notes in Computer Science, pages
139–150. Springer-Verlag, Berlin / Heidelberg, Germany, 2012.

[PE68] Hart PE. The condensed nearest neighbor rule.IEEE Transactions on Information
Theory, 14:515–516, 1968.

[Pic09] Christian Pich. Mdsj: Java library for multidimensional scaling (version 0.2), 2009.

[PKGF03] S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and C. Faloutsos. Loci: fast outlier
detection using the local correlation integral. InData Engineering, 2003. Proceedings.
19th International Conference on, pages 315–326, March 2003.

[PTR+11] Doni Pracner, Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana
Ivanovíc. WIKImage: Correlated Image and Text Datasets. InSiKDD: Information
Society, 2011.

[Rad11] Miloš Radovanović. Representations and Metrics in High-Dimensional Data Mining.
Izdavǎcka knjižarnica Zorana Stojanovića, Novi Sad, Serbia, 2011.

BIBLIOGRAPHY 93

[RNI09] Miloš Radovanovíc, Alexandros Nanopoulos, and Mirjana Ivanović. Nearest neigh-
bors in high-dimensional data: The emergence and influence of hubs. InProceedings
of the 26th International Conference on Machine Learning (ICML), pages 865–872,
San Francisco, CA, USA, 2009. Morgan Kaufmann.

[RNI10a] Miloš Radovanovíc, Alexandros Nanopoulos, and Mirjana Ivanović. Hubs in space:
Popular nearest neighbors in high-dimensional data.Journal of Machine Learning
Research, 11:2487–2531, 2010.

[RNI10b] Miloš Radovanovíc, Alexandros Nanopoulos, and Mirjana Ivanović. On the existence
of obstinate results in vector space models. InProceedings of the 33rd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 186–193, New York, NY, USA, 2010. ACM.

[SC04] Stan Salvador and Philip Chan. Determining the number of clusters/segments in hier-
archical clustering/segmentation algorithms. InTools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on, pages 576–584. IEEE, 2004.

[SFSW12] Dominik Schnitzer, Arthur Flexer, Markus Schedl,and Gerhard Widmer. Local and
global scaling reduce hubs in space.The Journal of Machine Learning Research,
13(1):2871–2902, 2012.

[Tan05] Songbo Tan. Neighbor-weighted k-nearest neighborfor unbalanced text corpus.Ex-
pert Systems with Applications, 28:667–671, May 2005.

[TB14] Nenad Tomašev and Krisztian Buza. Neighbor occurrencemodels for learning with
label noise in high-dimensional data.Neurocomputing, Special Issue on Learning
with Label Noise, pages 1–22, 2014.

[TBMN11] N. Tomašev, R. Brehar, D. Mladenić, and S. Nedevschi. The influence of hubness on
nearest-neighbor methods in object recognition. InProceedings of the 7th IEEE Inter-
national Conference on Intelligent Computer Communication and Processing (ICCP),
pages 367–374, New York, NY, USA, 2011. IEEE.

[TLM13] N. Tomašev, , G. Leban, and D. Mladenić. Exploiting hubs for self-adaptive secondary
re-ranking in bug report duplicate detection. InProceedings of the ITI conference, ITI
2013, Zagreb, Croatia, 2013. SRCE.

[TM12a] N. Tomašev and D. Mladenić. Hubness-aware shared neighbor distances for high-
dimensional k-nearest neighbor classification. InProceedings of the 7th Interna-
tional Conference on Hybrid Artificial Intelligence Systems, HAIS ’12, pages 116–127,
Berlin, Germany, 2012. Springer-Verlag.

[TM12b] N. Tomašev and D. Mladenić. Nearest neighbor voting in high dimensional data:
Learning from past occurrences.Computer Science and Information Systems, 9:691–
712, 2012.

[TM13a] Nenad Tomašev and Dunja Mladenić. Class imbalance and the curse of minority hubs.
Knowledge-Based Systems, 53(0):157 – 172, 2013.

[TM13b] Nenad Tomašev and Dunja Mladenić. Hub co-occurrence modeling for robust high-
dimensional knn classification. InProceedings of the ECML conference, Berlin, Ger-
many, 2013. Springer-Verlag.

[TM13c] Nenad Tomašev and Dunja Mladenić. Image hub explorer: Evaluating representations
and metrics for content-based image retrieval and object recognition. InProceedings
of the ECML conference, Berlin, Germany, 2013. Springer-Verlag.

94 BIBLIOGRAPHY

[TM14a] Nenad Tomašev and Dunja Mladenić. Hubness-aware shared neighbor distances for
high-dimensional k-nearest neighbor classification.Knowledge and Information Sys-
tems, 39(1):89–122, 2014.

[TM14b] Nenad Tomašev and Dunja Mladenić. Image hub explorer: evaluating representations
and metrics for content-based image retrieval and object recognition.Multimedia Tools
and Applications, pages 1–30, 2014.

[Tom14] Nenad Tomašev. Boosting for vote learning in high-dimensional knn classification. In
Proceedings of the International Conference on Data Mining(ICDM), 2014.

[TRMI11a] N. Tomašev, M. Radovanović, D. Mladeníc, and M. Ivanovíc. A probabilistic ap-
proach to nearest neighbor classification: Naive hubness bayesian k-nearest neighbor.
In Proceeding of the CIKM conference, pages 2173–2176, New York, NY, USA, 2011.
ACM.

[TRMI11b] Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana Ivanovíc.
Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classifica-
tion. In Proceedings of the MLDM Conference, pages 16–30, Berlin, Germany, 2011.
Springer-Verlag.

[TRMI11c] Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana Ivanovíc. The role
of hubness in clustering high-dimensional data. InAdvances in Knowledge Discovery
and Data Mining, volume 6634, pages 183–195, Berlin, Germany, 2011. Springer-
Verlag.

[TRMI13a] Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana Ivanovíc.
Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification.
International Journal of Machine Learning and Cybernetics, 2013.

[TRMI13b] Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana Ivanovíc. The role
of hubness in clustering high-dimensional data.IEEE Transactions on Knowledge and
Data Engineering, 99(PrePrints):1, 2013.

[TRMI14] Nenad Tomašev, Miloš Radovanović, Dunja Mladeníc, and Mirjana Ivanovíc.
Hubness-based clustering of high-dimensional dataa. InPartitional Clustering Al-
gorithms. Springer-Verlag, Berlin, Germany, 2014.

[vRBT+13] JanN. van Rijn, Bernd Bischl, Luis Torgo, Bo Gao, Venkatesh Umaashankar, Si-
mon Fischer, Patrick Winter, Bernd Wiswedel, MichaelR. Berthold, and Joaquin Van-
schoren. Openml: A collaborative science platform. In Hendrik Blockeel, Kristian
Kersting, Siegfried Nijssen, and Filip̋Oelezný, editors,Machine Learning and Knowl-
edge Discovery in Databases, volume 8190 ofLecture Notes in Computer Science,
pages 645–649. Springer Berlin Heidelberg, 2013.

[Wil72] D. R. Wilson. Asymptotic properties of nearest neighbor rules using edited data.IEEE
Transactions on Systems, Man and Cybernetics, 2:408–421, 1972.

[WM97] D. Randall Wilson and Tony R. Martinez. Instance pruning techniques. InProceedings
of the fourteenth International Conference on Machine Learning (ICML), pages 404–
411, San Francisco, CA, USA, 1997. Morgan Kaufmann.

[WME09] Josiah Wang, Katja Markert, and Mark Everingham. Learning models for object recog-
nition from natural language descriptions. InProceedings of the British Machine Vi-
sion Conference, London, UK, 2009. BMVA Press.

BIBLIOGRAPHY 95

[WNC07] Jigang Wang, Predrag Neskovic, and Leon N. Cooper. Improving nearest neighbor
rule with a simple adaptive distance measure.Pattern Recognition Letters, 28:207–
213, January 2007.

[Zha01] Bin Zhang. Generalized k-harmonic means - dynamic weighting of data in unsuper-
vised learning. InFirst SIAM International Conference on Data Mining, 2001.

[ZmP04] Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. InAdvances in
Neural Information Processing Systems 17, pages 1601–1608, Cambridge, MA, USA,
2004. MIT Press.

	Short contents
	Contents
	List of Figures
	List of Tables
	1 Preface: What is Hub Miner?
	2 Motivation: Why yet another library?
	2.1 Relevance of Data Hubness for Data Analysis

	3 Building Hub Miner: Dependencies
	4 Supported Data Formats
	5 A Quick Guide to the Experimental Framework
	5.1 Batch Classifier Evaluation
	5.1.1 OpenML Compatibility
	5.1.2 Viper Charts for Visualizing Classification Results

	5.2 Batch Clustering Evaluation
	5.3 Batch Hubness Analysis

	6 The Data Model
	7 Hubness-aware Implementations
	7.1 Classification
	7.2 Clustering
	7.3 Metric Learning
	7.4 Instance selection

	8 Code Examples: Using Hub Miner for Data Analysis
	9 Image Hub Explorer
	9.1 Preparing the Data for Visualization
	9.2 Visualization and Interactive Analysis
	9.2.1 Data Overview Screen
	9.2.2 Class View
	9.2.3 Neighbor View
	9.2.4 Feature Visualization and Assessment Panel
	9.2.5 Search and Ranking

	10 Overview of Hub Miner Packages
	10.0.6 configuration
	10.0.7 data.generators
	10.0.8 data.imbalance
	10.0.9 data.neighbors
	10.0.10 data.neighbors.hubness
	10.0.11 data.representation
	10.0.12 data.structures
	10.0.13 dimensionality_reduction
	10.0.14 distances.primary
	10.0.15 distances.secondary
	10.0.16 distances.sparse
	10.0.17 distances.kernel
	10.0.18 distances.concentration
	10.0.19 distances.analysis
	10.0.20 draw
	10.0.21 feature
	10.0.22 filters
	10.0.23 graph
	10.0.24 gui.images
	10.0.25 gui.maps
	10.0.26 gui.synthetic
	10.0.27 images.mining
	10.0.28 ioformat
	10.0.29 learning.supervised
	10.0.30 learning.supervised.evaluation
	10.0.31 learning.supervised.meta
	10.0.32 learning.supervised.methods
	10.0.33 learning.unsupervised
	10.0.34 learning.unsupervised.evaluation
	10.0.35 learning.unsupervised.methods
	10.0.36 learning.unsupervised.outliers
	10.0.37 linear
	10.0.38 networked_experiments
	10.0.39 optimization.stochastic
	10.0.40 preprocessing.instance_selection
	10.0.41 probability
	10.0.42 sampling
	10.0.43 statistics
	10.0.44 util
	10.0.45 visualization

	11 Portability
	12 Scalability
	13 Plans for Future Releases
	Bibliography

