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Abstract

In this paper, we present the first correlation of derived mineral abundances of V-class Asteroid 1929 Kollaa, 4 Vesta, and the HED
meteorites. We demonstrate that 1929 Kollaa has a basaltic composition consistent with an origin within the crustal layer of 4 Vlesta, and show
a plausible genetic connection between Kollaa and the cumulate eucrite meteorites. These data support the proposed delivery mechanism c
HED meteorites to the Earth from Vesta, and provide the first mineralogical constraint derived from the observation of a small V-class, Vesta
family asteroid on the crustal thickness of 4 Vesta.
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Since 1970, it has been recognized that asteroid 4 Vestarelatively efficient delivery of Vesta fragments from the main
has spectral properties that closely resemble those of theasteroid belt to the inner solar system.
basaltic achondrite (howardite, eucrite and diogenite, or Hubble Space Telescope images obtained in 1996 re-
“HED") meteorites (McCord et al., 1970). This led to the vealed a giant impact basin 460 km in diameter and 13-km
first suggestions that Vesta could be the parent body ofdeep in the south polar region of Vesta (Thomas et al.,
this group of achondrites (Consolmagno and Drake, 1977;1997). Approximately 1% of Vesta’s volume was excavated
Feierberg and Drake, 1980; Gaffey, 1983). However, Vesta’s by this event—an amount sufficient to account for many
orbit is unfavorably situated to deliver ejecta directly into more V-class asteroids than we now know reside between
Earth-crossing orbits (Wasson and Wetherill, 1979; Wether- Vesta and the resonances. By the late 1990’s, the existence
illand Chapman, 1988). In 1993, new visible-region spectra of a mechanism for ejecting large fragments from Vesta was
of members of the Vesta dynamical family (Zappala et al., established and a pathway for getting them to a dynami-
1990; Williams, 1992) with orbits bridging the gap between cal source region for meteorites had been found (Asphaug,
Vesta, the 3:1 resonance at 2.5 AU, and tgeesonance, 1997). What was still lacking was solid mineralogical evi-
showed that these small asteroids also belonged to the taxdence connecting any other V-class asteroid to either Vesta
onomic V class (Tholen, 1984; Binzel and Xu, 1993). If orthe HED meteorites. This was due to the absence of spec-
these small V-class objects were derived from 4 Vesta, thetra for small V-class asteroids with sufficient, appropriate
proximity of some of them to these resonances would allow Wavelength coverage to quantify the mineralogy of the py-
roxenes identified by the presence of the deep 1- and 2-um
mafic silicate absorption features in the visible/near IR spec-
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Wavelength (um) Fig. 2. In a plot of asteroid and meteorite compositional space (Gaffey et al.,
1993), 1929 Kollaa is situated well within the basaltic achondrite (including
Fig. 1. The new spectrum of 1929 Kollaa compared with typical examples HED meteorites) field. The value for the average surface composition of 4
of a eucrite (Bereba), a diogenite (Shalka), and the average 4 Vesta surfacevesta (Gaffey, 1997) is shown for comparison. Standard error of the mean
(Gaffey, 1976, 1997) over the same wavelength region. is plotted for both asteroids, but is generally smaller than the symbols used
for the data points. It should be noted that the right (high BAR) boundary
of the basaltic achondrite field was defined based on a limited dataset. More

Table 1 recent work indicates that the basaltic achondrite field should be extended
Comparison of parameters derived from the analyses of visible to near-IR further to the right.

spectra for 1929 Kollaa and the average 4 Vesta surface

Spectral parameter 1929 Kollaa 4 Vésta . ]

Band | center wavelength (um) 9B7+0.002 09364 0.001 presence of plagioclase feldspar. A ratio of the area under

Band Il center wavelength (um) a4+ 0.003 19694 0.005 this shallow plagioclase feature to that of Band | provides

Band II/Band | Area Ratio 29+0.02 27440.09 a measure of the plagioclase-to-pyroxene abundance ratio

Plag. Band Il/Band | Area Ratio -086:£0.002 ~0.10 (Gaffey et al., 1989). Table 1 compares our new values de-
@ Results are taken from Gaffey (1997). rived for 1929 Kollaa with those previously determined for

4 \esta (Gaffey, 1997).

of previously published dynamical families. Near-infrared ~ The Small Mainbelt Asteroid Spectroscopic Survey
reflectance spectra of Kollaa were obtained on March 24, (SMASS) data (Xu et al., 1995; Bus, 1999; Burbine, 2000)
2001, with the NASA Infrared Telescope at Mauna Kea Ob- Provided valuable taxonomic information on Vesta family
servatory, covering the spectral interval of 0.71 to 2.5 ym members, and indicated which of them might provide likely
using the SpeX medium-resolution spectrograph. The aster-spectral matches to Vesta and the HED meteorites. However,
oid was observed under sub-arcsecond seeing conditions athe Visible/near-IR spectra (SMASS I and Il) and the near-
an airmass of 1.02-1.03; = 14.9, and a phase angle of infrared array spectra (SMASSIR) do not have sufficient
6.9. We used data reduction and analysis procedures de-Spectral coverage to allow quantitative determination of the
scribed in detail by previous asteroid compositional studies Band Il center and the Band Il/Band | area ratio. Without
(e.g., Gaffey, 1984, 1997; Gaffey et al., 1989, 1993; Cloutis quantified mineralogy for the objects in question, proba-
et al., 1986) to produce relative reflectance spectra. ble genetic relationships cannot be established. Both the
The new near-infrared reflectance spectrum of 1929 Kol- SMASS | and Il spectra have a broader peak near 0.75 pm
laa is shown in Fig. 1. The spectrum exhibits broad ab- than the new FACES spectrum. These two SMASS spectra
sorption features near 1- and 2-um (Band | and Band I, of 1929 Kollaa differ from each other in the 0.4- to 1-pum re-
respectively) that are typical of rocks dominated by mafic gion. Additionally, when combined with the SMASSIR data,
silicates. Parameters derived from the analyses of these feathere are differences in the Band | intensities, areas, and
tures allow us to unravel the compositional nature of Kollaa continuum slopes. A number of factors (such as phase an-
and compare it to previously analyzed spectra of HED me- gle, metal content, or surface compositional heterogeneities)
teorite samples and Vesta. The centers (continuum-removedan change the continuum slope and band intensity in this
wavelength positions) of the 1- and 2-pm absorption bands spectral region. For example, the difference in Band | depth
provide information about the €a (Wo) and Fé+ (Fs) between the January and February 1981 spectra of Vesta
content, respectively, of the pyroxene (Cloutis and Gaffey, (Gaffey, 1997) is due to a 23ifference in Vesta’s phase
1991). A continuum-removed Band IlI/Band | area ratio pro- angle. Since the continuum-removed band center is criti-
vides a measure of the olivine-to-pyroxene abundance ratiocal in determining the C& content of the pyroxene, the
(Gaffey et al., 1993). The long-wavelength limb of Band | continuum differences in this region can affect the derived
exhibits an inflection between 1.2 and 1.4 um indicating the Band | center and hence the calcium content determination.
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Fig. 3. Pyroxene quadrilateral for HED meteorite pyroxenes (Mittlefehldt et al., 1998). The pyroxene composition for 1929 Kollaa falls towagérifie di

end of the cumulate eucrite range. The average pyroxene composition on the surface of 4 Vesta resembles more closely that of the basaltic eworites. The
bars for 1929 Kollaa represent the5% systematic uncertainty in the compositional determination, although the Wo-content error bar is smaller than the
symbol used for the data point. In the case of 4 Vesta, the error bars represent the maximum compositional range for the asteroid.

A difference in Band | area could very well affect the deter- on Vesta. Compared with the present spectrum, the SMASS
mination of the olivine-to-pyroxene abundance ratio. Il spectrum (Burbine et al., 2001) for Kollaa shows a less
In terms of spectral appearance (absorption band shapespronounced feldspar feature betweeri.1 and 1.3 um, al-
wavelength positions, and widths), the new FACES data for though observational limitations in those data preclude a ro-
1929 Kollaa compare favorably to those of typical eucrites bust conclusion regarding the implication of this difference.

(Fig. 1). As is the case with 4 Vesta, the 1-um band of

1929 Kollaa is quite symmetrical around the band center ex-
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