Hub Miner User Manual

Hubness-aware Machine Learning for Intrinsically
High-dimensional Data

Written and Maintained by:
Nenad Tomasev
Institute Jozef Stefan
Artificial Intelligence Laboratory
Jamova 39, 1000 Ljubljana, Slovenia
nenad.tomasev@gmail.com

October 2014

Short contents

Contents

11
11

15

17

19
A . A c A 4.CA n ---------------------------- 19

[5.1.1 OpenML Compatibility 235.1.2 Viper Charts for Visualizing Classifica-

tion Results 25

' uation 28
BIS . . e e e e 31

{6 The Data Model 37
[7_Hubness-aware Implementations 45
7.1 Classificatidn 45

4 CONTENTS

B.Zl_DaIaQLQDLIBMLS&Lden 6|9..2.2£LassMﬁlw 639.2.3 Neighbor View 64
nt Panel6B.5 Search and Rank-

0 Overview of Hub Miner Packages 69
[10.0.6 configuratidn 69/10.0.7 data.generatdrs 680.0.8 data.imbalante 69
, 110.0.9 data.neighbdrs 69, [10.0.10 data.neighbors.hubness 70

0.0 data.representation 7,1(10.0 data ictures 74 10.0.13 di-
mensionality _reduction 74 74 10.0.15 dis-

tances.seconda 74 0 Jista DA 10.0.17 dis-
tances.kernel 74 0,0.18 distances.concentration 75 10.0.19 dis-
tances.analysis 75, 110.0.20 draw 75 , e 75 ,
[10.0.22 fiif%ﬂs 75, J 2

ing.supervised.evaluatlon 79,

|_’|_Q__Q__32_|_e_a_min,g suoervised met_Hods

ation 80 10 0. 35 learn-

i If itllers 81

3110.0. 39 optimiza-
tion 82.0.41 prob-
| 82,

ability 82 , mmnn'
L’I.Q.Q.Amusuahzandn 83

[11 Portability 85
12 Scalability 87
(13 Plans for Future Released 89
Bibliography o1

ig 82 s 821

List of Figures

2.1 The change in the neighbor occurrence distribution eshéth increasing dimen-
sionality, in case of Gaussian mixture data. The increaslBg/ness results in most
data points becomingrphansand a small number dfubsin the long tail of the
distribution dominatestheanalysis. 12
2.2 Anexample of a bad hub in the quantized SIFT feature sejptation, a detrimental
center of influence. Neither of the reverse neighbors of #hected image belongs
to the same class as the imade itself, so its occurrencesarndbel mismatches

and are semantically inconsistent. 13
) /(15 JA 20
5.2 An example ofaclassmcatlor conﬁguratlonflle Wh|Ie3met|ons are 'on’ in this
example, in practice a user would normally only use some eithThe example
merely shows that they can gll in principle be combined aad &l stages can be
plugged in and operate together 21
iploaded ru ion i 25
26
,) 26
56 An example of a V|suaI|zat|on of cIassn‘|cat|on resuttfarm of a lift chart, as
generated by Viperf Charts. These results show the classificperformance of
kNN and NHBNN an the ionosphere UCI dataset, fo= 5. NHBNN is given in
redandcNNinblue. 27
5.7 ___Example visualizations on ionosphere UCI datakfet 5 of classification perfor-
mance oftNN and NHBNN from within Hub Miner framework. NHBNN is given
inredandkNN inblue. 28
.................................. 28
L= 28
(c) Rate-drivencurve e 28
[(d) ROC Curvb 28
i 28
37
47
47

7.2

List of Figures

. ,) 47
lllustrative example The red dashed C|rcIe marks tmér ol (C) yellow dotted

circle the medoid {/), and green circles denote two elements of highest hubness
(H., H»), for neighborhopd siz8. In this particular example, it is clear that select-
ing hubs as cluster protatypes would go directly to the asrgélocal sub-groups

7.3

and speed Up CONVEIgEeNCE.« . o v v i i it e e e e e 48
Hubness-guided search for the best cluster hub-coafigarin global hubness-

7.4

An illustrative example of how secondary distancesncoss and simhub,) af-

fect the consistency of the reverbeneareist neighbor sets in image data and the

7.5

consistency of hub occurrences in particular. 50
The modified instance selection pipeline. An unb|aselbp]pe occurrence proﬂle

estimator is included between the instance selector andesseaware classifier. It
ought to provide nore reliable hubness estimates to thedrghaware occurrence
models. In the example we see that paihis a neighbor to three other points
(X.Y.Z), but only|one of them gets selected. Hence, some occuriefuzenation

isirretrievablylost. e 51

The Data Overview screen of Image Hub Explorer Visuradizhe major image

hubs via multi-dimensional scaling. 63
The Class View of Image Hub Explorer: Examining pointeygistributions and

9.5

centers of influence for each class separately. 64
The Neighbor View of Image Hub Explorer: Exploring therest neighbor (NN)

9.6

and reverse nearest neighbor (RNN) lists and visualizinglloNN subgraphs. . . 64
An example of a bad hub in the quantized SIFT feature septation, a detrimental

center of influence. Neither of the reverse neighbors of ¢iecsed image belongs
to the same class as the|image itself, so its occurrencesdridbel mismatches
and are semantically inconsistent. The same image has ailye@qconsistent
occurrence profile in the quantized SURF feature repretentdut it is not a hub
there, as it does not occur| very often. On the other hand,igépéagted image never
occurs as a neighbor in the quantized BRIEF feature reptatsem for the same

9.7

Individual visual words are displayed on top of the selédamage and colored

according to their averall usefulness and semantic carsigt This helps in iden-
tifying the critical regions in the images, those that citmie to making good class
distinctions and those that represent textural patteatstight occur in many dif-

ferentimageclasses. 66
l@) __Aregularly displayed selectedimage.o 66
i izati iti 1) o 66

(c) A visualization of a single visual word, one that is moshéficial for object
recognition of thisimagetype. 66

List of Figures

9.8 The Search screen of Image Hub Explorer. Apart from sdijpygothe basic query
functignality, the system offers label suggestions bagsethe output of several
kNN classification models, as well as a hubness-aware segoretaanking pro-

CedUIe. . . . o . e e e e

10.1 Visualizing HIKNN prediction landscape in UCI Vehiclata, in 3 dimensions. For
each class, two views ar& generated for each axis, one fosgde of the cube that

containsthe projecteddata.

a y-negative direction, fi ABS. . . e e e
b ry-negative direction, thirdclass.
C Au iti -q- jon. thirdclass.
d zz-negative direction, fi a5S. . .

10.2 _Basic hub visualizations where node size correspanttetneighbor occurrence
frequency. When comparing the two given single-clustettsstic Gaussian exam-
ples, consequences of high data dimensionality becomeeampas a small number

ofdominanthub pointsemerge..

@ Singleclusterd =3, k=1

[(b) Sin = =U. ..

10.3 _ Visualization of SIFT feature clusters in Image Matdpor. SIFT features on an
image are clustered and the clusters are drawn in differ@otrs Clusters can

be represented as ellipses, where the axes follow the pahcomponents of the

10.4 Visualization of spatially |ncon5|stent and potell‘}tlanomalous hub sensor mea-

surements via GeosgatlaISenserubnessDrawer The medhes node corre-

sponds to the spatial inconsistency. e ..

10.5 Probabllltv maps mferred frokrNN and HIKNN on synthetic data, fdcr 5 Each
pixel was classified by the algorithms and assigned a prétyalzilue of belonging

CluSters. e e e e e e e

to each of the two classes. Visualization was generated $iya\2DdataGenerator

72
72
72
72
72

76
76

77
77
77

List of Tables

One

Preface: What is Hub Miner?

Hub Miner is a machine learning library that focuses on expentation with various data repre-
sentations and distance functions for effective high-disienal data analysis. The main emphasis
of the library is on the novel hubness-aware machine legrt@ohniques, that have been proposed
in order to deal with the phenomenonhafbnesfiRNIO9][RNI102][RNI10B][Rad1l] in intrinsically
high-dimensional data, a well known aspect of the curserotdsionality.

HUB MINER

Figure 1.1: Hub Miner logo.

In Section[2.1l, the hubness phenomenon is discussed in netad. dit has to do with the
distribution of relevance within thé&NN) models in high-dimensional data, which assumes a scale-
free shape, as most decisions are being dominated by theric#wf a small number of prominent
hub points. This entails a significant information loss, a#l s a questionable semantic consistency
of the emerging hubs, as they can be highly detrimental itatecases.

Hub Miner implements hubness-aware methods for classditafRNIOS][TRMI11b]
[TRMI134][TRMI11&][TM126][TM13E], clustering [[TRMI1ITRMI13b|[TRMI14], in-
stance selection [BNST1la], metric learning [ZmPO4][JABFSWI12][TM12a][TM144], re-
ranking [TLM13] and other types of machine learning and daitaing tasks.

Hubness visualization is possible via Image Hub Expldréd18d], a tool that was built for
image feature representation experimentation, metritileg and visualization of various aspects
of the kNN graph and the induced topology. It is possible to applygenelub Explorer not only
to image data but also to other data types, though some sptaifitions might not be available
in that case. A demo of Image Hub Explorer is available at thewing link: https://www.
youtube . com/watch?v=LB9ZWuvmOqw. Additional information can be found herettp://
ailab.ijs.si/nenad_tomasev/image-hub-explorer/. This manual contains a chapter
devoted to Image Hub Explorer and how it can be used in vasimuslization tasks.

Despite its focus in terms of current method implementatiurb Miner has been designed as a
general purpose machine learning library and can be usedifer types of analysis as well, as it of-
fers an extensive experimental framework and supportewsdata types. It has been implemented
purely in Java, so it is easily portable to different platfict

https://www.youtube.com/watch?v=LB9ZWuvm0qw
https://www.youtube.com/watch?v=LB9ZWuvm0qw
http://ailab.ijs.si/nenad_tomasev/image-hub-explorer/
http://ailab.ijs.si/nenad_tomasev/image-hub-explorer/

10 CHAPTER 1. PREFACE: WHAT IS HUB MINER?

Java implementations have their ups and downs, but it isalgta decent trade-off when it
comes to scientific computing, where experimentation usttat deadlines is the norm. Compared
to C++, Java code requires much less effort to produce, deabd deploy. This can be quite
beneficial for time-constrained projects that are typjcaken in research. It is not as easy as
Python, but it falls somewhere in between. This library ggmJava, the entry point to extending it
or re-using its approaches is probably not as high as it wioalg been with C++.

This user manual will enable Hub Miner users to quickly getgist of the basic system func-
tionality and the experimental framework. It also providdsasic overview of the algorithms them-
selves and the interfaces and implementation details. Madg examples are used to show how
easy it is to extend the system to cover new use cases andlénolore baselines or apply the
implemented techniques for solving practical machinenlieaytasks.

For things not explicitly covered in the manual, it is possiie get information from the source
files themselves, as Hub Miner is fully documented and a laffairt has been put into improving
code presentation and style. The goal of Hub Miner is to becanmub (no pun intended) for
hubness-aware machine learning, so it is important to nmake&wode easy to use and understand.
Expect the future releases to contain even more algoritimthsreore flexibility.

Hub Miner implements an OpenML-compatible experimentatfework http://openml.
org/)[VRBT13], which enables cross-system method comparisons temmitations in other
OpenML-compatible machine learning libraries, such asa&\&ekd RapidMiner.

http://openml.org/
http://openml.org/

Two

Motivation: Why yet another library?

Hub Miner is a general machine learning library, but its ierpentations are focused on one partic-
ular problem - the problem of hubness in instance-baseditggam intrinsically high-dimensional
data. Itis, to our knowledge, the largest and most complateation of hubness-aware methods.

Curse of dimensionality is a well-known phrase among thehimedearning community and it’s
used to denote various types of problems that frequentig arhen learning from high-dimensional
feature representations. This includes sparsity, recunyalistance concentration, problematic
density estimates, less meaningful nearest neighborsldashubness - the power-law-like distri-
bution of relevance in thé:QNN) models. Among all the listed issues, hubness was thstlaade
observed [RNIO9|[Rad11]. Because of this, many instareset systems and libraries are deployed
without any safeguards and we will see why this might provieaa problem in certain cases. In
fact, any system that involves working with tdp-result sets or togs most similar items (as in
collaborative filtering) can potentially be compromisedd measures are taken to assure the se-
mantic consistency of hubs within the model. The musiceealiand recommendation community
has seen a lot of recent research advances in hubness-aetaielearning and selection.

The extensive experimental framework in Hub Miner enabésearchers to evaluate various
data representations, primary or secondary metrics ameelgrclassification and clustering algo-
rithms, prototype selection strategies, under variouzionstances. Multiple performance measures
are supported and automated support for result summanizatid statistical significance testing is
included. The details of the testing environment will bevpded in Chaptelfls.

Since the worchubnesshas been used a few times already with no clarification argl thhe
main issue addressed by Hub Miner, the following Sectioranp why the hubness phenomenon
matters and where it is expected to occur.

2.1 RELEVANCE OF DATA HUBNESS FORDATA ANALYSIS

Readers already deeply familiar with hubness can skip thiti@ and proceed to more technical
instructions that follow.

As already mentioned, hubness as a phenomenon has to do skéwad distribution of rel-
evance in high-dimensional models, where a small numbeubfdoints dominates the predictive
models and influences most decisions, often in a detrimer@al An illustration of the emerging
hubness is given in Figure 2.1, where the dimensionalityoftetic Gaussian mixtures is increased
and the distribution of neighbor occurrence frequencisarags a long-tailed shape.

The most natural question to ask is: 'Ok, so what? This is@stting, but why is this a bad
thing?’. In most practical cases (in our experience) thésritiution of neighbor occurrence frequen-
cies is not scale-free, but rather converges towards a-freaalistribution as the dimensionality is

11

12 CHAPTER 2. MOTIVATION: WHY YET ANOTHER LIBRARY?

0.18

0.16
0.14 IA\
012 '
E 0.1 | l \
ol —
l \ - — d=10
0.00 '] \\ d=100
0.04 ”/ \\
0.02 .
% -
0 T RRRERET T
1 10 20 30 40 50 0

Figure 2.1: The change in the neighbor occurrence distabwghape with increasing dimensional-
ity, in case of Gaussian mixture data. The increasing skeswesults in most data points becoming
orphansand a small number dfubsin the long tail of the distribution dominates the analysis.

increased. Yet, even if it were entirely scale-free, wohlid be a bad thing? Many scale-free net-
works exist in the real world and they seem to operate noymaAltypical example is the Internet
or social network popularity like the distribution of themhber of Twitter followers or in-degrees
in co-authorship research networks. Scale-free netwaiks @ the natural world as well, like
protein-protein-interaction networks.

The main difference between real-world hub-harbouringvogts and thé:NN networks that
we are considering is in the distribution of noise and inéggteacies and their influence on the
systems. Scale-free networks have been shown to be morsttobuniformly random noise, but
substantially more sensitive to any inconsistency conta@d within the hubs. Hub-centered
errors can propagate quickly throughout the system, with cbnsequences. Naturally occurring
networks arise through self-organizing mechanisms tharasthat hubs are at least as 'safe’ as
other points and often much more so. They are the Achille§ keghey must be protected from
noise (or malicious attacks, in case of the Internet).

However, the consistency of hubsiiNN graphs is not guaranteed, as their distribution depends
on high-dimensional geometry and the particular choiceatd depresentation and metric. Different
pairs of metrics and data representations yield differegtreles of overall hubness and a different
selection of hub-points. In fact, it has been shown [RadIRNI13b] that points that lie closer to
local cluster means in high-dimensional data are much nikety lto become hubs and they have a
much higher expected occurrence frequency. As most higieasional data lies approximately on
hyper-spheres around such cluster means, points closee wenhter become close to many points
on the hyper-sphere surface and this small difference edupith distance concentration results
in the emergence of hub points. In borderline regions, thergimg hubs often become semantic
singularities and occur as neighbors to points from manfedint classes. This can be highly
detrimental. An example is shown in Figlire]9.6.

Most neighbor occurrences in high-dimensional data aredeghbrrences and most bad occur-
rences are hub occurrences as well. The influence of a particub point can be either good or
bad or - most likely - something in between. If hubs were 8yrigood or bad, a natural solution
to the problem would be to try eliminating bad hubs entiralyidg data pre-processing. However,
this is not the case - and even if it were - removing any highfluential neighbor point creates

2.1. RELEVANCE OF DATA HUBNESS FOR DATA ANALYSIS 13

Figure 2.2: An example of a bad hub in the quantized SIFT featepresentation, a detrimental
center of influence. Neither of the reverse neighbors of éhecsed image belongs to the same class
as the image itself, so its occurrences induce label midmatand are semantically inconsistent.

holes inkNN sets that are filled in with new neighbor occurrences amgesof these in turn might

lead to the emergence of new bad hubs. The problem of findgithimal set of prototype that
properly covers all the training data has been shown to bedfplete[BNST11b]. So, things are
not as easy as they might initially seem.

Given that hubness arises naturally in textual data reptasen, image representations, time
series and many other frequently encountered and intalhgicigh-dimensional data types, it is an
importantissue in robust data analysis. As mentioned beésmen systems that don’t explicitly rely
on kNN methods as such might be affected, especially if they asesnternal ranking or queries
for the most relevant results. While these functions oftemdt use explicit distance functions,
implicitly it makes little difference.

Therefore, there are two things that we can try to do, as relsees or developers. We can try
to somehow reduce the hubness of the data by a careful chbd#ta representations and met-
rics or we can try to design novel analytic methods that aresically hubness-aware and robust.
Hub Miner library contains both types of approaches andrithlxa shown that these two strategies
are in fact not mutually exclusive, especially since mdaarning and/or dimensionality reduction
often merely reduce the hubness of the data instead of etmanit completely. A complete reduc-
tion in hubness can usually be achieved only by reducingrttrainsic dimensionality of the data
representation, which entails information loss and pdgsiliver predictive or descriptive system
performance.

Have in mind that we are talking about therinsic dimensionality of the data here, not the
number of features used to describe the data in the expdipiesentation, as many features are
usually correlated in some way and they partially encodsdinee information. In fact, it is possible
to observe very high-dimensional data with a low intrinsimensionality, that has no significant
hubness. This is especially the case for some time seri¢sl¢haot vary much and consecutive
sensor measurements are highly correlated.

Three

Building Hub Miner: Dependencies

Hub Miner is written in Java, so it shouldn’t be difficult toilsl You will need an up-to-date
version of Java, though. Hub Miner has been developed udk#rj.0_21, but new features will be
added that are compliant with newer versions as well, inrtutaleases, so try having an up-to-date
JRE or SDK on your machine if running or building Hub Miner.uvshould include the following
dependencies in the CLASSPATH variable in order to be abteidd and use Hub Miner code:

apiconnector-fat. jar
collections-generic-4.01. jar
colt-1.2.0.jar
commons—-codec-1.3. jar
commons—httpclient-3.0.1.jar
commons-logging-1.1. jar
concurrent-1.3.4.jar
gson-2.3.jar

guice-3.0.jar
iText-2.1.7_mx-1.0.jar
Jama-1.0.2. jar
jcommon-1.0.17.jar

jdom. jar

jetty-6.1.1.jar
jetty-util-6.1.1.jar
jfreechart-1.0.14. jar
jgraph.jar

jgraphx. jar

json. jar

jsoup-1.7.2.jar

jtidy-r7.jar
jung-algorithms-2.0-betal. jar
jung-api-2.0-betal.jar
jung-graph-impl-2.0-betal. jar
jung-jai-samples-2.0-betal. jar
jung-visualization-2.0-betal. jar
junit-4.7.jar

mdsj. jar

mxgraph-all. jar

rome-0.8. jar

15

16 CHAPTER 3. BUILDING HUB MINER: DEPENDENCIES

servlet-api-2.5-6.1.1.jar
servlet.jar
swing-layout-1.0.3.jar
swingx-1.6. jar
swingx-beaninfo-1.6.jar
swingx-ws-1.0. jar
TGGraphLayout. jar
xercesImpl. jar
xmlunitl.0. jar

A dependency on OpenML is apiconnector-fatjar and it can dmsvnloaded from
http://openml.org/downloads/apiconnector-fat.jar .

That being said, there are some limited experimental pdttseocode that rely on some other
external dependencies. Image feature extraction compousa SIFT features and expect to extract
them via the SiftWin binary that is to be accessible from thmand line so it has to be contained
within the PATH variable. The same goes for Image Magick,olths used mainly for conversions
of JPG images to PGM format that SiftWin expects. In almdstases, you will not be invoking
these functions since Hub Miner is not aboutimage featurraetton and does not intend to become
a pipeline for that. However, expect to see this dependersapgear in some later Hub Miner
release, as | intend to switch to Java-based image feattnr@ctgn libraries and also introduce
more compatibility with OpenCV.

Other than the mentioned image feature extraction depegdtre rest of Hub Miner code is
currently portable and should be usable on different ptatowithout any additional difficulty.

Four

Supported Data Formats

Hub Miner supports working with data files in the ARFF, CSV arslV formats. It also offers
support for configuration file load/save and cross-valatatolds import via JSON. Of course, since
JSON is very strict and sometimes difficult to read for largenfiguration files, there exists a
custom human-readable easy-to-use default format foiifgperthe experimental configurations.
The configuration file format will be reviewed in the follovgsection.

For readers not already familiar with the ARFF file formas(alsed by Weka and OpenML),
here is an example of a small ARFF data file:

ORELATION Ionosphere3DProjectionSample
Q@ATTRIBUTE fAttO real

Q@ATTRIBUTE fAttl real

Q@ATTRIBUTE fAtt2 real

QATTRIBUTE class string

Q@DATA
0.08901424,-0.10969148,0.0032827153,°1"
-0.044016507,-0.1379753,-0.10553418,°0’
0.10856112,-0.039936334,0.044553082, 1"
-0.066826984,0.07276285,-0.039159104,°0’
-9.745792E-4,-0.09848936,0.017975774,° 1’
-0.13074261,-0.022526562,-0.101753585,°0’
0.054415386,-0.20338419,-0.0049496056, 1"
-0.041923035,-0.0017737036,-0.17944402,°0’
0.15486263,-0.17194971,0.012484646,° 1’
-0.13705792,-7.132998E-4,-0.10510041,°0’
.13835455,-0.21733429,0.018616,°1’
.24783619,-0.10117917,0.0027347172,°0°
.17932422,-0.14469129,0.03308493, 1’
.21689402,-0.049687877,0.020258931,°0°
.2064358,0.10299684,0.031745467,°1°
.006842114,-0.055629272,-0.14137895,°0’

O OO O OO0

There is a header that defines the feature names and feagpe®-tynd this is followed by a
data section, that presents data in a comma-separatedriagliin label information at the end. In
Hub Miner there is a convention that in the ARFF files the ladigibute is named 'class’ and of
type 'string’, so make sure to follow the same conventiorhi@ data files that you will use in the
experiments.

17

18 CHAPTER 4. SUPPORTED DATA FORMATS

As for CSV files, here is an example of a sample of the classisatiata presented in a Hub
Miner - compatible CSV form.

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-

-

-
-

-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

GO OO OO0 NGO O 01O D OO
DADONIOWNNOTOPOOWOHEF O OPOIO -

-

NRNDNNDNDNONNDNWWWWWWWWWWWNWWW
OO NOPWOOOWFLNNWSNNODOWOOOOIN WO O

-

DO OO W NSO OO NPPOAPPOOPOOWWWOWw

-

PP RPRPRPPPRPPPPPPOOODOODOOOOOOOO

WOPWODWUIWIMANNNNWS BN WWN N

-

PP RPRPRPPPRPPRPPPPOOODOODOOOOOOO

wwwnhwnhohohnhnh:bobl—\HHHl—\l—\HHHl—\l—\H

The label is the last value in each line. It should be noted htbough - that it does not need to
be a number, strings containing class names are also abtepha case of CSV files, all features
are loaded as float features. This is somewhat less flexiateiththe ARFF case.

Also, one should keep in mind that while the last value iste@as class value by default,
the loaded has both a supervised and an unsupervised saveitdes - and that it doesn’t know
in principle which one should be used in which occasion. &fwe, take care when working with
CSV files to use the proper mode. Supervised is default in oassts, even in Clustering evaluation,
since labeled data is also used there, where labels are asedl€ulating cluster configuration
homogeneity.

Five

A Quick Guide to the Experimental
Framework

Hub Miner supports batch experimentation by running mldtiglgorithms on multiple datasets
under varying conditions in a multi-threaded way with optied object sharing for distance ma-
trices andkNN sets to avoid redundant calculations. Such batch taskeggsing is available for

classification, clustering and exploratory hubness dadityais.

5.1 BATCH CLASSIFIER EVALUATION

The class that runs batch classifier evaluation in Hub Miner &vailable at
learning.supervised.evaluation.cv.BatchClassifigereand most logic is implemented in learn-
ing.supervised.evaluation.cv.MultiCrossValidation.

For classifier evaluation, Hub Miner uses X-time Y-fold geslidation. | have personally al-
ways used 10-times 10-fold cross-validation, though adbeups are possible for large datasets and
initial exploratory runs. The general design of the expertal framework is shown in Figure5.1.

The classification evaluation framework supports metréecrang, instance selection, learning
with label noise, learning with feature noise, varying ikigrhood sizes, biased and ubiased proto-
type occurrence modeling, etc. Despite its many optiorsb#sic process is quite simple.

The data is loaded and feature normalization is perfornieghdcified. The primary distance
matrix is calculated once for the entire data and dividedtgpsub-matrices during cross-validation,
based on the generated data splits. In case of prifdsdly sets (when no metric learning is used),
the k-nearest neighbor sets are also calculated once for allaghata slightly larger neighborhood
size and are then sub-sampled and restricted on the tradl@itagin each experimental iteration.
In most cases, no additional re-calculations are requitealygh rarely the system has to run a
few fast additional queries. Instance selection is eastiygrated with this framework and doesn't
complicate things at all.

The calculated objects are distributed to all the algorghinat require them, which is declared
by implementing appropriate interfaces in the code. In cas@lgorithm required distances or
k-nearest neighbor sets, none are calculated.

Each algorithm runs in its own thread and all threads aretsymized. The experiment ends
when the last algorithm finishes.

It is possible also to run experiments with the approximidtédN sets and recursive Lanczos
bisections are used as a default approach for this in themuimplementation, though this will
probably change in future versions, where | intend to inti@more flexibility.

In case of metric learning, it is not possible to apply theotxsame framework as above, as
the global distance matrix would then be a result of using @ining and test data, which would

19

20 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

CROSS-VALIDATION | _ |
FOLD PROCESSING: | [M L LT
TRAINING <"

[TITTITITITIT1] (]

PRIMARY METRICS: | EUCLIDEAN | L1 || COSINE | | JACCARD || KULLBACK-LEIBLER | see

CALCULATE SHARED OBJECTS: FOLD K-NEAREST KNN
(multi-threaded) DISTANCE MATRIX NEIGHBOR SETS PROFILES
Each classifier (exactly or approximately)
is a thread
| KNN }
| NHBNN |
| HIKNN |

Figure 5.1: Hub Miner experimental set-up for classificagxperiments.

constitute an information leak. The experiments with nedearning are therefore usually much
slower, as both the distance matrix and thaearest neighbor sets need to be calculated on each
training iteration separately.

Eachtestrunin each CV iteration produces a learning.sigest.evaluation.ClassificationEstimator
instance. These classification estimators calculate tladitgumeasures like accuracy, precision,
recall, f-score, Matthews correlation coefficient and tiked (micro and macro-averaged where
necessary). These results are then persisted to the sgdidde and summarized automatically
to produce brief and readable experimental summaries.istitat significance testing is done
on-the-fly with the corrected re-samplietest.

An example configuration file for running the evaluation iswh in Figurd 5.P.

Users can specify the desired fold scheme, the number of continneads to use when calcu-
lating the distance matrices akliN sets, the directory structure, instance selectionegias (op-
tional), secondary distances (optional), a list of clasaifon algorithms to compare, the range of
neighborhood sizes to test for, approximakéN set quality (optional, exadNN sets are default),
ranges of feature and label noise rates to test for, weightséight-proportional noise (optional),
the feature normalization strategy and finally, a list ofadats from the data directory to run the
experiments on, paired with the appropriate metric objects

Let us go through all options one by one.

e @cross_validationis an option that specifies how many folds and runs to use icrbes-
validation procedure. It is pretty self-explanatory. If itted, 10-times 10-fold cross-
validation is used as default.

5.1. BATCH CLASSIFIER EVALUATION 21

@cross_validation 10 10

@common_threads8

@in_directory K:\DATA_MINING\DATA

@out_directory K:\EXPERIMENTS\experiment_name\tests

@summary_directory K:\EXPERIMENTS\experiment_name\summaries
@distances_directory K:\EXPERIMENTS\DMAT

@fold_directory K:\EXPERIMENTS\DMAT\CVFolds

@instance_selection GCNN

@protoHubness unbiased

@secondary_distance simhub 50

@algorithm h-FNN

@algorithm KNN

@algorithm NHBNN

@algorithm LWNB

@algorithm DNaiveBayes

@algorithm CBWkKNN

@k_range1101

@approximateNN 0.7

@noise_range00 1

@mislabeled_range 0 0.5 0.1

@mislabeling_weights_dir K:\EXPERIMENTS\mlIWeights

@normalization tfidf

@dataset allSubSamples\threeSimsetSample.arff null distances.primary.Manhattan
@dataset uci-data\sonar-num.csv null distances.primary.MinkowskiMetric
@dataset uci-data\diabetes-num.csv null distances.primary.MinkowskiMetric
@dataset GaussianMixtures\datasets\dataset0.arff null distances.primary.MinkowskiMetric
@dataset TimeSeries\tSerARFFDummies\Coffee.arff null distances.primary.DTW
@dataset TimeSeries\tSerARFFDummies\ECG200.arff null distances.primary.DTW

Figure 5.2: An example of a classification configuration fé&hile most options are 'on’ in this
example, in practice a user would normally only use somearfithThe example merely shows that
they can all in principle be combined and that all stages egpliigged in and operate together.

@common_threadss used for specifying the number of threads to use for catng shared
objects in the experimental framework, like primary andosetary distance matrices and
primary and secondar+nearest neighbor sets.

@in_directory is used for specifying the data directory. The easiest aggbrds to simply
have all data in one directory, in appropriate subdireetriThe following @dataset com-
mands accept relative paths w.r.t. this specified top dirgct

@out_directory specifies the primary evaluation output target, where navgttassification
results will be persisted. These detailed results are Usmflater analysis, but the users will
usually first review the classification summaries for eadhskt (see below).
@summary_directory specifies the directory where classification summariesheilgener-
ated from the raw test data, for each dataset. Statistisi@l éee also run at this point, to detect
statistical significance in the differences between theritlgmns.
@distances_directoryspecifies where the distance matrices are to be saved o dahe.
Pre-calculated distance matrices can be loaded into timeefs@rk if provided at the ex-
pected location and the calculated distance matrices cantzd saved for a later load.
For instance, assume that | specify the distance directmnKdEXPERIMENTS\DMAT.

22

CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

The distance matrix for datasetO if no normalization is domdl be expected at
KAEXPERIMENTS\DMAT\datasetO\NO\distances.primargivhattan location. The type of
normalization is included in the path, so take care whichui@anormalization you spec-
ify. This is especially useful if you need to 'hack’ the libbyato load a distance matrix for a
distance that is not actually implemented in the librarytymu need to use it in some exper-
iments and you can calculate it externally. It is recommertdelefine a dummy class in the
primary metrics directory and to specify that dummy metoicthe datasets in question. You
could in principle try to trick the system and present theatise matrix as originating from
some of the standard metrics - but that is not a good appraaghgu might also want to use
standard metrics on the same data and you might forget abeuztck in time and confuse
the distance matrices in a few weeks when you get back to {heriement. Therefore, try to
be as consistent and precise as possible. Another impaitait is that - since the distance
matrices are loaded if the system detects that they exitieattpected path - it is possible
to encounter problems if you have datasets that share tle sxme name, so try to avoid
that scenario by either using separate distance direstorithose cases (recommended) or
deleting the matrices after a while. If the distance dirgcts left unspecified, the distances
will be calculated on the fly and will not be saved for later.use
@fold_directory Data folds can be saved and loaded, in JSON format - and thienogpec-
ifies the target directory that contains the data folds fodaasets.
@instance_selectiospecifies the instance selection approach to use, if neadbd exper-
iments. Note that you do not have to specify the full path ®dlass (you can, of course).
You can check which abbreviations and synonyms are usedfferaht methods in the pre-
processing.instance_selection.ReducersFactory class.
@proto_hubnesshas two options: biased and unbiased. This one might be affitt
at first, but it is used only with instance selection and ofiljubness-aware classification
methods are present. Namely, instance selection implenaecgrtain selection bias, so the
neighbor occurrence models learned from the reduced dadaeflect that bias. In order to
correct the bias in the models, an in-between step thatloedases thé:NN sets on the entire
training data with using only the selected prototypes asm@l neighbors can be inserted
and this is what the unbiased option in @proto_hubness d@etected. It leads to a slightly
better classification performance.
@secondary_distancspecifies which secondary distance type to use, if doingioletrn-
ing in form of secondary distances in the experiments. Th®og are as follows: simcos,
simhub, mp, Is, nicdm. If you are unsure about this optionggioms in general, you can look
at configuration.BatchClassifierConfig to see how the pgr@rdone and which values are
expected. This option takes an optional second parameteistthe secondary neighborhood
size to use for calculating the secondary distances, as sbtiem explicitly require this
parameter. If omitted, a default value is used, which may ay mot be appropriate for your
data, so it is recommended to always specify it explicitly.
@algorithm specifies an algorithm to use in the testing and multiple metiwes of the option
specify multiple algorithms to test at the same time, in atiribiteaded way, each algorithm
being a single thread. You can look at all the abbreviatiorts synonyms for specifying
classification algorithms in learning.supervised.Clestactory class. If you specify an al-
gorithm by its class path, that should also work. Additiopatameters can be set for each
algorithm via a JSON string, as in the following example.

Q@algorithm DWHFNN {"mValue":3.5,"thetaCutoff":3}

5.1. BATCH CLASSIFIER EVALUATION 23

@k_rangespecifies the range of neighborhood sizes to test for. ItHrae parameters - the

minimal value, the maximal value and the increment.

@noise_rangespecifies the range of feature noise rates to test for. Ithrae parameters -

the minimal value, the maximal value and the increment.

e @mislabeled_rangespecifies the range of label noise rates to test for. It h@gtharameters

- the minimal value, the maximal value and the increment.

@approximateNNannounces that recursive Lanczos bisections will be ugeapfaroximat-

ing thek-nearest neighbor sets. It also takes a quality paramett@eba 0 and 1. This option

is currently not used for actual scalability, but rather t@leate the robustness of certain
kNN-based approaches under approximidié\ sets of varying quality. Omit this option in
order to use the exaétNN sets - recommended and default.

o @mislabeling_weights_diris an optional parameter used to specify weights for weight-
proportional random label noise. This option has been usetééting hubness-proportional
random label noise in past experiments.

e @normalization specifies which normalization scheme to use. The permitikcbg are: no,
normalizeTo01, standardize, tfidf.

e @datasetspecifies a dataset to run the experiments on. Multiple oenaes of this option

are used to specify multiple datasets for the experimeattha they run in a batch mode.

The first parameter is the relative path to the dataset in ARFESV or TSV format, w.r.t.

to the global data directory and the second and third paemaee metrics to be used for

integer and float variables, respectively, given by theisslpath. A CombinedMetric object
is then formed from these two feature-type specific metrieab. All features from CSV
files are loaded into float feature arrays as default, butifeatfrom ARFF files can also be
loaded as integers specifically, so this is why there are epaiate metrics here. Also, some
categorical variables that are represented as integers nakense to use in standard float
metrics, so this is a useful separation.

You are encouraged to look at configuration.BatchClas€iGiafig for more details on the con-
figuration file and its parsing. Note that it is possible toesthe configuration object to JSON and
load it from JSON. This is useful, since JSON is much easigretoerate automatically and this
allows the experimentation protocols to be invoked by otit@sses in the library or remotely. The
framework accepts a configuration object, so it can also $imiated from within the code. As
for manual experimentation, the custom format that wasemtesl above is much easier and more
readable.

Any line in the configuration file that doesn’t start with aidabption will be ignored. You can
therefore easily comment out the options that you are ctlyreat using (but will be using later) by
using any standard comment notation. | use this all the tor@®tment out datasets or algorithms
and then bring them back in, while doing initial tests.

5.1.1 OpenML Compatibility

Hub Miner is an OpenML-compatible library and it is possibdeperform cross-validation clas-
sification experiments according to OpenML standards. ®tehttp://openml.org/ is a
networked science project that aims to bridge the gap betseattered method evaluations across
different studies. This service stores data and the fold tiad test splits and offers it at request.
The library then runs the experiments on the specified swtitsuploads the point-wise predictions
during all runs, for all tested algorithms. Algorithm retgéion at OpenML is performed automat-
ically, which also includes a set of possible parametersrpater descriptions, types and default

http://openml.org/

24 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

values. The exact values used in the run are uploaded aldhgheipredictions, so that it is possible
to compare different parametrizations online.

After all the predictions are uploaded, OpenML calculatesous performance measures and
stores all this into a database. It is therefore possibl®topare algorithms implemented in differ-
ent libraries and OpenML offers many visualizations of saomparisons. Therefore, algorithms
implemented in Hub Miner can now be easily compared withrtlgm implementations in Weka, R
or Rapid Miner. This is very useful for all future Hub Minerais and developers, as they can easily
compare the implemented approaches to baselines thattayetramntained within Hub Miner.

There are plans in OpenML to introduce support for experisaémat involve learning with
label or feature noise, though these experiments are naartly supported (October 2014). Also,
clustering flows will become available soon and this will bported in Hub Miner as well.

So, how does one specify an OpenML data source in a Hub Minehlotassification configu-
ration file? This involves a very minor modification of whatsxaready shown. It is necessary to
authenticate for using the OpenML service, so all userswhaat to use this feature have to open
an OpenML account and receive credentials. The use of thedemtials is to be specified in the
following way.

Q@openml_authentication username password

OpenML data sources are specified similarly to local dasaddére is an example, with some
common UCI classification tasks.

Qopenml_task openml-data\iris.arff null distances.primary.MinkowskiMetric 1939

Qopenml_task openml-data\mfeat-zernike.arff null distances.primary.MinkowskiMetric 1902
Qopenml_task openml-data\mfeat-morphological.arff null distances.primary.MinkowskiMetric 1898
Qopenml_task openml-data\sonar.arff null distances.primary.MinkowskiMetric 1919

Qopenml_task openml-data\diabetes.arff null distances.primary.MinkowskiMetric 1917
Qopenml_task openml-data\breast-w.arff null distances.primary.MinkowskiMetric 1895
Qopenml_task openml-data\ionosphere.arff null distances.primary.MinkowskiMetric 1937
Qopenml_task openml-data\mfeat-fourier.arff null distances.primary.MinkowskiMetric 1894
Qopenml_task openml-data\glass.arff null distances.primary.MinkowskiMetric 1920

Qopenml_task openml-data\ecoli.arff null distances.primary.MinkowskiMetric 1918

Instead of@dataset the @openml_taskcommand is used. What follows is the path where
the data will be saved locally after the download, as wellhesmetrics to use for integers and
floats. The final item on each line is the task ID. Make sure ybatuse the task ID here, not the
data ID, otherwise, this won't work. The task ID has to copm@¥l to a cross-validation task and
these tasks shown in the example are for 10-times 10-folslsevalidation. If you are using the
@cross_validationcommand in the configuration file, make sure that the numbeeméats and
folds in that specification matches the one in the task thatye specifying. Mismatches will cause
errors.

Figure[5.3 shows an example of the uploaded run informatioa fspecific algorithm. Along
with the uploaded predictions, it is possible to view thefpenance measures, as shown in Fig-
ure[5.4.

It is easy to compare algorithm runs, as shown in Fifure 5.5.

In order to obtain the desired task IDs for your experimegsto the dataset list at OpenML
data pagehttp://openml.org/d. Browse for the desired dataset and select the appropriate
task and copy its task ID into the Hub Miner batch classifaationfiguration file.

http://openml.org/d

5.1. BATCH CLASSIFIER EVALUATION 25

Figure 5.3: An example of the uploaded run information in Qige.

5.1.2 Viper Charts for Visualizing Classification Results

Hub Miner can be used for visualizing the generated claasifio results in its experimental frame-
work by invoking the Web API of Viper chartsttp: //viper.ijs.si/, a great tool that can be
used to produce various type of classification performaheets and comparisons.

The API connector is located in visualization.ViperChdt&all and it exposes a command line
interface for providing it with the selected algorithm riglirectories, in order to visual selected
algorithms on the examined data and produce the specifigtitgha.

For instance, here is a simple call that | have used locallyeteerate a lift chart comparison
betweenkNN and NHBNN on the standard ionosphere UCI dataset. It has beoken down into
multiple lines for readability.

java visualization.ViperChartAPICall

-inDataFile: :K:\DATA_MINING\DATA\uci-data\ionosphere-num.csv

-inAlgorithmDir: :K:\EXPERIMENTS\viperDemoTests\ionosphere-num\k5\m10.0\noise0.0\KNN
-inAlgorithmDir: :K:\EXPERIMENTS\viperDemoTests\ionosphere-num\k5\m10.0\noise0.0\NHBNN
-positiveClassIndex::1

-chartTypeStringCode: :1ift

http://viper.ijs.si/

26 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

area_under_roc_curve 0973

confusion_matrix

mean_prior_absolute_error)

number_of_instances

recision 0.8399 [0.97247

Figure 5.4: An example of the uploaded run performance nreasa OpenML.

Evaluations per flow (multiple parameter settings)

every point is a run, click for details

NHBNN(T -
» -
DWHFNN(I -
HENN(T) -
HIKNN(] .
-
ANHENN(1)

weka.Bagging JRip(2)

Figure 5.5: An example of between-classifier comparisoaanML.

Notice that the -inAlgorithmDir can be specified multiplengs and this is how multiple al-
gorithms are compared. It is a feature in the CommandLirssPatass, that allows multi-valued
parameters if it is specified in the parsing configuration.

5.1. BATCH CLASSIFIER EVALUATION 27

The original data is also provided, in order to obtain theedrlabel assignments, the ground
truth. The user also needs to specify which class is to beass#tk positive class. This is especially
important in the multi-class case, as most charts were Wittt binary classification problems in
mind. Finally, the chart type is also specified by its codehim same way as in the Viper Charts
online documentation. This information is also easily edald from the source file, as there is a
dictionary of String codes that correspond to differentrthgpes.

The lift chart that was generated for the given command lalki€ given in Figuré 5J6.

14 i ——

e

True positive rate
o o o o = o °
v = & & < & o
i ; !) !
gy,

o
~

01 02 03 04 055 0% 07 038 09 1
Relative sample size

Figure 5.6: An example of a visualization of classificatieaults in form of a lift chart, as generated
by Viper Charts. These results show the classification pedoce ofkNN and NHBNN on the
ionosphere UCI dataset, far= 5. NHBNN is given in red an&NN in blue.

It is possible to configure to show legend and grind lines oliries for every chart, while
working on the generated URL in the browser. There is an apticdhe ViperChartAPICall class
command line call named "-openinBrowser" which opens thé WRhe default browser automat-
ically if set to true. False value is currently default, as tisers might want to call the Viper API
automatically from within other classes and experimentalgrols, so it would not make sense to
do this in those cases.

Other visualizations for different chart types on the sam&dnd for the same algorithms are
given in Figuré 5.J7.

The comparisons clearly show that NHBNN outperforiN for the selected neighborhood
size on ionosphere, as it has a lower expected loss, whichoisrsin Kendall and rate-driven
curves, a higher AUC score which can be seen from the ROC,ddHBNN is located beyond a
higher F-isoline in PR-space, etc.

Since the charts are generated in Javascript and a URI igleaben the Viper Charts web page
with the visualization, users can easily share their finsliwgh others by just sharing the link.

28 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

Expected loss

o = | B3
cost times probability (skew) Recall

(a) Kendall curve (b) PR Space

rate

True positive

Expected loss

s 4 o3 oa o5 06
Cost times probability (skew) False positive rate

(c) Rate-driven curve (d) ROC Curve

e

Recall
(e) Recall-Precision curve

Figure 5.7: Example visualizations on ionosphere UCI dait# f= 5 of classification performance
of kNN and NHBNN from within Hub Miner framework. NHBNN is givenred andcNN in blue.

There is a daily usage limit for Viper Charts, though. It isremtly set to 100 per user (as

identified by IP). However, you will probably not be in neechadre than 100 charts a day anyway,
so this is not very restrictive.

5.2 BATCH CLUSTERING EVALUATION

The Hub Miner batch clustering experimentation framewarkjuite similar to the classification
framework in terms of configuration syntax and also in terfmternal optimization and speed-
ups. We will review all the options one by one. Descriptioos dptions that we have already

5.2. BATCH CLUSTERING EVALUATION 29

mentioned previously will be repeated so that you do not t@aseroll back up to look for them. A
bit redundant, but more readable.

e @timesThe number of times a clustering is to be done on a single efaysan algorithm.
Since some clustering methods use random initializatidircan converge to multiple optima,
itis necessary to test the clustering algorithm performedncrepeating the clustering process
multiple times.

e @iter The maximal number of iterations for iteration-based atbars. This prevents some
very long and slow converging processes from taking too ntinoh. Use with care.

e @num_clustersSome clustering algorithms need a pre-defined number akeckit cluster
for, while other try to discover the optimal number of clustautomatically. For those that
require an explicit parameter, this option is used to sétii.also possible to specify "natural”
(without the enclosing quotes) as an option value here, whilt set the number of clusters
to the number of classes in the data defined by the loadeds|aagbmatically.

o @split_training specifies whether to split the data into training and test dahot. Optional
and the system does not perform any training/test splitglfestering evaluation, naturally.
Some people prefer to do the split (and this was actually émginted in response to a re-
viewer’s request for one of the papers on hubness-base@iGhgy and this allows it to be
specified. The problem with this is that it is not altogetheac how to assign test points to
a trained clustering model. For some algorithms, like K-nsedhis might be obvious and
straightforward - but more complex algorithms with comptegdels do not always permit
such easy solutions for incrementally adding test points.

o @common_threadss used for specifying the number of threads to use for cating shared
objects in the experimental framework, like primary andosetary distance matrices and
primary and secondar+nearest neighbor sets.

e @in_directory is used for specifying the data directory. The easiest amprds to simply
have all data in one directory, in appropriate subdireetriThe following @dataset com-
mands accept relative paths w.r.t. this specified top dirgct

e @out_directory specifies the primary evaluation output target, where etugj results will
be persisted. There is no additional summary directorylfestering.

e @distances_directoryspecifies where the distance matrices are to be saved o damhe.
Pre-calculated distance matrices can be loaded into timeefs@rk if provided at the ex-
pected location and the calculated distance matrices canls saved for a later load.
For instance, assume that | specify the distance direcnKdEXPERIMENTS\DMAT.
The distance matrix for datasetO if no normalization is domd be expected at
KAEXPERIMENTS\DMAT\datasetO\NO\distances.primargaivhattan location. The type of
normalization is included in the path, so take care whiclufeanormalization you specify.
While it was possible to hack’ the batch classification ekpental framework by using dis-
tance matrices from non-implemented metrics, ita$ possible to use distances from non-
implemented metricsin clustering. The reason is simple, since algorithms likengans
calculate centroids and need to calculate the distanceisgécified metric from the centroid
to all other points in the data. If a proper metric object isprovided, this is simply not going
to work. Another important detail is that - since the disentatrices are loaded if the system
detects that they exist at the expected path - it is possibdmtounter problems if you have
datasets that share the exact same name, so try to avoidémair® by either using separate
distance directories in those cases (recommended) oirdgtee matrices after a while. If
the distance directory is left unspecified, the distancdisbeicalculated on the fly and will
not be saved for later use.

30

CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

@secondary_distancapecifies which secondary distance type to use, if doingioletrn-
ing in form of secondary distances in the experiments. Th®og are as follows: simcos,
simhub, mp, Is, nicdm. If you are unsure about this optionptioms in general, you can look
at configuration.BatchClusteringConfig to see how the pgris done and which values are
expected. This option takes an optional second parameteistthe secondary neighborhood
size to use for calculating the secondary distances, as sbtiem explicitly require this
parameter. If omitted, a default value is used, which may ay mot be appropriate for your
data, so it is recommended to always specify it explicitly.

@algorithm specifies an algorithm to use in the testing and multiple metwwes of the option
specify multiple algorithms to test at the same time, in atiribteaded way, each algorithm
being a single thread. You can look at all the abbreviatiords synonyms for specifying
classification algorithms in learning.unsupervised.@resFactory class. If you specify an
algorithm by its class path, that should also work. Dire@BiSparametrization is possible,
as in classification.

@k_rangespecifies the range of neighborhood sizes to test for. Ithrag fparameters - the
minimal value, the maximal value and the increment.

@noise_rangespecifies the range of feature noise rates to test for. Ithrag pparameters -
the minimal value, the maximal value and the increment.

@mislabeled_rangespecifies the range of label noise rates to test for. It hagtharameters
- the minimal value, the maximal value and the increment.

@approximateNNannounces that recursive Lanczos bisections will be ugepfaroximat-
ing thek-nearest neighbor sets. It also takes a quality parametieeba 0 and 1. This option
is currently not used for actual scalability, but rather Walaate the robustness of certain
kNN-based approaches under approximidtéN sets of varying quality. Omit this option in
order to use the exaétN sets - recommended and default.

@mislabeling_weights_diris an optional parameter used to specify weights for weight-
proportional random label noise. This option has been useteéting hubness-proportional
random label noise in past experiments.

@normalization specifies which normalization scheme to use. The permitiaceg are: no,
normalizeTo01, standardize, tfidf.

@kernel specifies the kernel to use in kernel clustering methodsviéedhe class path to
the desired kernel class. Optional.

@datasetspecifies a dataset to run the experiments on. Multiple oenages of this option
are used to specify multiple datasets for the experimeatthat they run in a batch mode.
The first parameter is the relative path to the dataset in ARFESV or TSV format, w.r.t.
to the global data directory and the second and third paemagé metrics to be used for
integer and float variables, respectively, given by theisslpath. A CombinedMetric object
is then formed from these two feature-type specific metrieab. All features from CSV
files are loaded into float feature arrays as default, butifeatfrom ARFF files can also be
loaded as integers specifically, so this is why there are aparate metrics here. Also, some
categorical variables that are represented as integers nkense to use in standard float
metrics, so this is a useful separation.

The achieved clustering configuration quality for each atgm on each dataset is calculated
via several clustering quality indexes. While more quadlityexes are implemented in the library, a
default set of quality indexes used in the batch clusteriaduation framework is as follows: Rand

quality index, Rand stability index, isolation index, DuimdeX, Silhouette index, average squared

5.3. BATCH HUBNESS ANALYSIS 31

error and average cluster entropy. Silhouette index 'a’’Bhdalues are also given for hubs, anti-
hubs and regular points separately. This is done in ordeeti@bevaluate how different types of
points in intrinsically high-dimensional data are clustkr

As with classification, this configuration specification dmsaved to JSON and loaded from
JSON, in order to make it easy to automatically invoke theeexpentation framework from a
different class or remotely. A configuration object is alsoeptable.

5.3 BATCH HUBNESSANALYSIS

Apart from doing classification and clustering experiméataand evaluation, it is sometimes use-
ful to do some exploratory analysis of the data and extragfulistatistics.

When it comes to analyzing hubness, these statistics halewdth thek-nearest neighbor sets
and the neighbor occurrence frequencies. There is a clasddls batch data analysis of this type,
with a similar configuration syntax to that of classificationclustering. These are the allowed
options.

e @in_directory is used for specifying the data directory. The easiest aggbrds to simply
have all data in one directory, in appropriate subdiree®riThe following @dataset com-
mands accept relative paths w.r.t. this specified top dirgct

e @out_directory specifies the primary evaluation output target, where tesofl the ex-
ploratory analysis are to be persisted.

e @k_max specifies the maximum neighborhood size to consider. Alleglin the range
{1...kmas} Wil be tried. Essentiallyk,,...-neighbor sets will be calculated initially and
then the stats will be dynamically re-calculated for all #exaneighborhoods.

e @noise_rangespecifies the range of feature noise rates to test for. Ithrae parameters -
the minimal value, the maximal value and the increment.

o @mislabeled_rangespecifies the range of label noise rates to test for. It hagtharameters
- the minimal value, the maximal value and the increment.

o @mislabeling_weights_diris an optional parameter used to specify weights for weight-
proportional random label noise. This option has been usetdéting hubness-proportional
random label noise in past experiments.

e @common_threadss used for specifying the number of threads to use for catmg the
primary and secondary distance matrices and primary armhdacyk-nearest neighbor sets.

e @secondary_distancepecifies which secondary distance type to use, if doingioietirn-
ing in form of secondary distances in the experiments. Th@oeg are as follows: simcos,
simhub, mp, Is, nicdm. If you are unsure about this optionmfoms in general, you can
look at configuration.BatchHubnessAnalysisConfig to see the parsing is done and which
values are expected. This option takes an optional secoraeter that is the secondary
neighborhood size to use for calculating the secondargmtists, as some of them explicitly
require this parameter. If omitted, a default value is usédch may or may not be appropri-
ate for your data, so it is recommended to always specifyptieikly.

e @normalization specifies which normalization scheme to use. The permitikcbg are: no,
normalizeTo01, standardize, tfidf.

e @distances_directoryspecifies where the distance matrices are to be saved oid damhe.
Pre-calculated distance matrices can be loaded into timeefs@rk if provided at the ex-
pected location and the calculated distance matrices e saved for a later load.
For instance, assume that | specify the distance directmnKaEXPERIMENTS\DMAT.
The distance matrix for datasetO if no normalization is domd be expected at

32 CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

KAEXPERIMENTS\DMAT\datasetO\NO\distances.primaraivhattan location. The type of
normalization is included in the path, so take care whichui@anormalization you spec-
ify. This is especially useful if you need to 'hack’ the lilbyato load a distance matrix for a
distance that is not actually implemented in the librarytymu need to use it in some exper-
iments and you can calculate it externally. It is recommertdelefine a dummy class in the
primary metrics directory and to specify that dummy metoicthe datasets in question. You
could in principle try to trick the system and present theatise matrix as originating from
some of the standard metrics - but that is not a good appraaghgu might also want to use
standard metrics on the same data and you might forget abeuztck in time and confuse
the distance matrices in a few weeks when you get back to fheriement. Therefore, try to
be as consistent and precise as possible. Another impaitait is that - since the distance
matrices are loaded if the system detects that they exisieattpected path - it is possible
to encounter problems if you have datasets that share tle sxme name, so try to avoid
that scenario by either using separate distance direstorithose cases (recommended) or
deleting the matrices after a while. If the distance dirgcte left unspecified, the distances
will be calculated on the fly and will not be saved for later.use

e @datasetspecifies a dataset to run the experiments on. Multiple eenaes of this option
are used to specify multiple datasets for the experimentthat they run in a batch mode.
The first parameter is the relative path to the dataset in ARFESV or TSV format, w.r.t.
to the global data directory and the second and third paemagé metrics to be used for
integer and float variables, respectively, given by theisslpath. A CombinedMetric object
is then formed from these two feature-type specific metrieab. All features from CSV
files are loaded into float feature arrays as default, butifeatfrom ARFF files can also be
loaded as integers specifically, so this is why there are aparate metrics here. Also, some
categorical variables that are represented as integers nkense to use in standard float
metrics, so this is a useful separation.

As in other cases, configuration.BatchHubnessAnalysi§goan be saved to JSON and loaded
from a JSON string or file and the configuration object is thasspd on to the batch hubness anal-
ysis experimental framework. This can automate some typasalysis. For manual experimenta-
tion, the human-readable format that we have describedsnmekter, as it is easier to modify and
comments are also possible.

An example of the output of a hubness analysis on a datasetis lgelow. Apart from the basic
stats like the number of instances and categories in the ti@aumber of zero vectors (to look for
feature extraction problems), class priors, relativesclashalance and the number of dimensions,
the analyzer calculatédNN-related stats. Items under stDevArray, skewArray, dsigArray cor-
respond to the neighbor occurrence frequency for the spddifrange and 'bad hubness’ lists the
mislabeling percentages for different neighborhood sifdgect and reverse neighbor set entropy
distributions follow, along with the percentage of pointerring above some small threshold, di-
ameters of top hub sets, within-cluster distances of hubtpoiop hub occurrence frequencies, as
well as a list of class-to-class neighbor occurrence megrior eaclk value.

dataset: datasetO.arff

k_max: 10

noise: 0.0

ml: 0.0

instances: 1244

numCat: 10

nZeroVects: 0O

class priors: 0.152 0.06 0.202 0.057 0.182 0.147 0.064 0.023 0.081 0.031

5.3. BATCH HUBNESS ANALYSIS

RelativeImbalance 0.20435232
dim: 100

stDevArray:
2.831,5.11,7.432,9.518,11.5632,13.552,15.323,17.183,19.071,21.005

skewArray:
8.723,8.174,8.132,7.797,7.441,7.419,7.05,6.921,6.764,6.679

kurtosisArray:
105.12,93.226,92.541,86.821,80.346,80.084,72.869,70.639,67.442,65.616

bad hubness:
0.491,0.501,0.508,0.514,0.518,0.519,0.524,0.527,0.532,0.535

kEntropyMeans:
0.0,0.401,0.595,0.698,0.774,0.825,0.868,0.9,0.934,0.957

kEntropyStDevs:
0.0,0.49,0.528,0.545,0.547,0.549,0.543,0.55,0.557,0.562

kEntropySkews:
0.0,0.403,0.068,0.029,0.004,-0.047,-0.089,-0.069,-0.069,-0.107

kEntropyKurtosis:
0.0,-1.837,-1.254,-0.932,-0.647,-0.637,-0.552,-0.522,-0.473,-0.529

kRNNEntropyMeans:
0.149,0.283,0.374,0.457,0.523,0.583,0.645,0.693,0.737,0.766

kRNNEntropyStDevs:
0.445,0.578,0.673,0.737,0.771,0.797,0.812,0.828,0.838,0.849

kRNNEntropySkews:
2.908,1.916,1.529,1.298,1.129,0.974,0.849,0.762,0.687,0.652

kRNNEntropyKurtosis:
8.195,2.772,1.322,0.565,0.134,-0.263,-0.467,-0.643,-0.749,-0.793

kEnt - khEnt avgs:
-0.149,0.118,0.221,0.241,0.251,0.242,0.223,0.207,0.197,0.191

Hubness above zero percentage Array:
0.37,0.51,0.6,0.65,0.69,0.73,0.76,0.78,0.8,0.82

Hubness above one percentage Array:
0.19,0.32,0.42,0.48,0.53,0.57,0.61,0.64,0.66,0.68

Hubness above two percentage Array:
0.11,0.22,0.3,0.37,0.43,0.47,0.51,0.55,0.57,0.59

Hubness above three percentage Array:
0.06,0.15,0.22,0.29,0.34,0.38,0.42,0.46,0.49,0.52

Hubness above four percentage Array:
0.04,0.11,0.17,0.23,0.28,0.32,0.36,0.39,0.42,0.45

Top ten hubs diam:
47.75,46.13,46.13,46.13,46.13,46.13,46.13,39.45,33.78,33.78

Top ten hubs avg within cluster dist:
36.02,34.25,34.25,34.25,34.25,34.25,34.25,32.94,32.23,32.23

Top five hubs diam:
32.08,32.08,32.08,32.08,32.08,32.42,32.42,32.42,32.42,32.42

Top five hubs avg within cluster dist:
29.89,29.89,29.89,29.89,29.89,29.61,29.61,29.61,29.61,29.61

Highest occurrence frequencies (each line is for one k value, lines go from zero to k_max):

33

CHAPTER 5. A QUICK GUIDE TO THE EXPERIMENTAL FRAMEWORK

34

3

68. .
48.0,52.0,83.0,89.0,99.0,115.0
60.0,69.0,104.0,104.0,127.0,147.0
80.0,86.0,114.0,121.0,152.0,177.0
89.0,95.0,128.0,151.0,185.0,203.0
101.0,107.0,139.0,169.0,209.0,220.0
113.0,128.0,154.0,184.0,234.0,245.0
0,127.0,138.0,170.0,204.0,256.0,268.0

0,106.0,120.0,136.0,138.0,161.0,177.0,229.0,280.0,291.0

:: 10.0
: 18.0
:: 35.0

1

2

3

4

5::

6

7:: 63.0
8

9

k
k
k
k
k:
k
k
k
k

91.0,93.0,93.0,94.0,99.0,100

10::

Global class to class hubness matrices for all K-s:

k

1

0.519 0.065 0.165 0.057 0.06 0.051 0.029 0.011 0.028 0.015

0.0 0.701 0.0 0.0 0.146 0.076 0.014 0.007 0.056 0.0
0.005 0.0 0.922 0.005 0.005 0.002 0.0 0.0 0.005 0.056

0.01 0.0 0.019 0.951 0.0 0.0 0.0 0.0 0.01 0.01

0.0 0.004 0.0 0.0 0.724 0.143 0.081 0.028 0.021 0.0

0.0 0.0 0.0 0.0 0.0 0.875 0.0 0.0 0.125 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.999 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.029 0.0 0.969 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.008 0.0 0.0 0.991 0.0

0.0 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.975

2
0.437 0.072 0.189 0.065 0.076 0.06 0.035 0.012 0.031 0.023

0.0 0.603 0.0 0.0 0.177 0.105 0.034 0.014 0.067 0.0

k =

0.007 0.004 0.882 0.014 0.005 0.002 0.002 0.002 0.007 0.075

0.008 0.0 0.039 0.938 0.0 0.0 0.0 0.0 0.008 0.008

0.0 0.005 0.0 0.0 0.65 0.185 0.092 0.04 0.028 0.0
0.0 0.0 0.0 0.0 0.0 0.814 0.003 0.0 0.183 0.0

0.0 0.0 0.0 0.0 0.018 0.0 0.981 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.028 0.028 0.0 0.942 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.007 0.0 0.0 0.993 0.0

0.0 0.0 0.043 0.0 0.0 0.0 0.0 0.0 0.021 0.934

=3
.4

k
0

02 0.078 0.194 0.07 0.092 0.058 0.036 0.013 0.036 0.023

0.01 0.004 0.859 0.014 0.005 0.005 0.003 0.001 0.01 0.09
0.013 0.0 0.057 0.911 0.0 0.0 0.006 0.0 0.006 0.006

0.0 0.005 0.0 0.0 0.606 0.21 0.105 0.042 0.031 0.0

0.0 0.0 0.0 0.0 0.0 0.795 0.004 0.0 0.2 0.0

0.0 0.0 0.0 0.0 0.017 0.0 0.983 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.025 0.025 0.025 0.923 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.005 0.0 0.0 0.994 0.0
0.0 0.0 0.059 0.0 0.0 0.0 0.0 0.0 0.02 0.92

4
0.381 0.082 0.193 0.072 0.097 0.062 0.036 0.014 0.041 0.021

0.003 0.485 0.003 0.0 0.214 0.125 0.054 0.021 0.095 0.0

k =

0.01 0.007 0.835 0.02 0.007 0.009 0.004 0.001 0.011 0.098

0.011 0.0 0.057 0.909 0.0 0.0 0.006 0.0 0.011 0.006

0.0 0.004 0.0 0.0 0.584 0.221 0.114 0.044 0.033 0.0
0.0 0.0 0.0 0.0 0.0 0.787 0.004 0.0 0.209 0.0

0.0 0.0 0.0 0.0 0.023 0.0 0.976 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.022 0.045 0.022 0.909 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.005 0.0 0.0 0.995 0.0

0.0 0.0 0.053 0.0 0.0 0.0 0.0 0.0 0.035 0.911

=5
.3

k
0

69 0.08 0.197 0.073 0.102 0.062 0.037 0.016 0.042 0.022

0.002 0.464 0.002 0.0 0.24 0.119 0.056 0.017 0.1 0.0

0.013 0.007 0.826 0.018 0.006 0.01 0.006 0.001 0.013 0.1

0.024 0.005 0.056 0.873 0.005 0.005 0.005 0.0 0.009 0.019
0.0 0.005 0.0 0.0 0.564 0.234 0.118 0.045 0.034 0.0
0.0 0.0 0.0 0.0 0.0 0.769 0.003 0.002 0.226 0.0

0.0 0.0 0.0 0.0 0.035 0.0 0.965 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.021 0.042 0.021 0.894 0.021 0.0

0.0 0.0 0.0 0.0 0.0 0.009 0.0 0.0 0.991 0.0

35

5.3. BATCH HUBNESS ANALYSIS

0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.033 0.915

6 0.081 0.194 0.074 0.104 0.067 0.038 0.016 0.043 0.024

k=6
0.3

0.006 0.447 0.002 0.0 0.24 0.125 0.058 0.017 0.102 0.002
0.013 0.006 0.82 0.02 0.008 0.011 0.006 0.002 0.017 0.097
0.033 0.004 0.058 0.859 0.004 0.008 0.004 0.0 0.008 0.021
0.0 0.005 0.0 0.0 0.555 0.237 0.12 0.047 0.037 0.0
0.0 0.0 0.0 0.0 0.003 0.754 0.005 0.002 0.236 0.0

0.0 0.0 0.0 0.0 0.032 0.0 0.961 0.006 0.0 0.0

0.0 0.0 0.0 0.0 0.019 0.058 0.019 0.864 0.039 0.0

0.0 0.0 0.0 0.0 0.0 0.012 0.0 0.0 0.988 0.0
0.0 0.0 0.075 0.0 0.0 0.0 0.0 0.0 0.03 0.894

7
0.353 0.084 0.197 0.073 0.106 0.068 0.038 0.016 0.043 0.022

0.009 0.41 0.004 0.0 0.254 0.143 0.059 0.014 0.106 0.002

k =

0.014 0.007 0.807 0.021 0.008 0.01 0.006 0.001 0.021 0.104
0.033 0.004 0.066 0.854 0.004 0.007 0.007 0.0 0.007 0.018
0.0 0.005 0.0 0.0 0.546 0.241 0.123 0.047 0.039 0.0

0.0 0.0 0.0 0.0 0.004 0.744 0.005 0.001 0.245 0.0

0.0 0.0 0.0 0.0 0.03 0.006 0.952 0.006 0.006 0.0

0.0 0.0 0.0 0.0 0.018 0.053 0.018 0.876 0.035 0.0

0.0 0.0 0.0 0.0 0.0 0.015 0.0 0.0 0.985 0.0
0.0 0.0 0.071 0.0 0.0 0.0 0.0 0.0 0.029 0.899

8 0.084 0.197 0.072 0.109 0.068 0.039 0.016 0.043 0.023

k=8
0.34

0.008 0.395 0.003 0.0 0.25 0.15 0.062 0.014 0.11 0.006

0.014 0.007 0.801 0.023 0.009 0.011 0.006 0.002 0.024 0.104
0.042 0.007 0.068 0.837 0.003 0.007 0.007 0.0 0.013 0.016
0.0 0.005 0.0 0.0 0.539 0.243 0.125 0.049 0.039 0.0

0.0 0.0 0.0 0.0 0.005 0.738 0.005 0.001 0.251 0.0

0.0 0.0 0.0 0.0 0.028 0.006 0.954 0.006 0.006 0.0

0.0 0.0 0.0 0.0 0.017 0.05 0.033 0.849 0.05 0.0

0.0 0.0 0.0 0.0 0.0 0.014 0.0 0.0 0.986 0.0
0.0 0.0 0.069 0.0 0.0 0.0 0.0 0.0 0.028 0.902

9
0.341 0.083 0.197 0.072 0.112 0.069 0.04 0.017 0.045 0.023

0.009 0.388 0.003 0.0 0.251 0.156 0.062 0.014 0.112 0.006

k =

0.016 0.008 0.791 0.025 0.011 0.012 0.007 0.002 0.023 0.104
0.039 0.009 0.069 0.834 0.006 0.006 0.006 0.0 0.015 0.015
0.0 0.007 0.0 0.0 0.531 0.248 0.127 0.048 0.04 0.0

0.0 0.0 0.0 0.0 0.009 0.729 0.006 0.001 0.255 0.0

0.0 0.0 0.0 0.0 0.028 0.011 0.95 0.006 0.006 0.0

0.0 0.0 0.0 0.0 0.016 0.046 0.062 0.83 0.046 0.0

0.0 0.0 0.0 0.0 0.0 0.013 0.0 0.0 0.987 0.0
0.0 0.0 0.079 0.0 0.0 0.0 0.0 0.0 0.026 0.894

10
0.337 0.083 0.198 0.072 0.113 0.07 0.04 0.017 0.046 0.025

0.008 0.369 0.003 0.0 0.253 0.169 0.063 0.017 0.114 0.005

0.017 0.009 0.787 0.027 0.01 0.014 0.007 0.002 0.024 0.102
0.042 0.008 0.076 0.823 0.006 0.008 0.006 0.0 0.014 0.017
0.0 0.006 0.0 0.0 0.527 0.249 0.127 0.048 0.042 0.0

0.0 0.0 0.0 0.0 0.009 0.727 0.005 0.001 0.258 0.0

0.0 0.0 0.0 0.0 0.026 0.01 0.953 0.005 0.005 0.0

0.0 0.0 0.0 0.0 0.015 0.045 0.06 0.835 0.045 0.0

0.0 0.0 0.0 0.0 0.0 0.015 0.0 0.0 0.984 0.0
0.0 0.0 0.076 0.0 0.0 0.0 0.0 0.0 0.025 0.898

Six

The Data Model

The current Hub Miner data model is simple, yet flexible. At #ame time, it is not too complicated
to use. In case that additional representational capaxiteéded for an application, it is always
possible to extend the corresponding classes in a straigtdfd way. The basic class hierarchy for
data representation is shown in Figlirel 6.1. Additionalsgasn data.representation.images extend
the basic dense data holders.

BOW ! Data BOW
DataSet Dttt ; Instance Instance
: : Discretized
DM Discretized o Data
Graph DataSet
Instance

Figure 6.1: The basic Hub Miner data model.

The idea is simple. DataSet objects represent dense datesésts of Datalnstance objects.
Also, DataSet objects hold the representation definitidarims of feature names. What follows are
the current variable declarations in DataSet objects:

public class DataSet implements Serializable {

private static final long serialVersionUID = 1L;

private String name;

// The corresponding DataSet object holding the identifiers of these

// feature representations, represented as Datalnstances. This way of

// representing the data is optional, but allows for more complex keys and
// splitting the features that machine learning is to be based upon from
// the auxiliary data features that can still be contained within the

// identifier context.

public DataSet identifiers = null;

37

38 CHAPTER 6. THE DATA MODEL

// Feature names.

public String[] iAttrNames = null;
public String[] fAttrNames = null;
public String[] sAttrNames = null;

// A map between feature names and their indexes.
private HashMap<String, Integer> attNameMappings;

// A list of data instances.

public ArrayList<Datalnstance> data;

private static final int DEFAULT_INIT_CAPACITY = 1000;
private int initCapacity;

The basic data holders can handle three different featpesstyfloat features, integer features
and nominal features. Of course, categorical values canbagepresented as integers, but then
special care should be taken with regards to how distancesunesare used and which can be
applied to which feature. The Hub Miner version of ARFF filenfat supports the keywordteger
for a feature type and these features are then loaded intotdger part of the data representation.
This is a slight extension of the original ARFF format, asmalinbers are treated equally there.

DataSet class implements many useful methods for dataingnlethod addDatalnstance in-
serts a new data instance into the DataSet. A copy of thertudega definition in terms of feature
names can be produced via the cloneDefinition method, whitputs an empty DataSet object
with the same feature specification. If the data is to be abpgewell, the copy method is avail-
able. It is possible to normalize features via normalizafd@nd standardizeAllFloats methods.
Checking for missing values in the data is trivial, as thera hasMissingValues method. Intro-
ducing label noise into the data for experiments can be dgrievoking the induceMislabeling
method. Embedding the data into a single cluster can be\athigy makeClusterObject. Merg-
ing two disjoint views of the same data, two different feattepresentations, can be done via the
mergeDisjointRepresentations method. It is possible tectly calculate the distance matrix by
invoking calculateDistMatrix and there is also a multigaded variant readily available. There are
many more methods implemented within DataSet and also maxiliaay methods for handling
DataSet objects that are available in other Hub Miner classe

Creating a Datalnstance object that conforms to a partiéeddure representation defined in the
DataSet object is easily done by using the proper Datalosteonstructor, as follows.

DataSet dset = new DataSet();

dset.fAttrNames = new String[2];
dset.fAttrNames[0] = "Height";
dset.fAttrNames[1] = "Width";

DataInstance instance = new DataInstance(dset);

This creates a DataSet feature representation that comdisivo float features: height and
width. The subsequent Datalnstance constructor then gersea Datalnstance object that has a
float feature value array of length two, corresponding tof&aure representation of the DataSet.
However, the instance is not automatically included in tblkection and the data context in the
Datalnstance object is not automatically set. If one wigbdaclude the instance, the following
code should be included.

// Set the data context.
instance.embedInDataSet (dset);

39

// Include the instance into the dataset list.
dset.addDataInstance(instance) ;

Datalnstance objects have the following variable dedlamat

public class Datalnstance implements Serializable {

private static final long serialVersionUID = 1L;

// The DataSet that defines the feature types for this data instance.
private DataSet dataContext = null;

// The label of the data instance.

private int category = O;

// Support for fuzzy labels is slowly being added throughout the code. Most
// methods work with crisp labels, as is customary.

public float[] fuzzyLabels = null;

// Feature values.

public int[] iAttr = null;

public float[] fAttr = null;

public String[] sAttr = null;

// Identifier, which can be composed of multiple values and is thus also
// represented as a data instance.

private Datalnstance identifier = null;

Three feature value arrays correspond to the three featme @mrrays in the DataSet object.
The dataContext variable holds a link to the parent DataBjetca It can be used either to signal
where the feature representation definition is or to sigmat the instance is contained within the
object. The feature arrays in the Datalnstance need tosgonal to those in the DataSet object that
is the dataContext and that contains the instance. If teeaeriismatch in lengths, errors may occur
- since this is not a valid object state.

Instance label is contained in the category field. Theresis alfuzzyLabels field if fuzzy labels
are to be defined, but this is still experimental and not feliypported in the current Hub Miner
release. Users are encouraged to include it in their owniGgtigns and extend the basic Hub
Miner functionality, if they require fuzzy training labéls their own experiments.

The identifier field is also of Datalnstance type and it is useabld multi-values primary keys
for the instances, in cases when such keys exist, when tedatre pulled from a database. If you
are simply analyzing a UCI dataset, this field will not beimétl. It might, however, be useful in
some practical applications.

Datalnstance class implements many useful methods foihdatdling. These include equality
checks, checks for missing values and noise, consistermnkshas well as other utility methods. It
is also possible to add or average a list of Datalnstancetshjehich is useful in many calculations.
There is also a toString() method, which means that Datahest objects can easily be printed to
any standard output. This is very useful during de-bugdimgrigh it can be used to easily persist
the results. In general, for results 1/0, classes in therioéd package are to be preferred, as they
enable save/load in/ffrom ARFF, CSV and TSV formats.

While DataSet and Datalnstance objects make convenierdseptations for dense data, they
would not be appropriate for sparse data representatitkaesfdr instance bag-of-words in text
mining. Therefore, Hub Miner offers BOWDataSet and BOWdnse objects for this particular
purpose. For instance, here are the declarations in caseWikataset:

public class BOWDataSet extends DataSet {

40 CHAPTER 6. THE DATA MODEL

public static final int DEFAULT_INIT_WORDS = 20000;
// The number of words in the vocabulary.

private int numWords = -1;

// Map of words to their indexes in the vocabulary.
private HashMap<String, Integer> vocabularyHash;

// Vocabulary of all the represented words.

private ArrayList<String> vocabulary = null;

// Word frequencies.

private ArrayList<Float> wordFrequencies = null;

This class extends the DataSet class, so mixed data can iberepsesented, as multimedia
data in particular can often contain both sparse and demsesentation parts. Consider images
with their captions or associated comments and descrgtidhe textual part of the representation
is usually sparse (unless we consider tags), but imagerésatwe usually not. The sparse repre-
sentation is simple. A single HashMap could also have beed,usut it is often useful to have
immediate access to the vocabulary, so there is one HashiMamiaps a word to an index in the
frequency and vocabulary list - and these lists are maiathseparately. Methods for easily insert-
ing words and instances into the sparse dataset are aeqilblisers do not have to think about
doing these updates manually. BOWInstance objects aleméXatalnstance objects.

public class BOWInstance extends Datalnstance {

public static final int INIT_HASH_SIZE = 500;
// This map stores the mapping between word indexes from the vocabulary
// and their weights or counts in the current document.
private HashMap<Integer, Float> wordIndexHash =
new HashMap<>(INIT_HASH_SIZE);
// The data context variable here is named corpus.
public BOWDataSet corpus;
// Name or path of the document from which the data was extracted, if
// available.
public String documentName;

Each BOWInstance contains a HashMap that maps word indexbsgit weight, which is the
standard bag-of-words representation. For readabilityadditional data context variable named
corpus that is of the BOWDataSet type is introduced andmetlin the context query methods. An
additional String value is present to mark document nambsnvmecessary. BOWInstance objects
do not store raw text, as this is rarely needed at this staffeeianalysis. Such data can be stored
separately.

While it is certainly true that integer features can be useakpresent value ranges when float
features are discretized according to pre-computed divssithis is not the most fortunate generic
solution. This is why Hub Miner allows for a more fine-grainaghtrol over discretized features
and this is achieved in DiscretizedDataSet and Discrebadalnstance. Unlike their sparse coun-
terparts, the design decision here was not to let them diregtend DataSet and Datalnstance -
since the discretized data is not usable in same types ofauieths non-discretized data, which
was not the case with sparse data. Namely, it makes littlsesenapplykNN to discretized data
(while it is still possible with some carefully chosen me}rbut other types of methods like decision
trees expect discretized data as input. This rather clgaration has lead to separate pipelines for
discretized and non-discretized data within Hub Miner. #Bafe types of classification algorithms
implement the predictive interfaces for these differepetyof instances and datasets.

41

public class DiscretizedDataSet implements Serializable {
private static final long serialVersionUID = 1L;

// Original DataSet from which this one was created.

private DataSet originalData;

// Data points.

public ArraylList<DiscretizedDatalnstance> data = null;

// Discretization structures.

private HashMap<String, Integer>[] nominalHashes = null;

private int[] hashSizes = null;

private ArrayList<String>[] nominalVocabularies = null;

// By convention, they define [) intervals and are supposed to be ordered.
// IMPORTANT: Float/Integer -MAX_VALUE / MAX_VALUE are supposed to be at the
// front and the back of the interval definitions. This is implicitly

// assumed in the methods defined below.

private int[][] intIntervalDivisions = null;

private float[][] floatIntervalDivisions = null;

The original DataSet reference is present in Discretiz¢al®et variables, as all discretized
dataset representations in Hub Miner are expected to beedefiom some specific continuous
representation. If this is not the case and the data wasnattgitoaded, this can be generically
filled or left as null. Like DataSet, DiscretizedDataSebatentains a list of instances, only Dis-
cretizedDatalnstance objects in this case. It also hoklditretization definitions, the value ranges
for float and integer variables - and a HashMap for nominales| which are replaced by the cor-
responding indexes in their feature vocabularies.

public class DiscretizedDatalnstance implements Serializable {
private static final long serialVersionUID = 1L;

private DiscretizedDataSet dataContext = null;

private Datalnstance originalDatalnstance;

private int category = -1;

private float[] fuzzyLabels = null;

// Discrete arrays all have discrete index values pointing to certain

// ranges of values in the original continous spectrum. The definition of
// the ranges can be found in the embedding dataContext.

public int[] integerIndexes = null;

public int[] floatIndexes = null;

public int[] nominallndexes = null;

DiscretizedDatalnstance object are designed in a sinakdridn to Datalnstance objects. They
contain separate discretized value index arrays for flogtegers and nominal variables, as well as
crisp and fuzzy labels. A reference to the embedding disatata context and a reference to the
original Datalnstance that the DiscretizedDatalnstarae derived from are also present.

So, how does one automatically generate a Discretizedistaice from a Datalnstance object?
In fact, there are methods in Hub Miner that enable the usesutomatically discretize entire
datasets.

For instance, consider the class EntropyMDLDiscretizerat this located in
data.representation.discrete.tranform package.

DataSet dset = ... \\ Some data load code here ;

42 CHAPTER 6. THE DATA MODEL

DiscretizedDataSet dsetDisc = new DiscretizedDataSet(dset);

EntropyMDLDiscretizer discretizer = new EntropyMDLDiscretizer(dset, dsetDisc, 10);
// Use the discretizer to discretize the data.

discretizer.discretizeAll();

dsetDisc.discretizeDataSet (dset);

Like the discretizedAll method in EntropyMDLDiscretizénere is also discretizeAllBinary, as
well as separate discretization methods for each featpe tyhe former tries to find the optimal
number of splits for each variable, while the latter alwapkts the value range into two interval
sub-ranges. Certainly, the entropy minimum-descriptegth discretized implemented in Hub
Miner is not the only such transformation filter that could used and additional discretization
filters might be introduced in the future.

Hub Miner offers basic support for operations on graphs,wmass is a phenomenon gn
nearest neighbor graphs in intrinsically high-dimensiatzda. While these graphs are rarely ex-
plicitly represented in hubness-aware analysis, it is sones useful to be able to visualize them
and analyze them as graphs. The support for graph data egpatisns in Hub Miner is currently
basic and it will be modified and extended in future releasesn though it is not the top priority
since graph analysis is a vast field with many methods - arsktheethods are not the focus of the
Hub Miner library nor the researchers performing researchubness and high-dimensional data
mining.

public class DMGraph {

public DataSet vertices;

public DMGraphEdge[] edges;

public String networkName;

public String networkDescription;

// Copying a DMGraph object will not copy the JGraph reference, by default.
// JGraph is only used when the results are to be displayed on the screen.
// JGraph is not always used for graph drawing in this library, so this is
// more of a backward-compatibility thing.

public JGraph visGraph = null;

The basic supported static graph representation is verglsinDatalnstance objects are used
as vertices, which makes it easy to find correspondence batgeph nodes and the underly-
ing representation, in case bfnearest neighbor graphs. DMGraphEdge is the name of tke cla
that represents weighted edges between different nodeph&ican also contain names and de-
scriptions, as well as a reference to a JGraph visualizatoitext, in case that JGraph is used for
visualization. Image Hub Explorer relies on JUNG, for imste.

public class DMGraphEdge implements Serializable {

public double weight = O;

public int first;

public int second;

// Edges are maintained as linked lists.
public DMGraphEdge next = null;

public DMGraphEdge previous = null;

DMGraphEdge objects are very simple. They are connected@dylinked lists and contain
start and end vertex indices, as well as the associated tvdigibMGraph, each element in the

43

edges array corresponds to a start of a list holding the atigestart at a given node. This makes it
easy to access all edges corresponding to a specified vertex.

While not the optimal graph representation, these basiphgdasses in Hub Miner enable
for some analysis to be done along with the visualizatione graph.subgraphs package contains
classes that enable users to find the connected componentgaph, perform cuts and select sub-
graphs. The graph.calc.GraphStatistics class contaittsoaiefor calculating degree and closeness
centrality for vertices in the graph.

Since this initial support may not suffice for all applicai® it is possible to export DMGraph
objects in Pajek-compatible format, which means that ibissible to use Pajek¢tp://pajek.
imfm.si/doku.php?7id=pajek), a well-known network analysis tool, for subsequent asialy
of kNN graphs on intrinsically high-dimensional data. This estpvas the original intent of intro-
ducing the DMGraph structure in Hub Miner.

http://pajek.imfm.si/doku.php?id=pajek
http://pajek.imfm.si/doku.php?id=pajek

Seven

Hubness-aware Implementations

Since Hub Miner is primarily a library for hubness-aware hiae learning and data analysis, spe-
cial attention is given to hubness-aware implementatidhi chapter covers hubness-aware meth-
ods for classification, clustering, metric learning andanse selection. It does not cover the ex-
ploratory framework for analysing hubness in intrinsigdligh-dimensional data, that is also part
of Hub Miner.

The current draft of this manual omits the equations useafgr ihubness-aware models, as
they are available in the cited papers where the methodsfivsr@roposed. Instead, this chapter
gives a brief overview of the ideas behind each algorithnwels their location in the Hub Miner
class hierarchy. Interested readers are encouraged tafptile details in external material, which
is freely available online.

7.1 QLASSIFICATION

Several hubness-aware classification methods have redeedh proposed [RNIO9I[TRMI11b]
[TRMI13d][TRMI11d][TM126][TM136] and Hub Miner containtheir implementations.

The initial way of dealing with detrimental hub points NN votes was to assign them a
lower voting weight. This was proposed in lydN [RNIO9], a simple yet effective algorithm
that was a proof of concept that hubness-aware methods caratbe and that the negative effects
of hubness in the data can be reduced. This algorithm is mngai¢ed in HWKNN class in learn-
ing.supervised.methods.knn package. Other hubnes&anNal methods are contained within the
same package.

The initial hw#£NN algorithm did not take into account class-conditionagheor occurrences
and this was rectified in the hubness-aware extension ofutheyf-nearest neighbor framework,
h-FNN [TRMI11E6][TRMI13a]. The weighted counterpart of INKR, dwh-FNN, usually achieves
comparable, though slightly higher accuracy. These algms are implemented in HFNN and
DWHFNN classes in the learning.supervised.methods.konkggge. Since it is impossible to form
hubness-based fuzzy votes for orphan and anti-hub porsstlyi, a special anti-hub handling mech-
anism needs to be employed in order to properly define votesifth points, since they occasionally
do occur as neighbors on the test data, despite the factiattere never observed as neighbors
on the training data.

A later extension of h-FNN and dwh-FNN took into account tlifiedences in the informa-
tion content of different neighbor occurrences, as hube lmen judged as less informative in
general. This algorithm was named hubness-informatiorearest neighbor (HIKNN)_[TM12b]
and it included absolute and relative surprise factors domfng neighbor votes without the anti-
hub 6 threshold of h-FNN and dwh-FNN. Two variants of the HIKNN apach are present in
learning.supervised.methods.knn package. One varia# ot employ additional distance-based

45

46 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

weighting and it is given in the class HIKNNNonDw. The weigtitcounterpart is implemented in
HIKNN class.

The naive Bayesian re-interpretationiehearest neighbor sets was shown to yield very good re-
sults in intrinsically high-dimensional data under theumsption of hubness, especially in presence
of class imbalance. This method was named NHBNN (naive hethBayesiark-nearest neigh-
bor) [TRMI114] and it is present in the NHBNN class in the sdeaning.supervised.methods.knn
package.

An extension of NHBNN was proposed that takes neighbor aasences into account and
that is able to outperform NHBNN on high-hubness datasettafger neighborhood sizes. This
extension was named the augmented naive hubness-Bayesearest neighbor [TM13b]. Across
a wider range of datasets, though, NHBNN still proves moleisbin our experiments. However,
this has to do with the current ANHBNN design and it is possiiol learn different types of hub
co-occurrence models, some of which might be more robugtserace of co-occurrence informa-
tion for most neighbor pairs. Namely, high data hubnessadlgtincreases the number of pairs for
which the algorithm is able to derive meaningful class-dtioal co-occurrence probabilities and
therefore calculate proper mutual information and relabegsures. It might also be the case that
better handling of those low-or-no-information cases fair go-occurrences could improve AN-
HBNN performance on low-hubness datasets. Neverthelesswas designed for classification
under the assumption of hubness, the algorithm is quitailisethose cases where it is applicable,
in its current form. The algorithm is given in ANHBNN class,the same package as the rest.

It is possible to perform neighbor re-rankinghkmearest neighbor sets based on their hubness
and their bad hubness in particular. This was exploited ilKRR (re-rankedk-nearest neigh-
bor) [TM14E]. RRKNN employs secondary re-ranking /ohearest neighbor sets that was first
proposed for improved bug report duplicate detection [TBWih presence of high hubness in
textual bug report data. The algorithm performs secondessanking on the originak-nearest
neighbor set and then learn a set of secondary local disgahet are used to re-rank the neigh-
bors. Since this does not change the content of the origimdarest neighbor set (the distances
are only re-computed locally for the neighbors), a smalgghborhood size (usually/2) is used
to perform the actual voting. The algorithm is available iRKNN class in the same learn-
ing.supervised.methods.knn package.

In principle, RRKNN approach could be applied not onlyk&dN but also to other hubness-
aware methods and we have experimented with this, but - theacy gains were mostly insignifi-
cant. These prototype classes were therefore not includie icurrent Hub Miner release.

It was recently demonstrated that it is possible to booshheb-aware classifiers and that cer-
tain types of boosting result in implicit inner ensemblesairsense that the resulting classifier
has the same model form as the base hubness-aware approsidhiéess they are not weak clas-
sifiers, it is still possible to effectively boost hubnesgase approaches due to the fact that the
k-nearest neighbor sets need only be calculated once ondiminty data and boosting can be
done via iterative instance re-weighting without re-sangp[Tom14]. These initial experiments
were performed within the boosting framework of Adaboo&, Mhich is present as AdaBoostM2
in learning.supervised.meta.boosting package. Boastaiplementations of hubness-aware base
learners that support instance weighting and can therbfoosed within the framework are givenin
learning.supervised.meta.boosting.baselearnersriicylar, classes HFNNBoostable, DWHFNN-
Boostable, HIKNNBoostable and HwWKNNBoostable.

Classification experiments in Hub Miner can be performedaunttroduced random label noise.
This type of experimentsis used to determine the algoritttmstness in noisy data under controlled
noise rates. While the default protocol is to use the unif@ntdom label noise in such experiments,

7.2. CLUSTERING 47

it is also possible to use weight-proportional random laloéde and this was used to conduct exper-
iments with hubness-proportional random label noise inrecent publication. This is a somewhat

unique feature of Hub Miner, to have this option alreadyudeld and available in the default clas-

sification evaluation protocol and configuration files. Hessproportional random label noise can
be used to test for predicted worst-case classifier perfocea noisy data, as hub-centered noise
induces a much higher misclassification rate than uniforiseN@B14].

7.2 CQCLUSTERING

It was experimentally shown that point-wise hubness (neigbccurrence frequency) is highly cor-
related with local cluster centrality in intrinsically igdimensional data and this has been exploited
for clustering. An example is shown in Figudire]7.1, for symitheero-centered i.i.d. Gaussian data.
Not only does point-wise hubness become a good indicatoloskness to local cluster centers,
but density becomes less correlated with centrality withieéasing data dimensionality. In a sense,
hubness is used as a replacement for density estimates indimeansions.

Correlation between norm and hubness: d =5 Correlation between norm and hubness: d = 100

|
(=]
N

1
o
i

corr(norm, Nk)
|
I3
o

corr(norm, Nk)

|
o
©

5000

4000

4000 2000 10

3000 3000

2000 2000

No. of data points

K o 1000 1000

0 Kk 00

No. of data points

(a) Correlation between norm and hubnessdict 5 in (b) Correlation between norm and hubnessdos 100
Gaussian i.i.d. data. in Gaussian i.i.d. data.

Figure 7.1: Interaction between norm and hubness, in low-+aégh-dimensional scenarios.

Hubs have been shown to make promising candidates for cliegieesentatives and selecting
a set of hubs instead of centroids or medoids can lead eitfaster convergence or better cluster
configurations, in certain high-dimensional settirigs [TIRM][TRMI13b][TRMI14]. An illustra-
tive low-dimensional example of why hubs might be prefetadd prototype points is shown in
Figure[7.2.

Hub Miner implements several hubness-based clusteringadsthat exploit this newly discov-
ered property in many dimensions. These methods are loitetieel learning.unsupervised.methods
package. LKH (Local K-hubs) and GKH (Global K-hubs) are timeest hubness-based methods,
proof-of-concept-like. They are not very effective in piee, as they sometimes get stuck in sub-
optimal hub configurations and they converge very quickhege methods are simple extensions of
K-means. The stochastic variants of the two methods, LHB¢(hubness-proportional clustering)
and GHPC (global hubness-proportional clustering) perforuch better, as they avoid local cluster
configuration optima. GHPKM is a further exension of GHPCegvéhcentroids are selected in de-
terministic iterations and hubs in stochastic iteratian,as square-hubness-proportional stochastic

48 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

centroid
medoid
points of high hubness

Figure 7.2: lllustrative example. The red dashed circlekséne centroid), yellow dotted circle
the medoid {/), and green circles denote two elements of highest hub#gsdd,), for neighbor-
hood size3. In this particular example, it is clear that selecting habsluster prototypes would go
directly to the centers of local sub-groups and speed upergewce.

framework. This hybrid method combines the advantages ofdifferent types of approaches and
outperforms both in many real-world examples.

LKH, GKH, LHPC, GHPC and GHPKM have been shown to perform welinany cases and
to be quite robust to high rates of uniform noise. Howevesythre incapable of detecting non-
hyper-spherical clusters by design. Therefore, in ordemtable clusters of more arbitrary shapes
to be formed in a hubness-based framework, an extensiorrioéké-means was proposed, kernel-
GHPKM [TRMI14]. This algorithm is (logically) implemented the KernelGHPKM class in the
learning.unsupervised.methods package. In the clugtevialuation experimental framework, users
can experiment with different types of kernels in order & tond evaluate both kernel-GHPKM and
kernel K-means.

Hub Miner also implements some tools for clustering progressualization in case
of stochastic hubness-proportional clustering methodsn eXample is given in the learn-
ing.unsupervised.visualization package, in the HPCVizeraclass. This class generates visualiza-
tions like the one shown in Figure 7.3. It can be seen thatltisar prototype search goes mostly
through central cluster regions (even in this low-dimenal@ase) and that many configurations are
tested in the process.

7.3 METRIC LEARNING

Hubness arises in many commonly used metrics in high-dimeakdata. Euclidean, Manhattan
and cosine are among the most commonly used distance/fstyniteeasures and they are known to
exhibit substantial hubness in many dimensions. Fradtidisnces might lead to slight improve-
ments occasionally, but not enough to really be a game-@rarfgso, dimensionality reduction
does not really help. Reducing the number of dimensions @ntw suppress hubness in the data
entails substantial information loss and the effectiverméshe methods is affected in different ways.
While different feature representations and differenimay distance or similarity measures
might induce varying degrees of hubness in the data - it isnoiitnpractical to test all possible

7.3. METRIC LEARNING 49

(a) k=1

(b) k=10

Figure 7.3: Hubness-guided search for the best clustercbuofiguration in global hubness-
proportional clustering on Iris data.

feature extraction pipelines and distance measures i todeach the optimal system configura-
tion. Furthermore, sometimes a satisfactory configurationld not even be available among the
tested primary approaches. This is why metric learning imfof secondary distance measures
has been proposed as a way of reducing hubness in the dataaadlbihly high-hubness data in
similarity-based systems in genefal [ZmP04][JHSO7I[SASYHKK T 10][TM12&][TM144].

Hub Miner implements several secondary metrics that hetp warning in intrinsically high-
dimensional data, in presence of hubness. Two local tedbsigocal scaling and NICDM, are

50 CHAPTER 7. HUBNESS-AWARE IMPLEMENTATIONS

implemented in the distances.secondary package, in slassmlScalingCalculator and NICDM-
Calculator. Mutual Proximity is a global scaling approaelséd on mutual neighbor relation prob-
abilities and it is given in MutualProximityCalculator skain the same package. These calculator
classes permit both single-threaded and multi-threadkediledions. Mutual proximity is an es-
pecially promising approach that was shown to substaptialluce hubness in many real-world
high-dimensional datasets.

Shared-neighbor secondary similarities are availablénéndistances.secondary.snd package,
though shared neighbor calculations are actually perfdrinethe SharedNeighborFinder class
in data.neighbors. Bothimcos, andsimhub, are represented by the SharedNeighborCalculator
class. Sincesimhubs is a weighted extension afimcos,, it was natural to group the two im-
plementations together in the same class. The effectigesfesmhubs and simcos, in not only
reducing the hubness in the data but also improving the seraboonsistency among the neighbor
sets can be glimpsed from an illustrative example in Figudle 7

Sea moss

simhubs,

Dataset: iNet3 .
simcossy

Photo X,,: Sea moss

Figure 7.4: An illustrative example of how secondary dise@mngimcoss and simhub,) affect
the consistency of the revergenearest neighbor sets in image data and the consistenaybof h
occurrences in particular.

Underwater sea moss images are often confused with fire sniafen in the dark and the
Example in Figuré_7]4 shows how the sea moss pb6tp acts as a neighbor. In the primary
L, distance, it is a detrimental hub image, a neighbor to margtgan the fire images class.
Application of simcossg andsimhubsg in turn reduces both the neighbor occurrence frequency of
X14 as well as the frequency of semantically incorrect occuresn

7.4 INSTANCE SELECTION

Instance selection is often used in conjunction withearest neighbor classification,/d$N meth-
ods do not scale well unless approxim@aiN calculations are used. Also, careful instance selection
strategies can sometimes even imprbMN performance.

7.4. INSTANCE SELECTION 51

Neighbor occurrence frequency has been pinpointed as alugstfance selection criterion in
high-dimensional data, which gave rise to some reversghher-based selection methods [DH11],
as well as hubness-aware instance seleclion [BNST11a]. fdimeer is implemented in the
RNNR_AL1 class and the latter in INSIGHT, both of which arentained in the preprocess-
ing.instance_selection package.

Apart from the two selection methods that are directly basetiubness, Hub Miner also im-
plements a general hubness-aware instance selectiomngipleat extends the functionality of all
implemented instance selection methods, whether they egarecived as hubness-aware or not.

Namely, past experiments have shown that combining cettabness-aware classification
methods with certain instance selection methods can be geimising, but that the instance se-
lection bias of the selection methods negatively affectsdlass-conditional neighbor occurrence
models learned on the reduced data. Therefore, in orderpgooia the performance of hubness-
aware classifiers and train unbiased models, an in-betwtepnvgas inserted that calculates the
class-conditional selected prototype occurrence fregjesron all training data. This is shown in
Figure[7.5.

X A x|S |:> - o
@ i ~!/~ “
A

HUBNESS

Y E> - E> \WY AWARE
|NSTANCE CLASSIFIER
7 SELECTION Z R UNBIASED HUBNESS

ESTIMATOR

Figure 7.5: The modified instance selection pipeline. Aniasdd prototype occurrence profile

estimator is included between the instance selector andesstaware classifier. It ought to provide
more reliable hubness estimates to the hubness-awarereccemodels. In the example we see
that pointA is a neighbor to three other point& (Y, 2), but only one of them gets selected. Hence,
some occurrence information is irretrievably lost.

The unbiased hubness estimation pipeline has been shovieldawyuch better results and this
approach is applicable regardless of the underlying instaelection strategy.

Eight

Code Examples: Using Hub Miner for Data

Analysis

Hub Miner is very easy to use for various analytic tasks. T @mplest to demonstrate in case of
classification. Assume we have some data and we would likeetdf sve can perform learning and
classification by some approach on this data. An illustea¢givamples is given in the class learn-
ing.supervised.example.ClassifierUsageExample. The isotbpied below (without the copyright
statement). An explanation follows immediately aftervgard

package learning.supervised.example;

import
import
import
import
import
import
import

/**

* X ¥ X *

*/
public

data.representation.DataSet;
distances.primary.CombinedMetric;
ioformat.SupervisedLoader;

java.io.File;
learning.supervised.evaluation.ClassificationEstimator;
learning.supervised.methods.knn.AKNN;
util.CommandLineParser;

This class gives a usage example for classification - how to load the data,
train a classification model and save the results to a file. As an example,
the adaptive k-nearest neighbor classifier (AKNN) is used.

@author Nenad Tomasev <nenad.tomasev at gmail.com>

class ClassifierUsageExample {

public static void main(String[] args) throws Exception {

// Specify the command line parameters. While it is possible to write

// custom command line parsing methods for each class, the utility

// CommandLineParser class makes it easy in HubMiner.

CommandLineParser clp = new CommandLineParser (true) ;

clp.addParam("-inFileTrain", "Path to the input training data file.",
CommandLineParser.STRING, true, false);

clp.addParam("-inFileTest", "Path to the input test data file.",
CommandLineParser.STRING, true, false);

clp.addParam("-outFile", "Path to the output file.",
CommandLineParser.STRING, true, false);

// The parser parses the command line to extract the parameter values.

clp.parseLine(args) ;

// We assign the in/out train and test file path values to the

// respective variables.

File inFileTrain =

53

54 CHAPTER 8. CODE EXAMPLES: USING HUB MINER FOR DATA ANALYSIS

new File((String) clp.getParamValues("-inFileTrain").get(0));
File inFileTest =

new File((String) clp.getParamValues("-inFileTest").get(0));
File outFile = new File((String) clp.getParamValues("-outFile").get(0));
// Data load is simple when done via the SupervisedLoader class. It
// can handle .arff, .csv and .tsv files. It can also load data from the
// sparse modifications of the .arff format that are used in HubMiner.
// It detects and loads the proper format automatically.
DataSet datasetTrain = SupervisedLoader.loadData(inFileTrain, false);
DataSet datasetTest = SupervisedLoader.loadData(inFileTest, false);
// We use a default metric here, the Euclidean distance.
CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
// We choose a desired neighborhood size.
int k = 5;
// Initialization of the classifier.
AKNN classifier = new AKNN(datasetTrain, cmet, k);
// Model training.
classifier.train();
// An aggregate ClassificationEstimator object is generated when the
// predictions are compared on the test set.
ClassificationEstimator estimator = classifier.test(datasetTest);
// The estimator values are output to a file.
estimator.printEstimatorToFile(outFile);

The script takes the paths to the input training data, thestinpst data and the output
file target as its command line parameters. These parametersonveniently parsed by the
util.CommandLineParser class. Users can use this clasgetifg the expected parameter and
parameter types, which is especially useful for type chegkiParameters are allowed to accept
multiple values.

Once the command line parameters have been parsed, we éotdithand test data into corre-
sponding DataSet objects by a single call of ioformat.SuipedLoader.

Since we are using &-nearest neighbor approach, we need to select a metric and
here we take Euclidean distance as default, as a constadefpred object within dis-
tances.primary.CombinedMetric class. This object wilhdile both integer and float features prop-
erly. If we wanted to ignore integer features and calcul@&tadces only from the floats, we would
have used CombinedMetric.FLOAT _EUCLIDEAN instead.

The adaptivek-nearest neighbor algorithrn [WNCO7] is initialized by gagsin the training
data, the desired neighborhood size and the metric object.

Training is performed by a single call to the classifier, sifiar.train(). We could also have
inserted a pre-calculated distance matrix orkheearest neighbor sets, if we had them ready from
another context. If they are not provided to the classiftezaiculates them implicitly. Take note
that if we calculate them externally, we can set them to mpigtclassifiers at no additional cost,
since they do not modify these structures. This achievesisiderable speed-up and is the way in
which the experimental framework is currently implemented

Classifier testing and evaluation is performed compactéysimgle line: ClassificationEstimator
estimator = classifier.test(datasetTest). The Classditastimator object contains all the necessary
performance measures, as well as methods for saving aniddptids data. This is exactly how we
reach the desired output, by calling estimator.printEatoriToFile(outFile).

It is also possible to save and load learned models via &ti@n and it is very simple.

55

// Save a model.

classifier.save(ourFile);

// Load a model.

Classifier loadedModel = Classifier.load(inFile);

Of course, you would need to cast the loaded model into itpgartype if you need to do
something other than basic prediction with it, but that'samissue.

Similarly, assume we wanted to perform clustering and thahewve already parsed the param-
eters, similar to the previous example. We can cluster the aad output the results as shown
below.

CombinedMetric cmet = CombinedMetric.EUCLIDEAN;

DataSet dset = SupervisedLoader.loadData(inFile, false);
int numClusters = dset.countCategories();

ClusteringAlg = new FastKMeans();
clust.setCombinedMetric(cmet);

clust.setDataSet (dset) ;

clust.setNumClusters (numClusters) ;

clust.cluster();

Cluster[] clusters = clust.getClusters();
Cluster.writeConfigurationToFile(outFile, clusters, dset);

Of course, the shown code snippet could be presented evenaompactly, since the data, the
metric and the number of clusters can be passed in the cotwtaf FastKMeans. Again we see
that there are existing methods for writing output to a filajek saves us the time of having to write
some /O code for each use case.

This example can easily be extended to include some evatuattthe produced data clustering.
Let us use the well-known Silhouette index to quantify thaligy of the produced clustering. We
would continue by doing the following:

QIndexSilhouette silIndex = new QIndexSilhouette(
numClusters, clust.getClusterAssociations(),
dset) ;

float clusteringQuality = silIndex.validity();

If we had an externally calculated distance matrix, we caeldit to the quality index object.
This way, it is calculated implicitly. Either way, we obtaam estimate of our clustering quality in
two lines of code.

Let us suppose that we are not that interested in predicHom do we analyze data? In prin-
ciple, BatchHubnessAnalyzer is a useful tool for batchysialacross various datasets. However, a
user might want to do some custom analysis. Let us set up decofipxamples. First of all, what
if a user simply want to see what the major hubs in the data are.

CombinedMetric cmet = CombinedMetric.EUCLIDEAN;

DataSet dset = SupervisedLoader.loadData(inFile, false);
float[][] dMat = dset.calculateDistMatrix(cmet);

HubFinder hFinder = new HubFinder(dset, dMat, cmet);

// We will look at l-neighbor sets, so only nearest neighbors.

56 CHAPTER 8. CODE EXAMPLES: USING HUB MINER FOR DATA ANALYSIS

int k = 1;
ArrayList<Integer> hubIndexes = hFinder.findHubsForK (k) ;
SOPLUtil.printArrayList (hubIndexes) ;

There is already a class responsible for extracting hubsFithder implicitly calculates the
kNN sets via NeighborSetFinder, observes the neighbor o=ece frequencies, calculates the mean
and the standard deviation and outputs those hub pointsdkatoccurrence frequencies that exceed
mean by more than two standard deviations. SOPLULil is auiséifity class for quickly printing
out some stuff to the command line and/or Writer objects.

Metric learning is often used for improving the performané¢eimilarity-based methods and
Hub Miner implements support for secondary distances thet lbeen demonstrated as useful in
high-dimensional data. Learning secondary distances im Muner is fairly simple. Let us look
at an example showing how to calculatenhub, for s = 50 andk = 10 on all training data and
initialize a metric object for use in calculating futuretdisces according to the query results against
the training set.

// Initialize the primary metric object.
CombinedMetric cmet = CombinedMetric.EUCLIDEAN;
// Load the data from a specified input file (assume this as given).
DataSet dset = SupervisedLoader.loadData(inFile, false);
// Calculate the primary distance matrix.
float[][] dMat = dset.calculateDistMatrix(cmet);
int numClasses = dset.countCategories();
// Specify the secondary neighborhood size for calculating shared neighbors.
int secondaryK = 50;
// Initialize the kNN finder object.
NeighborSetFinder nsfSecK = new NeighborSetFinder(dset, dMat, cmet);
// Calculate the kNN sets for k = 50.
nsfSecK.calculateNeighborSets (secondaryK) ;
// Specify the target neighborhood size to be used in classification.
int kValue = 10;
// Initialize the object that does the shared neighbor calculations.
SharedNeighborFinder snf = new SharedNeighborFinder (nsfSecK, kValue);
snf .setNumClasses (numClasses) ;
// Specify that hubness information weights are to be used, defining simhub and not simcos.
snf .obtainWeightsFromHubnessInformation(0) ;
// Calculate the shared neighbor sets.
snf . countSharedNeighborsMultiThread (numCommonThreads) ;
// First fetch the similarities.
float[][] dMatSec = snf.getSharedNeighborCounts();
// Then transform them into distances.
for (int indexFirst = 0; indexFirst < dMatSec.length; indexFirst++) {
for (int indexSecond = 0; indexSecond < dMatSec[indexFirst].length; indexSecond++) {
dMatSec[indexFirst] [indexSecond] = secondaryK - dMatSec[indexFirst] [indexSecond];

}
// Initialize the secondary metric object for later use.
SharedNeighborCalculator snc = new SharedNeighborCalculator(

snf, SharedNeighborCalculator.WeightingType.HUBNESS_INFORMATION) ;

Calculating other secondary distance types is even easigtemonstrated on an example in-
volving mutual proximity.

// Initialize the primary metric object.

CombinedMetric cmet = CombinedMetric.EUCLIDEAN;

// Load the data from a specified input file (assume this as given).
DataSet dset = SupervisedLoader.loadData(inFile, false);

// Calculate the primary distance matrix.

float[][] dMat = dset.calculateDistMatrix(cmet);

57

int numClasses = dset.countCategories();

// Specify the secondary neighborhood size for calculating shared neighbors.

int secondaryK = 100;

// Initialize the kNN finder object.

NeighborSetFinder nsfSecK = new NeighborSetFinder(dset, dMat, cmet);

// Calculate the kNN sets for k = 100.

nsfSecK.calculateNeighborSets (secondaryk) ;

// Initialize the mutual proximity calculator.

MutualProximityCalculator calc = new MutualProximityCalculator(
nsfSecK.getDistances(), nsfSecK.getDataSet(), nsfSecK.getCombinedMetric());

// Calculate the secondary distance matrix.

dMatSec = calc.calculateSecondaryDistMatrixMultThr (secondaryK, 8);

Ok, let’s look at something a bit more mundane. We will use Miber to calculate the infor-
mation value of different features in the data, used forudating information gain.

DataSet dset = SupervisedLoader.loadData(inFile, false);
// We will look at an integer attribute.
int featureType = DataMineConstants.INTEGER;
// We will look at the first float feature;
int featureIndex = 0;
int numCategories = dset.countCategories();
DiscretizedDataSet discDSet = new DiscretizedDataSet(dset);
EntropyMDLDiscretizer discretizer =
new EntropyMDLDiscretizer (
dset, discDSet, numCategories);
discretizer.discretizeAll();
discDSet.discretizeDataSet(dset);
DiscreteAttributeValueSplitter splitter = new DiscreteAttributeValueSplitter(discDSet);
DiscreteAttributeEvaluator evaluator = new Info(splitter, numCategories);
float informationValue = evaluator.evaluate(featureType, featurelIndex);

This kind of analysis is done in the decision tree implemgonan Hub Miner.

We have seen that it is possible to do analysis in Hub Minerfewalines of code. However,
as we will see, in order to perform useful data analysis witito Miner, it is not necessary to write
any lines of code, there are many useful tools and scripteaisting frameworks. One such tool
that we will have a closer look at in the following chapterrisage Hub Explorer.

Nine

Image Hub Explorer

When handling image data, there is a wide choice of possthieife representations and processing
pipelines, as well as a wide choice of metrics that can be tesetbasure image similarity and run
queries on the database. This is partly due to the semantiarghthe fact that it is not that easy to
choose the optimal representation, within a given context.

Images are very high-dimensional in nature, as many femtineerequired in order to properly
encode all the objects in the scene and their properties. ualwepproach consists of extracting
a set of local image features from each image, creating abomdevocabulary, and then generat-
ing histogram representations to describe each individuade, as bag-of-visual-words, similar to
text. In practice, large vocabularies are used, so therpaantially hundreds of features in the
representation.

In presence of captions, tags and comments, it is not thatuattio form an associated textual
image meta-description as well and possibly concatenaiittitthe dense image feature part of the
representation.

It has been experimentally shown that quantized image septations are highly
susceptible to hubness under commonly used similarity umeasand normalization ap-
proaches[[TBMNIN|[PTR11]. Therefore, hubness is expected to greatly impact inbaged
and description-based image querying, as well as certpestgf object recognition from images.

In order to help users with visualizing hubness in their imdgtabases in order to choose the
most appropriate representation and similarity measunagé Hub Explorer was built and it is
included in the gui.images package in Hub Miner. A typicahija Hub Explorer use case is shown
in Figure[9.1.

A demo videoof how Image Hub Explorer is used in practice is availabletatp : //youtu.
be/LB9ZWuvmOqw.

Image Hub Explorer has been designed to help with analyzosgeo-scale-free distributions
of image relevance ik-nearest neighbor graphs of large processed image datdssdge Hub
Explorer can also be applied to other data types, with mois afriginal functionality. This is the
first publicly available tool for hubness visualization amgloration. An overview of the essential
types of functions that Image Hub Explorer provides is showrigure[9.2.

Image Hub Explorer enables the users to experiment withrakestate-of-the-art hubness-aware
metric learning techniqued [ZmPO4][JHSO7][SESW12][HKIO][TM128][TM144], hubness-
aware classification methods [RNIOQII[TRMI13a][TRMI1TEM120], standard kNN base-
lines [FH51][KGG85][WNCO7][Tan05] and a recently propdsguery result re-ranking proce-
dure [TLM13].

The users need to provide the images for visualization agid fésature representation or a pre-
computed distance matrix. The system then calculates-thearest neighbor sets in the specified
metric for a range ok-values and calculates the most important hubness-redtaési It also per-

59

http://youtu.be/LB9ZWuvm0qw
http://youtu.be/LB9ZWuvm0qw

60 CHAPTER 9. IMAGE HUB EXPLORER

@ Ay

Feature Representations Similarity Measures

Image Hub
Explorer

k-NN topology

Data Hub Feature
overview Analysis Evaluation

Figure 9.2: An overview of several basic Image Hub Exploverctions.

forms class-specific hubness analysis and estimates whiisbes are the most critical sources of
detrimental influence and which classes suffer most semimtinsistency. Users are able to focus
on certain parts of theNN graph and explore the local similarity structure. In arttebe able to
interpret why some images act as hubs and which parts of thgdrare responsible for this influ-
ence being beneficial or detrimental, feature visualiragiod analysis is also available. We will go
through all these functions individually and also discumssfile structure and how it should be set
up in order to use Image Hub Explorer properly.

While most of Image Hub Explorer’s functionality is basedkmb Miner, there are also some
external dependencies. Multi-dimensional scaling foadaterview is performed by the MDSJ
library developed at the University of Konstariz [Pic09]. eTBUNG library http://jung.
sourceforge.net/) is used for graph drawing. Charts that are used to illusteartain data
properties are displayed via JFreeChatt{p: //www. jfree.org/jfreechart/).

There are several types of data views in Image Hub Explomttlay all hold the references to
the same underlying set of data structures. These viewspal&ed automatically when some of

http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://www.jfree.org/jfreechart/

9.1. PREPARING THE DATA FOR VISUALIZATION 61

the shared objects are modified.

The shared objects include the currently selected imageyding history, the primary and sec-
ondary distance matrices, feature representations (ifad@), the list ofkNN graphs over a range
of different neighborhood sizes, as welllaslependent lists of hubness-related statistics and charts
The images for display are loaded in batches from the disk.

Custom JPanel classes are used to interactively displainthge content. The Image Hub
Explorer GUI does not in itself contain any explicit data mgncode. All modeling is performed
by invoking the appropriate classes and methods in the lyidgHub Miner library.

The following examples were computed on images taken frore tteeds But-
terfly dataset [[WMEO9] Kttp://www.comp.leeds.ac.uk/scs6jwks/dataset/
leedsbutterfly/).

9.1 PREPARING THEDATA FOR VISUALIZATION

Each dataset that is assigned a separate workspace andtiyetsso select the workspace directory
from the drop-down menu. This is what the workspace dirgcdbucture needs to look like:

codebook
distancesNNSets
photos
representation
thumbnails

tmp

classNames. txt

The classNames.txt file should contain a comma-separateof Iclass names in a single line,
like for instance:

Danaus plexippus,Heliconius charitonius,Heliconius erato, Junonia coenia,
Junonia phlaeas, Nymphalis antiopa, Papilio cresphontes, Pieris rapae,
Vanessa atalanta, Vanessa cardui

The codebook directory stores the codebook used to gerikesg@antized image representation
that is being analyzed. This is used for feature assessmdrig aot necessary otherwise. Two files
are to be stored in the directory, codebook.txt and codePaifite.txt. Both of these files are loaded
manually by the user from the drop-down menu in the Ul. Thdditenats correspond to Hub Miner
codebook and codebook profile file formats and are quite simphe codebook file has a single
header line like: "codebook_size:400", indicating thegizthe vocabulary, in this case 400. What
follows afterwards is (in this case) 400 lines, each lineegwonding to a single codebook vector,
comma-separated. As for the codebook profile file, on theHater line it has a single number,
also 400 in this case. This is followed again by 400 linesheacresponding to the class-conditional
occurrence profile of the respective codebook vector (sotimeber of items in the line equals the
number of classes in the data), comma-separated.

The distancesNNSets directory contains a sub-directargdch metric that the users exper-
iment with. It can be empty in the beginning, as Image Hub &gyl can automatically calcu-
late the distance matrix and tié&N sets. If the users have them pre-computed, they can also be
loaded if placed in an appropriate place in the directonycstire. For instance, the directory dis-
tancesNNSets\distances.primary.CosineMetric conthmslistance matrix for the cosine distance

http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/
http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/

62 CHAPTER 9. IMAGE HUB EXPLORER

and the associateeNN sets. The two files follow the standard distance matrix AN set file
format in Hub Miner. Interested users can easily discerrsgiezifics from the corresponding 1/O
classes. However, unless the users want to load their oweindiss and neighbor sets, this is not
necessary. It is system-internal.

The photos directory contains the actual full-size photeghe appropriate class directories.
The same goes for the thumbnails directory. In case of thed batterfly dataset, this is the class
directory structure:

DanausPlexippus
HeliconiusCharitonius
HeliconiusErato
JunoniaCoenia
JunoniaPhlaeas
NymphalisAntiopa
PapilioCresphontes
PierisRapae
VanessaAtalanta
VanessaCardui

Make sure that the directory names correspond to the classsiprovided in the classNames.txt
file.
The representation directory has two sub-directorieplémafs:

raw_representation
quantized

The raw_representation directory contains the raw featextracted from the images. The
directory structure is the same as with photos or thumbmtiitctories, image feature files are
contained in the corresponding class directories. Theesysupports both OpenCV and SiftWin
feature file formats. In case of SiftWin, it is one file per irragn case of OpenCV, one keypoint
*.kp file and one descriptor *.desc file. Based on the extendle system invokes the appropriate
load mechanism.

The quantized directory contains the actual quantized @megresentation to use in Image Hub
Explorer exploratory analysis and visualization. A singRRFF file is expected here and it will be
loaded regardless of its name.

9.2 VISUALIZATION AND INTERACTIVE ANALYSIS

Image Hub Explorer has four main screens: Data OvervievgOlgew, Neighbor View and Search.
The Feature Assessment panel can be invoked for indivichedés through the menus above.

9.2.1 Data Overview Screen

The Data Overview screen gives a high-level overview of @ dnd its main properties under the
current feature representation and metric.

The Projection Panel shows a 2D visualization of the image alad allows the users to browse
through the central data points. The projection is curyesthieved by multi-dimensional scaling
(MDS) [BGOE]. An example can be seen in Figlre 9.3.

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 63

Collection Melric Leaming Edit Codebook Classification Selected Image

J Data Ovenview | Neighoor View | Class View | Searcn |

4| Workspace: KiDataMining\Ws_EXPLOR
Collection size: 832

Num. Classes: 10

Hubness-related properties

Occ. Skewness: 278 Hubs 005
Occ Kuttosis: 1192 Orphans: 022
Nk Entropy: 158 Regular. 0.73
RNKEntropy 094 WajorDeg: 70.0
NKEnt Skew: 158

RNKENt Skew. 0.94 Wisiabel perc: 0.63
PercNk)>0 078

Neighborhood size (k): CurrentImage

R T lpnotosivanessscarauno10_00s1 g #
0 5 10 15 20 25 30 35 40 45 50 | (P ||

<

Occurrence Frequency Distribution ‘

150

100

s0
] —

Figure 9.3: The Data Overview screen of Image Hub Explorésuaizing the major image hubs
via multi-dimensional scaling.

After calculating the neighbor occurrence frequenciesalbimages, a fixed number of hub
images is displayed in the Projection Panel. Only the mdkténtial images are shown, those that
have the potentially highest impact on system performance.

The background landscape is calculated based on the agwadand bad hubness of different
regions in the projected feature space. The green coloegponds to good hubness and the red one
to bad hubness. The landscape is generated in two steps.r3tesdp is a sort of a Gaussian blur
as implemented i [FGMO05] and the second step is a two-pasblba For more details on how
the landscape is calculated, see [TM14b].

One such landscape is generated for each neighborhoo#,ss&eit depends on good and bad
hubness that ark-dependent quantities. The users can usestiger-selectorfor neighborhood
size to quickly change among differdatalues and observe the differences in all quantities and al
tabular views of the application.

All images are shown within the frames that are colored alingrto their class. This makes
distinguishing between different classes easier for sdigfilayed thumbnails in various screens.
All images are selectable by a simple mouse click.

9.2.2 Class View

The Class View (Figure914) enables the users to inspeerdiit classes separately. A comparison
of class-specific point type distributions [NS$12] oftenaals why some classes are more susceptible
to misclassification in the current metric and feature repnéations. Lists of major good and bad
hubs are also computed and shown to the user.

Some pairs of classes are more difficult to distinguish ththers and this can be observed in
the class-to-clask-neighbor occurrence matrix, which is shown on the right sitithe Class View.
The cells in the table are colored according to the type ateahgity of the pairwise interaction. Red
cells mark the principal gradients of misclassification.

64 CHAPTER 9. IMAGE HUB EXPLORER

Collection Metric Leaming Edit Codebook Classification
[Data Ovenview | Neighbor View [Glass View | Search |

oS O
Class Distribution q
Danaus plexippus
100 | -

Heliconius erato

Size
w
g

Junonia coenia
D.. He.. He

Category

Point Type Distribution

z L
E \photosiHeliconusCharitoniusi002_0017.jpg

| Dan._ | Heti.. [Heii. | Jun_. | Jun. | N

safe border... rare outier

Figure 9.4: The Class View of Image Hub Explorer: Examiningnptype distributions and centers
of influence for each class separately.

9.2.3 Neighbor View

User can quickly pinpoint the critical subsets of hub pointthe Neighbor View. An example is
shown in Figuré¢ 9J5.

|| Collection MetricLeaming. Edit Codebook Classification Selecled Image

[Data ovenview [nveighoor view | Class view | search |

oceurrence profile

Helico

@ Danas plesiopus @ Helionius chartorius
& Heliconius eralo ® Junoria coenia

@ Junoia phlsezs @ | ymphas antiopa

& Paplo cresphontes Pierisrapae

|® Vanessa atalarta © Vanessa cardui

Seledted image neighbor occurrence profile

Remave All Remove Sel. ‘—

I s] i J e J "lpnomﬂ]anausF'\smppuﬁ\l)m_ﬂmﬁ g
|
NNs: :
|
RNNs |

Figure 9.5: The Neighbor View of Image Hub Explorer: Expharithe nearest neighbor (NN) and
reverse nearest neighbor (RNN) lists and visualizing |&d&8 subgraphs.

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 65

Any selected image can be inserted into the local visuakizdxyraph of th&NN graph of the
data. The visualization is automatically updated in casehahges in neighborhood size selection.
It is possible to batch-insert all the neighbors or reversighbors of the selected image. The
weights on the edges correspond to the distance betweealdutesi points in the selected metric.

In order to be able to decide whether to include the currdetten in the view, its neighbor
occurrence profile is shown in the upper right corner, as aglihe lists of direct and reverge
nearest neighbors.

The Neighbor View helps in visualizing the influence of hubnp®, as shown in Figuie 9.6,
where one bad hub image is shown, along with a set of its rekengarest neighbors. In this case
the Artogeia rapaeémage that is shown in the middle acts as a neighbor only totpdhat are not
from its own class (species), which is obviously detrim&tat&aNN-based analysis. The comparison
between two differentfeature representations reveal$ttbanfluence of images changes drastically
when the underlying feature representation changes. fibissthat the induced pseudo-relevance
of images does not correspond well to their actual relevanttee considered semantic context.

(a) SIFT (b) SURF

Figure 9.6: An example of a bad hub in the quantized SIFT featepresentation, a detrimental
center of influence. Neither of the reverse neighbors of glecsed image belongs to the same
class as the image itself, so its occurrences induce latsshaiches and are semantically inconsis-
tent. The same image has an equally inconsistent occurpzafike in the quantized SURF feature
representation, but it is not a hub there, as it does not ogeyr often. On the other hand, the
displayed image never occurs as a neighbor in the quantiRéBmBfeature representation, for the
same neighborhood size bf= 5.

66 CHAPTER 9. IMAGE HUB EXPLORER

9.2.4 Feature Visualization and Assessment Panel

Not all features are equally informative and it is possildaeise Image Hub Explorer for feature
assessment in quantized feature representations. Wittaige Hub Explorer, users can inspect
individual visual words and their class-conditional oceuce profiles, that are displayed in form of
pie charts. More importantly, Image Hub Explorer offers agbility to visualize the distribution
of informativeness on each image individually. For detaitshow this is actually calculated, see
the original papel [TM14b].

Figure[9.7 shows an example of feature informativenesslimtion in an image. The green
color in the informativeness landscape is used to denoterregvith high discriminative informa-
tion content and the red one for the regions that do not dmriito object recognition.

(a) Aregularly displayed selected image. (b) An overall visualization of the critical feature re-
gions.

(c) A visualization of a single visual word, one that
is most beneficial for object recognition of this image
type.

Figure 9.7: Individual visual words are displayed on tophefselected image and colored according
to their overall usefulness and semantic consistency. féijss in identifying the critical regions in
the images, those that contribute to making good classdigins and those that represent textural
patterns that might occur in many differentimage classes.

Figure[9.7 shows how the feature assessment and visuatizatmponents works for SIFT fea-
tures in case of recognizinBanaus plexippusutterfly specimens. The textural regions around
the black veins on the butterfly’s wings are judged to be thstrimformative by the system. This
is indeed a highly distinctive feature of the particular@ps. Similarly, forHeliconius charito-
niusthe system determines that the white stripes on otherwasek tdutterfly’s wings carry highly

9.2. VISUALIZATION AND INTERACTIVE ANALYSIS 67

discriminative visual information.

9.2.5 Search and Ranking

It is possible to use Image Hub Explorer for querying the imdgtabase. This is currently set
up to work with SIFT features. SIFT features are extractedtfe query image and a histogram
representation is formed. An overview of the search incarfa shown in Figurie 9].8.

| | Tmage Hub Explorer i i i [L5 e o]

Collection Metric Leaming Edit Codebook Glassification

| Data ovenview | neighoor view | Ciass view [Searcn

Do you want to search the image collection? Here is alist of most similar results Predicted class for k= 10;

Browse Selectiram collection Re-rank
<Y

lphotosUunoniaCaenial04_0043 jpg

You can also search with a textual query.

~ Enterfext—

il SEARCH

Figure 9.8: The Search screen of Image Hub Explorer. Aparhfsupporting the basic query
functionality, the system offers label suggestions basethe output of severaINN classification
models, as well as a hubness-aware secondary re-rankiogdare.

In order to use this function, the codebook needs to be loadddSiftWin needs to be in the
system path, as well as ImageMagick, for JPG to PGM convesior to SIFT extraction.

The search panel also makes an attempt to predict the lakibleaimage query, based on
severalk-nearest neighbor models trained on the loaded images: E¥%$1], FNN [KGG85],
NWKNN [Tan05], AKNN [WNCO7], hw-kNN [RNI0O9], h-FNN [TRMI1Z&], HIKNN [TMI12b]
and NHBNN [TRMI114]. This allows the users to compare hoviedént classification approaches
handle certain types of points, in order to select the mgataiate approach for future deployment
in the IR/OR system.

It is also possible to re-rank the images based on a recertiyoped hubness-aware self-
adaptive secondary re-ranking method [TLM13]. This prazectan improve the semantic con-
sistency of the results and move the images from the samedtaser to the query.

Ten

Overview of Hub Miner Packages

10.0.6 configuration

This package contains the classes that represent the catfigufiles for Hub Miner's experi-
mentation framework for classification, clustering andlerqtory hubness-related statistical data
analysis. The configuration classes are BatchClassifidig;datchClusteringConfig and Batch-
HubnessAnalysisConfig.

The experimental configuration classes contains 1/O metfadparsing configuration files, as
well as serializing/deserializing the configuration imf@mtion to/from JSON.

10.0.7 data.generators

The data.generators package contains the logic for auimatiatgenerating synthetic datasets for
experimentation. All generators are to implement the DateBator interface that contains the
methods for generating an array of float or integer valuesdaa some underlying protocol.

It is possible to combine multiple generators for genegpinsingle dataset, as enabled by
MixtureOfFloatGenerators class.

The data.generators.util subpackage contains severataterimplementations that were used
for generating some data in our past experiments.

Apart from the generators, there is also the BasicGaussitasBtExtender class that builds a
Gaussian model for each category in the data and extendsgxdsita by generating synthetic data
instances.

10.0.8 data.imbalance

The initial implementation of the data.imbalance packagetains a script for analyzing class-
imbalanced data and also evaluating the performance of smplemented hubness-aware tech-
niques on such data. Hubness-aware metric and hubness-elassification algorithms are com-
pared, in several regards. A detailed comparison of thetpge (safe, borderline, rare, outlier)
distribution is given for each employed metric and algantbrecision.

Hubness-aware methods work very well on class-imbalancedh-dimensional
datasets[[TM13a]. More types of analysis of the class imizaaproblem from the perspec-
tive of high-dimensional data classification are therefgoing to be introduced in future Hub
Miner releases.

10.0.9 data.neighbors

This package deals with the extraction éfnearest neighbor sets and their analysis in
high-dimensional data. It also has two sub-packages, rdatdbors.approximate and
data.neighbors.hubness.

69

70 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

NeighborSetFinder is one of the most used classes in HubrMirentains a simple implemen-
tation of exactt-nearest neighbor set calculations and can be extendedé¢med or approximate
implementations. No index is used by default, since it ifiaift to set up universally good NN-
search indexes in very high-dimensional data and alsordifféndex structures might be preferable
in lower-dimensional datasets or different data domainsighborSetFinder class therefore offers
the 'vanilla’ implementation fok-nearest neighbor set extraction and should be extendeddor
efficient extractions in cases when a better approach is know

Apart from extracting thé-nearest neighbor sets, NeighborSetFinder objects dtera ind
store some basic statistics. There are methods for ingthi@ class-conditional occurrence prob-
abilities for the neighbor occurrence models, as well ashous for generating hubness-based
weighting that is used in multiple places in the library. As#NN search itself, NeighborSetFinder
can also perform tabu-search, where some instances arensitlered as neighbors.

NeighborSetFinder objects implement the logic for varyting neighborhood size and taking
sub%NN sets, calculating their stats and producing new objectspiresent the restricted informa-
tion.

NeighborSetFinder object is the main unit for sharidN information between algorithms in
Hub Miner.

SyntheticKNNExtender is a class that can be used to extendata with some synthetic exam-
ples in order to better estimate the neighbor occurrencgiénecies of the given data points.

NeighborSetUserlInterface declares methods for settidggatting NeighborSetFinder objects
and is used to set tHeNN information to all algorithms that require it during céfgcation, cluster-
ing or instance selection.

The data.neighbor.approximate.AppKNNGraphLanczoslise class implements approxi-
mate kNN set calculations based on recursive Lanczos bisectindshas been used for testing
the robustness of hubness-aware approaches to approxinidtsets.

10.0.10 data.neighbors.hubness

This is the package with exploratory methods for estabighhe level of hubness in high-
dimensional data and uncovering important properties efitmearest neighbor occurrence fre-
quency distribution and thie-nearest neighbor graph in general.

BatchHubnessAnalyzer is a class that enables batch-amalysubness across many datasets
over a range of neighborhood sizes, for the specified metitcgperates based on the provided
configuration file. More details on this have already beeemym the previous chapters. There is
also the MultiLabelBatchHubnessAnalyzer, for datasetis multiple classification tasks defined on
them, so that all the distances and neighbor sets are omlylatdd once for each data representation
and then different label assignments are considered in turn

BucketedOccDistributionGetter can be used to obtain adiatn of the neighbor occurrence
frequency distribution.

HubFinder can be used to quickly output a list of hubs in thea,deased on the calculated
k-nearest neighbor sets, for the desired neighborhood size.

HubOrphanRegularPercentagesCalculator calculatestitemages of hubs, anti-hubs and or-
phans, as well as regular points, among the training data. higher the hubness in the data, the
lower the percentage of regular points.

HubnessAboveThresholdExplorer is similarly used to arathe percentages of points above
or below some pre-defined neighbor occurrence frequeneghiotd. This is especially useful for
estimating the influence of anti-hub handling strategiesame hubness-aware implementations
that contain a special anti-hub handling case for a specHi@shold value.

71

HubnessExtremesGrabber is similar to HubFinder. It catesland returns a pre-defined num-
ber of most frequent neighbors, over a range of neighborkaed. The difference is that this list
does not necessarily contain all hubs in the data, but itccoahtain something like top-5 hubs.
Also, if the specified number of points to return is large egtguisome non-hub points might be
contained as well.

HubnessSkewAndKurtosisExplorer calculates the third Bmdth standard moment of the
neighbor occurrence frequency distribution (skew anddsis) in a batch way, over a range of
neighborhood sizes. Similarly, HubnessVarianceExploataulates the variance of the occurrence
frequency distribution over a range of specified neighbodsizes.

KNeighborEntropyExplorer calculates the average entmfply-nearest neighbor sets and the
average entropy of the revergsenearest neighbor sets. This helps with estimating the sgma
consistency of the direct and revelsaearest neighbor relation.

TopHubsClusterUtil implements the methods for batchdaling the diameters and average
intra-cluster distances of top hub clusters over a rangesigfhiborhood sizes. This enables us to
determine how compact the hubs in the data are, whetherthejl @lose to each other or dispersed.

The data.neighbors.hubness.experimental sub-packggenmants several experiment scripts
that reflect what can be done with the exploratory hubnesadwaork. GaussianHubnessLocal-
izer was used to determine the correlation between poisé-Wwubness and local cluster centrality
in intrinsically high-dimensional Gaussian data. Thisuglier extended in the MultiGaussianLo-
calityExplorer. The two HubnessRiskEstimator classesewssed to determine hubness risk over
multiple samplings from the same underlying distribution.

The data.neighbors.hubness.util sub-package offers smone exploratory scripts, for quickly
getting the neighbor occurrence frequency arrays, revesiggbor lists or frequent neighbor pairs
on output.

The data.neighbors.hubness.visualization package msies several default ways for visualiz-
ing hubness in synthetic and real-world data, as well asifi@sperformance under hubness. Some
examples are shown in Figure 0.1 and Figure]10.2, thoudgrelift types of visualizations are also
possible and implemented in the corresponding classes.

The point of the 3D visualization in Figute 10.1, apart frdrjust looking awesome, is that it
is very difficult to give illustrative examples in 2D, since hubness can be observed in 2D as the
maximal neighbor occurrence frequency is geometrically wenstrained. Well, it's not like 3D
is much better, but it might be somewhat easier to see someeqgaences of hubness visualized
there when projecting the original spaces via MDS or PCAcesimore of the original structure
is preserved. Visualizing data in high-dimensional spasesever easy, so any help is welcome.
As for Figure[10.P, it shows some basic ways of visualizing ¢émerging hubs in the data with
increasing dimensionality and the distribution and lazzgtion of neighbor occurrence frequency.

10.0.11 data.representation

This package contains all data representation classestiviher. It implements the basic support
for dense, sparse and discretized data instances andtdatsleee details on each of these can be
found in Chaptel16.

DataSet and Datalnstance classes are the basic data holdeigh Miner and are used
throughout the library. DiscretizedDataSet and Disceglizatalnstance objects from the
data.representation.discrete package are the disaetemsions of the default data holders and
are used for algorithms that operate on discrete values alug vanges, such as decision trees.
The data.representation.discrete.transform sub-packagtains the discretization methods. The
data.representation.sparse sub-package contains B@®&aand BOWInstance classes that are

72 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

(a) zy-negative direction, first class. (b) zy-negative direction, third class.

(c) zy-positive direction, third class. (d) zz-negative direction, first class.

Figure 10.1: Visualizing HIKNN prediction landscape in U@&hicle data, in 3 dimensions. For
each class, two views are generated for each axis, one farséde of the cube that contains the

projected data.

used for representing bag-of-words sparse data. The ejatasentation.images package holds
classes used for representing quantized image data, SHelrés, as well as color histograms.
While these image representations could easily by put healefault representational framework,
there are some benefits to constraining the structure aedtasing that it conforms to the defined
image representation.

73

(a) Single clusterd = 3,k = 1.

(b) Single clusterd = 100, k = 1.

(c) Multiple clustersd = 5, k = 100.

Figure 10.2: Basic hub visualizations where node size spmeds to the neighbor occurrence fre-
quency. When comparing the two given single-cluster sytittlfizaussian examples, consequences
of high data dimensionality become apparent, as a small raofldominant hub points emerge.

74 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

10.0.12 data.structures

This package is meant to contain all the auxiliary data stines that are used in Hub Miner imple-
mentations. Currently it holds a K-D tree implementatidwill be extended in future releases.

10.0.13 dimensionality_reduction

Dimensionality reduction is commonly used in high-dimensil data analysis and this package
offers two standard approaches to dimensionality redaetincipal component analysis and ran-
dom projections, which are implemented in the Principal@onentAnalysis and RandomProjec-
tion classes, respectively.

10.0.14 distances.primary

The most important class to note in the distance.primarkageis CombinedMetric. Data in Hub
Miner can have float or integer features - and this combineticrebject allows us to use different
metrics for integers and floats and combine them in some suwagrtinitially this was implemented
to also consider nominal features, but has been simplifistiénmeantime and it is, of course,
possible to extend the class in the future, if needed for sonerete applications and projects.

The remaining classes in this package are all distance mesathiat can be applied to integer and
float parts of the feature representation. There are manyasnat the package, standard metrics and
less standard metrics. Users can find anything from Euclidea Manhattan, Canberra, Tanimoto
or Bray-Curtis to symmetrized Kullback-Leibler divergencThere are also two dummy metrics
(placeholders) for some metrics that we have used in pagqiso namely dynamic time-warping
and Mandel-Ellis. The purpose of these placeholders is ¢dhsm when loading the appropriate
distance type externally. Dummy metric objects will beialized, but external distances will be
used instead. In future releases, an implementation wabably be included for these, at least for
DTW. So, stay tuned.

10.0.15 distances.secondary

Secondary distances are a metric learning approach tondewlith high hubness in intrin-
sically high-dimensional data and this package implemesigeral state-of-the art secondary
similarity/distance approaches. Local scalihg [ZmPO4ICDIM [JHSO07] and mutual proxim-
ity [SESW12] are implemented in distances.sparse dnttos; and simhub, [TM12d][TM14é]

in distances.sparse.snd, though the shared neighbohsetselves are calculated via the Shared-
NeighborFinder class in data.neighbors.

10.0.16 distances.sparse

This package contains the SparseCombinedMetric classtinetsponds to the CombinedMetric
class in distances.primary. It is an extension of that ¢classt combines distances calculated on
dense and sparse parts of a data representation. The paalkageontains implementations of
standard metrics, for sparse data.

10.0.17 distances.kernel

Kernels allow for non-linear types of learning to be perfedmand Hub Miner offers a wide

spectrum of kernel functions to use in data analysis andilegr The classes in this package
include ChiSquaredKernel, ANOVAKernel, CauchyKernel,pBrentialKernel, GaussianKernel,
MultiQuadraticKernel, RBF, PolynomialKernel, Sigmoididel - and many others.

75

10.0.18 distances.concentration

The class ConcentrationCalculator can be used to examstende concentration in the data. Dis-
tance concentration is related to hubness and is yet anasperct of the well known curse of di-
mensionality. This class implements methods for caloadptlistance mean, variance and relative
contrast, es well estimating the intrinsic dimensionadityhe data.

10.0.19 distances.analysis

MetricsAnalyzer class in this package implements two ingrarmethods for evaluating new dis-
tance measures, including the newly proposed secondagndes measures. Some of these pro-
posed distances are actually pseudo-metrics in a sensthéhtatangle inequality might occasion-
ally be breached. One of the methods in this class calcullaéepercentage of triangle inequality
breaches. Another method calculates the Goodman-Kruskelocdance index that enables the
users to estimate how concordant the distances are wer¢ldbses in the data.

10.0.20 draw

Hub Miner contains some visualization and data exploratiomponents and the draw package
contains some of the basic building blocks used in thoselimations. This includes the BoxBlur
class that is used in MDS landscape calculations in Imagetkporer, as well as RotatedEllipse
used in SIFT feature cluster visualizations. PieRenddassdn draw.charts enables easy drawing
of pie charts in Hub Miner.

10.0.21 feature

This package implements classes that enable basic featalgagon and assessment. The fea-
ture.correlation package contains implementations ofdd@maand Spearman correlation coeffi-
cients, as well as distance correlation. For discrete feafuhere is Mutuallnformation class in
feature.correlation.discrete. The feature.evaluatamkpge contains information gain (IG) and gain
ratio (GR) implementations. ApplyWeights class in featweghting makes it easy to apply feature
weights to a DataSet.

10.0.22 filters

Sometimes it is necessary to apply a transformation to aSgatand this is what the filters package
is for. It currently offers some basic filtering implemeinat, like TF-IDF (term frequency - inverse
document frequency), shuffling and sub-sampling.

10.0.23 graph

Hub Miner offers some basic support for working with grapted&presentations, as hubness anal-
ysis is in fact based on working withrnearest neighbor graphs, even if mostly implicitly by ddns
ering the node degree distribution. A simple graph reptasen is available in graph.basic, in DM-
Graph, DMGraphEdge and VertexInstance classes. Somedragib properties can be derived by
applying methods from GraphGeodisic and GraphStatistigsaph.calc sub-package. Node place-
ment for visualization can be deduced by using several ndstfrom graph.drawing, implemented
in the following classes: BarycentricCoordinateFindé&rJoordinateFinder and RandomCoordi-
nateFinder. PajekFormatlO class in graph.io allows thesuseexport DMGraph objects into Pajek
data formatittp://pajek.imfm.si/doku.php?id=pajek). Since Pajek is a well-known
environment for graph/network analysis, this means thadt Miner users will be able to delegate
some of the analysis to Pajek, in case more than what is diyri@railable in Hub Miner itself is

http://pajek.imfm.si/doku.php?id=pajek

76 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

needed. Indeed, many types of analysis could be conductéehearest neighbor graphs in high-
dimensional data and are looking forward to seeing moredstang results in the future. Selecting
subgraphs or calculating the connected components ishp@dsi invoking methods implemented
in classes from the graph.subgraphs package.

10.0.24 gui.images

Image Hub Explorer[[TM13d][TM14b] is a great tool for expddion of hubness in high-
dimensional data. Its primary purpose it to be used for amadydifferent quantized image feature
representations, but it can also be applied to differerd tigtes. For details, see Chadiér 9. It
allows for experimentations with feature representatammetrics and enables the users to study
the consequences of their choices in great detail.

Apart from Image Hub Explorer, gui.images package contavwodasic image handling GUI-s.
ImageCollectionHandler allows for batch SIFT feature astion via Siftwin, followed by code-
book calculations via K-means clustering and quantizatiorageManipulator allows for visualiz-
ing SIFT feature clusters in images, as well as visualiziRliylSsegmentation. A partial example is
shown in Figuré10I3.

(a) SIFT features in the image, clustered. (b) SIFT features in the image, represented as ellipses.

Figure 10.3: Visualization of SIFT feature clusters in Iradganipulator. SIFT features on an
image are clustered and the clusters are drawn in diffe@ots Clusters can be represented as
ellipses, where the axes follow the principal componenth@tlusters.

10.0.25 gui.maps

Hubness can sometimes be exploited for semi-automatic alyatatection and gui.maps shows an
application of hubness analysis for anomaly detection Eaoographic sensor data. Hub points
with spatially inconsistent profiles were marked as potdigtianomalous. The GeospatialSen-
sorHubnessDrawer Ul has then been used to generate imggesearting the anomalous sensor
locations, with node size being proportional to the hubiéise measurement arrays. An example
is shown in Figuré10]4.

10.0.26 gui.synthetic

Visual2DdataGenerator class can be used for manually gtngr2D datasets, as examples for
application of some data mining and machine learning methdtds possible to either insert the

77

.........

;;;;;;;;;

¢

(a) Wind speed anomalous hub measurements. (b) Water temperature anomalous hub measure-
ments.

Figure 10.4: Visualization of spatially inconsistent anatgmtially anomalous hub sensor mea-
surements via GeospatialSensorHubnessDrawer. The sedhasode corresponds to the spatial
inconsistency.

points manually or to insert a sample from a Gaussian digtdb of specified mean and variance.
After insertion, it is possible to generate images of priacierformance of different classification
methods on the generated data. An example is shown in Hi@uiie 1

It can be seen that hubness-aware approaches generatdienmobability maps in borderline
regions between different classes and that they are lese piooover-fitting in presence of label
noise.

10.0.27 images.mining

This package contains the basic logic for handling quadtizeage feature representations. Code-
book calculations are done by classes in the images.maudgbook sub-package, either for SIFT
or generic codebooks. There is also logic for calculatimgtlual word entropy distribution. Class-
conditional codebook occurrence profiles can be calculagesging the CodebookProfileCalc class
in images.mining.calc. Average colors in neighborhoodseatain points can be calculated by
AverageColorGrabber within the same package. In imagesmclustering, there are some ex-
perimental classes that aim to optimize inta-image SIF§teling by optimizing the coefficients
so that they conform to SRM image segmentation as much agfms$he remaining classes in
images.mining are utility classes for quick data procegsin

10.0.28 ioformat

Hub Miner operates with various data formats for dealindhriiput data and intermittent results.
Classes needed to properly load and store all such datecatethin the ioformat package. IOARFF
class is used for dealing with ARFF data formats, dense aagsplOARFFDiscretized saves and
loads discretized datasets in ARFF-like format, specifieltdo Miner. IOCSV is used for saving
and loading CSV files. SupervisedLoader combines all datdddin a single interface and attempts
to automatically guess the underlying data format durirgdiad.

78 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

(d) kNN probability map, with label noise.

(e) HIKNN probability map, with label noise.

Figure 10.5: Probability maps inferred frotNN and HIKNN on synthetic data, fdf = 5. Each
pixel was classified by the algorithms and assigned a prbtyalmlue of belonging to each of the
two classes. Visualization was generated by Visual2Ddata@tor from gui.synthetic package.

FileUtil class implements some ultility file methods, like fostance creating a file in a path that
does not yet exist. The method then recursively goes up thiesah path hierarchy until it finds an
existing directory and generates all the directories imvken, including the target file.

DistanceMatrixIO includes methods for distance matrivesavd load. Distance matrices in Hub
Miner are represented as upper triangular matrices, salalyart above the diagonal is stored into
the file. Each consecutive row is therefore one item shorter.

In ioformat.images, there are various utility classes famdiing image data, embedding some
frequently invoked functions. This includes the Thumbiaiker, ImageFromRaster and SiftUtil.

79

Users can automatically summarize their experiments bgkimg the BatchStatSummarizer
class from ioformat.results on the command line. This dessitomatically invoked at the end of
the experimental run of BatchClassifierTester.

Most researchers prefer to use LaTeX for preparing theimésgions to journals and confer-
ences and Hub Miner contains some basic result summarizipghdlities for automatically gen-
erating LaTeX result tables for classification accuracypdrticular, LatexTableClassificationSum-
marizer and InstanceSelectionLatexTableSummarizereaséd to this end. In case the users need
additional flexibility, they are free to either extend théséing framework or request certain updates
in the future.

10.0.29 learning.supervised

Category and DiscreteCategory classes represent casgoiihe data and refer to collections of
Datalnstance objects and DiscretizedDatalnstance abjezspectively. Classifier and Discrete-
Classifier are abstract classes that classification atlgniiinplementations need to extend.
Several interfaces that allow for experimental optimizasi in terms of requesting certain ob-
jects from the environment are available in learning.suiged.interfaces. These include DistMa-
trixUserlnterface for algorithms that require distancenmas on the training data, NeighborPoints-
QueryUserlInterface for algorithms that riNN queries of test data against the training data, etc.

10.0.30 learning.supervised.evaluation

For details about running experimental evaluation in Huméwi see Chaptdr] 5. The learn-
ing.supervised.evaluation package contains classesntiptgdment most of the logic behind clas-
sifier evaluation. ValidateableInterface declares mettibdt classes need to implement in order to
be eligible for evaluation in the framework. Classificaimtimator calculates and stores the classi-
fier performance metrics and the confusion matrix. ClagBifieametrization deals with listing and
setting parameter lists and parameter-value maps forfitas®on algorithms.

CVFoldsIO is responsible for loading and saving data sfitsll iterations. ExternalExperi-
mentalContext holds distance matrices &htN sets to be used by algorithms in MultiCrossValida-
tion while performing grid search over specified environtpgarameter ranges. The stored objects
are the primary distance matrix and prima\N sets. Secondary distance matrices are training
split dependent and are calculated within MultiCross\4tiimh. The same goes for secondaNN
graphs. Distance matrices previously calculated for theesdata under the same feature normaliza-
tion scheme are loaded from the disk. BatchClassifierTéstates over the environment parameter
ranges and invokes cross validation runs in each tested case

10.0.31 learning.supervised.meta

This package contains an implementation of AdaBoost.M&edlsas boostable hubness-aware base
classifier implementations. Boosting does not always iwgitwbness-aware classification, but it
can potentially lead to classification performance improgats in intrinsically high-dimensional
data.

10.0.32 learning.supervised.methods

Since the main focus of the library is on evaluating the cqnsaces of hubness in the data, most
of the available classifiers are different typeskehearest neighbor classifiers. However, other
standard baselines are also implemented, for comparisémsthose baselines that are not cur-
rently supported, statistically correct comparisons arssjble via OpenMLKttp://openml.
org/)[VRBT"13].

http://openml.org/
http://openml.org/

80 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

As for kNN methods, this package contains many methods, includii¢N [FH51], dw-
ENN, PNN [HA02], FNN [KGG85], NWKNN [Tan05], CBWKNN [[DP13], ANN [WNCO07],
hw-kENN [RNI09], h-FNN [TRMI13a], dwh-FNN [[TRMI13a], HIKNN [TMZ2b], nondw-
HIKNN [TM12b], NHBNN [TRMI11a], ANHBNN [TM13b], RRKNN [TM14b]. These imple-
mentations include both the recently proposed hubnesseagwaearest neighbor classification ap-
proaches as well as some standard and less standard huineessrekNN baselines.

Apart fromk-nearest neighbor classifiers, Hub Miner offers some otfa@idsird classifiers like
Naive Bayes, OneRule, KNNNB, LWNB, ID3 decision trees anbust stochastic learning vector
quantization (RSLVQ).

10.0.33 learning.unsupervised

Clustering configurations in Hub Miner are often represeai® integer cluster assignment arrays,
but there is also the Cluster class that contains a list abiad belonging to the cluster and imple-
ments many useful methods that make cluster processingressithat clustering configurations

are often also presented as Cluster lists or arrays. Famast within the Cluster class, there are
methods for calculating the cluster diameter, the averaga-cluster distance and the centroid.
ClusteringAlg class is an abstract class that the clugierigorithm implementations are to extend
in order to be properly handled within the experimental fearark.

10.0.34 learning.unsupervised.evaluation

The class responsible for running the clustering experimisrthe BatchClusteringTester that runs
a grid search over a batch of datasets for a list of clustalggrithms in a multi-threaded way.
An automated approach for determining the optimal numberiudters in cluster range tests is
available in LMethod implementation of the well known L-retl approach for finding a ’knee’ in
the clustering quality index curve over the cluster numbege [SC04]. BasicClusteringEvaluator
is also available for initial testing of new implementaton

The learning.unsupervised.evaluation.quality sub-pgelcontains implementations of various
clustering quality indices. It is possible to evaluate thgulting cluster configurations by any of the
following classes: QIndexClIndex, QIndexDaviesBoulditndexDunn, QindexGoodmanKruskal,
QIndexlsolation, QIndexJaccard, QIndexRS, QIndexRarldd&€xSD, QIndexSilhouette. All of
these classes extend the ClusteringQualitylndex classm@iConfigurationFinder helps with find-
ing the best cluster configuration over multiple runs.

After the clustering has already been performed, it is fpbs$0 improve the final assignments
by performing clustering refinement. PantSAStar algorithravailable for cluster refinements in
learning.unsupervised.refinement [[ER10].

Several one-off experimental scripts are included, likeifistance clustering in presence of
uniform noise. These scripts are included not only for eeproducibility, but also in order to
demonstrate how similar scripts can be put together by HuteMisers in their own experiments
for their own research purposes.

10.0.35 learning.unsupervised.methods

Many clustering algorithms are available in learning.peuised.methods package, though this list
is currently being extended by including even more impletaons.

Several K-means variants are implemented in this packageluding K-means, K-
means++ [[AVO7], K-means-pruning_[AIs98], Harmonic K-mear{ZhaOl], Kernel K-
means [[DGK04] and K-medoids. These partitional clustedapgroaches are commonly used
in practice and make for good baselines for comparisonsiwitte complex approaches.

81

DBScan [EpKSX9pg] is also implemented in the package, in otdenable users to perform
density-based clustering. Density-based methods do néorpe as well in intrinsically high-
dimensional data, though it is possible to use smarter jeesiimates and reach reasonable per-
formance.

Hub Miner also offers several recently proposed hubneseséeustering approaches for effec-
tive clustering in intrinsically high-dimensional datah@se approaches are mostly extensions of
the K-means partitional iterative framework and revolveusrd a recent observation that neighbor
occurrence frequencies tend to be highly correlated withlloluster centrality when clustering in
many dimensions. Therefore, hubs can be taken as protadypieg) the iterations or used to guide
the centroid search to more promising regions of the featpaee. In either case, this usually im-
proves clustering performance and has been shown to be muehrobust to noise and capable of
detecting the underlying structure of the data even in presef large quantities of noise.

The hubness-based clustering implementations in thisgugcknclude LKH, GKH, LHPC,
GHPC [TRMI11¢], GHPKM [TRMI13b] and Kernel-GHPKNL_[TRMI14] These algorithms do
not perform well in absence of hubness, but excel in highalesb data, contrary to standard clus-
tering approaches. There are more ways to exploit hubnetgstering and more new approaches
will be included in future releases.

10.0.36 learning.unsupervised.outliers

All outlier detection approach implementations extendahstract class OutlierDetector. The cur-
rently available implementations include the iterativestéring outlier detection, local outlier fac-
tor [BKNSOQ] and local correlation integral [PKGHO3].

10.0.37 linear

This package contains basic support for linear operatlorear subspaces and matrix decomposi-
tion. It also declares a DataMatrixInterface that allow tisers to implicitly represent other object
types as matrices, like DataSet objects, for instance.

10.0.38 networked_experiments

In order to support networked experiments via OpenMttp: //openml .org/)[VRBTT13],
this package implements classes and methods for connéct@genML services, requesting data
and training/test splits, registering implementationd aploading run descriptions and experi-
mental results. HMOpenMLConnector handles authentinasisues, DataFromOpenML holds the
fetched data about the number of splits, repetitions, itigiand test split indexes for all repetitions,
as well as the fetched DataSet from the ARFF stream. Clas&igstrationOpenML performs
implementation registration and fetches the implememnd® for the used algorithms. Classifica-
tionResultHandler deals with preparing the results fooagito OpenML, along with the meta-data.

10.0.39 optimization.stochastic

Stochastic optimization is a useful tool in various optiatian tasks and can also be used for data
mining, whether for clustering or feature selection oramste selection. Genetic and evolutionary
approaches have been successfully applied to these prebidghe past, in various forms.

Hub Miner supports several types of stochastic optimizagigorithms and these are available
in the optimization.stochastic package. Most of these@gugres revolve around the notion of solu-
tion fitness and a fitness function in Hub Miner needs to satis FitnessEvaluator interface that
is located in optimization.stochastic.fitness. Anothepamtant feature is the ability to mutate the
current solution or solution population into the next itema. Hub Miner includes several types of

http://openml.org/

82 CHAPTER 10. OVERVIEW OF HUB MINER PACKAGES

mutation operators and these need to satisfy the apprepnatation interfaces, like for instance:
MutationInterface, Recombinationinterface, TwoDevsMiaininterface, HeterogenousMutationIn-
terface.

In terms of stochastic optimization algorithms, severahdard approaches are available in the
optimization.stochastic.algorithms package. This idekisimulated annealing, hill climbing, dif-
ferent types of genetic algorithms, differential evolatand predator-prey particle swarm optimiza-
tion. Each algorithm is implemented in a separate class.

10.0.40 preprocessing.instance_selection

Instance selection is often used in conjunction viithearest neighbor classification. This has to do
with scalability, as well as sensitivity of the bagibIN classifier to noise, due to its high specificity
bias. Various prototype selection strategies can be usedder to filter out noise from the data
and/or reduce the size of the training set.

Several standard instance selection techniques are laeailin the preprocess-
ing.instance_selection package. All approaches extemdliistract InstanceSelector class. The
implemented approaches include ENN_[Wil72], CNN_[PE68], @C[CKCO06], RT3 [WM97],
AL1 [DH11] and INSIGHT [BNST11b]. Random selection is alsea#able, as a baseline for
comparisons.

All of the implemented instance selectors can be used frothinvithe batch classifi-
cation experimentation framework in BatchClassifierTested MultiCrossValidation in learn-
ing.supervised.evaluation.cv. They can be used limagaedand unbiasedmode, w.r.t. prototype
hubness estimation in hubness-aware classifiers.

10.0.41 probability

The probability package contains implementations of soaseckprobabilistic inference approaches.

A simple mixture model is available in the GaussianMixtuatdl class. It combines several
individual GaussianModel classes. Kullback-Leibler djence can be calculated via the KLDiver-
gence class. Perplexity class contains methods for caleglthe model perplexity on the test
data. NormalDistributionCalculator can be used for catiahs regarding the normal distribution.
VectorQuantization class implements methods for a vealantjzation approximation of the un-
derlying probability distribution.

10.0.42 sampling
Classes in the sampling package can be used to quickly sanepiiata.

10.0.43 statistics

The statistics package currently implements the logic fidcwdating distribution moments, fea-
ture variance and data covariance. CorrelationRatio dasde used to measure the relationship
between the statistical dispersion within individual gatées and the dispersion across the entire
data sample. The package also contains an implementatite aforrected re-sampléeetest for
statistical testing in cross-validation.

10.0.44 util

Many utility classes are grouped together in the util paekathis includes CommandLineParser
that is used for lots of command line parameter parsing ttrout the library. DataSetJoiner can
be used to quickly join arrays of DataSet objects. SOPLUti quickly print out arrays so it is

also very useful in de-bugging. HTTPUIil can be used for HTéguests. ReaderToStringUtil can

83

take a Reader and output a single String representing therdonvhich is very useful in JSON
parsing. AuxSort contains sorting methods that returnridex permutation along with sorting the
arrays and ArrayList objects. ArrayUtil implements thedinsearch on arrays, as well as min/max
operations and standardization.

The util fileFilters sub-package contains some commonditam filters for quick selections in
the file system.

The most important class in util.text is IncrementalNGrauitder that reads text and incre-
mentally generates the n-gram vocabulary and builds a septation for each newly processed
document or textual object.

10.0.45 visualization

This package contains the class that handles ViperCheaitsefr.ijs.si) API calls for visu-
alizing classification evaluation results, ViperChart@RIll. There are many visualization types
available and the users can specify any chart type that thejdiike to see.

viper.ijs.si

Eleven

Portability

Hub Miner is entirely implemented in Java and was developild Java 7, so Java 7 or newer is
required in order to properly build and run this project. flié paths in the code use platform-
independent file separators, so there should be no file systerific problems on different plat-
forms.

A small portion of image feature extraction specific codeugently tied to the Windows plat-
form, in cases when SiftWin is used for SIFT feature extmacnd when ImageMagick is used
for image type conversion for this particular extractiorhisTdependency does not affect any of
the major parts of the code and is not a requirement for rignaity of the experimental evaluation
frameworks in Hub Miner nor for performing hubness-awaradmalysis. This dependency will
soon be entirely removed by switching to a purely Java-basade feature extraction library and
increasing the support for OpenCV feature formats.

In the current release, it is possible to use Hub Miner foregeixpenting with hubness-aware
classification, clustering, metric learning and instanelection or for performing data analysis
and visualization, on all platforms assuming all Java ddpenies are stated and present in the
CLASSPATH variable. This makes for easy deployment andghdlity should not be an issue.

85

Twelve

Scalability

The implementation of Hub Miner's experimentation framekvavas made with speed in mind,
so algorithms were made to re-use and share certain typdgexfts like \NN sets and distance
matrices. There are also multiple internal optimizatimrsecondary distances and grid search over
a range of possible parameter values. This is further ingatdoy the multi-threaded experimental
design.

While the experiments on small-to-medium scale problemgjuite fast, it is not yet possible to
run Hub Miner on genuinely large-scale datasets that commandreds of thousands or millions of
examples. The bottleneck of most hubness-aware approexcteems of computational complexity
is thekNN graph construction on the training data. If the exadN sets are to be computed, storing
the entire distance matrix in-memory can also be quite feadme.

Hub Miner implements some initial support for large-scatpeximents in terms of a generic
fast approximaté&NN graph construction via recursive Lanczos bisectionsweéier, this is not
really enough and future Hub Miner releases (See Chapiteor@efails) are to include several
different approaches for scalaldBIN search an@&NN graph construction. Scalability is among the
top priorities in terms of future implementation work.

While large-scale problems are obviously quite challeggind important, Hub Miner is very
useful for dealing with another challenging issue: spaige-dimensional data. Small and medium-
sized datasets of this sort arise frequently in the bionzdiocmain, where generating labeled ex-
amples is either expensive or constrained by physical gesse Most of these problems are difficult
and have a genuine real-world impact.

That being said, Hub Miner users can expect to see large-sgpkerimental support in future
releases.

87

Thirteen

Plans for Future Releases

Hub Miner currently contains implementations of many ukefachine learning and data mining
algorithms, data processing techniques, data visualizatls and an extensive experimental frame-
work. However, | consider the current release to be merelysadtep towards a more complete
library geared for instance-based learning in intringychigh-dimensional data. Of course, high-
dimensional data mining is a vast field and there are manytitires to consider. What follows is a
list of features that the users can expect to see in futureNtobr releases, hopefully very soon.

Improve scalability. Changes will be introduced throughout Hub Miner in ordernatde large-
scale data analysis, at least in certain contexts. Hubam&ase techniques have not yet been
applied to large-scale datasets and enabling this shoutth&@f the priorities in future im-
plementation work.

Include indexing techniques for fasttNN search. In order to improve scalability, Hub Miner
will include various fast approximafeNN graph construction and query approaches in future
releases. This might be a substantial effort, but it woulovalisers to perform large-scale
hubness-aware data analysis.

Include more intrinsic dimensionality estimators. Hub Miner currently implements one ap-
proach to estimating the intrinsic dimensionality of theéad&ut this is a vibrant field where
many advances have happened in recent years and moreindimensionality estimators
should be included in future releases.

Additional clustering implementations. Future Hub Miner releases will include some more com-
plex and less standard clustering approaches.

Additional classifier implementations. While comparisons to other classifier implementations
can easily be done through OpenML and the same will soon taldlfistering, the ex-
perimental framework of Hub Miner directly allows some tgp# experiments that are not
presentin other libraries, so this can not entirely elirtéribe need for having more baselines.
For instance, comparisons would not be that easy when sappdidtances are used or when
label and feature noise is to be introduced, especiallyurdform noise. Therefore, more
baselines will be introduced to Hub Miner, in order to inceés experimental potential and
usefulness.

Support for clustering via OpenML. While writing this, the clustering task is slowly being in-
cluded in OpenML and will currently become available. Asrs@s it becomes available, it
will be supported in Hub Miner as well.

Additional instance selection implementations.There are currently many instance selection
methods that are supported in Hub Miner, but more will be ddd¢he future as well.

Remove all SiftWin and ImageMagick dependenciesin order to make Hub Miner fully
portable, all Siftwin and ImageMagick dependencies willremoved. They are currently

89

90 CHAPTER 13. PLANS FOR FUTURE RELEASES

only present in non-central and less used parts of the cadéyadving any such dependen-
cies is not a good thing, so this will be corrected. As for hedmaware analysis itself and
experimental evaluation for classification, clusterimgtance selection, metric learning, etc.
- none of these depend on image processing, so Hub Miner pzadglbe used on different
platforms. However, switching to a Java image feature etitra library will make the image
processing pipeline portable as well, which would be an ddddue to the current library
release.

Support various image feature extraction pipelines.Hub Miner is not an image feature extrac-
tion pipeline and image.mining packages are there morerago@éence and examples of how
it can be used to handle image data. Nevertheless, sincegwaag a prime example of high-
hubness data in many feature representations, Hub Minpostior handling differentimage
feature types will be significantly extended in future reles

Support semi-supervised classificationSemi-supervised classification is not currently expljcitl
supported in the experimental framework and this is soongytm change.

Support for ensemble methods in classification Explicit support for building classifier ensem-
bles will be included.

Include more boosting approaches.Future Hub Miner releases will include more boosting tech-
nigues, including some recently proposed approaches.

Support fuzzy methods. Learning from fuzzy labels is currently not supported inssification
and clustering and fuzzy classification and clustering washwill be included, as well as a
fuzzy experimental framework.

Bibliography

[Als98] Khaled Alsabti. An efficient k-means clustering atighm. In In Proceedings of
IPPS/SPDP Workshop on High Performance Data Minih@o8.

[AVO7] David Arthur and Sergei Vassilvitskii. k-means++h& advantages of careful seeding.
In Proceedings of the 18th Annual ACM-SIAM Symposium on Desdégorithms
(SODA) pages 1027-1035, Philadelphia, PA, USA, 2007. SIAM.

[BGO5] I. Borg and P.J.F. GroeneModern Multidimensional Scaling: Theory and Applica-
tions Springer-Verlag, Berlin, Germany, 2005.

[BKNSO0] Markus M. Breunig, Hans-Peter Kriegel, Raymond\@, and J6rg Sander. Lof: Iden-
tifying density-based local outlier&§IGMOD Reg.29(2):93-104, May 2000.

[BNST11a] Krisztian Buza, Alexandros Nanopoulos, and lStkmidt-Thieme. Insight: efficient
and effective instance selection for time-series clasdifio. InProceedings of the
15th Pacific-Asia conference on Advances in knowledge disg@nd data mining -
Volume Part || PAKDD'11, pages 149-160, Berlin, Germany, 2011. Sprindgtag.

[BNST11b] Krisztian Buza, Alexandros Nanopoulos, and L@chmidt-Thieme. Insight: efficient
and effective instance selection for time-series clasdifio. InProceedings of the
15th Pacific-Asia conference on Advances in knowledge disgaand data mining
- Volume Part || PAKDD'11, pages 149-160, Berlin, Heidelberg, 2011. Sgpein
Verlag.

[CKC06] Chien-Hsing Chou, Bo-Han Kuo, and Fu Chang. The gdimed condensed nearest
neighbor rule as a data reduction method.Phoceedings of the 18th International
Conference on Pattern Recognition - Volume I@PR '06, pages 556-559, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[DGKO04] Inderjit S. Dhillon, Yugiang Guan, and Brian Kulikernel k-means: spectral clus-
tering and normalized cuts. Iroceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Minjpages 551-556, 2004.

[DH11] Bi-Ru Dai and Shu-Ming Hsu. An instance selectionaalithm based on reverse
nearest neighbor. IRroceedings of the 15th Pacific-Asia conference on Advances
in knowledge discovery and data mining - Volume PaPAKDD’11, pages 1-12,
Berlin, Heidelberg, 2011. Springer-Verlag.

[DP13] Harshit Dubey and Vikram Pudi. Class based weighteédrest neighbor over im-
balance dataset. In Jian Pei, VincentS. Tseng, Longbing B&oshi Motoda, and
Guandong Xu, editordddvances in Knowledge Discovery and Data Miniaglume
7819 ofLecture Notes in Computer Scienpages 305-316. Springer Berlin Heidel-
berg, 2013.

91

92

BIBLIOGRAPHY

[EpKSX96] Martin Ester, Hans peter Kriegel, Jorg S, and MiabXu. A density-based algorithm

[FGMO5]

[FH51]

[HA02]

[HKK *10]

[IER10]

[JHSO07]

[KGG85]

[NS12]

[PE6S]

[Pic09]
[PKGFO3]

[PTR™11]

[Rad11]

for discovering clusters in large spatial databases witkenopages 226—-231. AAAI
Press, 1996.

Blaz Fortuna, Marko Grobelnik, and Dunja MladenVisualization of text document
corpus.Informaticg pages 497-502, 2005.

E. Fix and J. Hodges. Discriminatory analysis, naapgetric discrimination: con-
sistency properties. Technical report, USAF School of feiaMedicine, Randolph
Field, 1951.

C. C.Holmes and N. M. Adams. A probabilistic nearesighbor method for statistical
pattern recognition.Journal of the Royal Statistical Society: Series6d:295-306,
2002.

Michael E. Houle, Hans-Peter Kriegel, Peer Kroger, Erichubert, and Arthur
Zimek. Can shared-neighbor distances defeat the curserafrdiionality? IrProc.
of the 22nd int. conf. on Scientific and statistical databassagemenSSDBM’10,
pages 482-500. Springer-Verlag, 2010.

Diego Ingaramo, Marcelo Errecalde, and Paolo RoAsgeneral bio-inspired method
to improve the short-text clustering task.Rroceedings of the 11th International Con-
ference on Computational Linguistics and Intelligent TEextcessing CICLing’10,
pages 661-672, Berlin, Heidelberg, 2010. Springer-Verlag

H. Jegou, H. Harzallah, and C. Schmid. A contextissichilarity measure for accu-
rate and efficient image search. @omputer Vision and Pattern Recognitiggages
1-8, New York, NY, USA, 2007. IEEE.

James E. Keller, Michael R. Gray, and James A. Givénfuzzy k-nearest-neighbor
algorithm. IEEE Transactions on Systems, Man and Cybernefieges 580-585,
1985.

Krystyna Napierala and Jerzy Stefanowski. Iderdtfan of different types of mi-
nority class examples in imbalanced data. In Emilio Corchaclav Snasel, Ajith
Abraham, Michal Wozniak, Manuel Grafa, and Sung-Bae ChitborsgHybrid Arti-
ficial Intelligent Systemssolume 7209 ol ecture Notes in Computer Scieng@ages
139-150. Springer-Verlag, Berlin / Heidelberg, Germadyi, 2

Hart PE. The condensed nearest neighbor rlB&EE Transactions on Information
Theory 14:515-516, 1968.

Christian Pich. Mds;j: Java library for multidimeéosal scaling (version 0.2), 2009.

S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and-@loutsos. Loci: fast outlier
detection using the local correlation integral Data Engineering, 2003. Proceedings.
19th International Conference ppages 315-326, March 2003.

Doni Pracner, Nenad TomaSev, Milo§ Radovabp@unja Mladent, and Mirjana
Ivanovic. WIKImage: Correlated Image and Text Datasets SilKDD: Information
Society2011.

Milo§ Radovanoti Representations and Metrics in High-Dimensional Data Mini
Izdavaka knjizarnica Zorana Stojan@d, Novi Sad, Serbia, 2011.

BIBLIOGRAPHY 93

[RNI09]

[RNI10a]

[RNI10b]

[SC04]

[SFSW12]

[Tan05]

[TB14]

[TBMN11]

[TLM13]

[TM12a]

[TM12b]

[TM13a]

[TM13b]

[TM13c]

MiloS Radovanows, Alexandros Nanopoulos, and Mirjana IvanoviNearest neigh-
bors in high-dimensional data: The emergence and influehlgelss. InProceedings
of the 26th International Conference on Machine LearningML), pages 865-872,
San Francisco, CA, USA, 2009. Morgan Kaufmann.

Milo§ Radovanow, Alexandros Nanopoulos, and Mirjana IlvanaviHubs in space:
Popular nearest neighbors in high-dimensional dataurnal of Machine Learning
Research11:2487-2531, 2010.

Milo§ Radovanow, Alexandros Nanopoulos, and Mirjana lvanovOn the existence
of obstinate results in vector space modelioaceedings of the 33rd Annual Interna-
tional ACM SIGIR Conference on Research and Developmentonrhation Retrieval
pages 186-193, New York, NY, USA, 2010. ACM.

Stan Salvador and Philip Chan. Determining the nurabelusters/segments in hier-
archical clustering/segmentation algorithmsTdmls with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference, @ages 576-584. IEEE, 2004.

Dominik Schnitzer, Arthur Flexer, Markus Scheatid Gerhard Widmer. Local and
global scaling reduce hubs in spac&he Journal of Machine Learning Research
13(1):2871-2902, 2012.

Songbo Tan. Neighbor-weighted k-nearest neigfdronnbalanced text corpudx-
pert Systems with Application28:667—-671, May 2005.

Nenad TomaSev and Krisztian Buza. Neighbor occureemdels for learning with
label noise in high-dimensional datdNeurocomputing, Special Issue on Learning
with Label Noisepages 1-22, 2014.

N. TomaSev, R. Brehar, D. Mladeéniand S. Nedevschi. The influence of hubness on
nearest-neighbor methods in object recognitiorPioceedings of the 7th IEEE Inter-
national Conference on Intelligent Computer Communicasiod Processing (ICCPR)
pages 367-374, New York, NY, USA, 2011. IEEE.

N. TomaSev, , G. Leban, and D. MladénExploiting hubs for self-adaptive secondary
re-ranking in bug report duplicate detection.Rroceedings of the ITI conferend@l
2013, Zagreb, Croatia, 2013. SRCE.

N. TomaSev and D. Mladeti Hubness-aware shared neighbor distances for high-
dimensional k-nearest neighbor classification. Pimceedings of the 7th Interna-
tional Conference on Hybrid Artificial Intelligence SysteiAIS '12, pages 116-127,
Berlin, Germany, 2012. Springer-Verlag.

N. TomaSev and D. Mladetii Nearest neighbor voting in high dimensional data:
Learning from past occurrenceSomputer Science and Information Syste®n691—
712,2012.

Nenad Tomasev and Dunja MladenClass imbalance and the curse of minority hubs.
Knowledge-Based Systers8(0):157 — 172, 2013.

Nenad TomasSev and Dunja MladéniHub co-occurrence modeling for robust high-
dimensional knn classification. Proceedings of the ECML conferen&erlin, Ger-
many, 2013. Springer-Verlag.

Nenad Tomasev and Dunja Mladénimage hub explorer: Evaluating representations
and metrics for content-based image retrieval and objecigmtion. InProceedings

of the ECML conferen¢@erlin, Germany, 2013. Springer-Verlag.

94

[TM14a]

[TM14b]

[Tom14]

[TRMI11a]

[TRMI11b]

[TRMI11c]

[TRMI13a]

[TRMI13b]

[TRMI14]

[VRBT+13]

[Wil72]

[WM97]

[WMEO9]

BIBLIOGRAPHY

Nenad TomaSev and Dunja MladeniHubness-aware shared neighbor distances for
high-dimensional k-nearest neighbor classificatiBmowledge and Information Sys-
tems 39(1):89-122, 2014.

Nenad TomaSev and Dunja Mladénimage hub explorer: evaluating representations
and metrics for content-based image retrieval and objeogmition.Multimedia Tools
and Applicationspages 1-30, 2014.

Nenad Tomasev. Boosting for vote learning in higime&hsional knn classification. In
Proceedings of the International Conference on Data Mir(i@PM), 2014.

N. TomaSev, M. Radovanayi D. Mladen€, and M. lvanovi. A probabilistic ap-
proach to nearest neighbor classification: Naive hubnegssien k-nearest neighbor.
In Proceeding of the CIKM conferengeages 2173—-2176, New York, NY, USA, 2011.
ACM.

Nenad TomaSev, Milo§ RadovanbyiDunja Mladeni, and Mirjana lvanow.
Hubness-based fuzzy measures for high-dimensional keseaeighbor classifica-
tion. In Proceedings of the MLDM Conferengeges 16—-30, Berlin, Germany, 2011.
Springer-Verlag.

Nenad TomasSev, Milos RadovanéyDunja Mladent, and Mirjana lvanow. The role
of hubness in clustering high-dimensional dataAtivances in Knowledge Discovery
and Data Mining volume 6634, pages 183-195, Berlin, Germany, 2011. Sering
Verlag.

Nenad TomaSev, Milo§ RadovanoyiDunja Mladent, and Mirjana Ivanow.
Hubness-based fuzzy measures for high-dimensional leseaeighbor classification.
International Journal of Machine Learning and Cyberneti2813.

Nenad TomasSev, Milo§ RadovanéyDunja Mladent, and Mirjana lvanow. The role
of hubness in clustering high-dimensional ddEEE Transactions on Knowledge and
Data Engineering99(PrePrints):1, 2013.

Nenad TomaSev, Milo§ Radovanéyi Dunja Mladert, and Mirjana Ivanow.
Hubness-based clustering of high-dimensional dataaPahtitional Clustering Al-
gorithms Springer-Verlag, Berlin, Germany, 2014.

JanN. van Rijn, Bernd Bischl, Luis Torgo, Bo Gao, VenkatéJmaashankar, Si-
mon Fischer, Patrick Winter, Bernd Wiswedel, MichaelR.tBeld, and Joaquin Van-
schoren. Openml: A collaborative science platform. In HeénBlockeel, Kristian
Kersting, Siegfried Nijssen, and Filipelezny, editordylachine Learning and Knowl-
edge Discovery in Databasegolume 8190 ofLecture Notes in Computer Science
pages 645—-649. Springer Berlin Heidelberg, 2013.

D. R. Wilson. Asymptotic properties of nearest niefipr rules using edited daticEE
Transactions on Systems, Man and Cyberngfc#08-421, 1972.

D. Randall Wilson and Tony R. Martinez. Instance gngtechniques. IfProceedings
of the fourteenth International Conference on Machine bazg (ICML), pages 404—
411, San Francisco, CA, USA, 1997. Morgan Kaufmann.

Josiah Wang, Katja Markert, and Mark Everinghamatreng models for object recog-
nition from natural language descriptions. Rroceedings of the British Machine Vi-
sion Conferencd.ondon, UK, 2009. BMVA Press.

BIBLIOGRAPHY 95

[WNCO07] Jigang Wang, Predrag Neskovic, and Leon N. Coopewprbving nearest neighbor
rule with a simple adaptive distance measuRattern Recognition Letter28:207—
213, January 2007.

[Zzha01] Bin Zhang. Generalized k-harmonic means - dynangigiting of data in unsuper-
vised learning. IrFirst SIAM International Conference on Data Minin2001.

[ZmPO04] Lihi Zelnik-manor and Pietro Perona. Self-tunipgstral clustering. Idvances in
Neural Information Processing Systems fp&@ges 1601-1608, Cambridge, MA, USA,
2004. MIT Press.

	Short contents
	Contents
	List of Figures
	List of Tables
	1 Preface: What is Hub Miner?
	2 Motivation: Why yet another library?
	2.1 Relevance of Data Hubness for Data Analysis

	3 Building Hub Miner: Dependencies
	4 Supported Data Formats
	5 A Quick Guide to the Experimental Framework
	5.1 Batch Classifier Evaluation
	5.1.1 OpenML Compatibility
	5.1.2 Viper Charts for Visualizing Classification Results

	5.2 Batch Clustering Evaluation
	5.3 Batch Hubness Analysis

	6 The Data Model
	7 Hubness-aware Implementations
	7.1 Classification
	7.2 Clustering
	7.3 Metric Learning
	7.4 Instance selection

	8 Code Examples: Using Hub Miner for Data Analysis
	9 Image Hub Explorer
	9.1 Preparing the Data for Visualization
	9.2 Visualization and Interactive Analysis
	9.2.1 Data Overview Screen
	9.2.2 Class View
	9.2.3 Neighbor View
	9.2.4 Feature Visualization and Assessment Panel
	9.2.5 Search and Ranking

	10 Overview of Hub Miner Packages
	10.0.6 configuration
	10.0.7 data.generators
	10.0.8 data.imbalance
	10.0.9 data.neighbors
	10.0.10 data.neighbors.hubness
	10.0.11 data.representation
	10.0.12 data.structures
	10.0.13 dimensionality_reduction
	10.0.14 distances.primary
	10.0.15 distances.secondary
	10.0.16 distances.sparse
	10.0.17 distances.kernel
	10.0.18 distances.concentration
	10.0.19 distances.analysis
	10.0.20 draw
	10.0.21 feature
	10.0.22 filters
	10.0.23 graph
	10.0.24 gui.images
	10.0.25 gui.maps
	10.0.26 gui.synthetic
	10.0.27 images.mining
	10.0.28 ioformat
	10.0.29 learning.supervised
	10.0.30 learning.supervised.evaluation
	10.0.31 learning.supervised.meta
	10.0.32 learning.supervised.methods
	10.0.33 learning.unsupervised
	10.0.34 learning.unsupervised.evaluation
	10.0.35 learning.unsupervised.methods
	10.0.36 learning.unsupervised.outliers
	10.0.37 linear
	10.0.38 networked_experiments
	10.0.39 optimization.stochastic
	10.0.40 preprocessing.instance_selection
	10.0.41 probability
	10.0.42 sampling
	10.0.43 statistics
	10.0.44 util
	10.0.45 visualization

	11 Portability
	12 Scalability
	13 Plans for Future Releases
	Bibliography

