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Abstract

This review summarizes the neurochemical, therapeutic and adverse effects of serotonin (5-HT) releasing agents. The 5-HT releaser

( ± )-fenfluramine is composed of two stereoisomers, (+)-fenfluramine and (�)-fenfluramine, which are N-de-ethylated to yield the

metabolites, (+)-norfenfluramine and (�)-norfenfluramine. Fenfluramines and norfenfluramines are 5-HT transporter substrates and potent

5-HT releasers. Other 5-HT releasing agents include m-chlorophenylpiperazine (mCPP), a major metabolite of the antidepressant drug

trazodone. Findings from in vitro and in vivo studies support the hypothesis that fenfluramines and mCPP release neuronal 5-HT via a non-

exocytotic carrier-mediated exchange mechanism involving 5-HT transporters. (+)-Norfenfluramine is a potent 5-HT2B and 5-HT2C receptor

agonist. The former activity may increase the risk of developing valvular heart disease (VHD), whereas the latter activity is implicated in the

anorectic effect of systemic fenfluramine. Anorectic agents that increase the risk of developing primary pulmonary hypertension (PPH)

share the common property of being 5-HT transporter substrates. However, these drugs vary considerably in their propensity to increase the

risk of PPH. In this regard, neither trazodone nor mCPP is associated with PPH. Similarly, although some 5-HT substrates can deplete brain

5-HT (fenfluramine), others do not (mCPP). In addition to the established indication of obesity, 5-HT releasers may be helpful in treating

psychiatric problems such as drug and alcohol dependence, depression and premenstrual syndrome. Viewed collectively, it seems possible to

develop new medications that selectively release 5-HT without the adverse effects of PPH, VHD or neurotoxicity. Such agents may have

utility in treating a variety of psychiatric disorders. D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Monoamine neurons in the brain possess membrane-

bound proteins that function to transport neurotransmitter

molecules from the extracellular space back into the cyto-

plasm (Amara and Kuhar, 1993). It is now well established

that distinct transporter proteins are expressed on NE

neurons (i.e., NE transporters, NET), DA neurons (i.e.,

DA transporters, DAT) and 5-HT neurons (i.e., 5-HT trans-

porters, SERT). These proteins are members of a superfam-

ily of sodium/chloride-dependent transporters that share

genetic, structural and functional homologies (Uhl and

Johnson, 1994). Under normal circumstances, the trans-

porter-mediated uptake of monoamine transmitters is the

principal mechanism for inactivation of monoaminergic

transmission in the brain. Moreover, monoamine transport-

ers are targets for a variety of therapeutic and abused drugs

(Amara and Sonders, 1998).

Drugs that interact with transporters can be divided into

two basic classes: reuptake inhibitors and substrate-type

releasers. Reuptake inhibitors bind to transporter proteins,

but are not transported. These drugs elevate extracellular

concentrations of transmitter by blocking transporter-medi-

ated uptake of transmitters from the synapse. Substrate-type

releasers also bind to transporter proteins, but these drug

molecules are subsequently transported into the cytoplasm

of nerve terminals. Releasers elevate extracellular transmit-

ter concentrations by a two-pronged mechanism: (1) they

increase cytoplasmic levels of transmitter by disrupting

storage of transmitters in vesicles and (2) they promote

non-exocytotic release of transmitters by a process of

carrier-mediated exchange (Rudnick and Clark, 1993).
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Because substrate-type releasing agents must be transported

into the nerve terminal to promote neurotransmitter release,

reuptake inhibitors can block the effects of releasers.

Reuptake inhibitors and substrate-type releasers both

elevate extracellular concentrations of transmitter via trans-

porter-dependent processes, but there are important differ-

ences in their precise mode of action. In particular, the

ability of reuptake inhibitors to elevate extracellular neuro-

transmitter requires that nerve terminals release neurotrans-

mitters via exocytosis. This, in turn, requires electrical

depolarization and extracellular calcium. Thus, the ability

of reuptake inhibitors to increase extracellular neurotrans-

mitter levels is said to be impulse- and calcium-dependent.

Releasing agents, on the other hand, increase synaptic levels

of neurotransmitter by a process that is independent of

ongoing neuronal firing. Since the action of reuptake

inhibitors requires ongoing neuronal firing, autoreceptor-

mediated negative feedback mechanisms serve to dampen

the ability of 5-HT reuptake inhibitors to elevate synaptic

transmitter. Such negative feedback effects exist for 5-HT

(Adell and Artigas, 1991; Rutter et al., 1995; Smith and

Lakoski, 1997), DA (Hinerth et al., 2000) and NE (Mateo

et al., 1998) neuron systems, and these effects do not alter

the actions of releasers. Because of negative feedback

inhibition, reuptake inhibitors tend to produce small

increases in extracellular neurotransmitter whereas releas-

ers tend to produce more robust increases. The in vivo

microdialysis data in Fig. 1 illustrate the modest and

sustained elevation of extracellular 5-HT evoked by the

5-HT reuptake inhibitor fluoxetine compared to the much

larger and transient effect of the 5-HT releaser, (+)-fenflur-

amine (Berger et al., 1992; Crespi et al., 1997).

A number of 5-HT selective reuptake inhibitors (SSRIs),

such as fluoxetine, sertraline and citalopram, are widely

prescribed medications used in the treatment of psychiatric

disorders including depression, panic disorder and obsess-

ive–compulsive disorder (for reviews, see Gorman and

Kent, 1999; Zohar and Westenberg, 2000). By contrast,

there are far fewer 5-HT releasing agents. Because of the

withdrawal of the 5-HT releasers, fenfluramine and dexfen-

fluramine, from the market in September 1997 (Connolly

and McGoon, 1999), there are currently no clinically avail-

able 5-HT releasing agents. A main goal of this paper is to

summarize the potential therapeutic uses and reported

adverse effects of 5-HT releasing agents. Furthermore, we

hope this review will stimulate continued interest in the

development of novel and selective 5-HT releasers that can

be used as effective medications.

2. Neurochemical mechanisms of 5-HT releasing agents

( ± )-Fenfluramine (Pondimin) and its more potent stereo-

isomer, (+)-fenfluramine (dexfenfluramine, Redux), are sub-

stituted amphetamine derivatives. These drugs were used for

the treatment of obesity until they were withdrawn from the

market in September 1997, due to reports of cardiac

valvulopathy (Connolly and McGoon, 1999). ( ± )-Fenflur-

amine is composed of two stereoisomers, (+)-fenfluramine

Fig. 1. Effects of fluoxetine (a 5-HT reuptake inhibitor) and (+)-fenfluramine

(a 5-HT releaser) on extracellular 5-HT in rat nucleus accumbens. Dialysis

methods were carried out as described previously (Baumann et al., 2000).

Drugs were administered intravenously at 0 min. Data are expressed as a

percentage of the mean of three basal dialysate samples collected prior to

drug treatment. Basal dialysate 5-HT level was 0.46 ± 0.17 nM. Values are

mean ± S.E.M. for N= 5 rats/group.

Fig. 2. Chemical structures of representative 5-HT releasing agents.
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and (� )-fenfluramine, which are N-de-ethylated in the liver

to form the metabolites, (+)-norfenfluramine and (� )-nor-

fenfluramine (Pinder et al., 1975; Caccia et al., 1985). Fig. 2

shows the structures of fenfluramine and norfenfluramine.

Since all four stereoisomers are biologically active (Garat-

tini et al., 1986), systemic administration of ( ± )-fenflur-

amine delivers four active pharmacological agents in vivo.

Most studies indicate that fenfluramines and norfenflur-

amines are SERT substrates and potent 5-HT releasing

agents (for review, see Garattini, 1995). Other 5-HT releas-

ing agents include the piperazine derivatives, m-chlorophe-

nylpiperazine (mCPP) and m-trifluoromethylpiperazine

(TFMPP) (Pettibone and Williams, 1984; Auerbach et al.,

1990; Baumann et al., 1993, 1994; Eriksson et al., 1999). It

is noteworthy that mCPP is a major metabolite of the

antidepressant trazodone (Otani et al., 1998) and a minor

metabolite of nefazodone (Barbhaiya et al., 1996). In vitro

release data and in vivo microdialysis data support the

hypothesis that ( ± )-fenfluramine, (+)-fenfluramine, mCPP

and TFMPP release neuronal 5-HT via a non-exocytotic,

carrier-mediated exchange mechanism involving SERT sites

in the brain. As shown in Fig. 3, treatment with the 5-HT

uptake inhibitor, fluoxetine, antagonizes the ability of these

drugs to release [3H]5-HT from synaptosomes in vitro.

Historically, it has been difficult to distinguish whether

drugs act as reuptake inhibitors or substrate-type releasers

using simple test tube assays. With this in mind, we

recently developed a high-throughput in vitro method that

can be used to discriminate between reuptake inhibitors

and releasers (Rothman et al., 2000b, 2001). Using this

method, it is possible to determine the ability of test drugs

to release [3H]NE, [3H]DA and [3H]5-HT from rat brain

synaptosomes under similar assay conditions. As reported

in Table 1, a number of drugs are potent 5-HT releasers

(see Fig. 2 for representative chemical structures). The

appetite suppressant, chlorphentermine, is the most potent

5-HT releaser tested. Although this agent does not release

NE, it blocks NE uptake with an IC50 = 450 nM (Rothman

et al., 2001), indicating about a 10-fold selectivity for

SERT. (+)-Fenfluramine and mCPP are potent 5-HT releas-

ers, but in contrast to (+)-fenfluramine, mCPP does not

release NE. (� )-Fenfluramine is about three-fold weaker

at 5-HT release than the (+)-isomer, and it does not release

NE. Amphetamine and phentermine are very weak 5-HT

releasers, especially when compared to their potency at NE

and DA release.

Table 1

Effects of test drugs on release of [3H]5-HT, [3H]NE and [3H]DA from synaptosomes

Drug

5-HT release IC50

(nM±S.D.)

NE release IC50

(nM±S.D.)

DA release IC50

(nM±S.D.)

Chlorphentermine 30.9 ± 5.4 > 10,000 2650 ± 273

mCPPa 38.1 ± 4.6 >10,000 >10,000

5-HT 44.4 ± 5.3 >10,000 >10,000

( + )-Fenfluramine 51.7 ± 6.1 302 ± 20 >10,000

( ± )-MDMA 56.6 ± 2.1 77.4 ± 3.4 376 ± 16

( ± )-Fenfluramine 79.3 ± 9.5 739 ± 57 >10,000

(�)-Fenfluraminea 147 ± 19 >10,000 >10,000

Aminorex 193 ± 23 26.4 ± 2.8 49.4 ± 7.5

(+)-Methamphetamine 736 ± 45 12.3 ± 0.7 24.5 ± 2.1

(+)-Amphetamine 1765 ± 94 7.07 ± 0.95 24.8 ± 3.5

Tyramine 2775 ± 234 40.6 ± 3.5 119 ± 11

Phentermine 3511 ± 253 39.4 ± 6.6 262 ± 21

(�)-Methamphetamine 4640 ± 243 28.5 ± 2.5 416 ± 20

(�)-Ephedrine >10,000 72.4 ± 10.2 1350 ± 124

Norepinephrine >10,000 164 ± 13 869 ± 51

Dopamine >10,000 66.2 ± 5.4 86.9 ± 9.7

Rat brain synaptosomes were preloaded with [3H]neurotransmitter. Test drugs (1–10,000 nM) were incubated with preloaded synaptosomes, and

[ 3 H]neurotransmitter release was determined according to the published methods (Rothman et al., 2001). Each value is the mean ± S.D. of three experiments.

Data are from Rothman et al. (2001).
a Unpublished data.

Fig. 3. Effects of fluoxetine on [ 3H]5-HT release evoked by ( ± )-

fenfluramine, (+)-fenfluramine, mCPP and TFMPP in rat brain synapto-

somes. Synaptosomes were preloaded with [3H]5-HT (5 nM). Test drugs

(100 nM) were incubated with preloaded synaptosomes, in the absence or

presence of fluoxetine (10 nM). Fluoxetine alone did not release [3H]5-HT.

As described elsewhere (Rothman et al., 2001), [3H]5-HT release was

determined by measuring retained tritium, and maximal release was defined

using 100 mM tyramine. Data are mean ± S.E.M. for three separate

experiments expressed as a percentage of maximal release. *P < .05 when

compared to drug alone (Student’s t test).
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Fenfluramines and mCPP also have direct agonist actions

at 5-HT receptors. As noted above, when administered

systemically, ( ± )-fenfluramine and (+)-fenfluramine are

rapidly metabolized to ( ± )-norfenfluramine and (+)-norfen-

fluramine, respectively (Caccia et al., 1985; Campbell et al.,

1988). These metabolites are pharmacologically active and

display long biological half-lives (Caccia et al., 1985).

In addition to releasing 5-HT (see above), fenfluramines

and their metabolites have direct agonist actions at multiple

5-HT2 receptor subtypes (Fitzgerald et al., 2000; Rothman

et al., 2000a). In fact, the direct activation of 5-HT2C

receptors by fenfluramine is thought to contribute directly

to the anorectic effect of the drug in rats (Dourish, 1995;

Curzon et al., 1997; Vickers et al., 1999). As reported

in Table 2, both (+)-norfenfluramine and (�)-norfenflu-

ramine are highly efficacious and potent 5-HT2C receptor

agonists (Kact < 20 nM). By contrast, (+)-fenfluramine and

(� )-fenfluramine are about 10-fold less potent at activating

human 5-HT2C receptors. Thus, the suspected 5-HT2C

receptor actions of systemically administered fenfluramine

may be mediated by norfenfluramine. (+)-Norfenfluramine

is also a very potent 5-HT2B agonist, which may relate to the

valvulopathy side effect (Rothman et al., 2000a). m-CPP is a

very potent and efficacious agonist at the human 5-HT2C

receptor (Kact = 0.6 nM) and is also reported to be a potent

5-HT1A agonist (Hoyer et al., 1994).

One approach for discriminating between drug-induced

presynaptic (i.e., 5-HT release) versus postsynaptic (i.e.,

5-HT receptor agonism) serotonergic actions is to pretreat

with 5-HT reuptake blockers like fluoxetine (Berger et al.,

1992). Because fluoxetine will selectively antagonize

SERT-mediated phenomena, fluoxetine-reversibility can be

used as a criterion to identify effects of fenfluramine that

involve presynaptic mechanisms (Gundlah et al., 1997;

Baumann et al., 1998). Using this paradigm in human

subjects, Pedrinola et al. (1996) showed that (+)-fenflu-

ramine promotes weight loss in patients who receive con-

current fluoxetine treatment. Thus, in both animals and

humans, it appears that fenfluramine anorexia is mediated,

at least in part, by postsynaptic actions of fenfluramine or its

principal metabolite.

3. Therapeutic applications of 5-HT releasers

As noted above, ( ± )-fenfluramine and (+)-fenfluramine

are the only 5-HT releasers ever approved for use in humans,

and mCPP has been used clinically as an investigational

drug. In fact, all three drugs are ‘‘promiscuous’’ ligands.

While these drugs potently release 5-HT, their activation of

5-HT2B and 5-HT2C receptors undoubtedly contributes to

their in vivo pharmacological effects. Our inferences con-

cerning potential therapeutic uses of 5-HT releasing agents

necessarily derive from studies of fenfluramine and mCPP.

Until such time as these inferences can be tested with truly

selective 5-HT releasers, any hypothesis developed on the

basis of studies with fenfluramine and mCPP must be

considered somewhat speculative.

3.1. Established therapeutic indications

Numerous double-blind placebo-controlled studies have

clearly established ( ± )-fenfluramine and (+)-fenfluramine

as effective weight loss agents (for reviews, see Pinder et al.,

1975; McTavish and Heel, 1992; Davis and Faulds, 1996).

Other studies show that ( ± )-fenfluramine and (+)-fenflu-

ramine promote weight loss and directly improve insulin

sensitivity and diabetic control in Type 2 diabetes (Willey

et al., 1992, 1994; Scheen and Lefebvre, 2000). Interest-

ingly, (+)-fenfluramine decreases sympathetic nervous sys-

tem activity (Hirsch et al., 2000), plasma NE (Andersson

et al., 1991; Kolanowski et al., 1992; Flechtner-Mors et al.,

1998), plasma renin (Andersson et al., 1991) and blood

pressure (Andersson et al., 1991; Kolanowski et al., 1992;

Table 2

Functional activity of test drugs at 5-HT2 receptor subtypes

Drug

Human 5-HT2A

Kact (nM±S.E.M.)

Vmax (% 5-HT± S.E.M.)

Human 5-HT2B Kact

(nM±S.E.M.) Vmax

(% 5-HT±S.E.M.)

Human 5-HT2C Kact

(nM±S.E.M.) Vmax

(% 5-HT± S.E.M.)

(+)-Fenfluramine >10,000 379 ± 70 362 ± 64

38 ± 8.2 80 ± 5.9

(�)-Fenfluramine 5279 ± 587 1248 ± 252 360 ± 91

43 ± 4.2 47 ± 2.9 84 ± 7.4

(+)-Norfenfluramine 630 ± 141 18.4 ± 5.3 13 ± 2.4

88 ± 5.3 73 ± 3.5 100 ± 6.5

(�)-Norfenfluramine 1565 ± 190 357 ± 105 18 ± 5.3

93 ± 5.3 71 ± 8.8 80 ± 10

m-CPP 65 ± 10 64 ± 15 0.64 ± 0.17

55 ± 6.5 43 ± 8.2 79 ± 8.8

5-HT 66 ± 15 2.4 ± 0.9 0.6 ± 0.1

100 100 100

Phosphoinositide hydrolysis assays were performed in stably (5-HT2A and 5-HT2C) or transiently (5-HT2B) expressed receptors. [3H]Inositol phosphate

accumulation was determined as previously described (Rothman et al., 2000a). Each value is the mean ± S.E.M. of three experiments. Data are from Rothman

et al. (2000a).
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Flechtner-Mors et al., 1998) in humans. Similar effects occur

with administration of a2 adrenergic agonists (Oates et al.,

1978; Schoeppe and Brecht, 1980). It is tempting to specu-

late that NE release evoked by (+)-fenfluramine might

contribute to these effects (see Table 1).

3.2. Potential therapeutic indications

Several preclinical studies demonstrate that acute admin-

istration of 5-HT releasing agents such as fenfluramine,

mCPP and TFMPP decreases ethanol intake by rats (Lu

et al., 1993; Buczek et al., 1994; Wilson et al., 1998). The

ability of fenfluramine to decrease alcohol intake is

enhanced by concurrent administration of amphetamine

(Mirovsky et al., 1995; Yu et al., 1997) or phentermine

(Halladay et al., 1999, 2000). Additionally, the amphet-

amine/( ± )-fenfluramine or phentermine/( ± )-fenfluramine

combination eliminates alcohol withdrawal seizures in rats

(Mirovsky et al., 1995; Halladay et al., 2000). Case reports

also suggest that phentermine plus ( ± )-fenfluramine

decreases alcohol intake in humans (Hitzig, 1994; Rothman,

1995). These promising findings await confirmation with

controlled clinical trials.

A growing body of literature suggests that 5-HT releas-

ing agents may be helpful in treating substance use dis-

orders in general. In rats, ( ± )-fenfluramine decreases the

self-administration of methamphetamine (Munzar et al.,

1999), while (+)-fenfluramine suppresses heroin intake

(Higgins et al., 1994; Wang et al., 1995). A number of

studies indicate that fenfluramines could be used, along

with phentermine, in the treatment of cocaine dependence

(for review, see Rothman and Baumann, 2000). In humans,

controlled studies indicate that mCPP (Buydens-Branchey

et al., 1997) and fenfluramine (Buydens-Branchey et al.,

1998) decrease cocaine craving. The authors were unable to

locate any clinical trials that examined the effectiveness of

5-HT releasers as adjuncts in the treatment of stimulant or

opioid dependence.

In light of the widespread therapeutic application of

SSRIs in treating depression and anxiety disorders, it seems

possible that 5-HT releasers might be of therapeutic benefit

for these types of illnesses. Indeed, several small-scale

studies support this notion. Rickels et al. (1976) reported

that ( ± )-fenfluramine reduced emotional symptoms in

obese patients, while Ward et al. (1985) suggested that

acute administration of (+)-fenfluramine to depressed

patients produced antidepressant-like effects. Similarly, a

small double-blind placebo-controlled crossover clinical

trial (18 patients) indicated that (+)-fenfluramine effectively

treated seasonal affective disorder (O’Rourke et al., 1989).

Blouin et al. (1988) conducted a small (22 patients) double-

blind placebo-controlled crossover clinical trial comparing

desipramine and ( ± )-fenfluramine in the treatment of buli-

mia. The results indicated that ( ± )-fenfluramine had a

beneficial effect. An earlier study reported that acute ad-

ministration of ( ± )-fenfluramine reduced bulimic symp-

toms (Robinson et al., 1985). Another placebo-controlled

study showed that treatment with (+)-fenfluramine helped

ameliorate the symptoms of premenstrual depression and

the premenstrual rise in calorie, carbohydrate and fat intake

(Brzezinski et al., 1990). On the other hand, Price et al.

(1990) reported that fenfluramine did not have antidepres-

sant effects in patients refractory to, and concurrently

treated with, desipramine. Donnelly et al. (1989) reported

that ( ± )-fenfluramine lacked efficacy in the treatment of

attention deficit disorder.

As noted in the Introduction, 5-HT releasers differ from

SSRIs in a number of respects. Most importantly, due to the

existence of negative feed back loops, 5-HT releasers are

able to increase synaptic 5-HT to higher levels when

compared to uptake inhibitors. Whether or not this neuro-

chemical effect of releasers will impart enhanced antide-

pressant efficacy can only be established by controlled

clinical studies. Viewed collectively, the aforementioned

considerations suggest that additional investigations should

be undertaken to determine the efficacy of 5-HT releasers in

the treatment of a variety of psychiatric disorders.

4. Adverse effects of 5-HT releasing agents

Both ( ± )-fenfluramine and (+)-fenfluramine produce

mild and reversible side effects in some patients (Weintraub

and Bray, 1989; Weintraub et al., 1984; Hanotin et al., 1998).

Of greater concern to the risk-benefit ratio of these

medications is the increased risk of developing serious

side effects such as primary pulmonary hypertension

(PPH), valvular heart disease (VHD) and perhaps neuro-

toxicity. In fact, as noted above, a marked increase in the

incidence of VHD in patients treated with ( ± )-fenflu-

ramine and (+)-fenfluramine prompted the removal these

drugs from the market. The major adverse effects of these

medications will be discussed with particular emphasis on

possible underlying mechanisms.

4.1. Primary pulmonary hypertension

PPH is a rare and often fatal disease of unknown

etiology (Rubin, 1997). Epidemiological data show that

fenfluramines and aminorex clearly increase the risk of

developing PPH (Gurtner, 1990; Abenhaim et al., 1996).

Abenhaim et al. (1996) estimated that taking fenfluramines

(either ( ± )-fenfluramine or (+)-fenfluramine) for more

than 3 months, increased the risk of developing PPH

23-fold. Results from a more recent study (Rich et al.,

2000) conducted in the United States demonstrate that a

history of ( ± )-fenfluramine or (+)-fenfluramine exposure,

but not phentermine exposure, increases the risk of PPH by

about seven-fold. Given that PPH is usually an exceedingly

rare disorder with an annual incidence of one to two cases

per million, several large studies will be needed to accurately

determine the risk posed by fenfluramines. It is noteworthy
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that Rich et al. (2000) found no link between phentermine

and PPH. With the exception of a few isolated case reports

(Backmann et al., 1972; Schnabel et al., 1976), there is

currently no systematic scientific evidence for an increased

risk of PPH in patients receiving phentermine alone.

The mechanism by which fenfluramines might increase

the risk of developing PPH is not known. Recent evidence

indicates that mutations in the gene encoding bone morpho-

genetic protein Type II receptor (BMPR-II) may account for

most familial forms of PPH and for up to 26% of sporadic

PPH cases (Thomson et al., 2000; Machado et al., 2001). At

the present time, it is not known whether fenfluramines or

other appetite suppressants directly interact with BMPR-II

proteins. Future studies should examine the possible rela-

tionship between the incidence of fenfluramine-associated

PPH and mutations in the BMPR-II gene.

Some investigators have hypothesized that fenfluramine

and other anorectics elevate plasma 5-HT by releasing 5-HT

normally stored in platelets. According to the ‘‘5-HT hypo-

thesis’’ of PPH, drug-induced elevations in circulating 5-HT

cause chronic increases in pulmonary blood pressure and

growth of arterial smooth muscle thereby producing PPH in

susceptible individuals (Herve et al., 1995; Fishman,

1999a). A major flaw in the 5-HT hypothesis is that there

is little evidence to support it. In fact, substantial data shows

that administration of ( ± )-fenfluramine or (+)-fenfluramine

in animals and humans actually lowers blood levels of 5-HT

and does not increase plasma levels of 5-HT (Raleigh et al.,

1986; Stubbs et al., 1986; Sherman et al., 1989; Martin and

Artigas, 1992; Celada et al., 1994; Redmon et al., 1997).

Despite the overwhelming evidence that fenfluramines do

not increase plasma 5-HT, the 5-HT hypothesis continues to

gain wide acceptance (Fishman, 1999a; MacLean, 1999;

Stahl, 1997). These considerations prompted Rothman et al.

(2000c) to measure plasma 5-HT levels in human patients

who had taken phentermine alone or in combination with

( ± )-fenfluramine. The results illustrated in Fig. 4 show that

treatment with phentermine/( ± )-fenfluramine lowers

plasma 5-HT whereas treatment with phentermine alone

has no significant effect. The collective data indicate that

mechanisms other than increased plasma 5-HT must be

considered to explain how certain anorectic medications

increase the risk for development of PPH.

In our laboratory, we recently tested the hypothesis that

the fenfluramines and other anorectic medications might

increase the risk of PPH via interactions with SERT sites in

the lung (Rothman et al., 1999). It is well established that

SERT proteins expressed in brain and lung tissue are

identical (Ramamoorthy et al., 1993; Chang et al., 1996).

In addition, the 5-HT transport mechanism in the brain and

lungs is similar (Paczkowski et al., 1996; James and Bryan-

Lluka, 1997). In order to determine the SERT substrate

activity of various anorectic medications, we examined the

effects of these drugs on [3H]5-HT release from synapto-

somes in vitro and 5-HT efflux from rat brain in vivo. The

data from Table 1 demonstrate that drugs known or sus-

pected to increase the risk of PPH (i.e., ( ± )-fenfluramine,

(+)-fenfluramine, aminorex and chlorphentermine) are

potent SERT substrates, whereas drugs not associated with

PPH (i.e., amphetamine and phentermine) are less potent in

this regard. The intracranial microdialysis data depicted in

Fig. 5 show that all of the drugs associated with PPH are

powerful 5-HT releasers in vivo. These findings led us to

propose a ‘‘gateway hypothesis’’ of PPH. According to this

hypothesis, anorectic medications that are SERT substrates

get translocated into pulmonary cells where PPH could

develop as a response to high levels of these drugs or their

metabolites. The development of PPH would depend upon

the degree of drug retention, the intrinsic toxicity of the drug

and individual variations in susceptibility.

Hyperplasia of pulmonary artery smooth muscle is a

hallmark pathological feature of PPH (Rubin, 1997). The

gateway hypothesis does not clarify how SERT substrate

activity might be involved in causing PPH. One possibility

is that the accumulation of medications in arterial smooth

muscle cells could trigger mitogenesis via inhibition of K +

channels (Weir et al., 1996). This effect requires drug

concentrations at least 10-fold greater than the drug con-

centrations expected after therapeutic doses of fenflur-

amines. Thus, the role of SERT sites could be to

translocate drug molecules into pulmonary cells, providing

a mechanism to concentrate drugs to a level where K +

channel blockade might occur.

It appears that being a SERT substrate may be a

necessary, but not sufficient, criterion to increase the risk

of PPH. For example, there are potent SERT substrates that

are not associated with PPH. As mentioned previously,

Fig. 4. Effects of placebo, phentermine/( ± )-fenfluramine and phentermine

treatment on plasma 5-HT levels in human subjects. As reported elsewhere

(Rothman et al., 2000c), 44 patients with Type 2 diabetes enrolled in a

randomized double-blind, placebo-controlled, clinical trial to determine the

effect of the phentermine/fenfluramine combination [phentermine (37.5 mg

po/day) + fenfluramine (20 mg po tid)] on the disease process (Redmon

et al., 1999). Of the 44 patients enrolled, 37 (16 placebo-treated and

21 drug-treated) patients had both a baseline and a 2-month plasma sample

available for analysis. The remaining seven patients were treated with

phentermine alone (37.5 mg po/day) after 1-year treatment with placebo.

Using a within-subjects analysis, the plasma 5-HT at 2 months was divided

by the plasma 5-HT at baseline and multiplied by 100 for each subject. Only

the phentermine/fenfluramine group showed a significant decrease in plasma

5-HT. There was a nonsignificant trend towards a decrease in plasma 5-HT

in the phentermine group. *P< .05 when compared to placebo.
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mCPP is a SERT substrate that increases extracellular 5-HT

in rat brain (Baumann et al., 1993, 1994). Moreover, this

drug binds to SERT sites in human brain with a greater

potency than the prototypical 5-HT releaser ( ± )-fenflu-

ramine (Baumann et al., 1995). As reported in Table 1,

mCPP releases 5-HT in vitro more potently than (+)-fenflur-

amine. Neither trazodone nor mCPP has been associated

with PPH. Thus, mCPP represents a SERT substrate that

does not increase the risk of PPH.

Anorectic drugs vary considerably in their propensity to

increase the risk of PPH. For instance, aminorex causes PPH

in 2 of every 100 patients (Gurtner, 1985). Fenfluramines,

on the other hand, are estimated to cause PPH in 7 of every

1 million patients (Rich et al., 2000). It is possible that the

toxic potential of aminorex, ( ± )-fenfluramine and (+)-fen-

fluramine is related to the amphetamine-like chemical

structure of these drugs. In this regard, mCPP has a non-

amphetamine structure and is not known to increase the

risk of PPH. Thus, it seems feasible that SERT substrates

with non-amphetamine chemical structures may not

increase the risk of PPH.

4.2. Valvular heart disease

The history of fenfluramine-associated VHD was recently

reviewed (Connolly and McGoon, 1999). Current findings

indicate that severe VHD in phentermine/( ± )-fenfluramine

users, as initially reported by Connolly et al. (1997), is a rare

occurrence (Jick et al., 1998). Some studies report no statist-

ically significant increase in the prevalence of FDA-defined

VHD in patients treated with anorectic medications (Weiss-

man et al., 1998), while other studies report that about 12%

of patients treated with ( ± )-fenfluramine or (+)-fenflur-

amine develop mild asymptomatic VHD (Gardin et al.,

2000). There has been much speculation as to the mech-

anism of fenfluramine-associated VHD (Fishman, 1999b).

The lack of any VHD cases associated with the use of

phentermine alone, along with the fact that VHD occurs in

users of phentermine/( ± )-fenfluramine and (+)-fenflur-

amine, strongly implicates fenfluramines as the likely

causative agents of VHD.

Perhaps because ( ± )-fenfluramine and (+)-fenfluramine

increase synaptic levels of 5-HT (Rothman et al., 1999;

Baumann et al., 2000), investigators have proposed that

anorectic medications produce VHD via elevations in cir-

culating 5-HT (for review, see Fishman, 1999b). However,

as noted above, systemic administration of fenfluramines

does not increase blood 5-HT levels in animals or humans,

and phentermine/( ± )-fenfluramine treatment lowers plasma

5-HT in human patients (Rothman et al., 2000c). Therefore,

some explanation other than drug-induced elevations in

plasma 5-HT must be put forth to explain how fenflur-

amines could cause VHD.

The principal pathological feature of fenfluramine-asso-

ciated VHD is stimulated growth of fibroblasts located on

heart valves (Connolly andMcGoon, 1999), a process termed

mitogenesis. One possible mechanism to explain drug-

induced VHD is that fenfluramines or their major metabolites

may directly activate a mitogenic 5-HT receptor. According

to this proposal, any drug known to produce VHD similar to

that produced by ( ± )-fenfluramine and (+)-fenfluramine

(i.e., methysergide and ergotamine) would be expected to

Fig. 5. Effects of ( ± )-fenfluramine, (+)-fenfluramine, aminorex and chlorphentermine on extracellular 5-HTand DA in rat nucleus accumbens. Dialysis methods

were carried out as described previously (Baumann et al., 2000). Drugs were administered at 0 min (3 mmol/kg) and 60 min (10 mmol/kg). Data are expressed as a

percentage of the mean of three basal dialysate samples collected prior to drug treatment. Basal dialysate 5-HTandDA levels were 0.53 ± 0.11 and 1.96 ± 0.34 nM,

respectively. Values are mean ± S.E.M. for N= 5 rats/group. Data are from Rothman et al. (1999).
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have agonist activity at the putative mitogenic 5-HT

receptor. Two recent studies have reported that (+)-norfen-

fluramine, methylergonovine (the major metabolite of

methysergide) and ergotamine are potent and efficacious

agonists that the 5-HT2B receptor subtype (Rothman et al.,

2000a; Fitzgerald et al., 2000). Importantly, medications not

associated with increased risk of VHD (phentermine, fluox-

etine and its major metabolite, norfluoxetine) lack agonist

activity at the 5-HT2B receptor (Rothman et al., 2000a).

Given that 5-HT2B receptors are expressed on heart valves

(Fitzgerald et al., 2000), it seems possible that 5-HT2B

receptor activation is involved in etiology of fenfluramine-

associated VHD. Consistent with this notion, serotonergic

medications that are devoid of agonist activity at 5-HT2B

receptors should not produce VHD. Further evidence is

needed to definitively establish a link between 5-HT2B

receptors and VHD.

4.3. Fenfluramine neurotoxicity

It is well established that administration of high-dose

( ± )-fenfluramine or (+)-fenfluramine causes long-term

depletion of forebrain 5-HT in laboratory animals (Kleven

and Seiden, 1989; McCann et al., 1997). The fenfluramine-

induced loss of brain 5-HT is accompanied by parallel

reductions in presynaptic 5-HT markers, such as tryptophan

hydroxylase and SERT sites. We have recently shown that

5-HT depletion produced by ( ± )-fenfluramine in rats is

associated with adverse functional consequences in vivo

(Baumann et al., 1998). The collective findings have led

some investigators to conclude that fenfluramines are neuro-

toxic and produce lesions in central 5-HT nerve terminals

(Molliver et al., 1990; McCann et al., 1997). Depending on

experimental conditions, the reductions in 5-HT markers

can return to normal levels with time (Molliver et al., 1990;

Sotelo, 1991). Whether or not such fenfluramine-induced

deficits in 5-HT systems are indicative of ‘‘true’’ neuro-

toxicity is still a matter of debate (O’Callaghan and Miller,

1994; Baumann and Rothman, 1998).

An important question is whether or not therapeutic

doses of fenfluramine deplete 5-HT in human brain

(McCann et al., 1997). Preclinical studies indicate that

fenfluramines and norfenfluramines must achieve brain

concentrations of about 50 mM in order to produce

neurotoxicity (Zaczek et al., 1990; Mennini et al., 1996),

and this relationship is conserved across species. In an

attempt to determine if clinical doses of ( ± )-fenfluramine

or (+)-fenfluramine might lead to neurotoxic levels of the

drug in patients, some investigators used methods of

‘‘interspecies scaling’’ to extrapolate drug doses in animals

to equivalent doses in humans (McCann et al., 1997). The

scaling approach is based on the assumption that there are

physiological and biochemical similarities between diverse

animal species (Mahmood, 1999). For example, at the

cellular level, all eukaryotes metabolize simple sugars

via the same aerobic mechanisms. Unfortunately, scaling

methods cannot account for species-specific differences in

pharmacokinetic parameters such as brain-to-plasma ratios

of fenfluramine and its metabolites. In brief, interspecies

scaling is an indirect method that is subject to numerous

and often erroneous assumptions.

A more direct way of measuring fenfluramine concen-

trations in the brain is to use magnetic resonance spectro-

scopy (MRS). This method actually measures fluorine

atoms that are present in the chemical structure of fenflur-

amine and its metabolites. Christensen et al. (1999) used

this method to measure brain levels of (+)-fenfluramine

and (+)-norfenfluramine in 12 obese women who were

taking (+)-fenfluramine (15 mg po b.i.d.) for weight loss.

These investigators demonstrated that patients achieve

stable (+)-fenfluramine plus (+)-norfenfluramine levels in

brain of about 4 mM. Thus, using a direct and validated

measurement method (Christensen et al., 1998), these

investigators have shown that humans taking the recom-

mended dose of (+)-fenfluramine achieve drug concentra-

tions in the brain 10-times lower than those needed to

produce neurotoxicity in animals.

The mechanism underlying fenfluramine-induced deple-

tion of brain 5-HT in animals is not known. Some inves-

tigators have speculated that acute 5-HT release is involved

in the long-term 5-HT depletion caused by amphetamine-

type drugs (Berger et al., 1992; Seiden and Sabol, 1996).

There is evidence, for instance, that drug-induced elevations

in extracellular 5-HT can lead to the formation of toxic 5-HT

metabolites, which cause cellular damage (Wrona and

Dryhurst, 1998). On the other hand, a number of potent

5-HT releasing agents have been identified that are devoid

of neurotoxic properties. The Nichols group (Nichols et al.,

1990; Johnson et al., 1991) synthesized ‘‘non-neurotoxic’’

analogs of methylenedioxyamphetamine (MDA) and meth-

ylenedioxymethamphetamine (MDMA). These analogs are

substrate-type 5-HT releasers in vitro yet they do not

deplete forebrain 5-HT in vivo. We have shown that mCPP

releases 5-HT by a SERT-dependent mechanism (Baumann

et al., 1993), and high-dose administration of mCPP does

not deplete 5-HT in rat brain tissue (Baumann et al., 2001).

These data demonstrate that drug-induced 5-HT release is

not necessarily coupled to long-term 5-HT depletion.

5. Summary

The pharmacology of 5-HT releasing agents is relatively

unexplored. This situation is likely due to the limited

number of drugs that selectively release 5-HT relative to

DA and NE. Additionally, all of the available 5-HT

releasers possess significant 5-HT receptor affinities. When

administered systemically, ( ± )-fenfluramine generates a

total of four active drugs; these drugs not only release

endogenous 5-HT but also activate multiple 5-HT receptors

including 5-HT2B and 5-HT2C subtypes. Only two 5-HT

releasing agents were ever approved for use in humans,
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and these were withdrawn due to serious adverse effects.

Despite the unfortunate clinical experience with 5-HT releas-

ing agents, it may be premature to terminate investigation of

5-HT releasing agents as potential therapeutic agents. As

reviewed elsewhere (Rothman and Baumann, 2000), we

believe it may be possible to develop 5-HT releasers devoid

of serious adverse effects. For example, the Nichols group

identified a number of potent 5-HT releasing agents that lack

neurotoxic properties (Nichols et al., 1990; Johnson et al.,

1991). We have shown that mCPP releases 5-HT by a SERT-

dependent mechanism analogous to ( ± )-fenfluramine and

(+)-fenfluramine (Baumann et al., 1993), yet high-dose

administration of mCPP does not deplete 5-HT in rat brain

tissue (Baumann et al., 2001). Similar to the way that research

advances improved the side-effects profile of the histamine

receptor antagonist, terfenadine (Barbey et al., 1999), we

believe that it will be possible to develop new medications

that selectively release 5-HT without the adverse effects of

PPH, VHD or neurotoxicity. Such agents would have poten-

tial application in the treatment of obesity, substance depend-

ence and other psychiatric disorders.
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