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Abstract

A comparison of the deep structure along nine recent transects of the west margin of North America shows many
important similarities and differences. Common tectonic elements identified in the deep structure along these transects
include actively subducting oceanic crust. acereted oceanic/are (or oceanic-like) lithosphere ot Mesozoic through Cenozoic
ages. Cenozoic accretionary prisms. Mesozoic accretionary prisms. backstops to the Mesozoie prisms. and undivided
lower crust. Not all of these elements are present along all transects. In this study. nine transects, including tour crossing
subduction zones and tive crossing transform taults, are plotted at the same scale and vertical exaggeration (VE. |1 1),
using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting
oceanie crust, Cenozoic aceretionary prisms, and bodies of basaltic rocks accreted 1n the Cenozoic, including remnants
of a large. oceunic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt)
similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific
oceanic crust and have apparently created a giant asperity. or impediment to subduction. Most of the subduction-zone
transects also contain Mesozoie accretionary prisms, and two of them. Vancouver Island and Alaska. also contain thick.
tectonically underplated bodies of late Mesozoic/early Cenozoie oceanic lithosphere. interpreted as fragments of the extinet
Kula plate. In the upper crust. most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging
of a Mesozoic aceretionary prism into a backstop. which includes Mesozoic/early Cenozoic foreare rocks and Mesozoic
ophiolitic/are basement rocks: and (2) shuffling ot the subduction margin of California by strike-slip taulting. In the lower
crust. they may reflect migration of the Mendocino triple junction northward (seen in rocks cast ot the San Andreas
Fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern Calitornia,
lower-crustal rocks cast of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high
reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino
triple junction, or they may represent statled. subducted fragments of the Farallon/Gorda plate. The latter alternative does
not fit the accepted “slabless window™ model for the migration of the triple junction. This lower-crustal layver and the Moho
are offset at the San Andreas and Maacama faults. In central California. a similar lower-crustal layer is observed west of
the San Andreas fault. West of the continental slope. it is Pacific oceanic crust. but beneath the continent it may represent
cither Pacitic oceanie crust. stalled. subducted fragments (microplates) of the Farallon plate. or busaltic rocks magmatically
underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect
in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper
crust. a4 Mesozoie prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave
Desert. In the mid-crust. a bright reflective zone is interpreted as a possible “master” decollement that can be traced from
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the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression bencath
the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that
appears to be driving the compression across the Transverse Ranges and Los Angeles basin. 1998 Elsevier Science B.V.

All rights reserved.
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1. Introduction

In the past fifteen years or so. a number of scis-
mic transects have been collected across the west
margin of North America. In this study we compile
and examine nine of these transects from Alaska
to southern Calitornia (Plate 1. 1.1). including ones
beginning in the Gulf of Alaska (Fuis et al.. 1991:
Brocher et al., 1994). offshore of southern Vancouver
Island (Clowes et al., 1987, 1995, 1997: Hyndman et
al,, 1990; Fuis and Clowes, 1993), offshore of cen-
tral Oregon (Trehu ct al.. 1994). offshore of northern
California north of the Mendocino triple junction
(Beaudoin et al.. 1996) and south of the Mendocino
triple junction (Beaudoin ¢t al.. 1996; Henstock et
al.. 1996: Godtrey et al., 1997), offshore of the San
Francisco Bay region of central California at the
Golden Gate (Holbrook ct al.. 1996) and at Santa
Cruz (Fuis and Mooney. 1990: Page and Brocher.
1993), offshore of the San Luis Obispo region of
central California (Miller et al., 1992; Howie et al..
1993). and offshore of the Los Angeles region of
southern California (Fuis et al., 1996: Ryberg and
Fuis, 1998). Interpretation of the southern California
transect 1s preliminary; however, some tectonic cle-
ments are approximately known. and it is uscful to
include this transect for compartson with the other
transects.

Rescarchers have. on occasion, compared indi-
vidual transects with others, ¢.g.. Fuis and Clowes
(1993). Howic et al. (1993}, and Trehu et al. (1994):
however. no summary exists. Of course. an older
summary of continent—ocean transects is available
(Speed. 1991), but these transcects were compiled
largely before definitive seismic data were collected
along them. The purpose of this paper is to sum-
marize these nine transects using a common scale.
vertical exaggeration (V.E. 1 :1). and tectonic key.

Common tectonic elements that have been iden-
titied in these transects are as follows (along with

the label used in Plate I (A) actively subduct-
ing oceanic crust: (B1-B3) oceanic/are (or oceanic-
like) lithosphere accreted in the Mesozoic (B1), lat-
est Mesozoic or early Cenozoic (B2), or Cenozoic
(B3): (C) Cenozoie accretionary prism: (1) Meso-
z0ic aceretionary prism: (E) backstop to the Meso-
zoic prism: (F) undivided lower crust: and (G) other
Cenozoic rocks (see Plate 1, explanation 1.2). El-
cment A has intermediate velocity (6.0 7.3 km/s).
is tabular with a thickness of about 5-10 km. in
most cases. and is associated with subduction-zone
seismicity. Element Bl. largely unexposed. dense
magnetic rocks. has intermediate (6.0--7.3 kmv/s) to
mantle (7.7-8.0 km/s) velocities. These rocks are
interpreted as ophiolite and/or arc rocks. They are
part of the backstop (E) to the Mesozoic accretionary
prism. and are shown (Plate I. 1.2) as an overprint
on E. Element B2, also largely unexposed. dense,
magnetic rocks, has intermediate to mantle velocities
and is interpreted as tectonically underplated oceanic
lithosphere. Except in central Oregon. element B3, is
largely unexposed on the continent but can in some
places be traced seaward to Pacitic oceanic crust.
It has intermediate velocity and s tabular with a
thickness of generally 5 to 10 km. It has been vari-
ously interpreted as stalled, subducted oceanic crust
or as magmatically underplated basaltic rocks. (In
central Oregon. the B3 unit is exposed and consti-
tutes most. if not all of the crust; it is interpreted
as a possible remnant of an oceanic platcau.) The
Cenozoie and Mesozoic prisms (C and D) consist of
sedimentary, volcanic, and metamorphic rocks. The
Mesozoie prism (D) generally has a landward-dip-
ping boundary on its landward edge. In some cases,
a scaward-dipping lower boundary to this body is
interpreted, making it a tectonic wedge (labeled D).
Most Mesozoie tectonic wedges include ophiolite
in their upper part. interpreted to have been added
to the wedge trom the backstop (E/B1). Undivided
lower crust (F) includes rocks with velocity higher
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than about 6.6 km/s. generally interpreted to be in-
termediate to matic plutonic and metamorphic rocks.
Table | summarizes the clements present in cach
transect. Not all tectonic elements are present along
all transects.

Historical carthquakes are projected onto the tran-
seets in order to indicate how modern tectonics are
refated to the known structure. Most hypocenters are
projected less than about 10 km. where the pro-
jection distance can be known from the historical
record (c.g.. Ellsworth. 1990). The great Alaskan
carthquake is an exception: it was projected about
125 km (see below). Earthquake parameters were
taken from the sources referenced in Plate T (expla-
nation 1.2).

Interpretations presented here are largely con-
sistent with original interpretations (sec references
above). with the exception that the transects are in-
terpreted in terms of the tectonie elements detined
in this study (Plate I, 1.2). An extensive discussion
of the data and interpretation of cach transect is
beyond the scope of this paper. and the reader is re-
terred to the original papers listed above. (The above
references are not generally repeated below.)

2. Transects

2.1 Gulf of Alaska/southern Alaska (Plate 1, 1.3)

Subducting crust in the Gulf ot Alaska/southern
Alaskit (A) includes Pacific oceanic crust (middle
and late Eocene in age) overlain by a pair of layers
(6.9 and 6.1-6.47 km/s) interpreted as lower crust
of the Yakutat terrane (early Eocene in age). The
overriding North American plate includes a Ceno-
soic prism (C), a Mesozoic prism (D), a backstop
to the Mesozoic prism (E/B1). a tectonically un-
derplated body of intermediate to mantie velocities
(5.7 -7.7 kim/s: B2). and a lower-crustal root (F). The
Cenozoic prism is the Prince William terrane: the
Mesozoic prism includes the Chugach terrane and
an ophiolite complex known as the Border Ranges
ultramafic—-matfic assemblage (BRUMA), interpreted
to be a fragment of the basement of the Peninsular
terrane: and the backstop to the Mesozoic prism
includes sedimentary rocks of the Copper River
basin. the Peninsular/Wrangellia terrane. and Meso-
zoic plutonic rocks. The Mesozoie prisim and ophio-

lite complex are interpreted to have moved landward
as an upper-crustal tectonic wedge into the backstop.
the ophiolite complex having been transterred from
the backstop to the wedge. The underplated body
(B2). the tip of which is exposed in the Chugach
Mountains as metabasalt. is mterpreted as tectoni-
cally underplated fragments of the Kula plate tlate
Mesozoic/early Cenozoie in age): it underlies the
scaward part of the Mesozoic prism but is truncated
tarther seaward by the Contact fault. A lower-crustal
root 1s observed bencath the backstop and landward
of the B2 body: maximum crustal thickness i1s 57
km.

Subduction of the lower crust of the Yakutat
terrane is largely responsible for the current uplift of
the Chugach Mountains and may constitute much of
the giant asperity giving rise to great carthquakes in
southern Alaska. such as the 1964 M 9.2 Alaskan
carthquake (Page et al., 1994). The hypocenter of the
Alaskan earthquake (Stauder and Bollinger, 1972) is
projected about 125 km castward onto the transect
(Plate 1. 1.3} therefore. its structural setting is not
necessarily that shown. namely, occurrence at the
base of the body of interpreted Kula-plate fragments.
On the other hand, the projection was along a gravity
ridge (Barnes, 1977) associated with the body of
Kula-plate fragments, and the structural setting may
not be too difterent from that shown. It is interesting
to speculate on whether or not the interpreted lower
crust of the Yakutat terrane will continue to subduct
with the Pacific occanic crust or become tectonically
underplated like the older fragments of the Kula
plate (B2).

2.2, Southern Vancouver Island (Plate 1. 1.4)

The Juan de Fuca plate (A: late Cenozoic in age)
is actively subducting beneath southern Vancouver
Island. The overriding North American plate con-
sists of a Cenozoie prism (C). a partly exposed and
also a deeply subducted body of tectonically under-
plated oceanic rocks (B3). a Mesozoie prism (D) a
backstop to the Mesozoic prism (E). and an under-
plated body of intermediate to high velocity (B2).
The Cenovzoic prism (exclusive of the bodies B3) in-
cludes the Olympic Core Rocks and Ozette and Hoh
{melange) terranes. The upper body B3 is the Cres-
cent terrane (carly Eocene in age). 1tis defined in the
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subsurface chiefly by its magnetic properties (Dehler
and Clowes. 1992). This terrane is correlative in age
and composition with the lower crust of the Yakutat
terranc in southern Alaska. but at southern Vancou-
ver Island. it has been accreted to the North Ameri-
can plate. The Mesozoic prism is the Pacific Rim ter-
rane and the backstop to this prism is the Wrangellia
terrane. In contrast to southern Alaska. the Mesozoic
prism has been juxtaposed against the backstop by
thrusting and/or strike-slip faulting. not by tectonic
wedging. The intermediate- to high-velocity body
(B2) and the Mesozoic prism are truncated scaward
at the Tofino fault, presenting a structural configu-
ration somewhat similar to that in southern Alaska
(Plate 1, 1.3), where the Chugach terranc and in-
terpreted Kula-plate fragments are truncated at the
Contact fault. As in southern Alaska, the B2 body
at southern Vancouver Island may be interpretable as
fragments of the Kula plate.

Crustal thickness at Vancouver Island and in the
western Coast Mountains 1s somewhat puzzling. Re-
fraction/wide-angle reflection data indicate velocities
of 7.9 km/s at about 37-km depth. but vertical-inci-
dence reflection data in the western Coast Mountains
show clear reflections extending well below  this
depth. In fact, these data suggest a smooth projection
of the eastward-dipping ‘C" and "E’ reflective zones
at the top and bottom of the B2 body on Vancouver
Island into the Coast Mountains. It appears from the
reflection data that the B2 body passes through the
37-km "Moho’ depth without noticcable change in
reflective character. Gravity data indicate non-mantle
densities below 37-km depth (Clowes et al., 1997).
It is possible that the high velocities indicated by the
refraction/wide-angle reflection data are from a layer
within the B2 body. Such layers are observed in the
B2 body in Alaska.

2.3. Central Oregon (Plate I, 1.5)

In central Oregon, as at southern Vancouver Is-
land, the Juan de Fuca plate (A; late Cenozoic in
age) is actively subducting. The components of the
overriding North American plate include a Cenozoic
prism (C), a body of intermediate- to high-velocity
oceanic rocks (B3), and. east of the Cascade Range
(beyond the transect). a Mesozoic backstop (E). re-
vealed in spotty exposures. The Mesozoic prism (D)

is buried beneath Cascade volcanic rocks (Stanley
ct al.. 1990) or is missing (Parsons et al.. 1996).
The body B3 is the Siletz terrane (Paleocene and
Eocene in age): it 1s correlative with and can be
traced northward into the Crescent terrane at south-
ern Vancouver Island but is four to six times thicker
than the Crescent terrane at the latitude of central
Oregon.

The Siletz terrane may be (a) an occanic plateau
resulting from the initiation of the Yellowstone
hotspot in the carly Cenozoic, or (b} the products
of oblique rifting of the continental margin in the
carly Cenozoic (Wells et al.. 1984).

24 Northern California (Plate I, 1.6 and 1.7)

Transects north and south of the Mendocino triple
Junction reveal fandward-dipping Mohos with 6-km-
thick reflective zones immediately above the Mo-
hos; reflectivity is especially strong along the south-
ern transect. On the northern transect. the reflective
zone correlates in part with subduction-zone carth-
quakes and is interpreted to be the actively sub-
ducting Gorda-plate crust (A: late Cenozoic). On
the southern transect. this layer is cither tectonically
or magmatically underplated mafic rocks (B3). The
crust above these mafic layers on both transects in-
cludes simply a Mesozoie/Cenozoie prism (labeled
D and D) and a backswop to the Mesozoic prism
(E). The Mesozoic/Cenozoic prism is the Franciscan
assemblage. composed of three belts or terranes. On
the northern transect. the backstop to this prism is
the Klamath complex. an assemblage of island-arc
and ophiolitic terranes. On the southern transect,
the backstop is the Great Valley sequence and its
ophiolite/island-arc basement, the Great Valiey ophi-
olite (E/B1). On the northern transect, the prism
underthrusts the backstop: whereas on the southern
transect, the prism ts interpreted to form a complex.
two-ticred tectonic wedge that indents the backstop.
The Great Valley ophiolite apparently includes a
complete (but probably structurally disarrayed) sec-
ton of oceanic lithosphere, including oceanic crust
over mantle rocks. This section is interpreted o have
been obducted onto the Sicerra Foothills metamorphic
complex in the Jurassic (Godfrey ct al., 1997). The
relationship of the Great Valley ophiolite to the Coast
Range ophiolite. a component of the teetonic wedge
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(D). is not entirely clear. although the two are likely
to be parts of the same oceanic lithosphere brought
together by wedging.

Possible interpretations of layer B3 on the south-
ern transect include tectonically underthrust Pacific
plate (mid-Cenozoic in age). magmatically under-
plated basaltic rock above a “slabless™ asthenospheric
window (late Cenozoice to Holocene in age). or frag-
ments ot the receding Gorda plate (late Cenozoic in
age). The first interpretation conforms to the model
of Bohannon and Parsons (1995): the second. 1o
the model of Furlong (1984) and Furlong ct al.
{1989): and the third. to no well-gstablished modet
at all. Otfsets in layer B3 below the San Andreas
fault (Henstock et al.. 1996) and the Maacama tault
{Beaudoin et al.. 1996: Henstock et al.. 1996) sug-
gest that the top of the layer is not a current plate
boundary and argues against the model of Bohannon
and Parsons (1995). It layer B3 is late Cenozoic
to Holocene magmatically underplated rocks. it is
also difficult (but not impossible) to understand off-
sets along the modern strike-slip faults. casting some
doubt on the model of Furlong (1984) and FFurlong et
al. (1989). In summary. the interpretation of layer B3
remains controversial. (See also discussion in Hole
and Beaudoin, 1996.) A tinal note on the offsets of
layer B3: at both the San Andreas and Maacama
taults. the oftsets of the upper surface of the Tayer
are east by 5- 8 ki from the offsets (or deflections)
of the base of the layer. suggesting that these faults
cither acquire an abrupt westward dip or change into
folds at the basce of the crust.

2.5, San Francisco Bay region of central California
(Plate 1. 1.8 and 1.9)

In the upper crust west of the San Andreas
tault. the Mesozoic/early Cenozoic subduction-zone
rock belts of central Cahfornia, consisting of accre-
tonary-prism rocks. forearc rocks. and arc rocks,
have becen shuffled by sirike-slip  faulting.  Ac-
cretionary prism rocks (D San Simeon terrane.
a Franciscan assemblage) are juxtaposed directly
against arc rocks (E: Salinia terrane) along the Sur-
Nacimiento fault (or its equivalent ottshore of the
Golden Gate): foreare rocks are essentially miss-
ing. In the lower crust. an oceanic-crust-like layer
(B3: 6.0-7.3 km/s: 5. 11 km thick) dips landward

from the base of the continental slope o the San
Andreas fault: however. the continuity of this layer
bencath the Salinia terrane is uncertain in both the
northern and southern parts of the Bay region. This
lower-crustal layer corresponds to Pacific-plate crust
where it is exposed west of the continental slope. but
beneath the continental shelf, it may be interpreted
as underthrust Pacific-plate crust (Page and Brocher.
1993), a stalled. subducted remnant of Farallon-plate

crust, or. in part, magmatically underplated rock
tfrom a subducted Pacitic/Farallon ridge (Bohannon
and Parsons. 1995: note that a segment of the ex-
tinct Pacitic/Farallon nidge projects beneath the Bay
region. as shown in Atwater, 1989). In all of these
cases, this lower-crustal layer is mid-Cenozolc inage
(20-30 M.

In the upper crust cast of the San Andreas fault.
the Mesozoic prism (D) overlies fower crust (B3
and/or E/F) with a velocity of 6.4-7.3 km/s and
a thickness of 10 km in the northern part of the
Bay region to nearly 20 km in the southern part
of the Bay region. In an interpretation by Went-
worth et al. (1984), the Mesozoie prism is a tectonie
wedge that indents a backstop (E/B1) consisling
of the Great Valley sequence and the Great Valley
ophiolite. The tip of the wedge follows chietly the
houndary between these units. peeling up the Great
Valley sedimentary rocks and overriding the ophi-
olitic basement. This tectonic wedge s similar to
that interpreted in southern Alaska by Fuis et al.
(1991: Plate 1. 1.3). and less complex than that -
terpreted in northern California by Godtrey ¢t al.
(1997: Plate 1. 1.7). Fuis and Mooney (1990) and
Jachens ct al. (1995) have argued that mid-crustal
rocks in the Coast Ranges east of the San Andreas
fault are ophiolite/arc basement (E/B1) similar to
that beneath the Great Valley that s being overrid-
den by the tectonic wedge (D). Furlong (1984) and
Furlong ct al. (1989) have argued that in the wake off
the passage of the Mendocine triple junction (about
10 Ma in the San Francisco Bay region). magimatic
underplating should oceur in the mid- or lower crust
above a postalated “slabless”™ asthenospheric win-
dow cast of the San Andreas fault: theretore. the
lower-crustal layer may be also in part magmatically
underplated basaltic rock (B3). In the Golden Gate
transect (Plate 1. 1.8), it is noteworthy that the deflec-
tion in the top of laver B3 at the San Andreas fault is
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cast of a corresponding deflection in the base of this
layer, similar to the case in the transect to the north
(Plate 1. 1.7).

2.6. San Luis Obispo region of central California
{Plate 1, 1.10)

Structure west of the San Andreas fault is quite
similar to that in the San Francisco Bay region:
the Mesozoic prism (D: Franciscan terrane) is jux-
taposed directly against the backstop (E: Salinia
terrane) with no intervening foreare rocks. Beneath
the Mesozoic prism. an oceanic-crust-like layer (B3:
6.8-7.0 km/s: 6-9 km thick) 1s observed in the lower
crust. Where it is exposed on the sea floor west
of the continental slope. it is Pacific oceanic crust:
cast of the continental slope. it is interpreted to be
tectonically underplated occanic crust of the Pacific
and Monterey plates (the latter s a remnant of the
Farallon plate: Atwater, 1989). The monocline at the
continental slope is interpreted to have been created
by folding (Miller et al.. 1992) or strike-slip faulting
(Howic et al.. 1993) from 22 to 16 Ma. following
the subduction of the Pacific/Arguello ridege. The
region of thickened crust near the Hosgr fault is in-
terpreted to be a region of convergence between the
Monterey and Pacific plates. along a fracture zone.
Sedimentation in offshore basins (Santa Maria and
Santa Lucia basins) occurred during the same ap-
proximate time interval as folding/strike-ship faulting
and imbrication in the oceanic-crustal layer. Thus.
transtensional and transpressional regimes oceurred
in different parts of the crust at the same time or at
closely successive times. If these regimes occurred
at the same time. they were presumably separated by
a crustal decollement (Miller et al.. 1992).

2.7. Los Angeles region of southern California
(Plate 1, 1.11}

Tectonic elements in the Los Angeles region are
somewhat differently configured from those in tran-
sects to the north. The Mesozoie prism (D', Pelona
Schist) is overlain by crystalline upper-plate rocks
on both sides of the San Andreas fault. In the Mo-
Jave Descert. these are mid-crustal “backstop™ rocks
(F): in the San Gabriel Mountains, they are mid-
and lower-crustal rocks (F). It is not clear yet how

extensive the Pelona Schist is bencath the Mojave
Desert (Haxel and Dillon. 1978: Nourse, 19891, or
how deeply it extends into the crust. Both upper-
and lower-plate rocks of the San Gabriel Mountains
may be juxtaposed against basement rocks of the
Peninsular Ranges (E: plutonic and metamorphic are
rocks) along a steeply south-dipping(?) branch of
the Sierra Madre fault system (Fuis et al.. 1996).
This relationship is somewhat surprising because
most of the strands of the Sierra Madre fault system
are moderately north-dipping reverse faults (Crook
et al. 1987). In the mid-crust of the San Gabricel
Mountains. a gently north-dipping. downward-step-
ping bright reflective zone CR™. Plate L L1 s inter-
preted as a regional thrust fault, possibly a “master”
decollement (Ryberg and Fuis. 1998). One branch of
this interpreted fault system projects to the hypocen-
ter of the 1987 M 5.9 Whittier Narrows carthquake.
which occurred on a blind thrust fault in the Los
Angeles basin (Hauksson et al.. 1988). In unmi-
grated data. this zone appears to be deflected and to
change character at the San Andreas tault. Velocities
for the rocks below this bright reflective zone have
not yet been determined, but may be lower-crustal
rocks similar to those of the Peninsular Ranges (F).
The Moho is drawn at the base of reflectivity and is
similar to that ot Hatner and Clayton (1996: Mojave
Desert and San Gabriel Mountains), ten Brink et al.
(1996: offshore Continental Borderland). and Kohler
and Davis (1997: San Gabriel Mountains and Los
Angeles basin). In migrated data. maximum Moho
depth is 37-38 km (vs. JOkm in Plate L. 1.11).

3. Discussion and conclusions

This study compares tour subduction-zone and
five transform-fault transects. The subduction-zone
transects all contain actively subducting  oceanic
crust (A) and Cenozoie accretionary-prism rocks
(C). (Note that in the northern California transect
north of Cape Mendocino (Plate 1. 1.6). such Ceno-
zote rocks do exist west of the part of the section
shown: see Gulick et al., 1996). The Vancouver Is-
land and Oregon transects (Plate 1. 1.4 and [.5)
also contain an accereted basaltic terrane. the Cres-
cent/Siletz terrane (B3). which may represent the
remnants ot a Paleocene/Eocene occanic plateau (see
discussion in Wells et al.. 1984). The thickest rem-
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nant of this plateau was accreted in Oregon. and
a thinner remnant was accreted at Vancouver Is-
land. Rocks approximately correlative in age with
this plateau. the lower crust of the Yakutat terrane.
are currently subducting in southern Alaska (Plate L.
.31, doubled up on top of Pacitic oceanic crust.
These rocks may eventually be accreted like the B3
bodies at Vancouver Island and Oregon.

Three of the subduction-zone transects contain
prisms (D, 1’) that record Mesozoie subduction. The
Alaskan and Vancouver Island transects also contain
a bady of oceanic lithosphere that was tectonically
underplated in the latest Mesozoie or early Cenozoic
(B2). At least in Alaska. this body 1s interpretable
as fragments of the Kula plate. Underplating of frag-

ments of this plate Tikely occurred as a result of

both its young age and its fast convergence rate with
the North American plate (see discussion in Fuis
and Plalker. 19911, The southeastern boundary of the
Kula plate is poorly known from plate reconstrue-
tions, ranging in possible location from Vancouver
Island to Mexico (see Atwater. 1989). Perhaps the
occurrence of interpretable fragments of this body
from Vancouver Island to Alaska suggests that Van-
couver Esland was the southeasternmost fimit.

In southern Alaska. the Mesozoie prism (D) is in-
terpreted to have moved lundward into the backstop
(E1as atectonie wedge, whereas at Vancouver Island
and in northern Calitornia. the Mesozoic prism (D)
is interpreted to be emplaced beneath the backstop
by simple underthrusting and/or strike-slip faulting.
Modeling of the subduction process indicates that
wedge-type tectonies 1s expected in compressional
regimes (c.g.. Beaumont and Quinlan, 1994). sug-
gesting that where wedge tectonics is not observed. a
compresstonal regime may not have obtained during
subduction. In such cases. strike-slip faulting may
have dominated.

Exceptionalty thick crust (B0 57 km) is observed
in southern Alaska. just landward of the thick un-
derplated body B2, Similarly. exceptionally thick

crust (more than 60 km) is interpreted landward of

body B2 on Vancouver Island in the western Coast
Mountains.

In the upper crust. most of the five transform-fault
transects reflect: (1 tectonic wedging of the Mcso-
zoi¢ aceretionary prism (D) into the backstop. which
includes Mesozoic/early Cenozoic foreare rocks (Ed

and Mesozoie ophiolite/are basement rocks (E/B1):
and (2) shuffling of the subduction margin of Cali-
fornia by strike-slip faulting. In the lower crust. these
transects may reflect migration of the Mendocino
triple junction northward (seen in rocks cast of the
San Andreas faulty and cessation of” Farallon-plate
subduction (seen in rocks west of the San Andreas
fault).

In regions cast of the San Andreas tault in north-
ern and central California (e.g.. Plate 1. 1.7 and 1.9).
the upper-crustal Mesozoie prism s interpreted as
a tectonic wedge (D7) that moved castward into the
backstop. “peeling up” the foreare sedimentary rocks
(Wentworth et al. 19840 Fuis and Mooney. 19901,
This interpreted tectonic wedge is similar to that in
Alaska (Plate 1. 131 From scismic and magnetic
data on the Santa Cruz transect (Plate 1. 1.9), the
backstop/ophiolite rocks (E/BI) are interpreted 1o
extend westward beneath the wedge at teast as far as
the Calaveras fault system and possibly as far as the
San Andreas fault (Fuis and Mooney. 1990: Jachens
¢t al.. 1995). Beneath the San Francisco Bay arca
(Plate 1. 1.8 and 1.9). the mid- and lower crust may
be Cenozoie basaltic rocks (B3) and/or Mesozoie
backstop/ophiolite rocks and lower crust (E/B1 and
k).

As discussed above, Cenozoie basaltic rocks (B3)
are expected to form by magmatic underplating
above g slabless” window cast of the San Andreas
tault in the wake of northward movement ot the
Mendocino triple junction (Furlong, 1984 Furlong
et al. 19¥9). Thus. the B3 rocks beneath the San
Francisco Bay region (Plate [0 1.8 and 1.9} and
beneath the Coast Ranges of northern California
(Plate 1. 1.7y may have originated by magmatic un-
derplating. Alternatively, at least i Plate 1. 1.7 and
.8, they may be Farallon-plate rocks now attached
to and moving with the Pacific plate (Bohannon and
Parsons. 1995). although the tault offsets 1o these
rocks argue against this model. Finally, they could be
partly subducted. stalled Faralfon/Gorda plate: how-
ever. none of this plate 1s supposed o be present in
the wake of the migration of the Mendocino iiple

Junction. As discussed by Hole and Beaudoin (1996),

the interpretation of these rocks remains problemati-
cal.

In regions west of the San Andreas fault on tran-
sects through the Golden Gate (Plate 1. 18). Santa
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Cruz (Plate 1. 1.9). and San Luis Obispo (Plate 1.
1.10). the eftects of strike-slip shutfling of terrancs
is seen in the upper crust. The eftects of stalled
subduction of the Farallon plate arc possibly scen
in the lower crust. In the upper crust, plutonic and
metamorphic arc rocks (E; Salinia terrane) are juxta-
posed directly against accretionary-prism rocks (D)
along the Sur-Nacimiento fault and its equivalents.
with essentially no intervening forcarc rocks. In the
lower crust. an oceanic-crust-like layer (B3} is seen.
which may or may not extend bencath the Salima ter-
rane. This layer is clearly Pacific oceanic crust west
of the abandoned trench (at the base of the slope).
but beneath the continent may be either tectonically
or magmatically underplated basaltic rocks: possibly
underthrust Pacitic crust (Page and Brocher. 1993).
partly subducted. stalled Farallon plate. or basaltic
rocks that were magmatically underplated during
subduction of the Pacific/Farallon ridge or during
breakup of the subducted Farallon plate (Bohannon
and Parsons. 1995).

In southern California, crustal structure is 3-
dimensional, and the transect shown (Plate I 1.11)

is only partly representative. The configuration of

tectonic elements differs somewhat from transects to
the north. The Mesozoic prism (D’: Pelona Schist)
has been thrust benecath Mcesozoie rocks in parts
(perhaps ally of the Mojave Desert (E: Haxel and
Dillon. 1978: Nourse. 1989) and beneath mid- and
lower-crustal rocks in the San Gabriel Mountains
(F: Ehlig. 1981). and may be configured as a tec-
tonic wedge. At the south cdge of the San Gabricl
Mountains. the upper- and lower-plate rocks (D and
Fy may be faulted against rocks of the southern
California batholith (E: Sorensen. 1984). although
this refationship is covered by Cenozoic sedimen-
tary rocks of the San Gabriel Valley (G; Fuis et al..
1996). Basaltic(?) rocks (B3: sce Fuis et al.. 1996)
may or may not intervene between these batholithic
rocks and the Mesozoic prism rocks of the Cali-
tornia Continental Borderland (D: Catalina Schist;
Sorensen. 1984; Crouch and Suppe. 1993). An in-
terpreted mid-crustal decollement benecath the San
Gabriel Mountains apparently connects the San An-
dreas fault with the fold-and-thrust belt south of the
San Gabricl Mountains (Ryberg and Fuis, 1998).
The affinity of rocks beneath the interpreted decolle-
ment is as yet unknown. A depression on the Moho

bencath the San Gabriel Mountains is consistent
with downwelling of lithospheric mantle beneath the
Transverse Ranges as described. for example, by
Humphreys and Clayvton (1990). This downwelling
1s interpreted to drive the observed compression
across the Transverse Ranges and Los Angeles basin
(Humphreys and Hager. 1990).
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