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Abstract—Internet and communication technologies have low-
ered the costs for communities to collaborate, leading to new
services like user-generated content and social computing, and
through collaboration, collectively built infrastructures like com-
munity networks have also emerged. Community networks get
formed when individuals and local organisations from a geo-
graphic area team up to create and run a community-owned
IP network to satisfy the community’s demand for ICT, such as
facilitating Internet access and providing services of local interest.
The consolidation of today’s cloud technologies offers now the
possibility of collectively built community clouds, building upon
user-generated content and user-provided networks towards an
ecosystem of cloud services. To address the limitation and en-
hance utility of community networks, we propose a collaborative
distributed architecture for building a community cloud system
that employs resources contributed by the members of the
community network for provisioning infrastructure and software
services. Such architecture needs to be tailored to the specific
social, economic and technical characteristics of the community
networks for community clouds to be successful and sustainable.
By real deployments of clouds in community networks and
evaluation of application performance, we show that community
clouds are feasible. Our result may encourage collaborative
innovative cloud-based services made possible with the resources
of a community.

Index Terms—cloud computing; community cloud; community
networks; collaborative resource sharing

I . I N T R O D U C T I O N

The recent developments in information and communica-
tion technologies have significantly reduced the barriers for
communication, coordination and collaboration for individuals
and communities. This not only gave rise to widely adopted
applications like social networking and user-generated content
among many others, but infrastructures based on a cooperative
model have also been built, for example community wireless
mesh networks [1], which gained momentum in early 2000s
in response to limited options for network connectivity in
rural and urban communities. Using off-the-shelf network
equipment and open unlicensed wireless spectrum, volunteers
teamed up to invest, create and run wireless networks in their
local communities as an open telecommunication infrastructure
based on self-service and self-management by the users. These
community networks have proved quite successful, for example
Guifi.net1 provides wireless and optical fibre based broadband

1http://guifi.net

access to more than 20,000 users. Current community networks
use mainly wireless technology to interconnect nodes. With the
commoditization of optical fibre, some community networks
however have also started providing broadband services com-
bining both technologies.

Community networks are a successful case of resource
sharing among a collective, where resources shared are not
only the networking hardware but also the time, effort and
knowledge contributed by its members that are required for
maintaining the network. Resource sharing in community
networks from the equipment perspective refers in practice
to the sharing of the nodes’ bandwidth. This sharing enables
the traffic from other nodes to be routed over the nodes
of different node owners, allowing community networks to
successfully operate as IP networks. Despite achieving sharing
of bandwidth, community networks have not been able to
extend this sharing to other computing resources like storage,
which is now common practice in today’s Internet through
cloud computing. There are not many applications and services
used by members of community networks that take advantage
of resources available within community networks. When
members of community network can share and trade resources
based on a collaborative cloud computing model, they can
provide their excess capacity to others as the demand fluctuates
and in return can take advantage of services and applications
that were not possible earlier due to the limited resources.

The concept of community clouds has been introduced in
its generic form before, e.g. [2], [3], as a cloud deployment
model in which a cloud infrastructure is built and provisioned
for an exclusive use by a specific community of consumers
with shared concerns and interests, owned and managed by the
community or by a third party or a combination of both. We
refer here to a specific kind of a community cloud in which
sharing of computing resources is from within community
networks, using the application models of cloud computing in
general.

We centre the contribution of this paper on a collaborative
distributed architecture for community clouds, which integrates
into the cloud not only the computation and storage hardware
contributed to the community network by its members, but also
the socio-economic contribution they make to the collective
effort in the form of knowledge, time and help. Such an archi-
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tecture tailored to the specific situation and social and economic
context of the community networks allows the collaborative
cloud services to better fit the demands of local communities,
facilitating adoption and uptake of community cloud model.
In our earlier work, we have explored how incentive-based
resource regulation [4]–[6] and economic policies [7] can affect
collaboration among the members of community networks, and
how the scalability issues can affect the design of a community
cloud system [8]. We are also building a prototype system to
be deployed in Guifi.net community network [9], [10], and
investigating the performance of cloud services in these real-
world settings [11]–[13].

The rest of the paper is organised as follows. Section II
presents related work, and section III discusses the require-
ments for a community cloud. Section IV presents the dis-
tributed architecture with support services taking into account
socio-economic context of the community networks necessary
for encouraging collaborative resource sharing. Section V
details the prototype deployment in the community network
testbed and presents results from experiments into collaborative
cloud services. Section VI concludes and discusses future
research directions.

I I . R E L AT E D W O R K

The idea of collaboratively built community clouds follows
on from earlier distributed voluntary computing platforms,
like BOINC [14], Folding@home [15], PlanetLab [16] and
Seattle [17], which mainly rely on altruistic contribution of
resources from the users, though various mechanisms have
been studied in the context of peer-to-peer systems [18] that
address different problems of collaborative resource sharing.
There are only a few research proposals for community cloud
computing, for example Cloud@Home [19] project aims to
harvest in resources from the community for meeting the peaks
in demand, working with public, private and hybrid clouds to
form cloud federations. Social cloud computing [20] takes
advantage of the trust relationships between members of social
networks to motivate contribution towards a cloud storage
service, and such social clouds have also been deployed in
CometCloud framework by federating resources from multiple
cloud providers [21]. Gall et al. [22] have explored how an
InterCloud architecture [23] can be adapted to community
clouds, and federated cloud architectures [24] in general are
being actively explored for combining services from multiple
cloud providers.

From the review of related work, we find that none of the
above cases have a prototype for the concrete situation of the
community networks. In the cloud system that we present, we
aim to take into account several of the important social and
technical factors that characterise community networks, and
therefore the cloud architecture we propose is tailored to the
specific context of the community networks.

I I I . R E Q U I R E M E N T S

A community cloud is a combination of a number of
cloud systems being run and managed independently by the

different community members. The community cloud bridges
in different aspects the gap between the public cloud, the
general purpose cloud available to everyone, and the private
cloud, available to only a limited set of users with user-
specific services. These requirements provide the foundation
for the design of the community cloud system, and need to be
satisfied for it to be deployed and adopted successfully by the
community.

A. Autonomy

Community cloud systems may be formed based on individ-
ual cloud systems that are set up and managed independently
by different owners. The main requirement for a cloud owner
for participating in such a community cloud is that the local
cloud setup should adhere to the common API provided by the
community cloud, and contribute resources to the community.

B. Security

There are many security challenges that need to be addressed
for ensuring users’ trust in the system, and with multiple
independent cloud providers from the community, security
becomes even more important in a community cloud.

C. Self-Management

Community cloud should self-manage itself and continue
providing services without disruption when nodes go offline.
Self-management should also help in the coordination between
different cloud owners that become part of a federated com-
munity cloud.

D. Utility

For the acceptance of the community cloud, it should provide
applications that are valuable for the community, since usage
strengthens the value of the community cloud, motivating its
maintenance and update. These applications need to differenti-
ate from the generic cloud services available over the Internet.
For example, FreedomBox2 and MeshNet3 projects focus on
ensuring privacy, and FI-WARE CoudEdge4 and ownCloud5

let cloud applications consume local resources.

E. Ease of Use

Most of the users of the community cloud will not be
proficient in cloud technologies, so setting up nodes for
deployment and managing cloud software should be simple and
straightforward. The easier it is for users to join, participate
and manage their resources in the community cloud, the more
the community cloud model will be adopted. To this end, in
terms of an institutional policy, we have developed a Linux-
based distribution for deployment in the Guifi.net community
cloud [9]. It will make the process of joining and consuming
cloud services almost automated with little user intervention.

2http://freedomboxfoundation.org
3https://projectmeshnet.org/
4http://catalogue.fi-ware.eu/enablers/cloud-edge
5http://owncloud.org

http://freedomboxfoundation.org
https://projectmeshnet.org/
http://catalogue.fi-ware.eu/enablers/cloud-edge
http://owncloud.org


3

Figure 1. Nodes in a community network with cloud resources

F. Incentives for Contribution

Community cloud builds upon collective efforts of the mem-
bers of the community networks, and requires the contribution
of the volunteers in terms of their time, knowledge and effort
as well as computing, storage and network resources. For the
community clouds to be sustainable, incentive mechanisms are
needed to encourage users to actively contribute towards the
system.

G. Support for Heterogeneity

The hardware and software used by members in a community
cloud can have quite varying characteristics, and the cloud
system should handle this seamlessly.

H. Standard API

The cloud system should make it straightforward for the
application programmers to design their applications in a
transparent manner for the underlying heterogeneous cloud
infrastructure. The API should provide the appearance of a
middleware that obviates the need to customize the applications
specific to each cloud architecture [25]. This is essential for
community clouds when these result from the federation of
many independently managed clouds. Providing a standard
API for the community cloud ensures that applications written
once for a particular community cloud system can be easily
deployed on new cloud architectures.

I. QoS and SLA Guarantees

The community cloud system needs mechanisms for en-
suring quality of service (QoS) and enforcing service level
agreements (SLA).

I V. C O L L A B O R AT I V E D I S T R I B U T E D
A R C H I T E C T U R E F O R C O M M U N I T Y C L O U D

A community network is managed and owned by the commu-
nity, where nodes are managed independently by their owners.
The computer machines or nodes in a community network vary
widely in their capacity, function and capability, as illustrated
in Figure 1. Some hardware is used as super nodes (SNs) that
have multiple wireless links and connect with other SNs to
form the backbone of the community network, and are usually
intended to be stable with permanent connectivity. Others act

Figure 2. Different layers of the community cloud management system

just as ordinary nodes (ON) and are only connected to the
access point of a SN. Topological analysis of the Guifi.net
community network [26] indicates that from approximately
17,000 analysed nodes of Guifi.net, 7% are SNs while the
others are ONs.

From the node types shown in Figure 1, it can be seen
that principally the hardware for computation and storage is
already available in community networks, consisting of some
servers attached to the networking nodes. No cloud services,
however, are yet deployed in community networks to use this
hardware as a cloud, leaving the community network services
significantly behind the current standard of the Internet. Our
vision is that some community wireless routers will have cloud
resources attached, building the infrastructure for a community
cloud formed by several cloud resources attached to the nodes.
We note that ONs could principally also contribute cloud
resources.

An architecture for the community cloud system that man-
ages such infrastructure needs to be robust, self-managing and
efficient at handling the heterogeneity among the nodes. The
option for enabling a community cloud on which we focus
here is to deploy a cloud management platform tailored to
community networks on the nodes attached to the network.
There are a few cloud management systems available to manage
public and private clouds, notably OpenStack6, OpenNebula7,
CloudStack8, Eucalyptus9 and Synnefo10 among others. Such
cloud management systems can be tailored for community
networks by extending the existing functionality to address
the particular conditions of community networks. For example,
incentive mechanisms inspired by the social nature of commu-
nity networks can be built into resource regulation component
to encourage users to contribute resources [4]–[6].

The conceptual overview for the cloud management system
that we propose for community networks consists of multiple
layers, as shown in Figure 2, with different components at
each layer, as highlighted in Figure 3. The nodes along with

6http://www.openstack.org
7http://www.opennebula.org
8http://cloudstack.apache.org
9http://www.eucalyptus.com
10http://www.synnefo.org

http://www.openstack.org
http://www.opennebula.org
http://cloudstack.apache.org
http://www.eucalyptus.com
http://www.synnefo.org
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Figure 3. Architecture of the community cloud management system

the communication infrastructure of the community network
form the the hardware layer of the cloud architecture. The core
layer residing in the SN contains the software for managing
and monitoring the virtual machines (VMs) on ONs. The
front end layer provides the interface of the infrastructure
service (Infrastructure-as-a-Service, IaaS). The components
cloud coordinator, economic engine and social engine provide
additional services for customising cloud infrastructure to the
community networks, see Figure 4.

The core of community cloud management system is the
virtual machine manager (VMM) that is responsible for instanti-
ating, scheduling and monitoring virtual machines on the nodes.
The virtual machine manager consists of the following layers,
which are common to most cloud computing architectures.

1) Hardware Layer: This consists of the physical infrastruc-
ture that is needed to run a cloud system. The hardware in the
community networks mostly consists of ONs and SNs and the
wireless links provided by the mesh network, along with any
attached computation, storage and other resources.

2) Core Layer: The core layer consists of components that
are responsible for creation, allocation, scheduling, monitoring
and management of VMs on the nodes. This can include
has following main components, some of which are shown
in Figure 3.

• Virtual Machines Controller
• Virtual Machines Scheduler
• Virtual Machines Monitor
• Hosts Manager
• Virtual Network Manager
• Virtual Machines Image Data Store
The functionality of the core layer is already provided by

tools like OpenStack and others. Community cloud manager
can, therefore, make use of these existing tools and extend their
functionality to suit the needs of the community network.

3) Cloud Coordinator: The cloud coordinator is responsible
for the federation of the cloud resources which are indepen-
dently managed by different SNs. It provides the interface for

Figure 4. Distributed components of the community cloud management system

other components like economic engine and social engine to
request information from other SNs. The cloud coordinator
components in different SNs connect among themselves in a
decentralised manner to exchange relevant information about
managing the available resources. By default applications
running at a local cloud can only consume resources from
the ONs directly managed by the local SN. With the cloud co-
ordinator, the infrastructure service can provide a unified view
of the resources contributed by multiple local clouds. When
federating multiple local clouds, the cloud coordinator applies
a peering regulation mechanism [4], [5] fed by the economic
engine and social engine to perform resource allocation. The
cloud coordinator can consist of multiple components, some
of which are indicated in Figure 4.

• Gossip-Based Discovery: The design of a community
cloud manager follows a decentralised approach, so the
cloud coordinator relies on gossip-based discovery mech-
anisms to manage overlay network of the SNs in commu-
nity cloud.

• Distributed Self-Management: The community cloud has
to efficiently manage the distributed resources in an au-
tonomous way as ONs and SNs join and leave the network.
Distributed self-management forms a core component of
the cloud coordinator to ensure successful operation of
the community cloud.

4) Economic Engine: The role of economic engine is to
manage the accounting and auditing for the infrastructure
service so that the access can be regulated to the users of
the community cloud. In contrast to public clouds, the main
incentive for the providers in community clouds is the utility
that they will get from the system by consuming its services
and applications. The economic engine manages a system of
virtual credits that encourages the users to contribute resources
to the cloud. This component will consist of many modules,
some of which are highlighted in Figure 4.

• Resource Usage Tracker: This module connects with the
VM Monitor in the core layer to get details about the
resource usage. It links this information to the user who
requested the VMs and keeps record of it for accounting
and auditing purposes. This information forms the basis
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for regulating access to the resources.
• Contribution Tracker: The information from the VM

Monitor is also fed to the contribution tracker module
which uses it to register the resources contributed by the
owner of the nodes. This information is used to reward
the provider of the resources with virtual credits.

• Credits Transaction Manager: This module manages the
virtual credits database and credits or debits the account of
different users with virtual credits. The database gets up-
dated whenever someone requests resources or contributes
them to the community cloud. The challenge for this
module is to handle these transactions in a secure manner
within a distributed system.

5) Social Engine: The community cloud is as much a
social construct as it is a technical construct. The existence
of the community cloud is not possible if there is a lack of
participation from the community. Running a community cloud
not only requires supply of technical resources like storage and
network bandwidth, but also the time and effort of the users
who setup and manage the network equipment. Whereas the
economic engine takes care of the incentives in the virtual
world, the social engine is the component that encourages
contribution in the physical world. We discuss here some of
the modules that help to achieve this goal. These modules
may not be integral to the cloud management platform from a
technical point of view, but nevertheless provide functionality
necessary for the smooth running of the community cloud.

• Distributed Identity Manager: This module manages the
global identity of the users in the system in a decentralized
manner. This unique system-wide user ID is needed to
track the usage and contribution by each user.

• Support Ticketing System: This module provides a system
for the users to help each other in resolving the problems
encountered while using the community cloud. The volun-
teers who provide the support to others are encouraged by
rewarding them with better reputation in the system. This
reputation can then translate in to an increase in virtual
credits which the user can spend for consuming services
in the community cloud.

• Social Contribution Tracker: This module provides incen-
tives to the volunteers who help with the smooth running
of the community cloud. The volunteers contribute with
their time and effort to setup and maintain the hardware
and network. This module tracks this contribution of the
volunteers in the reputation score database. The social
contribution tracker interacts with the credits transaction
manager module in the economic engine and the users
can exchange the reputation score with virtual credits.
The virtual credits allow the volunteers to consume the
applications and services provided by the community
cloud.

6) Frontend Layer: The frontend layer provides the interface
to interact with the infrastructure service of the community
cloud. This includes modules like command line interface
(CLI), graphical user interface (GUI), application programming

interface (API), and any other tools that assist with developing
cloud application using the infrastructure service.

A. Interaction between Different Components

We discuss here some usage scenarios and explain how
different components of the community cloud management
system can interact with each other.

1) Workflow for a resource request: Consider the case when
a user requests a new VM from the community cloud. The
user connects to the GUI in the frontend layer and submits
a request for a VM instance. The request is forwarded to the
cloud coordinator that checks for availability at ONs, and if
not available locally, forwards the request to neighbouring
SNs. The cloud coordinator then checks with the identity
manager component of the social engine, which authenticates
the user to confirm whether the user has access to the resources.
Cloud coordinator then checks the virtual credits database of
the economic engine to see if the user has sufficient credits
available to fulfil the request. After confirming that the user can
consume resources, the request is forwarded to the scheduler
in the core layer which selects the ON where the VM will
run. The monitor in the core layer provides the details of the
consumed resources to the resource usage tracker component
in the economic engine. The credits transaction manager in
the economic engine updates the credits of the requester and
provider of the VM in virtual credits database. The contribution
tracker in the economic engine updates the details for the
provider. The user who requested the VM can check the GUI
in the frontend layer for the status of the VM.

2) Workflow for social contribution: Consider the case when
a user contributes to the community cloud by providing services
like setting up routers or performing network maintenance.
The user connects to a GUI application in the frontend layer
and submits the details of her contribution. The request is
forwarded to the cloud coordinator which contacts the identity
manager and social contribution tracker components to confirm
whether the user is registered, and also forwards the user’s
details to neighbouring SNs. The social contribution tracker
updates the values for the user in the reputation score database.
It also contacts the credits transaction manager component in
the economic engine which updates the virtual credits database
for the user. The social contribution tracker and the credits
transaction manager provide the details to the frontend layer
and the GUI informs the user of the outcome of the operation.

3) Workflow for support provision: Consider the case when a
user contributes to the community cloud by providing support
to others in resolving issues with the system. The support
ticketing system in the social engine provides a mechanism
for users to request and provide support on self-help basis. The
main role of the support ticketing system in the community
cloud is to provide incentives to the volunteers by rewarding
them with virtual credits for their effort. When a user helps
others with fixing their problems, the support ticketing system
keeps track of the feedback. It checks with the identity manager
component of the social engine to authenticate the user. The
social contribution tracker then updates the reputation score
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database for the user, and also asks the credits transaction
manager to update the virtual credits database for the user.
The details are provided to the frontend layer where the user
can see her virtual credits via the GUI.

B. Socio-Economic Mechanisms for Supporting Collaboration
The purpose of economic mechanisms and social and psy-

chological incentives is to let the community cloud transition
from inception through early adoption to finally ubiquitous
usage [7]. In the nascent stage, the community cloud may not
be able to provide a lot of value until a critical mass of users
are using the system. After that threshold, still the relative cost
to achieve a little utility will be significant, which means that
the early adopters of the system remain highly motivated and
committed to the success of community cloud and continue
to contribute resources even though they receive little value
from the system in return. But once a significant proportion
of community network members have joined the community
cloud, the relative cost to obtain value from the system tumbles
and in the longer run the system is able to sustain itself with
contributions that may be small in size but are made by a large
number of users.

The mechanisms must take into account the costs and
benefits involved in participating in community cloud. For
instance, the initial costs for setting up nodes in the community
cloud involves hardware and installation costs. The continuous
operation of the cloud node requires additional costs including
network costs given by donating network bandwidth and any
other subscription fees, energy costs to pay for electricity bills
to run the computer equipment as well as cooling apparatus,
maintenance cost to fund any technical support and replace-
ments of parts, and hosting costs to provide storage space
for the equipment. Besides these costs at the individual level,
there are also the transaction costs and management overheads
necessary for the collective operation of community cloud.

The individuals in community cloud act as private enterprises
where they offer services to generate revenue. The revenue for
the community cloud users include tangible benefits like the
services and applications that they will be able to consume, and
intangible benefits like the sense of belonging to the community
and personal satisfaction because of their contributions. The
services can range from infrastructure to platform to software
services meeting a spectrum of different needs of the users.

Different policies addressing relevant issues of the technical,
social, economic and legal aspects of the community cloud are
designed to encourage collaboration, for example commons
license and peering agreements can be implemented that extend
the idea of reciprocal sharing from Wireless Commons Li-
cense11 and Pico Peering Agreement12 in community networks.
The social context of community networks provides opportunity
to harness social capital and the different roles of social
relationships. Similarly, lowering transaction costs and entry
barriers, facilitating participation of developers, exploring differ-
ent service models to provide value addition and differentiation,

11http://guifi.net/es/ProcomunXOLN
12http://www.picopeer.net

Figure 5. Experiment setup using Community-Lab testbed, with Guifi.net and
AWMN connected through FEDERICA

and taking advantage of locality and overlay topology of the
network can prove useful. Such mechanisms help adapt the
ecosystem of community cloud infrastructure and services to
the aspirations of community network members.

V. C O M M U N I T Y C L O U D D E P L O Y M E N T

We explain in this section our current work in setting up a
prototype cloud infrastructure in Guifi.net and Athens Wireless
Metropolitan Network (AWMN)13 community networks, and
present results from our experiments with distributed storage
and data sharing service running in this testbed.

A. Experiment Environment: Community-Lab Testbed

For having a realistic community network setting for the
collaborative cloud services, we have used Community-Lab14

testbed for setting up our community cloud infrastructure.
Community-Lab is a distributed infrastructure developed by
the CONFINE project [1], where researchers can deploy
experimental services on several nodes deployed within feder-
ated community networks. Community-Lab provides IaaS for
community clouds by providing the researchers with a set of
VMs, implemented as Linux containers (LXC), from the nodes
which are distributed within the community network. Within
these VMs we deploy Cloudy15 [9], a Debian based distribution,
which comes pre-installed with some of the collaborative
distributed applications, like Tahoe-LAFS16, ownCloud, etc.

The primary configuration for our application deployments
consists of nodes from the two community networks, Guifi.net
in Spain and AWMN in Greece, which are connected on the IP
layer though Federated E-infrastructure Dedicated to European
Researchers (FEDERICA)17, enabling network federation, as
illustrated in Figure 5. This implies that some part of the dis-
tributed applications are in fact spread over nodes in Guifi.net,
while the other components are hosted on the nodes belonging
to AMWN. The nodes of our experiments are the real nodes
from both the community networks, and they are connected
to other actively used nodes within the community network
through wireless IEEE 802.11 a/b/n connections.

13http://www.awmn.net
14http://community-lab.net
15http://repo.clommunity-project.eu
16https://tahoe-lafs.org
17http://www.fp7-federica.eu

http://guifi.net/es/ProcomunXOLN
http://www.picopeer.net
http://www.awmn.net
http://community-lab.net
http://repo.clommunity-project.eu
https://tahoe-lafs.org
http://www.fp7-federica.eu
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Figure 6. Tahoe-LAFS deployed in the Community-Lab testbed

B. Collaborative Cloud Services

We present here a brief overview of the different collabora-
tive cloud services that we are exploring and planning to deploy
in our community cloud testbed based on Community-Lab.

1) Infrastructure-as-a-Service (IaaS): We have set up
different machines with OpenStack, Eucalyptus, Proxmox18,
Docker.io19 and OpenWRT/LXC installations, which provide
either a virtual machine or Linux container based environment.
All the nodes share the same Guifi.net IP-address space and
are network reachable. This means that they can support appli-
cations and services deployed on the federated infrastructure
from multiple cloud setups.

2) Platform-as-a-Service (PaaS): We set up a storage ser-
vice (based on Tahoe-LAFS and ownCloud) and a database
service (based on CATS project’s Caracal database20) at
platform level to support the development of cloud applications
for the end users. The Debian-based Cloudy distribution [9]
also integrates support services, like Avahi21 which provides
services discovery and management.

3) Software-as-a-Service (SaaS): We are also looking into
providing useful collaborative services for the end users be-
cause these application are critical for the uptake of community
cloud model among the existing users of community networks.
For instance, we are setting up collaborative distributed stor-
age service using a combination of ownCloud, XtreemFS22

and Tahoe-LAFS, and video streaming service using Peer-
Streamer [27] and PeerTV [28].

C. Experiment Setup

For our experiments, we have used nodes from Guifi.net
located in our research lab, UPC campus23, and elsewhere
in Barcelona city, and from AWMN located in Athens. The
hardware of most of these Community-Lab nodes consists of
Jetway devices that are equipped with an Intel Atom N2600
CPU, 4GB of RAM and 120GB SSD. We also include a few

18http://proxmox.com/
19http://docker.com
20http://cats.sics.se
21http://avahi.org
22http://xtreemfs.org
23http://dsg.ac.upc.edu/qmpsu

Figure 7. Two Tahoe-LAFS clients at different locations

nodes in our lab from a Proxmox cluster consisting of machines
with 4x Intel Core i7-3770 3.40GHz CPU with 16 GB RAM
and 1 TB hard disk, and this provides heterogeneity in terms
of storage space and processing power.

In the first experiment, we deploy ownCloud and Tahoe-
LAFS instances for a collaborative distributed cloud storage
in Guifi.net. We measure the read and write throughput as
observed from two different Tahoe-LAFS clients and evaluate
the overall functionality of the application. In the second
experiment, we deploy BitTorrent application in nodes from
both Guifi.net and AWMN to demonstrate the option of
collaborative data sharing within different community networks.
In these experiments, Community-Lab nodes from AWMN in
Athens and from Guifi.net in UPC Campus and Barcelona city
provide 1 GB of storage space, wile the nodes in our lab share
5 GB of storage space.

1) ownCloud Setup: We deploy an instance of ownCloud on
a relatively stable node in Community-Lab testbed, since the
instance of ownCloud is not replicated. Using ownCloud server
URL, authenticated users can remotely upload and download
files through the ownCloud web interface. To store the files
uploaded to ownCloud, we have replaced the ownCloud back-
end with Tahoe-LAFS, as explained next.

2) Tahoe-LAFS Setup: For Tahoe-LAFS deployment in the
testbed [12], we use the Cloudy distribution [9] to set up the
gateway and the introducer, storage and client nodes required
for Tahoe-LAFS in the VM instances provided by the testbed.
There are total 12 nodes from Guifi.net, four nodes each located
in the lab, UPC campus and Barcelona. Figure 6 shows the
resulting Tahoe-LAFS architecture used in our experiments in
the Community-Lab testbed. While the Tahoe-LAFS introducer
service runs on a separate node, the Tahoe-LAFS clients are
on the same nodes where ownCloud is installed. This way
the performance of Tahoe-LAFS translates directly to the
performance observed at the ownCloud server itself.

Figure 7 shows the bandwidth and number of hops observed
from the two different clients to the Tahoe-LAFS storage nodes.
The first client is located in one of the nodes at our lab, while
the second client is at a different location in Barcelona. The
six storage nodes where the clients write to and read from are
also shown. We see that the network characteristics observed
by these two clients are not the same. The links from the first
client to the storage nodes have better connectivity as compared
to the links for the second client. We have used the default

http://proxmox.com/
http://docker.com
http://cats.sics.se
http://avahi.org
http://xtreemfs.org
http://dsg.ac.upc.edu/qmpsu
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Figure 8. Read and write performance for Tahoe-LAFS client in the lab

Tahoe-LAFS erasure coding parameter of 3-of-10 which means
that for every file uploaded, Tahoe-LAFS uses 10 of the 12
storage servers. These storage servers can differ significantly
in bandwidth and latency.

D. Experiment Results

1) Tahoe-LAFS Evaluation: We evaluate the storage perfor-
mance of Tahoe-LAFS in the community network in order
to assess the impact of network latency, connectivity and
bandwidth. We focus on the read and write performance and
ignore other Tahoe-LAFS features such as data recovery, repair,
maintainability, etc. We collect measurements from the two
Tahoe-LAFS clients at different locations in the community
network for reading and writing fixed-size files. In these tests,
we ignore concurrent reads and write operations.

We use workloads consisting of files of different types, such
as jpg, pdf, zip, mp4, etc. We use 15 consecutive read and
write operations of files of size 5 MB, 10 MB and 30 MB.
We present the average read and write throughput in MB/s.
In every write operation, we use file with different type and
content, since uploading the same file results in Tahoe-LAFS
returning the same capability string for the file. The capability
string in Tahoe-LAFS is derived from the content of the file
and the convergence secret which is randomly generated by
the node when it first starts up.

Figure 8 shows the results for the client located in the lab.
Moderate write performance of Tahoe-LAFS can be attributed
to the fact that Tahoe-LAFS performs expensive cryptographic
operations and the default stripe size, which determines the
granularity at which data is being encrypted and erasure
coded, is optimized for writing small files. This results in
0.9 MB/s when writing a 5 MB file using the default 3-of-
10 configuration. The topological placement of the nodes also
contributes to this latency, since during write operation, Tahoe-
LAFS tries to distribute the files as widely as possible, using a
different pseudo-random permutation for each file, and Tahoe-
LAFS does not take into account other node properties like its
location in the network. The read performance of 2.7 MB/s for
a 5 MB file is better then write operation, which is expected
in erasure coded systems, since read operations transfer less

Figure 9. Read and write performance for Tahoe-LAFS client in Barcelona

data than write operations. Figure 9 shows the performance
for the client located in Barcelona. The throughput for writing
a 5 MB file is 0.42 MB/s, which is twice as slower as the
write throughput for the client in the lab. This is because the
performance is affected by the heterogeneous and dynamic
network conditions of the community network.

2) BitTorrent Evaluation: The goal of this experiment is to
show the applicability of BitTorrent for data sharing between
different community networks. We evaluate the performance
of BitTorrent for sharing small files between Guifi.net and
AWMN. The nodes are the same as the ones used in the Tahoe-
LAFS experiment, with 10 nodes from Guifi.net in Barcelona
and 10 nodes from AWMN in Athens. We install Opentracker
software24 as BitTorrent tracker on a node located in Guifi.net.
The BitTorrent Transmission client25 is installed on the other
nodes, and the seeder node, which serves the file, is located in
AWMN. The initial seeder provides the complete file of 30 MB
and the other nodes from both Guifi.net and AWMN download
this file. The download performance depends on the location
of the nodes and the mechanisms of the BitTorrent protocol
itself. For nodes located in Guifi.net, the average download
rate achieved is 5.6 Mbps resulting in download latency of
42 seconds for 30 MB file. For the nodes located in AWMN,
download rate achieved is 9.2 Mbps resulting in download
latency of 26 seconds for 30 MB file. All the file sharing
operations we experimented with completed successfully.

V I . C O N C L U S I O N A N D O U T L O O K

Community networks would greatly benefit from the addi-
tional value provided by the applications and services deployed
in the community clouds. Such clouds for community networks,
however, have not been specified yet by the related work
to enable further developments. We proposed a collaborative
distributed service architecture for providing cloud services that
is tailored to the unique nature and conditions of community
networks. Our architecture proposes on top of existing cloud
management platforms a set of support services for regulated

24http://erdgeist.org/arts/software/opentracker
25http://www.transmissionbt.com

http://erdgeist.org/arts/software/opentracker
http://www.transmissionbt.com
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resource sharing to encourage active participation of the
community members which is required to form and maintain
the cloud infrastructure, and for supporting the federation of
cloud resources. Since community networks are volunteer
organisations, we consider such support services an essential
step for assuring a sustainable community cloud within com-
munity networks. We have deployed attractive applications on
community cloud infrastructures in the Guifi.net community
network to assess the applications’ performance. We observed
the feasibility of such applications in the community cloud and
their correct functioning, which is crucial to attract real users
for the next step of our research.

Based on the proposed architecture, our next step is to
further develop the identified components and test them in
the community cloud by engaging end users from community
networks with these applications. The deployed prototype will
allow running experiments in the real setting of a community
network to investigate the performance of such a collaborative
distributed community cloud. The resulting empirical studies
will feed back to validate and improve the design of different
components in the architecture. This proposal of the distributed
community network architecture is a first step to exploit the
potential of community clouds to complement existing public
cloud services, opening the way to build collaborative user-
shaped innovative applications for local communities.
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