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Abstract

Lacunarity is a measure of how data fills space. It complements fractal dimension, which measures how much space is
filled. This paper discusses the limitations of the standard gliding box algorithm for calculating lacunarity, which leads to a
re-examination of what lacunarity is meant to describe. Two new lacunarity measures for ramified data sets are then presented
that more directly measure thegaps in a ramified data set. These measures are rigorously defined. An algorithm for estimating
the new lacunarity measure, using Fuzzy-C means clustering algorithm, is developed. The lacunarity estimation algorithm is
used to analyze two- and three-dimensional Cantor dusts. Applications for these measures include biological modeling and
target detection within ramified data sets.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many modeling and pattern recognition applications need methods to numericallyquantify the visuallook of
measured data sets. A number of mathematical approaches are currently used to quantify a data set’slook, including
fractal-based methods such as fractal dimension, lacunarity, and connectivity[1], as well as non-fractal-based
methods such as variograms[2,3]. Many researchers have successfully used fractal dimension to measure a data
set’s look for target detection[4–8]. However, fractal dimension alone does not fully describe this visuallook
because it does not fully describe the space-filling characteristics of data. Fractal dimension only measureshow
much space is filled. Lacunarity complements fractal dimension by measuringhow the data fills the space.
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Fig. 1. Comparison of real biofilms from Möller et al.[11] with random Brownian fractal textures with a fractal dimension of 2.1, and lacunarity
of 2 and 10 per Musgrave’s definition.

In this paper we investigate lacunarity, the second important spatial characteristic of data sets mentioned by
Mandelbrot in[1]. We propose new measures for lacunarity of ramified data sets. These measures provides a
basis for developing cross-cutting technology that will be used by both the Department of Energy (DOE) and
the Department of Defense (DOD) in many modeling, detection, and control applications. We intend to use these
measures of lacunarity, along with fractal dimension estimations, to develop biological models that quantitatively
describe biofilm structure and growth (similar to[9–11]) so that a control strategy can be developed based on these
feedback terms.

Synthetic fractal textures have been produced that have a qualitativelook that is very similar to that of biofilms.
In Fig. 1we compare biofilms from Möller et al.’s work[11] to synthetic Brownian fractal textures produced using
Musgrave’s[12] texture generation algorithms. Note that while both synthetic fractal textures (Fig. 1b and d) have
the same fractal dimension, their lacunarities are quite different according to Musgrave’s definition.

Fractal dimension and lacunarity apply to images in many research fields. For example, they have been used to
quantify and segment images into background clutter and desired targets[4–8]. The lacunarity measures for ramified
data that we propose scale easily to data in any dimensional space and are related to the formal definition of fractal
dimension. This scaling ability allows direct application of fractal dimension and lacunarity to data fusion problems
where multi-spectral sensors are gathering and fusing scene data into a hyper-dimensional set for quantification.

The next section provides background on fractal dimension and the problems inherent in today’s leading method
for calculating lacunarity. To overcome these problems, we return to the basic definition and concepts of lacunarity.
Mandelbrot[1] introduces the term lacunarity from the Latin “lacuna” meaning gap. This paper will definegap
as the distance between optimal covers, with the definition of optimal cover being used in the definition of the
Hausdorff–Besicovitch (HB) fractal dimension measure. Formal definitions for new lacunarity measures for ramified
data sets are presented inSection 3. Since HB covers are impractical to calculate, our algorithm will use the distances
between sub-optimal covers[6,7] generated with the Fuzzy-C means clustering algorithm[13]. The Fuzzy-C means
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implementations of these cover-based lacunarity measures are presented inSections 4 and 5and compared with
analytical results inSection 6. Section 7shows that the new lacunarity measures discriminate between sets with
diverse structures and identify sets that have similar structures. Finally, the paper closes with a discussion of the
future direction of this research, a new method for measuring lacunarity of dense data sets.

2. Background

Of all the methods for quantifying a data set’slook [1–8], fractal dimension is perhaps the easiest to understand.
However, as discussed above, fractal dimension does not fully quantify a texture’slook—textures with identical
fractal dimensions but small variations in lacunarity can vary substantially in theirlook. In general, fractal dimension
describes the space-filling capabilities of a set, i.e. the amount of space-filled, or the mass in some sense, while
lacunarity describes the spatial size of gaps and their structure within a set[1], i.e. how the space is filled or the
mass distribution.

The three images inFig. 2, representing textures produced by Musgrave’s Brownian random texture generation
algorithm, illustrate lacunarity—they have the same fractal dimension but different lacunarities. (The lacunarity
parameter in Musgrave’s algorithm alters the spatial scaling factor between self-similar levels, which are then
super-imposed by addition to form the final image. So, for a lacunarity parameter of 2, the second self-similar level
will have approximately twice the spatial frequency of the base surface.)

To date, the leading method for estimating lacunarity is the gliding box algorithm, which is based on a localized
mass calculation[1,14,15]. The algorithm, as discussed in Plotnick et al.’s paper[14], is described here for com-
pleteness. The gliding box algorithm is similar to the box counting algorithm used to estimate fractal dimension. One
chooses a unit box of sizer and counts the number of set points within it (the mass). This procedure is then repeated

Fig. 2. Musgrave’s Brownian random fractal textures with fractal dimension of 2.5 and lacunarities of 2, 3, and 5.
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Table 1
Data sets constructed to demonstrate continuous variations in lacunarity estimates obtained via the gliding box algorithm, seeFig. 3

Set name Description Definition

Baseline sets for glide box and L̂max comparisons
Rs1 Regularly spaced data {21.0,24.5,28.0, . . . ,241.5}
Rs2 Rs1 with five points added to the right {21.0,24.5,28.0, . . . ,259.0}
Rs3 Rs1 with five points added to the left {3.5,7.0,10.5, . . . ,241.5}
Rs4 Rs1 with five points added each side {3.5,7.0,10.5, . . . ,259.0}
Rs5 Rs1 with five points removed each side {38.5,42.0,45.5, . . . ,224.0}

as the box is centered, in turn, about each point within the set, creating a distribution of box massesB(p, r), where
B is the number of boxes withp points and radiusr. This distribution is converted into a probability distribution,
Q(p, r), by dividing by the total number of boxes of sizer. Next, one calculates the first and second moments of
the box mass probability distribution:

Z(1)(r) =
∑
p

pQ(p, r), (1)

Z(2)(r) =
∑
p

p2Q(p, r). (2)

The gliding box lacunarity is then defined as:

LGB = Z(2)(r)

Z(1)(r)2
. (3)

As an illustration, we applied this lacunarity measure,LGB, to the data setsRsi given in Table 1; the resulting
lacunarity estimates are shown inFig. 3. LGB strongly differentiates between these data sets, which is highly

Fig. 3. Gliding box algorithm lacunarity estimations for theRsi data sets defined inTable 1.



C.R. Tolle et al. / Physica D 179 (2003) 129–152 133

disconcerting considering that the basic internal gap contained within each of these sets is exactly the same, 3.5.
Such differentiation become problematic when generic data sets are compared, as in the case of biofilm images.
The only comforting result for theLGB measure is that the results forRs2 andRs3 lay on top of each other.Rs2 and
Rs3 have the same mass and internal distribution, the mass is merely shifted in the space.

These results point out theLGB measure’s strong sensitivity to mass change. For theRsi sets, it appears that
LGB is more sensitive to mass change than to the gaps that lacunarity is intended to measure. This conclusion is
reinforced by the minimum radius gap measurements given for these sets, i.e. they-intercepts ofFig. 3. OnlyRs4,
which fills the space uniformly was found to have the known gap size, 3.5. Moreover,LGB does not consistently
quantify changes in the lacunarity of well-known fractal families and sets.

Examples of sets from two families of two-dimensional Cantor sets that have been created to maintain a constant
fractal dimension while allowing the gaps to vary in size are shown inFig. 4. (For notation purposes, we group all
Cantor sets with the same fractal dimension but different construction into what will be known as a family of Cantor
sets.) They were formed by applying a scaling factor and changing the number of copies of the set made on each
successive construction level. Meakin[16] points out that the similarity dimension of the set can be maintained
by applying a scaling factor adjustment as the number of copies is changed, thereby holding the fractal dimension
constant while allowing the gaps sizes within the set to change.

The two-dimensional Cantor sets inFig. 4 and three-dimensional set inFig. 5 were created as follows. First,
choose the similarity dimension,Ds betweenL − 1 andL, whereL is the topological dimension, e.g.L = 2 for
a two-dimensional Cantor set. Second, choose the number of copies in each dimension,Nc, so the total number of
copies isNL

c . Third, apply the following constraint to find the scaling factor,K, that maintainsDs :

log(K) = log(NL
c )

Ds
. (4)

This constraint only allows creation of a symmetric generalized Cantor set with changing gap sizes.
The generalized 1D symmetric Cantor set can be defined by first defining the base interval,a0

0, and its left endpoint,
b0

0 as:

a0
0 = [0,1] = [b0

0,1], (5)

b0
0 = 0. (6)

The notationank indicates thek interval of the Cantor generation set on thenth scale. Likewise,bnk indicates the
left endpoint of each interval,k, for the Cantor generation set on thenth scale. The generalized gap,Gn, between
subsets on a particular scale is defined in terms of the remaining empty space:

Gn =
(

1

K

)n−1

−Nc

(
1

K

)n
, for n > 0. (7)

The intervals for thenth scale are:

an(Ncm)+j =
[
bn−1
m + jGn + j

(
1

K

)n
, bn−1
m + jGn + (j + 1)

(
1

K

)n]
for j ∈ {0, Nc − 1}, m ∈ {0, (Nc)

n−1 − 1}. (8)

Using this generalized interval definition, we can write thenth scale Cantor generation set as:

Vn =
(Nc)

n−1⋃
k=0

ank . (9)
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Fig. 4. Two families of two-dimensional Cantor sets with various fractal dimensions defined by the number of copies in each dimension, i.e.
[Nx

c , N
y
c ]. Family 1 has similarity dimension log(4)/log(3), Family 2 has similarity dimension log(9)/log(5).
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Fig. 5. Visualization of a standard three-dimensional 1/3 removal Cantor set ([2,2,2] Cantor with fractal dimension log(8)/log(3)) used in
testing the new lacunarity measures.

The generalized 1D symmetric Cantor set is then formally defined as:

V =
∞⋂
n=1

Vn. (10)

AsymmetricL-dimension Cantor sets can also be achieved via the constraint:

log(Kd) = L log(Nc,d )

Ds
. (11)

The number of copies,Nc,d , can be defined to be different for any dimension,d, allowing thegaps in each dimension
to vary as:

Gn,d =
(

1

Kd

)n−1

−Nc,d

(
1

Kd

)n
. (12)

Here we define theL-dimension asymmetric Cantor set,V L, as anL-tuple of 1D generalized symmetric Cantor
sets,Vd :

V L = {[{x1, x2, . . . , xL}]|xd ∈ Vd , d = 1,2, . . . , L}. (13)

Visual inspection shows that the gaps in the [2,2] Cantor set withDs = log(4)/log(3) are larger than those in the
[3,3] Cantor set withDs = log(9)/log(5), seeFigs. 4a and e, respectively. However,LGB quantifies them as nearly



136 C.R. Tolle et al. / Physica D 179 (2003) 129–152

Fig. 6. Glide box lacunarity analysis,LGB, for [Nx
c , N

y
c ] Cantor sets shown inFig. 4. It is difficult, if not impossible, to distinguish among their

gap structures using data such as this.

the same, seeFig. 6. Moreover, comparison of results within families inFig. 6reveals another inconsistency. In the
family of Ds = log(9)/log(5) Cantor sets, theLGB for Nc = [3,3] is belowLGB for Nc = [4,4]. This result is
contradicted in the familyDs = log(4)/log(3), whereLGB for Nc = [2,2] is aboveLGB for Nc = [3,3] for some
box sizes (log(1000× box size) > 3). This inconsistency between these two Cantor set families makes it nearly
impossible to compare the results among fractal families using the glide box method. Furthermore, these types of
inconsistencies makes it impossible to use this method for applications such as biofilm quantification where one is
not assured that any particular global fractal or family of fractals exists in the image being analyzed.

3. Lacunarity measure based on optimal cover

Our measure of lacunarity is based on the definition of optimal cover used to define the HB dimension, which is
the traditional definition of fractal dimension. The HB dimension,Dh(A), whereA denotes the data set, is defined
in the following manner[17]:

Let

Rp = {x|x = (x1, . . . , xp), xi ∈ R} (14)

for some natural numberp, which is the dimension of the data set. Define the diameter of an open ball,Ci , inRp:

diam(Ci) = sup{de(x, y)|x, y ∈ Ci}, (15)

wherede(x, y) denotes the Euclidean distance function. Next, define an open cover ofA:

A ⊂
∞⋃
i=1

Ci. (16)
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Define:

hsε(A) = inf

{ ∞∑
i=0

diam(Ci)
s

∣∣∣∣∣
{C1,C2,... } open cover

of Awith diam(Ci) ≤ ε

}
. (17)

Finally, define thes-dimensional Hausdroff measure ofA as:

hs(A) = lim
ε→0

hsε(A). (18)

Given the above definitions, the HB dimension is defined as:

Dh(A) = inf {s|hs(A) = 0} = sup{s|hs(A) = ∞}. (19)

We define the measure of the distance (i.e. thegaps) between the covering elements,Ci , in the Hausdorf fractal
dimension as a measure for lacunarity. This measure is independent of the traditional fractal dimension, i.e.Eq. (19),
but highly consistent with fractal dimension because they share much of the underlying mathematics. The basic
concept is: find a cover of the points within the set, then find a measure of the cover separations that will quantify
the lacunarity of the set, i.e. measure the gaps between the covering elements. If we assume that the HB dimension
exists and can be determined, one can use the optimal cover obtained there to calculate the lacunarity ofA.

We begin by finding a cover,C•, for a given number of covering elements, denoted by the calligraphyC:

C• = {C1, C2, . . . , CC} =
{
Ck|k = 1,2, . . . , C;A ⊂

C⋃
i=1

Ci

}
, (20)

ci = center of ballCi, (21)

sij = de(ci, cj )− 1
2(diam(Ci))− 1

2(diam(Cj )). (22)

We define thestructure of the gaps connecting the covers using the concept of a minimum spanning tree[18], S,
as follows. First, we define the minimumconnecting spanning tree of a cover,T (C•), to be the spanning tree of
C−1 line segments that fully connects all the balls,Ci , along connecting lines between the cover centers,ci , within
the cover,C•, using the minimum distance, seeFig. 7. TheC − 1 line segments are denoted bySk, which in turn
denotes asij. Then

T = S, (23)

Fig. 7. A cover (C•, C = 4) and spanning treeS = {S1, S2, S3}. In this caseS is the minimal connecting spanning tree,T (C•).
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where

S = {Sk|k = 1,2, . . . , C− 1; m �= n; m, n ∈ [1,2, . . . , C]; Sk = smn;
Cm,Cn ∈ C• and all cover centers are connected viaSks}, (24)

and

S minimizes
C−1∑
j=1

Sj . (25)

AssumingDh(A) exists, then there exists a family of open covers,F, that were used in calculatingDh(A), i.e. the
open covers used within the calculation ofhs(A) for both the inf and sup inEq. (19). Choose the open coverC$ so
that

C$ = lim
C→∞

C• ∈ F that minimizes sup
T (C•)

Sk. (26)

Using the coverC$, the maximum lacunarity measure is defined as:

Lmax = sup
Sk∈T (C$)

Sk. (27)

An alternative measure, total lacunarity, is:

Ltotal = sup
C∑
k=1

Sk; Sk ∈ T (C$). (28)

Our concept is to define lacunarity based on either the maximum cover separation or the total cover separation,
using the covers that define the HB dimension. By doing this, we create a lacunarity measure that is consistent
with the community’s current notion of fractal dimension, i.e. HB dimension, while decoupling it from the gliding
box method of calculating the fractal dimension. Although not presented here, an analysis of the distribution of the
lengths of the spanning tree segments may also be useful.

4. Sub-optimal cover lacunarity algorithm: Fuzzy-C method

Since finding the optimal covering for the HB dimension is generally difficult, we use a clustering algorithm,
Fuzzy-C means[13], to group data points and calculate an approximate (sub-optimal) cover[6,7]. This Fuzzy-C
means method of calculating lacunarity is a practical implementation of the mathematical definition given in
Section 3.

First, a cover is obtained by clustering the data via the Fuzzy-C means algorithm. These fuzzy clusters are then
turned into crisp sets of covering elements by forcing each point into the covering element, i.e. cluster, that has that
point’s maximum membership value. The size of each covering element is then determined using a singular value
decomposition of its scatter matrix. Finally, the covering element sizes are subtracted from the distances between
cover element centers to create the lacunarity estimate. Such a subtraction directly estimates the separation between
covering elements themselves, seeFig. 8.

In short, agood approximation of the maximum cover separation,L̂max, or total cover separation,̂Ltotal, can
be obtained by exploiting these cluster characteristics as cover elements via cluster scatter matrix statistics (i.e.

the vectors defined by the singular value and its unit directional vector,
√
σ ijw

i
j ). How this is done is important in



C.R. Tolle et al. / Physica D 179 (2003) 129–152 139

Fig. 8. A minimal spanning tree with ideal cluster separations, i.e.S1, S2, andS3.

obtaining agood cover approximation. Moreover, agood cover approximation is needed because the sizes of the
covering elements obtained via the fuzzy clustering method tend to be hyper-ellipses not hyper-balls. Even so, this
restriction is relaxed in the limit as the diameters of the covering elements go to zero, thereby generally making the
covering elements simple balls in hyper-space.

Consider the separation calculation introduced above. The singular values,σ ij , of these cluster scatter matrices

and their corresponding unit vectors,wij , provide the regional spatial characteristics of each covering element, see
Fig. 9. We approximate the cluster separation by projecting the cluster characteristics (i.e. the vectors defined by

the singular value and its unit directional vector,
√
σ ijw

i
j ) onto the line connecting the cluster centers,s̄ij. Next, we

find the length of the remaining distance between the clusters,sij to obtain the separation estimation, seeFigs. 9
and 10. One can calculate this distance for each cluster pair,(i, j), seeFig. 11.

Once the distance for each cluster pair is known, the minimal (connecting) spanning tree,T, for the Fuzzy-C cover
(based on Euclidean distance) can be obtained. This is the minimum distance set of vectors that fully connects the
cover regions shown inFig. 8. We normalize these distances so that the lacunarity calculations remain comparable
over differences in data set ranges and scales. This is accomplished by calculating the full data set’s scatter matrix
and obtaining the maximum singular value for the full data set,σ$. This singular value is then used to normalize
the distances and make them unitless,T̂, thereby avoiding unit length dependence within our lacunarity estimation.
This independence, the main objective of our method, is needed for applications such as biofilm characterization.

Fig. 9. An optimal distance between two elliptical clusters.
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Fig. 10. An approximated distance between two elliptical clusters.

Fig. 11. All possible connecting vectors for use within the minimal spanning tree calculation using elliptical clusters.

It is clear that the maximum cover separation,L̂max, should stabilize beyond some fixed number of covering
elements as long as the lacunarity is above 0; i.e., as the number of clusters increases, at some point the maximum
separation will remain the same because further covering elements will only subdivide the already well-separated
covered regions. As introduced earlier, one can also consider the total of the cover separation as a measure of
lacunarity,L̂total. This is somewhat more problematic in that to have a lacunarity value, the sum of the gaps on
all scales must shrink fast enough for a non-infinite value to occur. However, for finite data this problem is not as
important. Results of these lacunarity calculations are given inSection 7.

5. The nuts and bolts: the Fuzzy-C lacunarity algorithm

The heart of calculating fractal dimension or lacunarity is finding an optimal cover. A simple solution to this
problem can generally be obtained using one of the various clustering methods. In this paper, we have chosen
the standard Fuzzy-C means clustering algorithm[13]. Although more advanced methods, such as the Fuzzy-C
varieties, preserve the data clusters better, for our goal of covering a set with simple balls in hyper-space, the simple
Euclidean-based Fuzzy-C means approach seems appropriate. As a side note, the reason for using Fuzzy-C means
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clustering rather than C-means clustering is that Fuzzy-C means clustering has a simple, robust iterative solution
and C-means clustering currently does not, seeAppendix B.

The Fuzzy-C means algorithm solves the following problem:

min
C∑
i=1

N∑
k=1

u2
ik‖xk − ci‖2, W.C. uik ∈ [0,1],

C∑
i=1

uik = 1 ∀k = 1,2, . . . , N, (29)

whereC is the number of clusters,N the number of data vectors{xk} being clustered (x is anL-tuple),uik the
membership value of thekth data vector in theith cluster, andci the center (mean) vector of theith cluster. The
‖ • ‖ is the Euclidean norm operator. This problem can be solved[13] using the Picard iteration[19], also known
as the method of successive approximations[20], seeAppendix B.

Once a cover has been chosen, the scatter matrices,M, for each cluster are calculated. To do this, we form crisp
clusters through the simple assignment of each point,xk, to the cluster in which it has the maximumuik. (We throw
away the fuzzy cluster information in this process.) The scatter matrix for a cluster,Ci , can be written as[21]:

Mi =
∑
xk∈Ci

(xk − ci)(xk − ci)
T . (30)

However, we need the average scatter for our calculation:

M̂
i = 1

NCi

∑
xk∈Ci

(xk − ci)(xk − ci)
T , (31)

where

NCi = cardinality of the data points within clusterCi, (32)

N =
C∑
i=1

NCi . (33)

This matrix can be decomposed into its principal components using the singular decomposition:

M̂
i = Wi*iGi

H
, (34)

M̂
i = Wi




σ i1 0 · · · 0

0 σ i2 0
...

0 0 · · · σ iL


G

iH , (35)

M̂
i =

L∑
l=1

σ il w
i
l g
iH

l , (36)

whereGi
H

denotes the Hermitian ofGi , σi are the singular values, andWi andGi are matrices which contain the
orthonormal vectors describing the direction of the singular values. Each of these components is then projected onto
the vector,̄sij, separating the clustersCi andCj . The maximum projected vectors,pij andpji , from each cluster are
used to find the cluster separations (Fig. 10):

s̄ij = ci − cj , (37)
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pij = max
l=1,2,...,L

√
σ il w

i
l • s̄ij

s̄ij • s̄ij , (38)

p
j
i = max

l=1,2,...,L

√
σ
j
l w

j
l • s̄ij

s̄ij • s̄ij , (39)

sij = (1 − pij − p
j
i )‖s̄ij‖, (40)

where• denotes the dot product. (The units ofσi are squared in the above equations, requiring the square root ofσi

in these definitions to keep the units straight.) We use these cluster separations to find the minimum spanning tree,
T. There are two major methods for finding a minimal spanning tree: Kruskal’s algorithm and Prim’s algorithm
[18]. We use Prim’s algorithm because it is easier to implement on a computer, seeAppendix C.

The lacunarity measure should clearly be unitless. We suggest normalizing by dividing the distances obtained in
the optimal spanning tree,T, by the maximum average scatter within the full data set. This is calculated using the
average scatter matrix for the full data set:

c$ = 1

N

N∑
i=1

xk, M̂
$ = 1

N

N∑
i=1

(xk − c$)(xk − c$)
T = W$

$∑
G$H, (41)

M̂
$ = W$




σ$1 0 · · · 0

0 σ$2 0
...

0 0 · · · σ$L


G

$H =
L∑
l=1

σ$l w
$
l g
$H
l , (42)

σ$ = max
l=1,2,...,L

σ $l , (43)

T̂ = 1√
σ$
T =

{
Ŝi = 1√

σ$
Si |i ∈ [1,2, . . . , C− 1]

}
. (44)

Once the optimal spanning tree has been normalized, we make two unitless lacunarity definitions that correspond
to our definitions inSection 3. The estimate of maximum lacunarity, seeEq. (27), is defined as:

L̂max = max
Ŝi∈T̂

Ŝi . (45)

Likewise, the total lacunarity estimate, seeEq. (28), is defined as the sum of the finite number of separations:

L̂total =
C−1∑
i=1

Ŝi , where Ŝi ∈ T̂ . (46)

6. Comparison with analytic results

In this section we compare an analytic lacunarity value that is calculated using the optimal cover-based method
to an estimated lacunarity value that is obtained via our Fuzzy-C means based cover lacunarity estimator. The
analytical expressions for finding the total spanning tree lacunarity,L̄total(l), given an optimal hyper-box cover,



C.R. Tolle et al. / Physica D 179 (2003) 129–152 143

can be found by exploiting the structural knowledge of a symmetricL-dimension Cantor set. The presentation that
follows uses the same structure as was used inSection 2where theL-dimension Cantor sets were constructed.

We start by first defining the number of groups,NG, within each successive scale for anL-dimension Cantor set
written as:

NG =
[
K −

⌊
K

2

⌋]L
, (47)

whereK is the scaling factor of the Cantor set and�•� represents a truncation operator, i.e.�3.9� = 3. Using the
basic number of groupings in connection with the basic hyper-box structure of the symmetric Cantor set, the sum
of the minimum spanning tree for the first scale, using optimal hyper-box covering elements, is:

S(1) = NG − 1

K
. (48)

The numerator,NG − 1, represents the number of spanning segments required to connect the covering elements,
while the denominator,K, represents the scaling factor for each copy of the set on the first self-similar scale. This
scaling factor defines the maximum gap within all spans for all scales, which is by definitionLmax:

L̄max = 1

K
. (49)

As additional spans are added for each descending scale, the span ofS(1) is divided by the scaling factor and
multiplied by the number of copies made. This allows definition of the span for any given scale,l:

S(l) = NG − 1

K

(
NG

K

)l−1

for l ≥ 1. (50)

Using these definitions, the total spanning tree for any scale of interest is the sum over all of the prior scales as well
as the current scale:

L̄total(l) = NG − 1

K

l∑
i=1

(
NG

K

)i−1

. (51)

The closed form solution for this sum[22] can be written as:

L̄total(l) = NG − 1

NG −K

[(
NG

K

)l
− 1

]
. (52)

As a final note, the total number of covering elements used in the optimal covering ofL̄total(l) is C(l) = Nl
G. Using

the above expressions, a direct comparison between the analytic result,L̄total(C(l)), and the result of the estimator,
L̂total(C(l)), can be made, seeFig. 12. It is clear from the figure that the estimator’s results are very good. Errors
are, in part, due to a mismatch in the optimal covering element shape, i.e. hyper-boxes vs. hyper-ellipses, and to the
mismatch in the exact number of covering elements used in the estimation.

A similar comparison of the maximum lacunarity analytic result,L̄max(C(l)), with the estimator’s result,̂Lmax(C(l)),
is shown inFig. 13. In this case, the estimator’s result asymptotically approaches the analytic result as the
number of covering elements increases. This occurs because the error introduced by the shape mismatch of
the hyper-ellipses with the optimal shape, a hyper-box in this case, decreases as the hyper-ellipses decrease
in size.
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Fig. 12.Ltotal over changing number of covering elements for both the analytic optimal hyper-box cover and the estimator’s cover for two Cantor
sets presented inFig. 4.

7. General results

Our new lacunarity estimation algorithms are accurate with respect to our newly defined measure, as we showed
in the previous section. The question remaining is whether or not they achieve our goal of consistently estimating the
gaps within a data set. In this section, we test the algorithms on the sets defined inTable 1, as well as a series of two-
and three-dimensional Cantor sets, and demonstrate that these new lacunarity measures do indeed achieve our goal.
These examples also show that the new measures are both scalable and independent of a data set’s numerical size
and mass. Even with these achievements, the lacunarity measures presented here do contain limitations, discussed
in Section 8. Nevertheless, the lacunarity measures presented here work well for ramified data sets, e.g. Cantor sets.

In describing the need for a new measure of lacunarity, seeSection 2, we presented a basic series of test sets that
demonstrates many of the problems within theLGB measure, seeTable 1andFig. 3. These problems are resolved
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Fig. 13.Lmax over changing number of covering elements for both the analytic optimal hyper-box cover and the estimator’s Fuzzy-C means
cover for two Cantor sets presented inFig. 4.

with theLmax measure, seeFig. 14. Notice that each of these sets has near identicalL̂max results. There is no
apparent variation due to mass change or data shifting within the analysis space, in contrast toLGB (Fig. 3). Fig. 15
shows the marked contrast in sensitivity to mass forLGB vs.L̂total. That is,L̂total provides a consistent measure for
varying resolution of the same data set, whereLGB fails. In a large way, it is this sensitivity to mass change that
limits the usefulness of glide box analysis for many applications, such as biofilm quantification. However, with our
new measures, this problem has been resolved.

As a second example, consider the effect on estimated lacunarity value of changing the lacunarity while main-
taining the fractal dimension. ThêLmax andL̂total lacunarity estimates for the Cantor sets developed inSection 2
and shown inFig. 4are presented inFig. 16.

For Cantor set families where the number of copies only increases in one dimension,L̂max converges to the
same value as the number of covers increases. For examples, see Cantor set familiesDs = log(4)/log(3) where
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Fig. 14.L̂max lacunarity estimations for gliding box algorithm test sets defined inTable 1.

Nc,d = [2,2], [2,3], [3,2] andDs = log(9)/log(5) whereNc,d = [3,3], [3,4], [4,3]. This is expected since
only thegaps in the one dimension were changed, leaving the dimension with largergaps still contained within
the minimum spanning tree. Of course, as thegaps in both dimensions are changed, the estimateL̂max changes,
as shown inFig. 16a. Another result is that Cantor sets with similar construction in different families (such as
Ds = log(4)/log(3), Nc,d = [3,3] andDs = log(9)/log(5), Nc,d = [3,3]) have more similar̂Lmax than do
individual members of a Cantor set family with dissimilar construction (such asDs = log(4)/log(3),Nc,d = [3,3]

Fig. 15. Comparison ofLGB andL̂total estimates for two sample resolutions, 0.004 and 0.0001, of the [3,3] Cantor set with similarity dimension
log(9)/log(5).
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Fig. 16. Lacunarity estimates for two-dimensional Cantor sets shown inFig. 4a–h.

andDs = log(4)/log(3),Nc,d = [2,2]), seeFig. 4. We, therefore, conclude that the fractal dimension and lacunarity,
L̂max, together more fully describe these data sets.

The L̂total estimate is highly sensitive to changes within the spanning tree, i.e. asgap sizes are changed the
estimate changes, seeFig. 16b. Due to this sensitivity,̂Ltotal provides additional structural description for varying
scales within the data set. It is important to note that both estimates are insensitive to rotational changes of thegaps,
e.g.Nc,d = [3,2] and [2,3], seeFig. 4c and d.

To show then-dimensional scaling ability of̂Lmax andL̂total, we present results for a family of three-dimensional
Cantor sets with similarity dimension of log(8)/log(3) in Fig. 17. (A visualization of the basic [2,2,2] Cantor set
was shown inFig. 5.) The lacunarity estimates for the three-dimensional Cantor sets follow the same pattern as the
estimates for the two-dimensional sets. Finally, we provide an example of a sub-optimal cover and its minimum
spanning tree for a two-dimensional [2,2] Cantor set with similarity dimension log(4)/log(3) with 128 covering
elements inFig. 18.

The new lacunarity measures we propose are akin to the average point-to-point distance measure of lacunarity
discussed by Mandelbrot[1] and Taguchi[23]; however, our measures are valid for sets consisting of infinite points

Fig. 17. Lacunarity estimates for three-dimensional Cantor sets with similarity dimension of log(8)/log(3).
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Fig. 18. Sub-optimal cover with its minimum spanning tree for a two-dimensional [2,2] Cantor set with the similarity dimension log(4)/log(3)
and a 128-element cover. The uncovered set is shown inFig. 4a.

and intervals. A side benefit of using the same cover for calculating both the fractal dimension[7] and lacunarity is
the reduction in computation through reuse of the covers in both methods.

8. Future directions

One of the drawbacks of the lacunarity measures presented in this paper is that they are for ramified data sets. As
the data points become more dense, the covering elements start to pack tightly together over well-connected spaces
and the minimum spanning trees no longer measure the gaps in the data sets, seeFig. 19. In fact, theLmax andLtotal

Fig. 19. Two sets that violate the ramified data set assumption with (upper) the spanning tree generated by existing methods and (lower) a new
spanning tree that solves this violation.
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lacunarity measures go to zero as the ramified assumption is violated. Even so, these methods can be modified to
use a different type of spanning tree that still does measure the desired gaps within the data sets. An example of
such a tree is shown inFig. 19. This improved algorithm for dense sets is currently being developed and will be the
basis for a future paper.
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Appendix A. List of variables

ank kth interval within thenth scale Cantor generation set
A data set or image to be analyzed
bnk left endpoint for the intervalank
Ci cover of theith cluster
C, Cd number of covering elements for a given size;d, of covering element
C$ the union ofCi for all i in the optimal set of covers that minimize the spanning tree
d size of a covering element
de(x, y) Euclidean distance function betweenx andy
diam(C) diameter of the covering elementC
Db(A) box dimension definition
Dh(A) Hausdorff–Besicovitch (HB) dimension definition
Ds(A) similarity dimension
gil lth row vector ofGi

Gi directional unitary matrix on the right in the singular value decomposition
Gn Cantor set gaps for thenth level generation set
hs s-dimensional Hausdroff measure
hs(A) Hausdroff measure ofA
i, j, k, l, n, ands used as counting indices throughout
I iteration through the Picard algorithm
K scaling factor used in generating Cantor sets
L number of Cantor set tuples within the generalized Cantor set (dimension); dimension of the

image or signal to be analyzed (A)
M̂i scatter matrix for theith cluster
N number of data points with the image of interest,A

Nc number of copies replicated on each successive level within a Cantor set
NG number of groups within an analysis scale
Ni number of hard clustered points within theith cluster
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p
j
i maximum length of an ellipse axis, or thej th cluster projection on the a segment connecting

the centers of thej th andith clusters
Qi matrix of singular values
r unit box size, i.e. the length of one box side
Rp p-dimensional real vector space
smn spanning distance between themth andnth clusters
Sk kth segment of the minimum spanning tree
S span of a cover, i.e.

∑k
Sk

T minimum spanning tree of segments connecting covers
uik membership value for thekth point in theith cluster
vk vector describing the center of thekth cluster
Vn nth level generation set used in construction of a generalized Cantor set
Vi theith tuple ofVd

Vd generalizeddth-tuple Cantor set
wil lth column vector ofWi

Wi directional unitary matrix on the left in the singular value decomposition
xi a component of a vectorx
xi vector for theith data point
ε maximum change in membership allowed for conversion of the clustering methods
σ il lth singular value ofQi

Appendix B. Sub-optimal cover: Fuzzy-C means Picard iteration

(1) Choose the number of clustersC ≥ 1. Selectε > 0 (this is the ending condition). Next, randomly initialize the
centers of the clusters,ci .

(2) Solve for the memberships of each vector:

uik = 1∑C
j=1[‖xk − ci‖/‖xk − cj‖]2

, where k = 1,2, . . . , N, i = 1,2, . . . , C. (B.1)

(3) Solve for the centers for each cluster:

ci =
∑N
k=1 u

2
ikxk∑N

j=1 u
2
ij

, where i = 1,2, . . . , C. (B.2)

(4) Repeat step 2.
(5) Repeat step 3.
(6) If .uik > ε, then loop back to step 4. Otherwise, stop.

Note that by using the Euclidean norm, the algorithm produces a minimum distance classification of the data, which
is what we desire in this work.

Appendix C. Minimum spanning tree: the Prim algorithm

The algorithm given here is not designed for speed, only ease of comprehension.
Prim algorithm for minimal spanning trees:
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(1) Create some bookkeeping sets as follows (show the form and the initial values):

used= {i|i ∈ [1,2, . . . , C]} = { }, unused= {i|i ∈ [1,2, . . . , C]},
links = {(m, n)i |m �= n; m, n ∈ [1,2, . . . , C]; i ∈ [1,2, . . . , C− 1]} = { },
S = {Si |Si = smn; m �= n; m, n ∈ [1,2, . . . , C]; i ∈ [1,2, . . . , C− 1]} = { }.

(2) Find the shortest connecting cluster segment and record the link:

S1 = smn = min
m,n∈unused

smn, link = link
⋃

{(m, n)1}, used= used
⋃

{m, n},

unused= unused\ {m, n}, S = S
⋃

S1.

(If there is more than one, choose any one.)
(3) Find the remaining shortest attaching links:

For i = 2 toC− 1

Si = smn = min
m∈usedn∈unused

smn, link = link
⋃

{(m, n)i}, used= used
⋃

{n},

unused= unused\ {n}, S = S
⋃

Si.

(4) T = S.

Note the use of\ denotes set deletion.
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