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Abstract

The Luria±Delbr�uck mutation model has been mathematically formulated in a

number of ways. This review article examines four most important formulations, fo-

cusing on important practical issues closely linked with the distribution of the number of

mutants. These issues include the probability generating functions, moments (cumul-

ants), computational methods and asymptotics. This review emphasizes basic principles

which not only help to unify existing results but also allow for a few useful extensions.

In addition, the review o�ers a historical perspective and some new explanations of

divergent moments. Ó 1999 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

The Luria±Delbr�uck mutation model had its origin in a series of classic
experiments pioneered by Luria and Delbr�uck [1]. These experiments aimed at
settling a fundamental issue from bacteriology: whether phage-resistant bac-
teria arose from spontaneity (random mutation) or from adaptation (directed
mutation). The Luria±Delbr�uck model not only played a predominant role in
helping settle this fundamental issue, but also came into general use as a tool
for estimating mutation rates [2]. A number of mathematical formulations of
the Luria±Delbr�uck model came into existence as a result of attempts to im-
prove estimation of mutation rates. Due to its vital importance in estimating
mutation rates, the distribution of the number of mutants induced by the
Luria±Delbr�uck model has been the focus of research. We shall call the dis-
tribution of the number of mutants determined by a particular formulation of
the Luria±Delbr�uck model as a Luria±Delbr�uck distribution. Although half a
century has elapsed since the Luria±Delbr�uck model was proposed, our
knowledge about the Luria±Delbr�uck distribution remains fragmentary, and
even incoherent in some aspects. This situation is due largely to a rather sin-
gular historical development of the ®eld.

When Luria and Delbr�uck [1] ®rst proposed the model that was to become
their namesake, they used a speci®c mathematical formulation under which
both the normal cells and the mutant cells grew deterministically but muta-
tions occurred randomly. Luria and Delbr�uck found the probability of zero
mutations, and from ®rst principles derived the mean and the variance of
the distribution of the number of mutants. These results were su�cient to
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implement the two methods which Luria and Delbr�uck suggested for esti-
mating mutation rates. The ®rst method was based on the observed proportion
of cultures containing no mutants; the second method relied on the mean
number of mutants as determined by their model. These two methods were
later known as the P0 method and the method of means [3]. Aiming at ®nding
the distribution function of the number of mutants, Lea and Coulson [4]
tackled a di�erent formulation under which the normal cells grew determin-
istically but the mutants grew stochastically. There can be little question that
the far-reaching work of Lea and Coulson is a hallmark in the mathematical
theory of the Luria±Delbr�uck model. However, it is also clear that Lea and
Coulson arrived at an approximate probability generating function (p.g.f.) not
so much by design as by accident. Before the paper of Lea and Coulson ap-
peared in print, Coulson must have compared the approximate p.g.f. with an
exact p.g.f. communicated to him by Kendall, for Coulson then cautioned
that, under some circumstances, the approximate p.g.f. could produce results
that ``are seriously in error''. The exact p.g.f. which eluded Lea and Coulson
did not see the light until some three years later, when Armitage [5] presented
it to the Royal Statistical Society in 1951. The exact p.g.f. presented by
Armitage originated from Bartlett. Armitage gave no derivation details; he
probably expected that the void would be ®lled by either Kendall or Bartlett,
both of whom were among the scheduled discussants of Armitage's paper. In
his discussion on Armitage's paper, Bartlett presented a p.g.f. derived from yet
another formulation under which both the normal cells and the mutant cells
grew stochastically. Bartlett o�ered no derivation details at the time, but
pointed out that a limiting form of his p.g.f. coincided with the approximate
p.g.f. of Lea and Coulson. On the other hand, Kendall was unexpectedly
prevented from joining in the discussion and was later invited to contribute a
note on what he originally intended for the discussion. However, having
learned Bartlett's results, Kendall deemed that what he had prepared for the
discussion ``would require drastic revision'' and instead he addressed a dif-
ferent issue [6]. Meanwhile, Kendall [7] also proposed formulations that al-
lowed the cellular cycle of mutants to have an arbitrary continuous
distribution. Kendall's work was a tremendous theoretical contribution, but
for practical purposes, as Mandelbrot [8] put it, `because of its generality, it
lacked explicitness'.

The long-awaited derivations of the exact p.g.f.s did not appear until 1955.
In his classic text, Bartlett [9, pp. 115±118; 10, pp. 132±135] o�ered elegant
derivations of the two p.g.f.s, one for the Lea±Coulson formulation and the
other for the formulation proposed three years earlier by himself. (To some
Bartlett's derivations might appear too concise to be easily accessible.) Some 10
years later Bailey [11, pp. 125±129] put forth a substantially more lucid deri-
vation of the exact p.g.f. for the Lea±Coulson formulation. Another decade
later Crump and Hoel [12] employed the ®ltered Poisson process theory to
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simplify the derivation. Unfortunately, little attention was paid to these two
illuminating derivations of the exact p.g.f. for the Lea±Coulson formulation.
Such unwitting neglect caused research e�orts in the ensuing decades to focus
on the approximate p.g.f. of Lea and Coulson.

To enhance the applicability of the Luria±Delbr�uck model, Koch [13]
explored ways of extending the Luria±Delbr�uck model to allow for di�er-
ential growth between normal and mutant cells. Koch derived the mean and
the variance under the Luria±Delbr�uck formulation, and attempted to gen-
eralize an algorithm of Lea and Coulson for computing the probability
function. Li et al. [2] applied the Luria±Delbr�uck model for di�erential
growth to experimental data. In 1988, the work of Cairns et al. [14] imme-
diately stirred not only controversy about the utility of the Luria±Delbr�uck
model [15], but also a phenomenal resurgence of interest in many mathe-
matical facets of the Luria±Delbr�uck model. Stewart et al. [16] proposed a
method for writing down p.g.f.s and an algorithm for computing probability
functions from the p.g.f.s; their approach was applicable to almost any case
where normal cells were assumed to grow deterministically. Ma et al. [17] and
Sarkar et al. [18] soon suggested a simpler and more e�cient algorithm to
compute the probability function. Ma et al. [17] also kindled interest in the
asymptotics of the distribution. As a result, a considerable amount of inge-
nuities was devoted to the asymptotics by Kemp [19], Pakes [20], Goldie [21]
and Prodinger [22].

Such an uneven development of a half century has produced an over-
whelming number of results. To organize a great majority of these results into a
coherent and accessible theory is the main goal of the present review. Fortu-
nately, the basic principles of the subject are few and simple. For four most
important formulations of the Luria±Delbr�uck model, we shall present these
basic principles to elucidate existing results, and occasionally to elicit some
minor extensions (when this can be done concisely).

2. Formulation of a mutation

It is helpful at the beginning to brie¯y review possible ways of modeling a
mutation. Kendall [23] proposed three formulations for modeling a mutation.
In Kendall's original terminology, the three formulations are

(A) grey! black,
(B) grey! grey + black,
(C) grey! black + black.

In our context, `grey' stands for a normal cell and `black' a mutant cell.
Mandelbrot [8] paraphrased formulation A in a vivid manner: ``a bacterium
that mutates may be considered by its non-mutant brethren as having died''. In
other words, under Formulation A, a mutation entails the loss of a normal cell.
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From a biological point of view, Formulation A may not be the best choice,
because most mutations are believed to occur at the time of cellular division.
As observed by Crump and Hoel [12], many earlier authors adopted Formu-
lation A and made a tacit assumption that ``the occurrence of a mutation does
not decrease the rate at which mutations occur in subsequent time intervals''.
Lea and Coulson [4] and Armitage [5] were among such authors. In other
words, they ignored the `death' of a normal cell caused by a mutation. Clearly
this practice amounts to adopting Formulation B. As a consequence, some of
the results which these authors thought were approximate are in e�ect exact, if
we adopt Formulation B to interpret these results. (Mandelbrot [8] strictly
followed Formulation A and hence his results would probably require slight
changes when interpreted with Formulation B.) We shall assume Formulation
B throughout this review.

3. The Luria±Delbr�uck formulation

Luria and Delbr�uck [1] gave this earliest mathematical formulation. Because
all subsequent formulations are simple variations of this formulation, we list its
underlying assumptions for future reference.
1. The process starts at time t � 0 with one normal cell and no mutants.
2. Normal cells grow deterministically at a constant rate, say, b1. Therefore,

the number of normal cells at time t is

N�t� � eb1t: �1�
3. Mutants grow deterministically at a constant rate, say, b2. If a mutant is

generated by a normal cell at time s > 0, then the clone spawned by this mu-
tant will be of size eb2�tÿs� for any t P s.

4. Mutations occur randomly at a rate proportional to N�t�. If l denotes the
per cell per unit time mutation rate, then mutations occur in accordance
with a Poisson process having an intensity function

m�t� � leb1t: �2�
Consequently, the expected number of mutations occurring in the time in-
terval �0; t� is

m�t� �
Z t

0

m�s� ds � l
b1

�eb1t ÿ 1�: �3�

Lea and Coulson [4] and Armitage [5] believed that Eqs. (1)±(3) held only
approximately because they assumed that the number of normal cells N�t� was
eb1t less the number of mutations occurred by time t. Because we adopt Ken-
dall's Formulation B, these equations are exact, as explained in Section 2. For
large t, m�t� is roughly the same as
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h�t� � l
b1

eb1t: �4�

Historically h�t� was often equated with m�t�. In fact, these two quantities are
linked by

m�t� � h�t�/�t�; �5�
where

/�t� � 1ÿ eÿb1t � 1ÿ N�t�ÿ1
: �6�

For simplicity, m�t�, h�t� and /�t� will be abbreviated as m, h and /, when their
dependency on time is clear from context. Except when stated otherwise, X �t�
denotes the number of mutants existing at time t, and pn�t� the probability of
having n mutants at time t.

Assumptions 1±4 imply that X �t� can be expressed as

X �t� � 0; M�t� � 0;PM�t�
i�1 expfb2�t ÿ si�g; M�t�P 1:

�
�7�

Here si are the epochs at which mutations occur, and M�t� stands for the
mutation process which is a Poisson process with intensity function m�t� given
in Eq. (2). Crump and Hole [12] were the ®rst ones who brought out the
connection of this formulation to the shot noise process (which falls into the
category of ®ltered Poisson process).

Since the event of no mutants existing at time t is equivalent to the event of
no mutations ever happening by time t, it follows from Assumption 4 that

p0�t� � eÿm�t�: �8�
By virtue of Campbell's theorem or Eq. (5.11) of Snyder and Miller [24], the
nth cumulant of X �t� is seen to be

jn�t� �
Z t

0

leb1senb2�tÿs� ds;

�
l

b1ÿnb2
eb1t ÿ enb2t� � �b1 6� nb2�;

ltenb2t �b1 � nb2�:

(
�9�

Eq. (9) in its present form appears to be new, but the special case b1 � b2 is
well-known ± it was solved ®rst by Armitage [5, p. 9] from ®rst principles, and
later by Bailey [11, p. 131] and Crump and Hoel [12, p. 243] by manipulating
the cumulant-generating function of X �t�. From Eq. (9) it is seen that the mean
and the variance of X �t� for the case b1 � b2 are
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E�X �t�� � lteb1t; �10�
Var�X �t�� � l

b1

eb1t�eb1t ÿ 1�: �11�

These two identities were ®rst derived by Luria and Delbr�uck (cf. Eqs. (6) and
(10) in [1]) by setting b1 � 1. Koch [13, p. 137] was the ®rst to tackle the case of
di�erential growth ± the case where b1 6� b2. By assuming b1 � 1 and denoting
b2 by b, Koch found that

E�X �t�� � lN�t��1ÿ eÿ�1ÿb�t�
1ÿ b

�b 6� 1� �12�

and

Var�X �t�� � lN�t��e�2bÿ1�t ÿ 1�=�2bÿ 1� �b 6� 0:5�;
ltN�t� �b � 0:5�:

�
�13�

(The case b � 0:5 was added by this author).
All the formulae so far were derived under Assumption 1. If the process

starts at t � 0 with n0 > 1 normal cells, it su�ces to replace l in each formula
with n0l. The reason is as follows. The only e�ect on X �t� of having n0 normal
cells at t � 0 is to increase the chance of a mutation occurring in the interval
�t; t � Dt� from leb1tDt � o�Dt� to ln0eb1tDt � o�Dt�.

Finally, it follows from Eq. (5.10) in [24] that the characteristic function of
X �t� is

U�x; t� � E�eixX �t�� � exp l
Z t

0

exp�ixeb2�tÿs����
ÿ 1
�
eb1s ds

�
: �14�

(The characteristic function given by Crump and Hoel [12, p. 243] was in e�ect
a series expansion of log U�x; t� for the case b1 � b2.) In principle, U�x; t� can
be numerically inverted to obtain the probability distribution function (see,
e.g., [25, p. 153]). However, a convenient closed form expression for the
probability distribution function seems elusive. Luria and Delbr�uck [1] re-
marked that ``the calculation of the distribution function involves considerable
mathematical di�culties''. In a sense, this assertion has remained true to the
present day. Bailey [11, p. 130] has shed profound insight into the nature of this
issue: ``when a mutation occurs X �t� will jump from X to X � 1. The distri-
bution of the number of mutants thus involves both continuous and discrete
elements. From the point of view of mathematical rigor there are certain an-
alytical di�culties here''. A similar observation was made by Crump and Hoel
[12, p. 243]. A convenient way of circumventing such analytical di�culties is to
discretize the growth function for the mutants.
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4. The discretized Luria±Delbr�uck formulation

4.1. Theoretical considerations

Although this formulation can probably be traced back to the so-called
`second method' of Lea and Coulson [4], Armitage [5] was the ®rst one who
rigorously articulated it. This formulation overcame the analytical di�culties
just noted by making a slight change in Assumption 3. Instead of adopting the
continuous exponential growth function eb2t, we discretize it by an approxi-
mating step function

h�t� � i for i6 eb2t < i� 1 and i � 1; 2; . . . : �15�
Thus X �t� is expressible as

X �t� � 0; M�t� � 0;PM�t�
i�1 h�t ÿ si�; M�t�P 1;

�
�16�

where M�t� is the same Poisson process as in Eq. (7).
For convenience, we now de®ne an integer-valued function K of time t by

K�t� � beb2tc; �17�
where bxc denotes the greatest integer less than or equal to x. The dependency
of K on time will often be suppressed for simplicity. Furthermore, denote the
ratio of the two cellular birth rates by

q � b1

b2

: �18�

Clearly, fX �t� : t P 0g is a ®ltered Poisson process. By virtue of the theory of
®ltered Poisson process (e.g., the lemma in [26]), we can write the p.g.f. of X �t� as

G�z; t� � E�zX �t�� � exp

Z t

0

�zh�tÿs�
�

ÿ 1�leb1s ds
�

� exp
XKÿ1

j�1

Z tÿbÿ1
2 log�j�

tÿbÿ1
2

log�j�1�
�zj

 
ÿ 1�leb1s ds

�
Z tÿbÿ1

2 log�K�

0

�zK ÿ 1�leb1s ds

!

� eÿm�t� exp h�t�
XKÿ1

j�1

1

jq

� (
ÿ 1

�j� 1�q
�

zj � 1

Kq

�
ÿ 1

eb1t

�
zk

!)
;

�19�
which has hitherto not appeared. In place of Eq. (19), Stewart et al. [16] arrived
at an approximate p.g.f.
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eG�z; t� � eÿh�t� exp h�t�
X1
j�1

1

jq

� 
ÿ 1

�j� 1�q
�

zj

!
: �20�

In the case b1 � b2, this approximate p.g.f. reduces to the famous p.g.f. of Lea
and Coulson [4] which we shall discuss in the next section:

bG�z; t� � exp h�t�
X1
j�1

zj

j�j� 1�

( 
ÿ 1

)!
: �21�

In contrast, the exact p.g.f. in Eq. (19) reduces to

G�z; t� � eÿm�t� exp h�t� z
1 � 2

��
� z2

2 � 3� � � � �
zKÿ1

�K ÿ 1�K �
zK�eb1t ÿ K�

Keb1t

��
;

�22�
which was ®rst obtained by Armitage [5, Eq. (30b)]. A derivation of Eq. (22)
based on the theory of ®ltered Poisson process was ®rst o�ered by Crump and
Hoel [12, Eq. (2.19)].

It is well-known that the distribution determined by the approximate p.g.f.bG possesses only divergent moments. From a historical standpoint, we can
scarely overemphasize the often-overlooked fact that such divergent moments
are merely a consequence of some sort of approximation. All moments de-
termined by the exact p.g.f. G in Eq. (19) are ®nite. By repeatedly di�erenti-
ating log G�ew; t� with respect to w, we ®nd the nth cumulant to be

jn�t� � h�t�
XKÿ1

j�1

1

jq

�(
ÿ 1

�j� 1�q
�

jn � 1

Kq

�
ÿ 1

eb1t

�
Kn

)
; �23�

which appears to be new. When b1 � b2, Eq. (23) simpli®es to

jn�t� � h�t� 1

2

 
� 2nÿ1

3
� � � � � �K ÿ 1�nÿ1

K
� Knÿ1�1ÿ Keÿb1t�

!
; �24�

which was due to Armitage [5]. In particular, the mean and the variance in the
case b1 � b2 come out to be

E�X �t�� � h�t� 1

�
� 1

2
� � � � � 1

K
ÿ Keÿb1t

�
; �25�

Var�X �t�� � h�t� 1

2

�
� 2

3
� � � � � K ÿ 1

K
� K�1ÿ Keÿb1t�

�
: �26�

Observe that for large t, Keÿb1t � 1 and 1� 1=2� � � � � 1=k � log�K� � b1t.
Therefore,
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E�X �t�� � lteb1t; �27�
Var�X �t�� � l

b1

e2b1t: �28�

So asymptotically the mean and the variance are the same as those given by the
Luria±Delbr�uck formulation (cf. Eqs. (10) and (11)).

4.2. Algorithmic considerations

Stewart et al. [16] devised the following algorithm for computing the
probability function of the number of mutants.

Lemma 1 (Ref. [16]). Let k1; k2; . . . P 0 be arbitrary real numbers and k �P1
j�1 kj <1. Let S be a discrete random variable having p.g.f.

G�z� � eÿk exp
X1
j�1

kjzj

 !
: �29�

Then Pr�S � j� for j � 0; 1; . . . ;m can be computed in the following four steps.
1. Set Pr�S � 0� � eÿk.
2. Compute Q�n; 1� � kn

1

n!
for n � 0; 1; . . . ;m.

3. Compute Q�n; k� �Pbn=kc
j�0

kj
k

j! Q�nÿ jk; k ÿ 1� inductively for 06 n6m and
16 k6m.

4. Set Pr�S � j� � eÿkQ�j; j� for j � 1; . . . ;m.

Proof. First, inserting z � 0 into Eq. (29) gives Pr�S � 0� � eÿk. Next, by re-

writing the p.g.f. in Eq. (29) as G�z� �Q1j�1 exp kj�zj ÿ 1�� 	
, we get a new

representation S �P1
j�1 Yj, where Yj=j �j � 1; 2; . . .� are independent Poisson

random variables having mean kj. For n P 0 and k P 1, de®ne

P �n; k� � Pr�Y1 � � � � � Yk � n�;
Q�n; k� � ek Pr�Y1 � � � � � Yk � n; Yk�1 � � � � � 0� �30�

� exp
Xk

j�0

kj

 !
P �n; k�:

Because k �P1
j�0 kj, it is clear that

Q�n; 1� � ek Pr�Y1 � n; Y2 � � � � � 0� � kn
1

n!
: �31�

Since Yk are independent and Pr�Yk � jk� � eÿkk kj
k=j!,
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P �n; k� �
Xbn=kc

j�0

Pr�Y1 � � � � � Ykÿ1 � nÿ jk; Yk � jk�

�
Xbn=kc

j�0

eÿkk
kj

k

j!
P �nÿ jk; k ÿ 1�: �32�

From Eqs. (30) and (32), it follows that

Q�n; k� � exp
Xk

j�1

kj

 !Xbn=kc

j�0

eÿkk
kj

k

j!
P �nÿ jk; k ÿ 1�

� exp
Xk

j�1

kj

 !Xbn=kc

j�0

eÿkk
kj

k

j!
exp

 
ÿ
Xkÿ1

j�0

kj

!
Q�nÿ jk; k ÿ 1�

�
Xbn=kc

j�0

kj
k

j!
Q�nÿ jk; k ÿ 1�: �33�

Finally, because S � n implies Yj � 0 for all j P n� 1, we deduce that

Pr�S � n� � eÿkQ�n; n�: � �34�

It is worth noting that the above algorithm applies to the Poisson-stopped-
sum distribution in general. The p.g.f. of a Poisson-stopped-sum distribution is
usually given in the form G�z� � expfK�P1

j�0 pjzj ÿ 1�g. By de®ning kj � Kpj

for j � 1; 2; . . . and k � K�1ÿ p0�, we readily recast the p.g.f. in the form of Eq.
(29). This observation seems to have escaped notice in the literature.

To compute the distribution of the number of mutants as determined by the
p.g.f. in Eq. (19), we can invoke Lemma 1 by setting

kj �
h�t� jÿq ÿ �j� 1�ÿq� �; j � 1; . . . ;K ÿ 1;
h�t� Kÿq ÿ eÿb1t� �; j � K;
0; j � K � 1; . . . ;

8<: �35�

and k �P1
j�1 kj � m�t�.

A conceptually simpler and computationally more e�cient method was
proposed by Ma et al. [17]. This method was in e�ect a rediscovery of a long-
known algorithm for the Poisson-stopped-sum distribution [27, pp. 352±353].
The algorithm relies on a simple result which we present for easy reference.

Lemma 2. If the series on both sides ofX1
j�0

pjzj � exp
X1
j�0

qjzj

 !
�36�

converge for jzj < d for some d > 0, then
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p0 � exp�q0�; �37�

pn � nÿ1
Xn

j�1

jqjpnÿj � nÿ1
Xnÿ1

j�0

�nÿ j�qnÿjpj �n P 1�: �38�

Proof. Setting z � 0 in Eq. (36) yields Eq. (37); di�erentiating Eq. (36) with
respect to z and then equating coe�cients of power of z gives Eq. (38). �

By setting q0 � ÿm�t� and identifying qj �j � 1; 2 . . .� with the kj given in Eq.
(35), we can also use Lemma 2 to compute the probability distribution induced
by the p.g.f. given in Eq. (19).

As the following lemma suggests, the usefulness of the above two lemmas
rests on the fact that the Poisson-stopped-sum distribution appears surprisingly
often in practice.

Lemma 3. Let X �t� be a filtered Poisson process constructed by

X �t� �
XN�t�
i�1

Yi�si; t�;

where (i) fN�t� : t P 0g is a Poisson process having piecewise continuous intensity
m���, (ii) si are the times of occurrence of events of N�t�, (iii) fYi�s; t� : s P 0;
t P 0g �i � 1; 2; . . .� are a sequence of independent and statistically identical
stochastic processes taking non-negative integer values, and are independent of
fN�t�; t P 0g. Then for any given t > 0, X �t� follows a Poisson-stopped-sum
distribution. Specifically, if g�z; s; t� � E�zY1�s;t�� is the p.g.f. of Y1�s; t�, then the
p.g.f. of X �t� is expressible as

G�z; t� � E�zX �t�� � exp m�t��h�z; t�f ÿ 1�g; �39�
where m�t� � R t

0
m�s� ds and where h�z; t� is the p.g.f. of some random variable

taking non-negative integer values.

Proof. Applying the lemma in [26], we have

G�z; t� � exp

Z t

0

�g�z; s; t�
�

ÿ 1�m�s� ds
�
: �40�

On the other hand, because Y1�s; t� takes only non-negative integer values, we
can write g�z; s; t� �P1

j�0 pj�s; t�zj, where pj�s; t� � P �Y1�s; t� � j�. Hence,Z t

0

g�z; s; t�m�s� ds �
Z t

0

X1
j�0

pj�s; t�zj

 !
m�s� ds

�
X1
j�0

Z t

0

pj�s; t�m�s� ds
� �

zj � m�t�
X1
j�0

pj�t�zj; �41�
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where the second equality is justi®ed by the fact that jpj�s; t�j6 1 and where

pj�t� �
R t

0
pj�s; t�m�s� dsR t

0
m�s� ds

: �42�

It is easy to verify that pj�t�P 0 and
P

j P 0 pj�t� � 1. Therefore,

h�z; t� �
X1
j�0

pj�t�zj �43�

is the p.g.f. of the discrete distribution fpj�t� : j � 0; 1; 2; . . .g. Inserting Eqs.
(41) and (43) into Eq. (40) completes the proof. �.

Although X �t� in Lemma 3 is constructed as a random sum of non-identical
random variables, Lemma 3 reveals that it is expressible as a random sum of
some independent and identically distributed random variables. These identical
random variables can be conveniently considered as `average' random vari-
ables. Some earlier investigators of the Luria±Delbr�uck model searched for
such average random variables from ®rst principles. The advantage of Lemma 3
arises when such average random variables are di�cult to know from ®rst
principles.

5. The Lea±Coulson formulation

5.1. A mathematical sketch

This formulation originated from the far-reaching paper by Lea and Co-
ulson [4]. It di�ers from the previous two formulations in that mutant cell
growth is described by a stochastic birth process in place of a deterministic
growth function. Speci®cally, if a mutant is generated by a normal cell at time
s > 0, then at any given time t P s the size of the clone spawned by that mutant
will have the same distribution as Y �t ÿ s�, where fY �s� : s P 0g is a Yule
process having birth rate b2 and satisfying Y �0� � 1. Let fYi�s� : sP 0g
�i � 1; 2; . . .� be a sequence of independent copies of such a Yule process. Then
the total number of mutants at any given time t > 0 is

X �t� � 0; M�t� � 0;PM�t�
i�1 Yi�t ÿ si�; M�t�P 1;

�
�44�

where M�t� signi®es the same Poisson process as in Eq. (7).
Let G�z; t� � E�ZX �t�� be the p.g.f. of X �t�. Since the p.g.f. of a Yule process

having birth rate b2 is known to be [11, p. 87]
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y�z; t� � eÿb2tz
1ÿ �1ÿ eÿb2t�z ; �45�

it follows from the ®ltered Poisson process theory (e.g. the lemma in [26]) that

log G�z; t� �
Z t

0

eÿb2�tÿs�z
1ÿ �1ÿ eÿb2�tÿs��z

�
ÿ 1

�
leb1s ds

� l�zÿ 1�
Z t

0

eb1s

1ÿ �1ÿ eÿb2�tÿs��z ds

� l�zÿ 1�
X1
k�0

Z t

0

�1
�

ÿ eÿb2�tÿs��keb1s ds
�

zk

� ÿ m�t� �
X1
k�1

qkzk; �46�

where

qk � leÿb2t

Z t

0

�1ÿ eÿb2�tÿs��kÿ1
e�b1�b2�s ds; �47�

or, using binomial expansion,

qk � l
Xkÿ1

j�0

�ÿ1�j k ÿ 1

j

� �
eb1t ÿ eÿ�j�1�b2t

b1 � �j� 1�b2

: �48�

That is,

G�z; t� � exp

 
ÿ m�t� �

X1
k�1

qkzk

!
: �49�

(The dependency of qk on t is suppressed for simplicity.) Expression (49), ®rst
obtained by Stewart et al. [16, Eq. (29)], can be used to compute the probability
function by means of Lemma 2. It has been this author's experience that Eq.
(47) (with numerical integration) is preferable to Eq. (48) in computing the qk

when k is large. (With large k, Eq. (48) requires adding many quantities of large
magnitudes and alternating signs, and the accumulation of rounding errors
might swamp the correct answer.) Fig. 1 depicts two probability functions
computed using Lemma 2.

Now consider the mean and the variance of X �t�. Let K�w; t� � logfE�ewX �t��g
be the cumulant-generating function of X �t�. Applying the random variable
technique (see [10, p. 135; 11, pp. 125±129]) readily yields

oK
ot
� b2�ew ÿ 1� oK

@w
� leb1t�ew ÿ 1�: �50�

Let jj�t� �j P 1� denote the jth cumulant of X �t�. By inserting K�w; t� �P
j P 1 jj�t�wj=j! into Eq. (50) and then equating the coe�cients of w and w2 on

both sides, we obtain
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j01�t� � b2j1�t� � leb1t; �51�
j02�t� � b2j1�t� � 2b2j2�t� � leb1t:

Solving Eq. (51) subject to j1�0� � j2�0� � 0 gives

E�X �t�� �
l�eb1 tÿeb2 t�

b1ÿb2
�b1 6� b2�;

lteb1t �b1 � b2�

(
�52�

and

Var�X �t�� �
leb2 t�b1�1�e�b1ÿb2�tÿ2eb2 t��2b2�eb2 tÿ1��

�b1ÿb2��b1ÿ2b2� �b1 6� b2; b1 6� 2b2�;
l
b2

eb2t�1ÿ eb2t � 2b2teb2t� �b1 � 2b2�;
2 l

b1
eb1t�eb1t ÿ 1� ÿ lteb1t �b1 � b2�:

8><>:
�53�

Eqs. (52) and (53) were obtained for the special case b1 � b2 by Bartlett [9, p.
118], Bailey [11, p. 128], and Crump and Hoel [12, p. 244]; the general ex-
pressions have hitherto not appeared.

A comparison of Eqs. (10) and (11) with Eqs. (52) and (53) indicates that the
means under both the Luria±Delbr�uck formulation and the Lea±Coulson
formulation are the same, but the variances di�er. In the special case b1 � b2,
the variance determined by the Lea±Coulson formulation is roughly twice the
variance determined by the Luria±Delbr�uck formulation. This relation can be

Fig. 1. A comparison of the probability functions between the Lea±Coulson formulation (dashed

line) and the discretized Luria±Delbr�uck formulation (solid line). Parameter values are: b1 � 3:0,

b2 � 2:5, l � 10ÿ7 and t � 6:7.
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deducted as follows. From Eq. (11) we get Var�X �t�� � N�t�m�t�; from the last
case of Eq. (53) we have Var�X �t�� � 2N�t�m�t�. Coulson was alerted to this
discrepancy by Kendall (see the appendix in [4]), presumably after the untimely
death of Lea in June 1947. Coulson pointed out that Eq. (30) in Lea and
Coulson [4] ``was copied from Luria and Delbr�uck, is not quite valid''. It is now
easy to see that the formula for variance by Luria and Delbr�uck was indeed
valid for the intended Luria±Delbr�uck formulation, but it was not applicable to
the Lea±Coulson formulation.

5.2. The Lea±Coulson probability generating function

We shall devote the next four subsections to the special case b1 � b2. For
convenience, we denote the common value of b1 and b2 by b. In the present
subsection we limit our attention to the p.g.f. discovered by Lea and Coulson
[4].

To begin with, the partial di�erential equation (PDE) for the p.g.f. of X �t� is

oG
ot
� bz�zÿ 1� oG

oz
� lebt�zÿ 1�G; �54�

with initial condition

G�z; 0� � 1: �55�
Lea and Coulson [4] noted that the initial condition (55) can be replaced with

G�0; t� � p0�t� � eÿm�t�: �56�
By use of the time scale transform

h � l
b

ebt; �57�

we can transform Eq. (54) into

oF
oh
� 1

h
z�zÿ 1� oF

oz
� �zÿ 1�F : �58�

(There are misprints in the renditions of Eq. (58) by Kemp [19, Eq. (6)] and
Sarkar et al. [18, Eq. (16)].) Thus G and F are related by
F �z; h� � G�z; bÿ1 log�bh=l��. Lea and Coulson [2] discovered a particular so-
lution to Eq. (58) in the form

F �z; h� � �1ÿ z�h�1ÿz�=z
: �59�

This particular solution F �z; h� was often recast in the convenient form

F �z; h� � exp h�f �z�� ÿ 1�� �60�
with
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f �z� � 1� 1

z

�
ÿ 1

�
log�1ÿ z�

�
X1
i�1

1

i

�
ÿ 1

i� 1

�
zi: �61�

The transform in Eq. (57) was due to Lea and Coulson [4]. Lea and Coulson
applied this transform to the PDE for ehG and arrived at an equation analo-
gous to Eq. (58). Bartlett [10] was the ®rst to derive Eq. (58) using the trans-
form of Lea and Coulson. Ma et al. [17] gave a derivation of Eq. (58) in a
manner resembling more closely the quaint style of Lea and Coulson. We shall
call Eq. (58) the Lea±Coulson equation, and the particular solution given in
Eq. (59) the Lea±Coulson p.g.f., on the basis of their profound historical im-
pact. It is worthy of remark that the Lea±Coulson p.g.f. is not exactly the p.g.f.
under the Lea±Coulson formulation, even though it satis®es the Lea±Coulson
equation. This assertion can be appreciated from two perspectives. First, the
Lea±Coulson p.g.f. satis®es F �0; h� � eÿh. Using the original time scale, we
express this condition as

G�0; t� � p0�t� � eÿh�t�: �62�
A comparison of Eq. (62) with Eq. (56) reveals that the error of the Lea±
Coulson p.g.f. springs from an incorrect initial condition. Second, the Lea±
Coulson p.g.f. satis®es F �z; 0� � 1 which, when expressed in the original time
scale, is equivalent to

G�z;ÿ1� � 1: �63�
Since the intensity function given in Eq. (2) is de®ned for t 2 �ÿ1;1�, a
comparison of Eq. (63) with Eq. (55) suggests that the Lea±Coulson p.g.f. can
be considered as the p.g.f. of a similar process starting at ÿ1. A moment's
thought will then convince us that it is not at all surprising that we ®nd di-
vergent moments at a ®nite time.

From Eq. (46) we ®nd easily that the exact p.g.f. for the present case is

G�z; h;/� � exp h
1

z

��
ÿ 1

�
log�1ÿ /z�

�
; �64�

which is usually written as

G�z; h;/� � �1ÿ /z�h�1ÿz�=z: �65�
Because / � 1 for large t, the Lea±Coulson p.g.f. was often considered as a
limiting form of the exact p.g.f. Some remarks are in order. First, if t!1,
then h!1. Hence the approximate distribution cannot be interpreted as an
asymptotic distribution for large t in the usual sense. Bartlett suggested that the
size of the normal cell population N�t� would stabilize for large t [10, p. 137]
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and hence h�t� was approximately a constant. This biologically plausible as-
sumption cannot be inferred from the model itself ± N�t� increases exponen-
tially with time according to the model. Next, since the exact p.g.f. is almost as
amenable as the Lea±Coulson p.g.f., use of the exact p.g.f. should be encour-
aged. Even the extra parameter / appearing in Eq. (65) is not a major concern,
because it can be inferred from the number of normal cells N�t�, which is
usually known in practice. Finally, as indicated in Section 4.1, the Lea±Coul-
son p.g.f. gives rise to in®nite moments. This side e�ect was once a source of
confusion and was deemed `awkward' by some [14].

The exact p.g.f. given in Eq. (65) ®rst appeared in print in Armitage [5, Eq.
(30a)] (communicated to him by Bartlett). This p.g.f. might be the same p.g.f.
communicated to Coulson by Kendall (see the appendix in [4]). Derivation
details were given ®rst by Bartlett [10] and then by Bailey [11]. Bailey [11]
worked directly on Eq. (54); Bartlett tackled the transformed equation, the
Lea±Coulson equation. Crump and Hoel [12] were the ®rst to give a derivation
based on the ®ltered Poisson process theory. (Their p.g.f. presented in Eq.
(2.17) contains a misprint.)

If the process starts with n0 normal cells at time t � 0, Eqs. (64) and (65) for
the p.g.f. are still valid, so long as the mutation rate l is replaced with n0l. The
reasons are the same as explained in Section 3.

5.3. The distribution induced by the equal growth case

We say a random variable X has an LD�h;/� distribution, if the p.g.f. of X,
denoted by G�z; h;/� � E�zX �, is given by Eq. (64). It is evident from Eqs. (4)
and (6) that G�z; h;/� is an legitimate p.g.f. for h > 0 and 06/ < 1. Moreover,
/ � 1 is also admissible because LD�h; 1� represents the distribution induced
by the Lea±Coulson p.g.f. An LD�h;/� distribution is in®nitely divisible.
Moreover, if Xi �i � 1; 2; . . . ; n� are independent LD�hi;/� random variables,
then

Pn
i�1 Xi is an LD�Pn

i�1 hi;/� random variable.
Let m � h/. Rewriting Eq. (64) as

G�z; h;/� � exp

 
ÿ m�

X1
i�1

h
/i

i

�
ÿ /i�1

i� 1

�
zi

!
�66�

and applying Lemma 2, we get

p0 � eÿm;

pn � h
n

Xnÿ1

j�0

/nÿj 1

�
ÿ �nÿ j�/

nÿ j� 1

�
pj �n P 1�

� h
n

Xn

j�1

/j 1

�
ÿ j/

j� 1

�
pnÿj �n P 1�: �67�
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This recurrence relation was ®rst noticed for the special case / � 1 by Ma et al.
[17], and for the general case by Sarkar et al. [18].

By di�erentiating Eq. (64) with respect to z repeatedly, we ®nd, if
X � LD�h;/�, then

E�X � � ÿ h log�1ÿ /�; �68�

Var�X � � h
2/

1ÿ /

�
� log�1ÿ /�

�
; �69�

a3�X � � h�3/2 ÿ �1ÿ /�2 log�1ÿ /��
�1ÿ /�2�Var�X ��3=2

; �70�

a4�X � � 3� 2/�1� /� 2/2� � �1ÿ /�3 log�1ÿ /�
h�1ÿ /��2/� �1ÿ /� log�1ÿ /��2 : �71�

Eqs. (70) and (71) are expressions for skewness and kurtosis. The derivation of
these two identities entails an inordinate amount of tedious algebra; they were
derived with the help of Mathematica [28]. In the numerical example of
Armitage [29, p. 179], N�t� � 3:1� 108 and the parameter h was estimated to
be 8.30. Therefore, / � 1ÿ 3:2� 10ÿ9 � 1, and LD�8:30; 1� should be a good
approximation to the exact distribution. But we must rely on the exact dis-
tribution to ®nd the moments. Using Eqs. (68)±(71), we get

E�X � � 162:28; Var�X � � 3:15� 109;
a3�X � � 6482:14; a4�X � � 7:47� 107:

We now consider the limiting behavior of an LD�h;/� distribution when the
parameter / approaches zero. In view of Eqs. (5) and (64), it follows from the
elementary relation lim/!0 log�1ÿ /z�=/ � ÿz that

lim
/!0

log G�z; h;/� � m
1

z

�
ÿ 1

�
lim
/!0

log�1ÿ /z�
/

� m�zÿ 1�: �72�

That is, the limiting distribution of an LD�h;/� is a Poisson distribution with
mean m � h/. This new ®nding is noteworthy in that the Luria±Delbr�uck model
was originally intended to detect deviations from the Poisson distribution.

Of tremendous importance is the limiting behavior of the individual prob-
ability pn � Pr�X � n�. A number of authors have investigated the asymptotic
behavior of pn for the case X � LD�h; 1�. Ma et al. [17] proved that pn � c=n2

for some constant c and numerically veri®ed that c � 1 in the case h � 1.
Appealing to the theory of convolution powers of subexponential laws, Pakes
[20] was the ®rst to re®ne the ®nding of Ma et al. by showing that

pn � h
n2
: �73�

Using an elementary approach, Kemp [19] also proved result (73) and deduced
from it what was previously conjectured by Cairns et al. [14]:
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X
j P n

pj � h
n
: �74�

Goldie [21] established the validity of Eq. (73) by use of properties of in®-
nitely divisible sequences. The latest proof of Eq. (73) was given by Prodinger
[22] by means of singularity analysis of generating functions. Among the four
proofs of Eq. (73), only the one by Kemp is self-contained in the sense that it
does not rely on any advanced results from a highly specialized branch of
mathematics. Small wonder that Kemp's proof is the longest of the four. We
can render Kemp's proof considerably shorter and arguably more lucid by
some modi®cations. The re®ned proof comes about as follows.

In the notation of Eqs. (60) and (61) we have

d2

dz2
fzF �z; h�g � h 2f 0�z�ÿ � zf 00�z��F �z; h� � h2zf 0�z�2F �z; h�: �75�

Simple algebraic work gives

2f 0�z� � zf 00�z� �
X1
n�0

zn;

zf 0�z�2 �
X1
n�0

Tnzn�1

with

Tn �
Xn

i�0

1

�i� 2��nÿ i� 2� :

Substituting these relations into Eq. (75) and equating coe�cients of zn, we
arrive at

n�n� 1�pn � h�p0 � � � � � pn� � h2�p0Tnÿ1 � � � � � pnÿ1T0�: �76�
Now denote the nth harmonic number 1� 1=2� � � � � 1=n by hn and observe
that

Tn � 1

n� 4

Xn

i�0

1

i� 2

�
� 1

nÿ i� 2

�
� 2�hn�2 ÿ 1�

n� 4
� O�nÿ1 log�n��:

So Tn ! 0 as n!1. Since fpng is a proper probability sequence (F �1; h� � 1),
limn!1�p0 � � � � � pn� � 1. Therefore, from elementary calculus we know that
limn!1 Tn � 0 implies

lim
n!1
�p0Tnÿ1 � � � � � pnÿ1T0� � 0:
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(It is also a special case of [30, Theorem 2.5.5, p. 47].) Therefore, it follows
from Eq. (76) that

lim
n!1

n�n� 1�pn � h; �77�

which is equivalent to n2pn ! h. The proof is thus complete.
With the help of a computer algebra system and the theory of singularity

analysis, Prodinger [22] was able to re®ne Eqs. (73) and (74):

pn � h
n2
� 2h2 log�n�

n3
� �2cÿ 3�h2 ÿ h

n3
�O

log2�n�
n4

� �
;

X
j P n

pj � h
n
� h2 log�n�

n2
� �cÿ 1�h2 ÿ h

n2
�O

log2�n�
n3

� �
;

�78�

where c � 0:577216 . . . denotes Euler's constant.
Pakes [20] was the only one who found the asymptotic behavior of pn for the

LD�h;/� distribution with 0 < / < 1. Pakes gave

pn � /nnh�1ÿ/�ÿ1

C�h�1ÿ /�� �79�

and thus suggested that the asymptotic behavior of pn be made more tangible
by linking it with that of a negative binomial distribution. If Z has a negative
binomial distribution NB�h�1ÿ /�; 1ÿ /�, then it can be easily veri®ed using
Stirling's formula [31, Eq. (1.4.25)] that for large n

Pr�Z � n� � �1ÿ /�h�1ÿ/� /nnh�1ÿ/�ÿ1

C�h�1ÿ /�� :

Thus, the tail behavior of an LD�h;/� distribution for / 2 �0; 1� is propor-
tional to that of a negative binomial distribution, and hence is quite di�erent
from that of an LD�h; 1� distribution. In other words, the conjecture of Cairns
et al. [14] does not hold in terms of the exact distribution.

Finally, we present some miscellaneous new results inspired by the Lea±
Coulson algorithm which we shall discuss in Section 5.4. By expanding the
p.g.f. in Eq. (66) in the form

G�z; h;/� � eÿm
Y1
i�1

X1
k�0

/i

i

�(
ÿ /i�1

i� 1

�k

zik hk

k!

)
;

we deduce that pn is expressible as

pn � eÿm
Xn

j�1

Cj;n
hj

j!
�n P 1�; �80�

where Cj;n are independent of h. It is clear that
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C1;n � /n

n
ÿ /n�1

n� 1
;

Cn;n � /

�
ÿ /2

2

�n

:

�81�

Therefore, for large h, we have

pn � eÿh/ 1

�
ÿ /

2

�n /nhn

n!
; �82�

and for small h,

pn � eÿh/ 1

n

�
ÿ /

n� 1

�
/nh: �83�

5.4. The Lea±Coulson algorithm

Lea and Coulson [4] devised the oldest algorithm for computing (approxi-
mately) the probability function of the number of mutants. When b1 � b2

(which we denote by b), the process fX �t� : t P 0g is de®ned by

Pr�X �t � Dt� ÿ X �t� � 1jX �t� � n� � �nb� lebt�Dt � o�Dt�:
Thus pi�t� � Pr�X �t� � i� �i � 0; 1; . . .� satisfy (cf. [11, Eq. (8.18)])

dp0�t�
dt
� ÿ lebtp0�t�; �84�

dpn�t�
dt
� ��nÿ 1�b� lebt�pnÿ1�t� ÿ �nb� lebt�pn�t� �n P 1�: �85�

Employing the same rescaling of time as in Eq. (57), we transform Eq. (85)
to

drn�h�
dh

� 1

�
� nÿ 1

h

�
rnÿ1�h� ÿ 1

�
� n

h

�
rn�h�; �86�

where rn�h� � pn�bÿ1 log�bh=l��. De®ning qn�h� � ehrn�h�, we rewrite Eq. (86) as

dqn�h�
dh

� n
h

qn�h� � 1

�
� nÿ 1

h

�
qnÿ1�h�; �87�

which is Eq. (6) of [4]. If / � 1, then m � h and Eq. (80) can be rewritten as

qn�h� �
Xn

j�1

Cj;n
hj

j!
�n P 1�: �88�

In other words, qn�h� is a degree n polynomial function of h when m � h.
Substituting Eq. (88) into Eq. (87) and equating coe�cients of powers of h on
both sides yield a recurrence relation
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Cj;n � j
j� n

Cjÿ1;nÿ1 � nÿ 1

j� n
Cj;nÿ1;

C1;n � 1

n�n� 1� ; �89�

Cn;n � 1

2n
:

From Eqs. (88) and (89), qn (and hence pn) can be easily computed for n P 1,
the case q0�h� � 1 being trivial. On the other hand, if / 6� 1, it is clear that the
last two relations in Eq. (89) should be replaced with Eq. (81). But Eq. (88) no
longer holds when / 6� 1. Thus, for / � 1, the Lea±Coulson algorithm gives
approximate results.

Koch [13] made an attempt to generalize the Lea±Coulson algorithm to the
case of di�erential growth. De®ning rn�h� � pn�1=b1 log�b1h=l�� and
qn�h� � ehrn�h�, we have

dqn�h�
dh

� n
h

qqn�h� � 1

�
� nÿ 1

h
q

�
qnÿ1�h�; �90�

where q � b2=b1. By inserting Eq. (88) into Eq. (90) and equating coe�cients
of powers of h, we obtain Koch's recurrence relation:

Cj;n � j
j� nq

Cjÿ1;nÿ1 � �nÿ 1�q
j� nq

Cj;nÿ1;

Cn;n � 1

�1� q�n ; �91�

C1;n � �nÿ 1�q
1� nq

C1;nÿ1:

It is worth noting that the use of the recurrence relation (91) relies on the
assumption that qn�h� be expressible as a polynomial function of h. As we just
indicated, in the case where b1 � b2, this assumption is approximately true
when N�t� is large (or / � 1). In the case of di�erential growth, the condition
b1 � b2 also seems necessary for that assumption to hold approximately
(compare Eq. (49) with Eq. (66)). Fig. 2 provides a numerical example to il-
lustrate this point.

6. The Bartlett formulation

Bartlett ®rst proposed this formulation in 1951 while discussing the paper by
Armitage (see discussion [5, p. 37]). This fully stochastic formulation of the
Luria±Delbr�uck model is a two-dimensional birth process f�X1�t�;X2�t��:
t P 0g, where X1�t� and X2�t� represent the population size at time t of the
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normal cells and that of the mutant cells, respectively. The formulation is called
fully stochastic because it models the growth of both the normal cells and the
mutant cells by stochastic growth processes. In other words, both Assumptions
2 and 3 in Section 3 are relaxed by this formulation. Fig. 3 captures the salient
features of this formulation. Note in particular that the occurrence of muta-
tions is modeled with Kendall's Formulation B. The Bartlett formulation can

Fig. 2. The Lea±Coulson algorithm (solid line) is compared with the algorithm based on Lemma 2

(dashed line). In the upper panel, b1 � 3:0; b2 � 2:97; l � 10ÿ7 and t � 6:7. Because b1=b2 is close

to 1, the two algorithms are roughly in agreement. In the lower panel, b2 is changed to 2.80, and the

discrepancy becomes more pronounced.
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be characterized by the following two transitions that can happen in an in-
®nitesimal time interval of length Dt:

Pr��X1;X2� ! �X1 � 1;X2�� � b1X1Dt � o�Dt�;
Pr��X1;X2� ! �X1;X2 � 1�� � �lX1 � b2X2�Dt � o�Dt�: �92�

As explained in Section 5.1, the PDE of the joint p.g.f. of X1�t� and X2�t� can be
readily written as

oG
ot
� b1z1�z1f ÿ 1� � lz1�z2 ÿ 1�g oG

oz1

� b2z2�z2 ÿ 1� oG
oz2

; �93�

with initial condition

G�z1; z2; 0� � z1: �94�
In a similar vein, the PDE of the cumulant-generating function is given by

oK
ot
� b1�eh1
� ÿ 1� � l�eh2 ÿ 1�	 oK

oh1

� b2�eh2 ÿ 1� oK
oh2

: �95�

with initial condition

K�h1; h2; 0� � h1: �96�
Let ji;j;�t� �i� j P 1� be the �i; j�th joint cumulant of X1�t� and X2�t�. Ex-
panding K�h1; h2; t� in h1 and h2 as

K�h1; h2; t� �
X

i�j P 1

ji;j�t� h1

i!
h2

j!

and inserting it into Eq. (95), we can equate coe�cients of h1, h2, h2
1, h1h2 and h2

2

to obtain a system of ordinary di�erential equations (ODEs):

j01;0�t� � b1j1;0�t�;
j00;1�t� � b2j0;1�t� � lj1;0�t�;
j02;0�t� � b1j1;0�t� � 2b1j2;0�t�; �97�
j01;1�t� � �b1 � b2�j1;1�t� � lj2;0�t�;
j00;2�t� � b2j0;1�t� � 2b2j0;2�t� � lj1;0�t� � 2lj1;1�t�:

Fig. 3. The Bartlett formulation of the Luria±Delbr�uck model.
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These equations can be solved exactly, using the initial condition that when
t � 0, j1;0 � 1, all other cumulants being zero. By solving just the ®rst two
equations we can get an expression for E�X2�t�� � j0;1�t� and ®nd it to be the
same as the corresponding expression under the Lea±Coulson formulation as
given in Eq. (52). Expressions for the second-order cumulants are a little too
cumbersome to be given here. But it is easy to see that if the term 2lj1;1�t� were
deleted from the last equation in Eq. (97), then the resulting equation is
equivalent to the equation of j2�t� given in Eq. (51). It can also be inferred
from the fourth equation in Eq. (97) that j1;1�t� > 0 for all t > 0. Therefore, we
conclude that j0;2�t� > j2�t� for all t > 0, in agreement with intuition.

We now derive the p.g.f. of X2�t� by following the ingenious approach of
Bartlett [9, pp. 115±118; 10, pp. 132±136]. Bartlett derived the joint p.g.f. of
X1�t� and X2�t� ®rst, and then extracted the p.g.f. of X2�t� from the joint p.g.f.
For simplicity we shall start directly from the p.g.f. of X2�t�. (Some ideas in the
following derivation are also drawn from Kendall [23] and Puri [32].)

Let T denote the waiting time for the ®rst transition, which necessarily oc-
curs in the ®rst compartment (see Fig. 3). Clearly, T is exponentially distributed
with mean 1=�b1 � l�. The ®rst transition is either a division of the initial
normal cell or a mutation (the initial normal cell splits into a normal daughter
cell and a mutant daughter cell). Furthermore, given that the ®rst transition
does occur, the probability of its being a cellular division is b1=�b1 � l�, and its
being a mutation is l=�b1 � l�. If g�z; t� � E�zX2�t�� denotes the p.g.f. of X2�t�,
then

E�zX2�t�jT � s� � 1 �s > t�;
b1

b1�l g�z; t ÿ s�2 � l
b1�l y�z; t ÿ s�g�z; t ÿ s� �s6 t�;

�
�98�

where y�z; t� is the p.g.f. of the Yule process de®ned in Eq. (45). Therefore, the
p.g.f. of X2�t� is

g�z; t� �
Z 1

0

E�zX2�t�jT � s��b1 � l�eÿ�b1�l�s ds

�
Z 1

t
�b1 � l�eÿ�b1�l�s ds

�
Z t

0

�b1g�z; t ÿ s�2 � ly�z; t ÿ s�g�z; t ÿ s��eÿ�b1�l�s ds

� eÿ�b1�l�t �
Z t

0

�b1g�z; s�2 � ly�z; s�g�z; s��eÿ�b1�l��tÿs� ds:

The last equality is obtained by applying the change of variable s � t ÿ s.
Multiplying both sides by e�b1�l�t and suppressing the dependency of g and y on
z give
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e�b1�l�tg�t� � 1�
Z t

0

�b1g�s�2 � ly�s�g�s��e�b1�l�s ds:

Di�erentiating with respect to t and rearranging, we get

g0�t� � b1g�t�2 ÿ �b1 � lÿ ly�t��g�t�: �99�
Eq. (99) is subject to the initial condition g�0� � 1.

Dividing both sides of Eq. (99) by ÿg�t�2 and introducing R�t� � 1=g�t�, we
obtain

R0�t� � �b1 � lÿ ly�t��R�t� ÿ b1: �100�
This equation is subject to R�0� � 1. Note that Eq. (100) depends on b2

through y�t� given in Eq. (45).
Because a mutation is modeled by Kendall's Formulation B, the condition

of equal growth between normal cells and mutants is interpreted as
b1 � l � b2. It is under this condition that Eq. (100) admits a simple solution

g�t� � 1

R�t� �
zeÿbt

zeÿbt � 1ÿ zÿ �1ÿ z��zeÿbt � 1ÿ z�p : �101�

Here we set b � b2 and p � l=�b1 � l� for convenience. This p.g.f. ®rst ap-
peared without a derivation in Bartlett's discussion on Armitage's paper [5]. A
derivation ®rst appeared in the well-known text of Bartlett [9, p. 112] about
three years later.

Di�erentiating the p.g.f. in Eq. (101) with respect to z, Bartlett also found
the mean and the variance:

E�X �t�� � ebt ÿ eb�1ÿp�t; �102�
Var�X �t�� � eb�1ÿp�t ÿ ebt � e2bt�eÿbpt ÿ 1�2 � 2peb�2ÿp�t ÿ 2peb�1ÿp�t: �103�

Note that the probability of zero mutants, p0�t� � Pr�X2�t� � 0�, is clearly
independent of the division rate of mutants, b2. This observation allows us to
extract a general expression for p0�t� from the p.g.f. in Eq. (101), even though
the p.g.f. was derived under the assumption b1 � l � b2. Letting z approach
zero in Eq. (101) gives

p0�t� � b1 � l
b1 � le�b1�l�t : �104�

This formula, essential to the P0 method, is presented for the ®rst time here. If
there are n0 normal cells at t � 0, then p0�t�n0 will be the desired probability.
Fig. 4 presents a comparison of a p0�t� determined by the Bartlett formulation
with the corresponding quantities determined by the other three formulations.

Bartlett [10, p. 134] has shown that under appropriate conditions the p.g.f. in
Eq. (101) can be approximated by the Lea±Coulson p.g.f. Recall from ele-
mentary calculus that (1) if x � 1, then x � 1� log x and (2) for jxj < n and n
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large, �1ÿ x=n�ÿn � ex. Now assume that the process starts with a large number
of normal cells, say n0. Assume further that p is small and t is large. We then have

g�t�n0 � 1

�
� 1ÿ z

z
ebt 1
ÿ ÿ �1ÿ �1ÿ eÿbt�z�p��ÿn0

� 1

�
ÿ 1ÿ z

z
ebtp log 1

ÿ ÿ �1ÿ eÿbt�z��ÿn0

� exp H
1

z

��
ÿ 1

�
log�1ÿ z�

�
;

where H � n0p ebt.

7. Phenotypic delay

Under both the discretized Luria±Delbr�uck formulation and the Lea±
Coulson formulation, the p.g.f. of the number of mutants at any given time
t > 0 is expressible in the form (cf. Eqs. (19) and (49))

G�z; t� � exp m�t�
X1
j�1

qjzj

 (
ÿ 1

!)
: �105�

Fig. 4. The P0 method for estimating mutation rates depends on the quantity p0�t�. This ®gure

depicts p0�t� with parameter values b1 � 3:6 and l � 10ÿ7. Note that p0�t� is independent of b2. The

dashed line represents the Luria±Delbr�uck formulation, the discretized Luria±Delbr�uck formula-

tion and the Lea±Coulson formulation; p0�t� is the same among these three formulations. The solid

line gives p0�t� for the Bartlett formulation.
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Thus the number of mutants has the same distribution as X1 � � � � � XM�t�
where M�t� is a Poisson process having mean m�t�, independent of all Xi, and
where X1;X2; . . . are independent and identically distributed random variables
satisfying Pr�X1 � j� � qj. Because m�t� in Eq. (105) coincides with the expected
number of mutations occurring in the time interval �0; t� (cf. Lemma 3), it is
intuitively appealing to consider each Xi as the average size of the mutant clone
spawned by the ith mutation. For this reason, Armitage [5] suggested modeling
phenotypic delay by `diluting' each Xi in such a way that if X1 � n, then the
probability of j (06 j6 n� out of the n mutants being phenotypically expressed
is pn;j. Consequently, the number of expressed mutants is distributed as
Y1 � � � � � YM�t� where each Yj is independently and identically distributed with

Pr�Y1 � j� �
X1
n�j

qnpn;j: �106�

The p.g.f. of Y1 isX1
j�0

X1
n�j

qnpn;j

 !
zj �

X1
n�1

qn

Xn

j�0

pn;jzj

 !
�
X1
n�1

qnHn�z�; �107�

where Hn�z� �
Pn

j�0 pn;jzj are the p.g.f.s of pn;j �j � 0; 1; . . . ; n�. Hence the p.g.f.
of the number of expressed mutants is

G��z; t� � exp m�t�
X1
n�1

qnHn�z�
 (

ÿ 1

!)
: �108�

The above approach apparently does not apply to the Bartlett formulation
under which the number of mutants does not follow a Poisson-stopped-sum
distribution. Kendall [33] suggested adding an intermediate cell type between
normal cells and mutant cells to incorporate phenotypic delay into the Bartlett
formulation. Kendall's solution was essentially a three-compartment model; in
Kendall's original terminology the three compartments were called (1) normal;
(2) mutant-but-not-resistant and (3) resistant. As indicated in Section 6, mo-
ments (cumulants) from such models can be computed by solving ODEs. By
adapting an approach for computing survival probability in carcinogenesis
modeling [34], we can also compute the probability of zero mutations through
solving ODEs. Lack of space prevents the inclusion of details.

8. Summary

To sum up, we recapitulate some conclusions drawn by this review.
First, among the four formulations we discussed, the Bartlett formulation is

the most general, but also the least studied. Clamoring for solution is the issue
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of ®nding an e�cient algorithm for computing the probability function of the
number of mutants. Because the other three formulations are all ®ltered
Poisson processes, their properties are much better understood. The Lea±
Coulson formulation is obviously preferable among the three formulations. As
far as the method of means is concerned, three of the four formulations are
equivalent, the exception being the discretized Luria±Delbr�uck formulation.
Similarly, three of the four formulations are equivalent as far as the P0 method
is concerned, the exception being the Bartlett formulation.

Second, both the algorithm of Stewart et al. and that of Ma et al. compute
the exact probability function. Both are applicable to the discretized Luria±
Delbr�uck formulation and the Lea±Coulson formulation, but neither applies to
the Bartlett formulation. The algorithm of Ma et al. is simpler and more e�-
cient. On the other hand, the Lea±Coulson algorithm is not an exact method
and it is applicable only to the Lea±Coulson formulation. In the case of dif-
ferential growth, the approximation is in general unsatisfactory. The algorithm
proposed by Ma et al. is therefore the preferred method.

Finally, all in®nite moments result from approximation. During the past
half a century research e�orts focused on the approximate p.g.f. of Lea and
Coulson. This distortion often caused controversy and confusion. The present
review attempts to redress the balance. In fact, the exact distribution LD�h;/�
is as easy to use as the approximate distribution LD�h; 1�, because not only is
the extra parameter / known in practice, but the two distributions are equally
amenable from a computational point of view.
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