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Abstract
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be

composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular
momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located atrC

J � 15RJ for Jupiter andrC
S � 22RS

for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be�RH/5
(located at�150 RJ near the inner irregular satellites for Jupiter, and�200RS near Phoebe for Saturn). This places Titan and Ganymede
in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted
by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening
(or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities
of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of�250 K and
Titan at�100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.

Our model has Callisto forming in a time scale�106 years, Iapetus in 106–107 years, Ganymede in 103–104 years, and Titan in 104–105

years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk;
its accretion time scale is set by the inward drift times of satellitesimals with sizes 300–500 km from distances�100RJ. This accretion
history may be consistent with a partially differentiated Callisto with a�300-km clean ice outer shell overlying a mixed ice and rock-metal
interior as suggested by Anderson et al. (2001), which may explain the Ganymede–Callisto dichotomy without resorting to fine-tuning
poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing
through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals
passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this
model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas
density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still
formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog
of Callisto, we expect, is Iapetus). An alternativestarved disk model whose satellite accretion time scale for all the regular satellites is set by the
feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small
quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We
briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The regular satellites of Jupiter and Saturn generally
have low inclinations and eccentricities. Perhaps most strik-

ing is the progression of satellite density in the Galilean
system. Also, the ratios between the satellite systems and
the parent bodies of mass and angular momentum are quite
similar (Pollack et al., 1991), which suggests a common
origin in an accretion disk present about the protoplanets at
a late stage of their formation. These properties, taken
together with the tantalizing ratio of the largest satellite of
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each system to its primary Ms/MP � 10�4 (not too dissim-
ilar from the ratio of giant planet to Sun), lead one to think
of the Galilean satellite system as a kind of scaled-down
solar system.

Given their similarities in distances, masses, and densi-
ties, an issue we wish to focus on is how to view Titan in
light of the Galilean satellite system, especially Ganymede
and Callisto. Yet, the differences between these three sat-
ellites are as intriguing as their similarities. The Galileo
mission moment of inertia data are consistent with a fully
differentiated Ganymede, but only a partially differentiated
Callisto (Anderson et al., 1998). Moreover, Callisto shows
no evidence of tectonic activity. Also, the association of
craters with the presence of CO2 in Callisto but not
Ganymede (Hibbitts et al., 2000) as well as the degradation
of craters presumably due to the sublimation of CO2 in
Callisto but not Ganymede (Moore et al., 1999), which is
consistent with the presence of a CO2 atmosphere in Cal-
listo (Carlson, 1999), seems to require that Callisto be
assembled with and retain oxidized ices more volatile than
H2O. In the case of Titan, it is probably the presence of
methane in the atmosphere that has received the most at-
tention (Lunine et al., 1989; Prinn and Fegley, 1989).

Recently, Anderson et al. (2001) have investigated two
and three layer models for Callisto’s internal structure as-
suming hydrostatic equilibrium. For the two layer models
these authors find two limiting cases: a relatively pure ice
shell about �300 km overlying a mixed ice and rock-metal
interior, and a thick �1000-km ice and rock-metal outer
shell overlying a rock-metal core. Since it is difficult to
reconcile a metallic core with a partially differentiated state
the former solution appears more likely. Given that accret-
ing bodies allocate a fraction of their energy as surface heat
(Schubert et al., 1981; Coradini et al., 1982), fast satellite
accretion would melt the water ice and lead to rock sepa-
ration and runaway differentiation (Friedson and Stevenson,
1983). Previous attempts to explain an undifferentiated Cal-
listo have relied on fine-tuning parameters (Schubert et al.,
1981; Coradini et al., 1982; Lunine and Stevenson, 1982).
Although it is possible that nonhydrostatic effects in Cal-
listo’s core could be large enough to allow for complete
differentiation of this satellite and still be sufficiently small
in Ganymede’s core to have avoided detection, we regard
this possibility as unlikely. Instead, we favor a model that
makes Callisto slowly.

Other issues also seem difficult to explain. For instance,
one might expect the outermost Galilean satellite to have
significantly less angular momentum than the preceding
satellite. It would seem unlikely that the satellite disk would
have enough surface density to make a satellite the size of
Callisto at 26RJ, but form no smaller objects outside its
orbit. Furthermore, the separation between Ganymede and
Callisto (�10RJ) is so large that one is led to wonder why
there are no satellites in between at �20RJ (see Mosqueira
and Estrada (2003), hereafter Paper II, for a brief discussion
of orbital stability). One can always argue serendipity, but

the Galilean satellite system is sufficiently regular that we
reserve this explanation as a last resort.

A related point can be made concerning Titan and Iape-
tus. If we form the satellites out of a continuous, smoothly
varying accretion disk, it would seem difficult to explain
why there are no large satellites between Titan at �20RS

and Iapetus at �60RS (Hyperion does not have enough mass
to affect this argument).

Also, one must account for the differences between the
satellite systems of Jupiter and Saturn. In the case of Sat-
urn’s satellite system, the concentration of mass in Titan
needs to be addressed. But perhaps the most perverse dif-
ference between the two satellite systems is the fact that
whereas the Galilean satellites get rockier closer to the
planet, the inner satellites of Saturn appear to be made
mostly of ice! Even so, we attempt a combined model for
both Jupiter and Saturn (as well as Uranus).

If we take the satellite systems of Jupiter and Saturn and
add the amount of gas necessary to create a solar composi-
tion mixture the resulting disks have a total angular mo-
mentum comparable to the spin angular momentum of the
parent planet (Stevenson et al., 1986). The issue arises
whether or not one would expect the circumplanetary disk
to exhibit a solar mixture of elemental abundances of water
and ice bearing materials. One can think of several pro-
cesses that modified the abundances of rock and ice from
their solar abundances. Yet, the fact that the similarly sized
Ganymede, Callisto, and Titan all deviate from solar mix-
ture by the same proportion (�60% rock, �40% ice by
mass) seems to indicate that one should be guided by solar
mixtures and investigate mechanisms for deviation from
them, such as size-dependent water vaporization on one end
and water enrichment by composition selective mechanisms
on the other. If so, one might calculate models with “min-
imum mass” by augmenting the mass of the satellites by
some factor (typically �100; Pollack et al., 1994), corre-
sponding to the mass ratio of gas to rock-metal/ice in the
solar nebula. This factor might be decreased somewhat in
view of the heavy-element enrichment of the giant planets
or increased in view of the possible loss of some of the
accreting materials as a result of the specifics of the process
used to make the planet and satellites.

In order to arrive at a specific model for the formation of
regular satellites in a gaseous medium we need to charac-
terize the subnebular viscosity. It has been suggested that
because of the stabilizing influence of a positive radial
gradient in specific angular momentum, turbulence in a
Keplerian disk is not self-sustaining unless a source of
“stirring” is found (Ryu and Goodman, 1992; Balbus, Haw-
ley, and Stone, 1996). As a result, one needs to identify a
specific mechanism that can maintain turbulence in the
dense, high orbital frequency subnebula. One such sugges-
tion is that convection drives turbulence (Cameron, 1978a;
Lin and Papaloizou, 1980; Ruden and Lin, 1986); however,
eventually particle growth may stop convection by dimin-
ishing the Rosseland mean opacity and weakening its tem-
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perature dependence (Weidenschilling and Cuzzi 1993).
Given the fast dynamical time scale and the high particle
density of the subnebula disk, coagulation and settling for
sticky particles may take place on a time scale faster than
disk evolution. Furthermore, if convection drives turbulence
then angular momentum transport may be weak (� � 10�5;
Stone and Balbus, 1996) and directed inwards (Ryu and
Goodman, 1992; Kley et al., 1993; Stone and Balbus, 1996;
Cabot, 1996), which would essentially terminate gas accre-
tion onto the primary. Another possibility is that turbulence
is driven by a magnetohydrodynamic (MHD) instability
(Balbus and Hawley, 1991). But this is also unlikely to
apply (Gammie, 1996) in the dense and relatively cool
subnebula disk. Alternatively, there are a variety of ways
that accretion itself, or the gravitational energy released by
it, can provide the source of free energy that can drive
turbulence. It has been pointed out (but not quantitatively
explored) that a turbulent shear layer, where the angular
momentum of the infalling gas is adjusted to the angular
momentum of the Keplerian disk flow, exists below an
accretion shock and may provide a localized viscosity (Cas-
sen and Moosman, 1981; Cassen and Summers, 1983).
More recently it has been shown that a bump in the tem-
perature profile of the disk, as may result from accretion,
that leads to a strong radial entropy gradient generates
Rossby waves and localized turbulence (Lovelace et al.,
1999; Li et al., 2000). Similarly, but more generally, Klahr
and Bodenheimer (2001) study a global baroclinic instabil-
ity as a source of turbulence and outward angular momen-
tum transport in Keplerian accretion disks characterized by
a negative radial entropy gradient.

To create a coherent scenario of satellite formation, the
source of the solids that go into the satellite systems must be
considered. The concentration of rock/ice to gas in the
subnebula may depend on the ability of the protoplanet to
disturb the orbits of planetesimals situated within a few AU
of its orbit into ones that crossed its orbit. One would expect
that in a time scale much shorter than the lifetime of the
solar system virtually all the planetesimals located in the
outer solar system would have their orbits perturbed into
giant planet crossing orbits (Gladman and Duncan, 1990).
What happens to such a planetesimal depends on the size of
the planet at the time of crossing. If the giant planet’s
envelope filled a fair fraction of its Hill radius, as it probably
did during most or all of its gas accretion phase (unless
significant amounts of gas accreted through the gap after
gap-opening), then the distended atmosphere would have
greatly increased the planet’s cross-section (Bodenheimer
and Pollack, 1986; Pollack et al., 1996). Early arriving
(before the completion of planetary accretion) icy planetes-
imals of size �10 km (Zahnle, private communication) may
break up in the contracting envelope of the giant planet, and
their condensable content may then be entrapped in the gas
and left behind in the form of a circumplanetary disk. On the
other hand, most late arriving planetesimals may have been
scattered to further regions of the solar system with some

sent to the Oort cloud and some lost altogether. Thus, our
model relies on early arriving planetesimals that break up or
dissolve in the extended giant-planet envelopes to provide
the bulk of the material that will eventually make the sat-
ellite systems, delivered to the satellite disk in a time scale
given by the envelope collapse time.

This formation model is consistent both with a model
that captures irregular satellites at a time when the proto-
planetary envelope was collapsing rapidly and extended
several hundred planetary radii (Pollack et al., 1979) and
with a model that captures irregular satellites using a long-
lived circumplanetary gas disk (Cuk and Burns, 2002). Here
late arriving interplanetary debris plays a role in that it can
threaten the survival of regular satellites close to their pri-
mary. Hence, the large disparity in masses between Titan
and all other moons of Saturn may in part be the result of the
break-up of satellites by high-velocity impacts (e.g., Lis-
sauer, 1995; but note that gas would still be needed to clear
up the collisional debris and prevent re-accretion). In con-
trast, a starved disk model (Stevenson, 2001) relies on the
late arriving planetesimals or flow through the gap to form
a disk around the planet out of which all the regular satel-
lites will eventually accrete. One should keep in mind,
however, that most planetesimals were probably scattered
or the giant planets would have ended up with too much
high-Z mass (Podolak et al., 1993) and that most of the mass
in the nebula disk at late times is in the form of planetesi-
mals (Mizuno et al., 1978; Weidenschilling, 1997). Further-
more, the high specific angular momentum of gas arriving at
late times may place it in orbit well outside the region where
most of the satellite mass is found.

In Section 2 we organize the satellite systems of the giant
planets according to the Hill radius of the primary. In
Section 3 we characterize the subnebulae of giant planets,
especially that of Jupiter. In Section 4 we discuss the ac-
cretion of the Galilean satellites, reserving discussion of
Callisto for Section 5. In Section 6 we turn to Saturn’s
satellite system. In Section 7 we discuss the satellite system
of Uranus. In Section 8 we make some comments on an
alternative satellite accretion model that leads to a long
accretion time scale for every satellite. In Section 9 we
present our conclusions and discussion. In Paper II we turn
to the migration and survival of full-sized satellites.

2. Regular satellites of giant planets

We begin with a brief comparative discussion of the
satellite systems of the giant planets. We compare satel-
lite positions mainly in terms of the Hill radius RH �
a(MP/3MJ)1/3 of the planet (and the concomitant centrif-
ugal radius rc � RH/48; see Sect. 3). In Fig. 1, we plot the
locations of the regular satellites (solid circles) and the
innermost irregular satellites (open circles) in units of the
Hill radius of the giant planet. The bold dashed line
describes the position of the centrifugal radius. From this
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plot it is immediately apparent that the irregulars (pre-
sumed to be captured objects) of the three inner giant
planets are far from the location of the centrifugal radius.
We expect that this observation means that the gas disk

which gave rise to the regular satellite systems extended
well outside this radius (out to �RH/5 for Jupiter and
Saturn). Jupiter and Saturn have regular satellites which
are far outside the centrifugal radius, with Saturn’ s Iape-

Fig. 1. Comparison of the jovian, saturnian, and uranian satellite systems with the distance scale in terms of the respective planet’s Hill radius (RH
J � 750RJ,

RH
S � 1100RS, RH

U � 2740RU). Planetary rings are denoted by solid lines and are labeled when possible. The centrifugal radius is denoted by a bold dashed
line. Dotted lines correspond to positions of interest. The first, located at the distance of Rhea for Saturn, corresponds to the inner portion of the disk. The
second corresponds to the outer edge of the disk (�RH/5) in our models.
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tus located much farther out than Jupiter’ s Callisto. These
two planets also have satellites just inside (Saturn also
just outside) the centrifugal radius. In contrast, one has to
go to (�RH/100) to find any regular uranian satellites.

We add the satellite system of Neptune for the sake of
completeness; however, Goldreich et al. (1989) (see also
McKinnon, 1984) showed that retrograde Triton is likely to
be a captured object. Since these authors estimate a collision
probability near one between �5RN and the centrifugal
radius �100RN, Triton’s capture would have broken up or
scattered any pre-existing satellites in this region. Nereid’s
high eccentricity and inclination, and large semi-major axis
are best understood in terms of this process. Hence, we will
not discuss this satellite system here, though we expect that
prior to Triton’s capture it may have been analogous to that
of Uranus.

In Table I we provide data on both regular and irregular
satellites for all four giant planets. Because small satellites

close to the planet are likely to have undergone significant
collisional evolution since the time of their formation, we
exclude them. The formation history of coorbitals remains
to be investigated, and we shall not do so here; hence,
coorbitals have also been excluded from the table.

3. The giant planet subnebula

The “minimum” mass subnebula we use here is one of
solar nebula composition that provides just enough mass to
form the observed satellite systems with the observed rock/
ice mass ratio. Given Jupiter’s relative enrichment in heavy
elements with respect to the solar nebula, the minimum
mass subnebula is not a firm lower bound. On the other
hand, inefficiencies in the satellite formation process and
depletion of solids due to planetesimal formation mean that
it is not a firm upper bound either. Still, it remains a useful

Table 1
Satellite dataa

Distance (RP) Radius (km) Density (g cm�3) Mass (1026 g) �d (10�4)

Jupiter 71492 1.326 18980 9.5
Io 5.905 1,821 3.53 0.894 0.47
Europa 9.937 1,565 2.97 0.480 0.25
Ganymede 14.99 2,634 1.94 1.4823 0.78
Callisto 26.37 2,403 1.85 1.0776 0.57
Ledac 155.2 5 ? ? ?
Himaliac 160.6 85 ? ? ?
Lysitheac 163.9 12 ? ? ?
Elarac 164.2 40 ? ? ?

Saturn 60330 0.687 5684.6 2.9
Mimas 3.075 199 1.12 3.7 � 10�4 6.5 � 10�4

Enceladus 3.945 249 1.00 6.5 � 10�4 1.1 � 10�3

Tethys 4.884 529 0.98 6.1 � 10�3 0.010
Dione 6.256 560 1.49 0.011 0.019
Rhea 8.736 764 1.24 0.023 0.040
Titan 20.25 2,575 1.88 1.3457 2.4
Hyperion 24.55 185 � 113 ? ? ?
Iapetus 59.03 720 1.0 0.016 0.028
S/2000 S5b,c 187.3 10 ? ? ?
S/2000 S6b,c 189 16 ? ? ?
Phoebec 214.5 115 � 105 ? ? ?

Uranus 25559 1.318 868.32 0.44
Puck 3.36 77 ? ? ?
Miranda 5.08 240 � 233 1.20 6.59 � 10�4 7.6 � 10�3

Ariel 7.48 581 � 578 1.67 0.0135 0.16
Umbriel 10.4 585 1.4 0.0117 0.13
Titania 17.05 790 1.71 0.0353 0.41
Oberon 22.8 760 1.63 0.0301 0.35
Calibanc 280.5 30 ? ? ?
Stephanob,c 309 10 ? ? ?
Sycoraxc 477.9 60 ? ? ?

Neptune 24766 1.638 1024.3 0.51
Proteus 4.75 218 � 201 ? ? ?
Tritonc 14.32 1,353 2.05 0.215 2.1
Nereid 222.6 170 ? ? ?

a From Beatty (1999).
b P. Nicholson, private communication.
c Irregular satellite.
d Mass of secondary over mass of primary.
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reference and we have chosen it for the sake of specificity.
As we will see, it is possible that a minimum mass sub-
nebula does in fact apply. If anything, we expect that the
concentration of solids will turn out to be larger than solar
proportion. Here and in Paper II, we will be guided by solar
proportion, but we will also consider solid enhancement
factors of 3–4 in rough agreement with giant planet high-Z
enhancement.

Gas flowing into the Hill sphere will form a high optical
depth hydrostatic gas disk around the protoplanet. We can
obtain an estimate of the size of this disk by assuming that
infalling gas elements conserve specific angular momen-
tum. We reproduce here an estimate of the specific angular
momentum flowing into the Hill sphere of the planet for a
case such that the planet travels on a circular trajectory and
the gas moves on Keplerian orbits (gas pressure support
tends to decrease the specific angular momentum flowing
into the planet, but this is probably a small correction).
Assuming that the giant planet atmosphere fills its lobe, the
specific angular momentum received by the envelope is
approximately given by (Lissauer, 1995)

� � � �

	
0
RH

3

2
x3dx

	
0
RH xdx

� �RH
2 �

1

4
�RH

2 , (1)

where � � (GMJ/a3)1/2, a is the planet’s semimajor axis,
and RH is the planet’s Hill radius. The specific angular
momentum given above has two contributions. The first is
due to the angular momentum flux flowing into the planet’s
Hill radius (over those portions where the mass flux is
inward) as a result of the Keplerian shear divided by the
mass flux in the rotating frame. The second contribution is
a correction to translate back to an inertial frame (see
Lissauer, 1995, and references therein). This expression
neglects the gravitational effect of the planet and assumes
that the angular momentum of the infalling gas is absorbed
by the giant planet’s extended envelope, which then sets the
angular momentum for the resulting accretion disk. We note
that the giant planet accretes gas from locations in the disk
well outside RH. This calculation assumes that prior to
gap-opening the angular momentum flux is dominated by
gas elements with semi-major axes originating from �RH of
the proto-planet. Using the above estimate and equating the
centrifugal to gravitational forces �2/rc

3 � GMP/rc
2, where

MP is the planetary mass, one obtains the centrifugal radius
rc � RH/48 (Cassen and Pettibone, 1976; Stevenson et al.,
1986). For Jupiter and Saturn these radii are located at rc

J �
15RJ and rc

S � 22RS, close to the positions of Ganymede and
Titan, respectively.

It is tempting to conclude that this is roughly the size of
the gas disk that led to the formation of the satellites. One
must keep in mind, however, that Callisto is at 26RJ nearly
twice the size of Jupiter’s centrifugal radius, and Iapetus is
at 59RS nearly three times the size of Saturn’s centrifugal

radius. Our model accounts for these facts by using a two
component subnebula. The extent of the outer disk is diffi-
cult to pin down. One may try to estimate the specific
angular momentum of the gas flowing through the gap after
gap-opening, as seen in some simulations (Artymowicz and
Lubow, 1996) where accretion continues through the plan-
etary Lagrange points. In this case we cannot ignore the
gravitational effect of the planet, since doing so would result
in no accretion at all, i.e., after gap-opening gas elements
would not cross the sphere of influence of the planet. In-
stead, we try to estimate the specific angular momentum of
the gas as it passes through the Lagrange points. Assuming
that the inflow takes place at a low velocity in the rotating
frame and it is directed nearly toward the planet, we can
obtain an estimate to the specific angular momentum of the
gas flowing through the gap by keeping only the change of
frame contribution of Eq. (1) and get � � �RH

2 . If we now
assume conservation of angular momentum, the radius at
which this component would achieve centrifugal balance is
given by �RH/3, as suggested by Quillen and Trilling
(1998). However, how much gas flows through the gap
depends on the assumed turbulence of the nebula.

For now we assume that Callisto derived its condens-
ables from the materials present in the outer disk, and we
justify this assumption later in this paper (where we show
that inwardly migrating satellitesimals are effectively cap-
tured by satellite embryos with sizes �103 km) and in Paper
II (where we show that satellites of size �103 km forming
in the outer disk might be prevented from migrating into the
inner disk). Thus, we compute “minimum mass” gas den-
sities in the inner and outer disks based on the solid mass
required to form Io, Europa (reconstituted), and Ganymede
in the inner disk and Callisto in the outer disk. Inside of the
centrifugal radius the average surface gas density 
 then
exceeds 105 g cm�2 (corresponding to pressures p � 0.1
bar), which yields a vertical optical depth (not including
dust) due to absorption by hydrogen molecules �v � 
Kgas

� 1–10, where Kgas � 10�5–10�4 cm2 g�1 is the Rosseland
mean gas opacity (Mizuno, 1980; Lunine and Stevenson,
1982). Well outside the centrifugal radius, gas surface den-
sities are in the range 102–103 g cm�2, which results in a
low vertical optical depth in the range �v � 0.001–0.01.

While grains contribute to the opacity so long as their
sizes are in the order of the infrared wavelength, coagulation
may quickly lead to larger grain sizes (Weidenschilling and
Cuzzi, 1993). One expects that the dust density is deter-
mined by a balance between the collisional dust production
rate and the removal rate by drift, coagulation, accretion,
and the like. In such an equilibrium state it may be appro-
priate to assume a power law size distribution. If we take
this distribution to behave like rp

�3 (as may result in a
collisional situation where erosion replenishes small parti-
cles), and use the decoupling size rp � 103 cm (smaller
particles are strongly coupled to the subnebula gas) as the
upper size cut-off (Weidenschilling, 1997; note that in that
study the decoupling size was a somewhat smaller �1 m
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given the author’s parameters for the solar nebula), we find
that the mass in particles smaller than �m is �10�7 of the
total mass in the disk. Using 
s � (4/3)�srp�dust, where �dust

is the micrometer-sized dust optical depth, we find that for
surface densities of solids 
s � 103 g cm�2 we have �dust �
1, where a grain density of �s � 1.0 g cm�3 has been used.
As a result, the dust optical depth may drop below unity
once the satellites have accreted. However, the possibility
remains that close to the planet hypervelocity collisions or
the ablation of planetesimals passing through the disk lead
to large dust production, the disk temperature is too high for
water-ice condensation and efficient dust coagulation to
take place (Supulver and Lin, 2000), or the relative velocity
between particles is too high for efficient sticking (Suttner
and Yorke, 2001). On the other hand, if the coagulation
were inefficient it might be difficult to form satellites in the
first place. Furthermore, sufficiently small particles may still
coagulate even in the presence of turbulence (Suttner and
Yorke, 2001).

In this study, we adopt the view that a weak turbulence
regime is more likely to apply during satellite formation. In
that case, coagulation may readily form even large particle
sizes. As shown in Weidenschilling (1997), provided that
the weak turbulence regime applies, coagulation in the solar
nebula of particles up to the decoupling size takes place in
a timescale of �105 years. Given its shorter dynamical
times, one might expect a shorter coagulation time for the
subnebula; however, the exact nature of the scaling between
the nebula and the subnebula remains to be studied. Also,
the assumed starting condition for the solids as micrometer-
sized grains may not apply to satellite formation. Nonethe-
less, we do not believe that this argument rules out the
possibility that the inner disk (the outer disk has low gas
density and long satellite accretion times) remains dusty
throughout the formation of the satellites. Even so, it must
be remembered that the temperature of the disk will ap-
proach the background temperature of the solar nebula at a
distance of order tens of planetary radii. For this reason, one
might expect that only regions close to the planet would be
(weakly; Stone and Balbus, 1996) turbulent. We will return
to this issue in Paper II. For now we consider the gaseous
opacity alone and characterize the disk as thick or thin
depending on whether the gaseous opacity is enough to
make the disk optically thick or not.

If the opacity is small, individual grains are in radiative
balance with the planet’s luminosity and a temperature
profile results with T � r�1/2 (Pollack et al., 1977). On the
other hand, when the opacity is high, viscous dissipation
within the nebula plays a central role in heating the gas and
driving its evolution (Lynden-Bell and Pringle, 1974).
Though uncertain, the nonisothermal, optically thick portion
of the subnebula may exhibit a temperature profile roughly
of the form T � r�1 as suggested by some solar nebula
models (Cameron and Pine, 1973; Cameron, 1978b). Like
previous authors (Lewis, 1972; Lunine and Stevenson,
1982), we characterize the temperature of the gas disk by

choosing the current radial distance for Ganymede (15RJ) as
the location for the condensation of water ice (250 K).

There are several processes that might lead to satellite
migration. Most important, the gas tidal torque on a full-
sized Galilean satellite, when most of its water was al-
ready accreted, may alter the appropriate choice for the
location of the condensation of water ice. Nevertheless, the
closeness of Ganymede to Jupiter’s centrifugal radius
suggests that this satellite underwent limited radial migra-
tion (see Paper II for an explicit calculation). Further-
more, our model makes Ganymede from materials located
between �15 and �23RJ brought to its feeding zone by
gas drag. Thus, setting the water-ice condensation temper-
ature at 15RJ allows the material that went into Ganymede
to have its complement of water in place. The resulting
temperature profile is T � 3600/x, where x � r/RJ, which is
the same profile as that chosen by Lunine and Stevenson
(1982). In the outer disk, the temperature is roughly given
by the solar nebula temperature at the location of Jupiter
�130 K.

There are three mechanisms that can lead to the presence
of an extended gas disk. The giant planet can spin-out a disk
during its contraction phase (Korycansky et al., 1991). In a
viscous disk with outward angular momentum transport, gas
inside the radius of maximum viscous stress (probably lo-
cated in the neighborhood of the centrifugal radius) drifts
inward as it loses angular momentum, while gas outside this
location expands outward as it receives angular momentum
(Lynden-Bell and Pringle, 1974). An extended disk may
also result from the tidal effects of the Sun on gas flowing
from the Roche-lobe. Even though our scenario is generally
consistent with the spin-out scenario of Korycansky et al.
(1991), we do not rely on its validity. The spin-out model
assumes opacities that are arguably too large if one takes
into consideration coagulation and settling of dust grains
(which provide the source of the opacity). For lower opac-
ities, spin-out may not take place. On the other hand, gas
viscosity may only lead to an extended outer disk if strong
gas turbulence lasts a time comparable to the viscous time
scale. Since we expect that far from the planet the gas flow
became laminar soon after the end of planetary accretion,
we do not favor the second mechanism. In this paper we
favor the third possibility.

Determining the size of the outer disk requires careful
calculation of the angular momentum of infalling gas. Be-
cause the material flows in from the Roche-lobe, the angular
momentum of the resulting disk is sensitive to the solar tide.
Numerical simulations suggest sizes as large as �RH/2
(Bryden et al., 1999; Korycansky et al., 1991) or as small as
RH/5 (Korycansky and Papaloizou, 1996). It is also possible
that the size of the outer disk is determined by the onset of
an instability applicable to tidally distorted accretion disks
(Goodman, 1993). Unfortunately, evaluation of this possi-
bility is hampered by model uncertainties. Though a crite-
rion for the onset of this instability has not been clarified, it
appears to operate too far from the planet to be useful here.
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We adopt the choice RH/5 � 150RJ for the size of the outer
disk (we choose the same fraction for Saturn, which corre-
sponds to a larger distance �200 RS). We justify this choice
by noting that the inner irregular Jovian satellites are located
at 160RJ just outside this distance. That is, we tie the size of
the outer disk to the location of the inner irregular satellites.
Too much gas beyond this point would have resulted in the
inward drag of these objects. In our model, gas drag ex-
plains the absence of irregular satellites closer to Jupiter (in
the case of Saturn a similar argument can be made for
Phoebe at 215RS). Prior to collapse, Jupiter’s envelope
extended out to �300RJ and may have led to the capture of
irregulars inside this radius (Pollack et al., 1979). The idea
is for the envelope collapse to leave behind captured ob-
jects. After collapse, a disk was left behind that dragged in
all the solids left in orbits �150RJ. Even if a different
method is employed to capture at least some of the irregular
satellites, we stress that their locations and eccentricities
suggest a relatively sharp cut-off in the gas distribution of
the outer disk. This cut-off is difficult to reconcile with a
viscous medium. We attribute this observation to the low
viscosity of the gas in the isothermal outer disk. In this
regard, we note that Cuk and Burns (2002) use an extended
disk to capture irregular satellites both into planetary orbits
as well as into resonance. These authors choose a surface
gas density profile consistent with that of our model (Cuk,
private communication). The presence of an edge provides
both the strong and weak gas regimes needed to explain
capture into planetary orbits and resonance capture (Saha
and Tremaine, 1993).

It is useful here to discuss planetary gap-opening in some
detail. We can estimate the time scale for gap-opening by
calculating the angular momentum L� in an annulus of
half-width �. Given the planetary torque on this annulus L̇T,
the time scale for gap-opening is given by �gap � L�/L̇T. An
analytical estimate for the gap-opening time scale can be
obtained using the tidal torque formula (Lin and Papaloizou,
1993)

L̇T � 0.23 �MP

MJ
� 2


a4�2 � a

��
3

, (2)

where the planetary feeding zone � must be larger than the
scale-height of the nebula H, and the semi-major axis of the
secondary is a. Assuming a constant gas surface density 
,
the angular momentum the planet must add or remove from
the annulus of half-width � in order to open up a gap is
given by

L� � 2	
a3 �GMJ/a3�1/ 2 �
0

� ��1 

�

a�
1/ 2

� �1 �
x

a�
1/ 2� �1 �

x

a� dx, (3)

which can be written as

L� � 	
�a4 �1

5 �1 

�

a�
5/ 2

� �1 

�

a�
1/ 2

�
4

5� .

(4)

Then expanding to second order in �/a, we find

L� �
1

2
	
�a2 �2. (5)

The gap-opening time is then given by �gap � (�/a)5P/q2,
where q � MP/MJ is the mass ratio of the secondary to the
primary (Bryden et al., 1999). Unless � is several times the
planet’s Hill radius, accretion onto the planet will continue.
For some nebula models (Lubow et al., 1999) gap-opening
will fail to stop the accretion of a Jupiter mass (1MJ) giant
planet. These workers estimate that it will take a 6MJ planet
to create a gap large enough with respect to its Roche-lobe
to stop accretion onto the planet. Of course, it then becomes
difficult to explain the mass of Jupiter. It should be pointed
out that the above conclusion depends on the strength of the
assumed turbulent viscosity of the nebula. Nevertheless, gas
flowing through the gap is a significant issue that needs to
be addressed. In our model, given its high specific angular
momentum, this late arriving component simply adds gas
and some condensables (what fraction of condensables is
uncertain, though it is likely to be well below solar mixtures
(Weidenschilling, 1997) to the outer disk after Jupiter has
already accreted most of its mass. In any case, it is clear that
the relevant size of the annulus � has to be large compared
to the Roche-lobe of the planet in order to lower the mass
rate accreted onto the planet. Using � � 0.2aJ (which is
about three times larger than the Hill radius for Jupiter), one
obtains �gap � 380P, where P is the period of Jupiter’s orbit.
This estimate is similar to the numerical value �gap � 320P
� 4 � 103 years given by Bryden et al. (1999).

In the context of the satellites we are more interested in
halting inward migration than we are in ending accretion.
We expect accretion of the large, regular satellites to end
when the disk has been depleted of condensables or when an
outer satellite limits the inner satellite’s supply of inward
drifting satellitesimals. This differs from the solar nebula
context where a minimum mass model may not apply (Lis-
sauer and Stewart, 1993). It is possible, however, that gap-
opening also plays a role in regulating the growth of satel-
lites. As we discuss in Paper II, we expect that at least the
largest satellites truncated the gas disk in which they were
formed, thus preventing gas outside their orbits from ac-
creting to the planet. Bryden et al. (2000) and Kley (2000)
discuss a process by which the gas between two giant
planets may be cleared by the action of planetary torques,
which may lead to subsequent evolution of the planets into
resonant orbits as the gas disk evolves. Assuming acoustic
waves dissipate in the neighborhood of the resonant loca-
tions where they are launched (see Paper II), we can obtain
an analogous estimate of the time �dis it would take for gas
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dissipation between Io and Ganymede by finding the loca-
tion adis inside of Ganymede and outside of Io such that
both Io and Ganymede will open a gap extending to this
same position in the same amount of time. Using Eqs. (2)
and (4) we obtain adis � 9RJ and �dis � 1 � 105 years (for
the sake of comparison, we note that an equivalent calcu-
lation for Jupiter and Saturn yields a times cale of �5 � 105

years). This time scale may be longer than the (inner disk)
satellite formation time, but it is considerably shorter than
the planetary cooling time �106 years (Pollack et al., 1976).
Hence, the gas disk between Io and Ganymede may dissi-
pate before the water content in the disk has a chance to
condense. It is also tempting to ascribe the resonances of Io,
Europa, and Ganymede to the aforementioned process of
gap opening followed by disk evolution; however, for the
Galilean satellites it is more likely that the resonant configu-
ration is due to gas drag capture or tidal evolution (significant
disk evolution might result in the loss of the satellites due to
Type II migration, though there may be ways around this).

So far we have described a circumplanetary disk (or
subnebula) with an optically thick (even when grains are
excluded) inner region inside the centrifugal radius and an
optically thin outer region outside the centrifugal radius and
extending to a significant fraction of the Roche-lobe. To
characterize the transition region between the inner and
outer disks let us first assume that planetary accretion drives
subnebula turbulence. If we choose a time scale for gas
evolution in the presence of accretion-driven turbulent vis-
cosity to be the gap-opening time t0 � 1000 years, and we
use a length scale on the order of the centrifugal radius R0

� rc � 15 RJ, we get � � R0
2t0 � 1011–1012 cm2 s�1. This

gives � � ��/c2 � 10�4–10�3 at that location. This leads
us to expect that following planetary accretion of the loca-
tion of the gas density drop-off will be outside but perhaps
close to the location of the centrifugal radius. Unfortunately,
the size of the transition region is unknown. However, it
must be larger than the subnebula scale-height to avoid
becoming Rayleigh unstable (Lin and Papaloizou, 1993).
This sets our choice for the maximum surface density gra-
dient in the transition region.

Following the completion of accretion, the gas turbu-
lence will subside and the subnebula disk will cool in a
Kelvin–Helmholtz time scale �104 years (Stevenson et al.,
1986). At the outer edge of the inner disk, where the sub-
nebula temperature approaches the background temperature

of the solar nebula, the flow will become laminar, with very
low viscosity and long evolution times. Closer in (inside the
orbit of Callisto), remnant turbulence may be driven by the
entropy gradient due to the planetary gravitational energy
release (Klahr and Bodenheimer, 2001). If we estimate the
postaccretion turbulence inside Ganymede to be � � 10�6–
10�4 then the time scale for Jupiter’s inner disk to become
optically thin is �104–105 years (see Fig. 4). Thus, the inner
disk may continue evolving until a gas density of �104 g
cm�2 (which corresponds to a pressure of �3 � 10�3 bar at
15RJ) is reached. At that time the inner disk may become
optically thin and the turbulence may die down. Hence, it
may be difficult to lower the density of the disk below
gaseous optical depth of order unity by gas turbulence alone
(unless small dust particles are somehow replenished and
the dust optical depth remains high on viscous time scales,
which is in doubt given the shorter coagulation time scales).
For the outer disk, we expect weak turbulence close to the
midplane early on, driven by the presence of a dust and
rubble layer (due to the particle shear layer (Cuzzi et al.,
1993), and laminar flow at later times.

As a starting condition we choose a simple model where
the gas density follows a simple 1/r dependence inside of
20RJ and outside of 26RJ. The transition region has a width
of about �2Hc, where Hc is the subnebula scale-height at
the centrifugal radius of the primary. This choice ensures
that the gradient in gas density is not so steep as to lead to
a Rayleigh–Taylor instability (e.g., Lin and Papaloizou,
1993). Our density profile is given by


�r� � �

in

0 �Rin/r�, r � r1;

a1r
�b1, r1 � r � r2;


out
0 �Rout/r�, r  r2,

(6)

where the relevant parameters for our various model choices
are presented in Table 2.

In Fig. 2, we plot the surface density as a function of
radial location for our model for Jupiter and Saturn as well
as other models in the literature. Though our model bears a
close relation to the standard minimum mass model, it
differs in the distribution of mass in that we allow for an
extended low density component. For Jupiter, the mass of
Callisto is distributed in the outer disk. For Saturn, we do
not spread the mass of Titan out to Iapetus as is done in the

Table 2
Surface density parameters

Planet 
in
0

(104 g cm�2)

out

0

(104 g cm�2)
r1 (Rp) r2 (Rp) Rin (Rp) Rout (Rp) a1

(104 g cm�2)
b1

a

Jupiter 51 0.31 20 26 14 87 36 13
Saturn (3.7) 10 6.5 � 10�2 25 37 16 115 5.4 9
Saturn (Iap) 11 7.7 � 10�3 25 41 18 117 5.8 14
Uranus 1 — — — — — — —

a Unsmoothed values. The parameter b1 � ln[(
in
0 Rinr2)/(
out

0 Routr1)]/ln(r2/r1).

206 I. Mosqueira, P.R. Estrada / Icarus 163 (2003) 198–231



SMM model; rather, we expect that most of the mass of
Titan came from the inner disk which extends roughly out to
the position of Hyperion. It should be noted that in our
model the size of the inner disk of Jupiter and Saturn scale
with the size of the planet’s Hill radius, which leads to a
more extended disk for Saturn. The surface density of Sat-
urn’s disk is smaller both because there is less mass in the
satellite system and also because the mass is more spread
out. We have plotted two curves for our Saturn model which
differ mostly in the treatment of the outer disk. The solid
curve corresponds to a model where we keep a constant
mass ratio of 3.7 for the masses of the outer and inner disks
of Jupiter with respect to the outer and inner disks of Saturn.
The dotted curve was determined by the amount of material
needed to make Iapetus out of the condensables present in
the outer disk assuming a cosmic mixture (see Sect. 6). The
curves labeled KBP correspond to cases for Saturn and
should be compared to our Saturn curves. Notice the pres-
ence of an extended component out to RH/2 � 500RS for the
KBP model. These correspond to the spin-out scenario of
Korycansky et al. (1991). The curve labeled LS(J) corre-
sponds to the work of Lunine and Stevenson (1982), which
extended an adiabat from the planet to form a subnebula

with several times more mass in solids than is present in
Jupiter’s satellite system. In Fig. 3, we plot the temperature
profile of the disks of Jupiter and Saturn as a function of
radial location. Saturn’s temperature profile will be de-
scribed more fully in Section 6.

For the optically thick portion of the disk, where the
temperature profile is determined by viscous dissipation, we
have


�r2�d�

dr �
2

� 2�SB�T 4 � T 0
4�, (7)

where �SB is the Stefan–Boltzmann constant, T is the pho-
tospheric temperature, and T0 is the nebula background
temperature. In Fig. 4 we use the density profile of Fig. 2,
the temperature profile of Fig. 3, the above equation, and the
equation t � r2/� to plot the viscosity, the diffusion time,
and the turbulence coefficient � � ��/c2, where c is the
speed of sound, as a function of position in the disk for
Jupiter and Saturn (the Iapetus’ minimum mass model was
used to set the surface density of Saturn’s outer disk, see
Sect. 6). A viscosity bump is seen in the Jupiter curve but
not the Saturn curve due to the difference in the temperature

Fig. 2. Comparison of gas surface density for our models as well as previous models for the saturnian and jovian systems. LS(J): Lunine and Stevenson (1982).
JMM/SMM: The minimum mass model for Jupiter and Saturn respectively of Pollack et al. (1994). KBP: Spin-out models of Korycansky et al. (1991) for
Saturn. ME(J): Our minimum mass density profile for Jupiter after reconstitution of water ice for Io and Europa. Disk size extends to �150RJ. ME(S): Solid
line indicates our model for Saturn in which the mass of solids in the subnebula is taken to be 3.7 times less than that of Jupiter. Dotted line indicates a model
in which just enough mass is placed outside of the orbit of Iapetus to form it. The locations of both Jupiter’s and Saturn’s centrifugal radii are labeled. The
dotted horizontal line corresponds to a gas surface density such that the gas optical depth is � � 1.
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profiles in the transition region, but its significance, if any,
is unknown.

From Fig. 4 one obtains an inner disk � � 10�6–10�5.
However, it is possible that our model significantly overes-
timates the inner disk gas surface density. Furthermore,
radial migration both of satellitesimals and embryos intro-
duces uncertainty in the disk temperature at the present
position of Ganymede and Titan. Finally, it is unclear
whether the turbulence generated by the formation of large
scale vortices as advocated by Klahr and Bodenheimer
(2001) can be described by an � model prescription. Given
these uncertainties, it is possible to consider larger values �
� 10�4. At any rate, Fig. 4 argues in favor of a weak �
regime.

It is important to point out that our nebula may not be
vertically isothermal. The temperatures at the midplane may
be significantly larger than the photospheric temperatures
(though the degree to which this is the case depends on the
details of the turbulent dissipation model). Hence, it is
unlikely that satellite accretion can be thought of as a
homogeneous process, with the rock and ice components
accreting at the same time. Nevertheless, the ice/rock ratio
of the large satellites indicates that this complication does
not prevent accretion of either component. To the extent that

inhomogeneous accretion can affect the final structure of the
satellites, it will do so in the inner disk, where the cooling
times are significantly longer and the accretion times
shorter. Though the satellite itself is in a hotter region of the
disk, this may not pose a problem. A satellite may accrete
water trapped in satellitesimals that drift in from cooler
regions of the disk or accrete the water component follow-
ing the accretion of the rock component, once the disk has
cooled.

4. Galilean satellite accretion and evolution

In analogy to gas-free planetary accretion, we begin the
problem of satellite accretion by calculating characteristic
sizes of satellitesimals and satellite embryos for our disk
parameters assuming a satellitesimal density of �s � 1.5 g
cm�3. Though our problem differs markedly from one in
which the satellites are accreted in the absence of gas, we
will show later that the characteristic sizes one obtains in the
presence of gas are roughly consistent with the ones we give
below, which are meant only as an indication of typical
object sizes. The characteristic length scale and mass scales
over which the disk’s self-gravity dominates shear are ap-

Fig. 3. Temperature profiles used in our model. Inner disk temperature varies like r�1. Transition in behavior to r�1/2 occurs around the centrifugal radius
of both planets. Temperatures at greater distances in the outer disk are constant. The temperatures in the outer disk are taken to be that of the equilibrium
solar nebula temperature (Te � 280 �1AU/r), which is roughly 130 K for Jupiter and 90 K for Saturn. A temperature of 250 K is set to coincide with the
position of Ganymede for Jupiter, and Rhea for Saturn.
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proximately l1 � rH, where l1 � (m1/	
s)
1/2 and rH �

a(m1/3MJ)
1/3 is the Hill radius of a satellitesimal of mass m1

� 	
sa
2(�d/3)2, where �d � 	
sa

2/MJ (Goldreich and
Ward, 1973). Using a surface density of solids of 
s � 5 �
103 g cm�2 for the inner disk of radius �15RJ, we obtain m1

� 1.6 � 1017 g, which corresponds to a satellitesimal radius
of �3 km and l1 � 32 km. The second characteristic mass
and radial scale, l2 � m2/(4	a
s), is the distance over which
Keplerian shear can force close encounters among satelli-
tesimals l2 � rH. This gives m2 � 8	
sa

2(�d/3)1/2

(Hourigan and Ward, 1984). Using the same surface density
as before, we get m2 � 7.6 � 1024 g, which corresponds to
an embryo radius of �1100 km and l2 � 1.2 � 104 km.

Assuming satellite formation is controlled by binary ac-
cretion of satellitesimals, we can write the time scale for
accretion as (Safronov, 1969; Lissauer and Stewart, 1993;
Ward, 1993)

�acc �
�srs

�s�
Fg

�1, (8)

where Fg is the gravitational focusing factor. In the case of
planetary accretion this focusing factor can be quite large
during runaway growth. For satellites, however, the Hill
radius rII is never much larger than the physical radius rs.

An upper limit to the enhancement factor can be obtained
(e.g., Weidenschilling, 1974): Fg � (rH /rs)

3/2 � O(10) for
Ganymede. Then we can use Eq. (8) to obtain

�acc � 4.8� �s

1 g cm�3�� rs

100 km��104 g cm�2

�s
�

� � a

20RJ
� 3/ 2

Fg
�1 years. (9)

Given a surface density of solids of 
s � 103 g cm�2, this
formula predicts a time scale of formation of �100 years for
a Galilean-sized satellite. This, however, assumes that all
the solids in the disk are in the form of satellitesimals. Let
us assume for the sake of discussion that at some time early
on all the solids in the inner disk are in satellitesimals of
characteristic size �1 km. In that case, the time for drag to
completely clear the inner disk of solids (see Eq. (12) would
be a few years! Therefore, unless most of the mass resides
in large satellitesimals, it is unlikely that the binary accre-
tion time scale controls the process of satellite formation.
Instead, we form satellites first by the sweep-up of dust and
rubble, followed by the accretion of inwardly migrating
satellitesimals once a significant fraction of the solids in the
disk have aggregated to 100-m or larger objects.

Fig. 4. A plot of viscosity, diffusion time, and turbulence coefficient for Jupiter’s and Saturn’s inner disk using our temperature profiles (see Fig. 2). Low
viscosities correspond to weak turbulence and long evolution times. The bump present in the Jupiter curve but not the Saturn curves are due to the difference
in the temperature profiles in the transition region.
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In Fig. 5, we calculate the orbital decay time scales due
to gas drag and tidal torque of a proto-satellite at 15RJ (a)
and 50RJ (b) for a range of gas densities �g. Because the gas
is partly supported by gas pressure, its orbital velocity vgas

is slightly lowered with respect to the Keplerian circular
velocity vK. An object orbiting at Keplerian speed will
therefore experience head-wind, suffer drag, and drift to-
ward the primary. A measure of the difference between the
Keplerian velocity and the drag velocity is given by

� �
vK � vgas

vK
� �

r

2�gvK
2

�p

�r
� � c

vK
� 2

, (10)

where p is the gas pressure, r is the radius, and c is the speed
of sound. The time scale for orbital decay due to gas drag is
given by

�gas �
4�srpvK

3CD��v�2

2c

��
, (11)

where �s and rp are the satellitesimal density and radius, CD

� 0.44 is the Stokes flow regime drag coefficient for high
Reynolds number, � is the orbital frequency, 
 is the gas

surface density, and �v � �vK. The stopping time ts can be
written in terms of the time scale for radial migration ts �
2�v�gas/vK (Weidenschilling, 1988). We can write Eq. (11)
in the form

�gas � 22 � �s

1 g cm�3� � rp

1 km� �130 K

T � 3/ 2

� �105 g cm�2

� � years. (12)

The torque time scales are calculated using the formulation
of Ward (1997). However, ignoring some technicalities for
now, the tidal torque exerted on the disk in the vicinity of an
mth order Lindblad resonance (Goldreich and Tremaine,
1978, 1979) is given by

Tm � �	m
�m
2 �r

dD

dr �
�1

, (13)

where �m is the forcing function of the satellite, and D is a
function of the difference in local epicyclic frequency of the
disk and the Doppler-shifted forcing frequency. An estimate

Fig. 5. (a) Orbital decay times of satellitesimals of various sizes due to gas drag and gas tidal torque at 15RJ. Unless otherwise indicated the density is �s � 1.5 g
cm�3. The gas surface density for our models is indicated in the plot. The decay times of smaller objects are dominated by gas drag, while larger objects are controlled
by gas tidal torque, with the transition occuring between 500 and 1000 km. (b) Orbital decay times of satellitesimals of various sizes due to gas drag and gas tidal
torque at 50RJ. Unless otherwise indicated the density is �s � 1.5 g cm�3. The gas surface density for our models is indicated in the plot.

210 I. Mosqueira, P.R. Estrada / Icarus 163 (2003) 198–231



of the forcing function that works well in cases far from the
transition region is �m � (2m � 1)GMs/a, where Ms is the
satellite mass and a is its position, with m � a/H, the
resonance where most of the tidal torque is deposited
(Takeuchi et al., 1996), and rdD/dr � 3 (m � 1) �2. We can
write the orbital decay time scale due to the tidal torque m �
Tm in terms of our subnebula parameters

�torq � 3.2 � 104 �1 g cm�3

�s
� �100 km

rp
� 3

� � T

130 K�
3/ 2 �105 g cm�2


 � � a

RJ
� years. (14)

Using Eqs. (12) and (14), we can get a rough estimate of the
transition size rT of a satellitesimal where gas drag and gas
tidal torque in a smoothly varying disk are similar,

rT � 200 �1 g cm�3

�s
� 1/ 2 � T

130 K�
3/4 � a

RJ
� 1/4

km,

(15)

which yields a size of �550 km for a satellitesimal with
density �s � 1.5 g cm�3 at 15RJ (an exact calculation gives
a value closer to �650 km). For larger sizes, the gas tidal

torque dominates the satellite’s evolution. Since the esti-
mate given by Eq. (14) does not take into account that the
net tidal torque must be weighted by a measure of the tidal
torque asymmetry between inner and outer torques, this
expression overestimates the strength of the net tidal torque.
Actual torque values used to produce the figures are calcu-
lated by summing over inner and outer resonances out to a
value of m � a�/c.1 Such a tidal torque produces mostly
inwardly migrating satellites (Ward, 1997; see Paper II for
a discussion of the tidal torque).

Fig. 5 considers the evolution of satellites with rs � 500,
1000, and 2500 km as a result of gas drag and tidal torque
separately. In Fig. 5a, we show the orbital decay time scale
for an object located at 15RJ for a range of gas densities
appropriate to the inner disk (
 � 104–106 g cm�2). The
decay times due to gas drag are typically shorter than those
due to torque; however, for the larger objects, the tidal
torque begins to dominate their evolution. In the inner disk
the transition takes place for objects of size �1000 km.
Similarly in Fig. 5b, we show the orbital decay of an object

1 But note that the gas tidal torque migration rates may be overesti-
mated; see Paper II.

Fig. 5 (continued)
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starting at 50RJ where the gas density is much lower (
 �
10–1000 g cm�2). From this figure, it is clear that survival
of a satellite in a gaseous medium (where most of the mass
and angular momentum resides in the gas component) is an
issue for objects of all sizes.

We begin by assuming that satellitesimals are formed by
particle aggregation (Weidenschilling and Cuzzi, 1993).
Though a gravitational instability (Goldreich and Ward,
1973) probably did not take place (Weidenschilling, 1988;
Cuzzi et al., 1993), it is still possible that other instabilities
did (Goodman and Pindor, 2000). Once satellitesimals form
they quickly settle down to the subnebula midplane and
continue to grow by dust and rubble sweep-up or by accre-
tion of other satellitesimals. Assuming that most of the mass
is in particle sizes small enough to be entrained in the gas,
we can write the growth time scale due to dust and rubble
sweep-up as

�sweep �
4�srp

3�� p�vp
, (16)

where ��p is the average particle density. We can also write
this equation in the form

�sweep � 0.58 � �s

1 g cm�3� � rp

1 km�� a

RJ
�

� �130 K

T � 1/ 2 �105 g cm�2

� � �Hp

H � years,

(17)

where Hp is the particle scale-height, H is the subnebula
scale-height, and we have assumed a two-population parti-
cle size distribution where large particles move at essen-
tially Keplerian speeds while the small particles are en-
trained in the gas. We have also assumed that the dust
density is less than the gas density, and so the head-wind is
not lowered by the dust concentration. That is, we let �vp �
�v � �vK. Allowing for Hp � H, the sweep-up time scale
is smaller than the drag time scale for a � 38RJ; that far
from the planet our model is optically thin, isothermal, and
quiescent. As a result, in the outer disk we expect Hp � H
(see Sect. 5). In the inner disk we expect Hp � H during
most or all of the satellite accretion process. Quite gener-
ally, then, our weak turbulence model yields shorter
sweep-up times than drag times, thus favoring the formation
of satellites. In the inner disk (inside of 15RJ, T � 250 K),
where the temperature is inversely proportional to the radial
location, the ratio of the sweep-up time to the gas drag time
is independent of semi-major axis and particle size �sweep/
�gas � Hp/H � 1. This result makes it possible to form
satellites of any size � 1000 km (such that gas drag dom-
inates their inward migration) at any radial location in the
inner disk.

In the presence of turbulence, balance is established
between the rate of diffusion of dust due to turbulence and

the rate of settling due to gravity. The scale height of dust
is then given by

Hp � � �

Sc

CH

�2ts
� 1/ 2

, (18)

where the Schmidt number is approximately given by Sc �
1 � �ts, and CH � 1 is a constant (Dubrulle, 1993; Cuzzi
et al., 1993). We expect accretion to take place under weak
turbulence with � � 10�6–10�5, which corresponds to
turbulent viscosity � � 1010 cm2 s�1 (see Fig. 4). For 1-cm
particles we get Hp � 0.2H. Then the sweep-up time scale
for a 1000-km embryo becomes �sweep � 103(Hp/H) � 200
years. Notice also that dust of size 1 cm will diffuse a
distance d � (t�/Sc)1/2 � 0.1RJ in a time t � 2	a/�v due to
gas turbulence. Since this is much larger than �1000 km,
the embryo will not clear its lane.

This time scale is likely to overestimate the time it would
take to form such a satellite embryo for three reasons. First,
dust will coagulate and settle to the midplane, thus lowering
the sweep-up time. Second, the gas turbulence itself may die
down for optically thin disks. Third, an embryo will also
grow due to capture of inwardly migrating satellitesimals.
Thus, satellite embryos can be made sufficiently quickly to
survive inward migration due to gas drag.

As we noted before, for objects larger than 1000 km,
migration due to gas tidal torque becomes dominant over
migration due to gas drag. Since the orbital decay time due
to torque of an embryo-sized object is again about 103–104

years, one might be tempted to simply continue sweeping up
dust and rubble to form a full-sized satellite. However, so
far we have assumed a large reservoir of dust and rubble
such that the surface density to be swept did not change as
the embryo grew. Clearly, as the surface density of dust and
rubble decreases so will the efficiency of this process. In any
event, dust coagulation and sweep-up and decay of gas
turbulence make it likely that embryos grew to satellite size
by accretion of satellitesimals.

We now define the feeding zone of a satellite embryo.
During closest approach, a satellite embryo will pump the
eccentricity of a previously circular satellitesimal by the
amount e � 2.24(ms/MJ)(a/sl)

2 (Julian and Toomre, 1966),
where ms is the mass of the embryo and sl is the separation
between the two objects. Crossing orbits will subsequently
result if sl � ae. Using this condition we obtain sl �
a(2.24ms/MJ)

1/3 for the size of the embryo’s feeding zone
(i.e., we take the feeding zone to be �2rH; this is slightly
more conservative than the value for the feeding zone
2�3rH one obtains using Jacobi’s constant and asking that
the separation between the two bodies be such that they
never experience a close approach (e.g., Lissauer, 1995).
Given that we are in a regime of significant impact proba-
bility (see next paragraph), one can define an embryo size
such that most satellitesimals dragging into its feeding zone
will be accreted. Suppose we take a satellitesimal of mass
m1, which corresponds to a radius �3 km. Such a satelli-
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tesimal has a very fast evolution timescale of �8 years. We
calculate the drag distance ld � (vd2	a/3�)1/2 (with vd �
a/�gas) such that 2ld is the distance a satellitesimal will drag
after one synodic period of two objects located at �15RJ a
distance ld from each other. Then using the condition sl � ld
we calculate an embryo mass md � 2.2 � 1025 g, which
corresponds to an object size �1500 km and a feeding size
of sl � 32000 km. The time it took for the satellitesimal to
cross this feeding zone (assuming that satellitesimal growth
can be ignored; i.e., the embryo has cleared its feeding zone)
was �0.22 years (the synodic time of two objects separated
by �32000 km at 15RJ). If we increase the concentration of
solids by a factor of 4 then the embryo size becomes 760 km
(the smaller embryo size results from the longer satellitesi-
mal orbital decay times in a disk with four times less gas).
Thus, once an embryo has reached a size �1000 km its
growth rate is controlled by the inward drift time of the
characteristic size of the satellitesimals it accretes. If it
mostly accretes kilometer-sized satellitesimals, the time be-
tween the embryo stage to full satellite is tens of years. On
the other end, if most of its mass comes from the accretion
of other embryos then the upper limit on the satellite accre-
tion time scale is 104 years.

There are two mechanisms that limit the efficiency of
drift augmented accretion. First, resonant capture may pre-
vent satellitesimals from reaching the embryo. This, how-
ever, may not be an issue for the inner disk (or for the outer
disk, though for a different reason; see Sect. 5). The satellite
embryo may not be massive enough to prevent the orbital
decay of kilometer-sized objects given the gas surface den-
sities of the inner disk (see Sect. 6.2 where we discuss the
resonant capture of Hyperion by proto-Titan and the ab-
sence of a corresponding object for Ganymede). Second, the
drifting satellitesimal may “horseshoe” around the embryo
and avoid being captured by it. Kary et al. (1993) give
impact probabilities for various mass ratios of the secondary
to the primary as a function of the secondary’s physical
radius divided by its Hill radius. For a 1000-km embryo
with density �s � 1.5 g cm�3 this ratio is rs /rH � 0.1. As the
embryo grows to satellite size this ratio will decrease
slightly (due to the slight increase in its density). On the
other hand, its feeding zone will increase, and it will get
more chances to capture any given satellitesimal. Hence, we
expect that the capture efficiency will improve slightly as
the embryo grows (though for sufficiently large embryo
masses, such that the gas flow around the secondary is
changed significantly or a gap is opened, the efficiency may
again decrease). Given the criterion used to calculate the
embryo size, we are in the gas regime of significant impact
probability. Then from Kary et al. (1993, their Fig. 9) we
see that the impact probability for the case such that rs /rH �
0.1 is �0.6 (in the limit that gas drag effectively damps
eccentricities and inclinations of the feeder population; note
that md/MJ � 10�5). This impact probability is high enough
that a minimum subnebula model may apply to the accretion
of satellites (in contrast, giant planet cores have much

smaller ratios of the physical size to their Hill radius and are
therefore unable to efficiently capture inwardly drifting
planetesimals). This is a significant result. It says that
�1000-km satellite embryos are effective barriers and will
capture most inwardly migrating satellitesimals, thus limit-
ing the amount of material that is allowed to spiral into the
planet or inner embryos.

In order to obtain an embryo size that becomes an effec-
tive barrier for inwardly drifting satellitesimals a typical
satellitesimal mass m1 was used. We now attempt to provide
further justification for this choice. As we mentioned before,
one expects the dust and rubble scale-height eventually to
decrease due to the effects of coagulation and turbulence
decay. We consider a case such that the coagulation of dust
produces particles that decouple from the gas in a time scale
shorter than 103 years, starting at a time when the disk
cooled enough for water-ice condensation to take place in
the outer region of the inner disk. First, we find the char-
acteristic particle size that will decouple from the gas. Given
our nebula parameters and using the condition �ts � 1, we
obtain a particle size �50 m in the region between 15 and
20 RJ. This particle settles to the midplane and drifts in due
to gas drag. As it does, it grows by sweep-up of smaller
particles. Assuming a self-similar power law distribution as
in Weidenschilling (1997), we use particles of size �10 m
as the feeder population where most of the mass resides. We
calculate the scale-height for these particles under strongly
turbulent conditions (� � 10�4–10�3) using Eq. (18) and
obtain Hp � 0.04H (head-wind decreases for Hp � 0.01H
such that the particle layer density ��p � �g). For weak
turbulence (� � 10�6–10�5) the scale-height for the same
feeder particle would be about an order of magnitude
smaller.

We can now calculate the time it takes for a 50-m particle
at 20RJ to evolve to 15RJ and the size it will grow to by the
time it gets there. The size of the satellitesimal is given by
solving

drp

dt
�

�sc

8�s�a
�

g1�a, t�

a
, (19)

where � � Hp/H, and the initial size of the satellitesimals is
taken to be the size of the object such that �ts � 1. The drift
velocity of this satellitesimal is

vd �
da

dt
� �

3CD�c3

8�sGMP

a

rp
�

g2�a, t�

rp
. (20)

We can decouple these equations by letting rp � g2/(da/dt)
and plugging this equation into Eq. (19). For the inner disk,
the temperature varies like 1/r (which implies g1, g2 �
a�3/2) so that assuming solar mixtures the position of the
satellitesimal as a function of time is given by

d2a

dt2 �
1

a � a2

75CD�H2 �
3

2� �da

dt �
2

�
1

a
� �da

dt �
2

.

(21)
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Assuming that � is constant then � is constant and we can
solve this equation exactly to give the particle velocity as a
function of time

v�t� � v0 �1 � �� � 1�
	v0	
a0

t���/���1�

, (22)

where v0 is the initial velocity of a satellitesimal of initial
size rp0. We can now integrate this equation for our sub-
nebula model to give an equation for time as a function of
position

tG �
a0

	v0	�� � 1� ��a0

a �
��1

� 1� (23)

and finally the growth of the satellitesimal as a function of
time

rp�t� � rp0 �1 � �� � 1�
	v0	
a0

t� ���3/ 2�/���1�

. (24)

We find that for the case of strong turbulence a 50-m
particle will take tG � 0.2 years to drift between 20 and
15RJ and it will grow to a size of �1 km, which may be a
bit small to be efficiently accreted by an embryo. However,
for the case of weak turbulence growth occurs much more
quickly. In this case, the same particle grows to a size of
�10 km in �0.2 years after �1RJ of inward migration.
Once satellitesimals have attained this size they are likely to
get picked up by embryos inside of their own orbit. While
this model is quite sensitive to the particle sizes chosen, it
does point out that particles that decouple from the gas and
drift in are subject to growth. This growth may be fast
enough that most of these particles will become satellitesi-
mals with sizes �1 km after only a few RJ of inward
migration, at which point they will slow down and eventu-
ally get captured by a satellite embryo inside their own
orbit. Although uncertain, this calculation is roughly con-
sistent with the gas-free calculation of characteristic satel-
litesimal sizes. This again points out that the minimum mass
model may indeed provide a fair estimate of the mass of
condensables initially present in the gas disk.

5. Slow formation of Callisto

Our model has Callisto forming from an extended, low
optical depth gas disk. We expect this gas disk to be largely
quiescent with very low gas viscosity. This means that the
dust and rubble layer will quickly settle down to the mid-
plane within a scale-height much smaller than the gas scale-
height. The size of the dust and rubble layer is determined
by shear turbulence close to the midplane (Cuzzi et al.,
1993).

First we calculate characteristic masses and lengths in
analogy to the gas free planetary accretion problem
(Hourigan and Ward, 1984) for the case in which the outer
disk contains �MCallisto of solids. At �50RJ with 
s � 53 g

cm�2 and �s � 1.5 g cm�3, we obtain m1 �2.9 � 1014 g,
which corresponds to a satellitesimal radius of �0.36 km
and l1 � 13 km. The embryo size is m2 �3.3 � 1023 g,
which corresponds to a embryo radius of �370 km and l2 �
1.4 � 104 km.

If we perform the same calculations further out at
�100RJ with 
s � 26 g cm�2, we obtain m1 � 2.3 � 1015

g, which corresponds to a satellitesimal radius of �0.72 km
and l1 � 53 km. The embryo size is m2 � 9.2 � 1023 g,
which corresponds to an embryo radius of �530 km and l2
� 3.9 � 104 km. These characteristic masses are about an
order of magnitude smaller than the masses we obtained at
15RJ for m2 and two orders of magnitude smaller for m1.

Given the small scale-height of the particle layer, simi-
lar-sized satellite embryos will form quickly. In this regime,
it may not be a bad assumption to consider growth time
scales for a case such that the solids in the disk are in the
form of satellitesimals. For the outer disk the Safronov
accretion time is given by

�acc � 105 � �s

1 g cm�3� � rs

100 km� �10 g cm�2

�s
�

� � a

150RJ
� 3/ 2

Fg
�1 years. (25)

Using a density of solids in the outer disk 
s � 10 g cm�2

and enhancement factor Fg � O(1), this formula predicts
that an embryo with �s � 1.5 g cm�3 and size �500 km
would be formed in �106 years at 150RJ. Several factors
can alter this growth time scale. Larger values of the en-
hancement factor can speed up the growth of large objects
in the outer disk. However, even though the Hill radius of an
embryo is much larger than its physical radius, the low
density of embryos leads to infrequent collisions and veloc-
ity dispersions comparable to the escape velocity of the
embryos (see Appendix A). As a result, the focusing factor
is unlikely to be much llarger than one. On the other hand,
embryo collisions do not necessarily lead to accretion.
Glancing collisions may not lead to sticking or may yield
embryo spins resulting in ejection of the colliding pair.
Furthermore, collisional disruption of embryos �100 km
can decrease the efficiency of the growth process (see Ap-
pendix B). Finally, the above estimate was obtained assum-
ing that all of Callisto was spread out to 150RJ. Placing a
fraction of Callisto’s mass in the outer disk would lead to
longer embryo growth times (but then Callisto may differ-
entiate unless a source of solids from the Roche-lobe is
considered). From this we conclude that embryos with sizes
�500 km may be formed in a time scale of �106 years at
�100RJ.

To find the characteristic sizes of outer disk embryos in
the presence of gas drag we turn to drift augmented accre-
tion. In the absence of global turbulence, we make the
assumption that local turbulence due to the gas-dust shear
layer close to the subnebula midplane will adjust itself to
maintain rough parity such that ��p � �g (Cuzzi et al., 1993).
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This approximate relation can be used to estimate Hp. Al-
ternatively, we can write

Hp � CT

�v
�2ts

, (26)

where CT � 0.01 is a constant (Cuzzi et al., 1993). The scale
height is Hp � 0.01H for particle of size �10 cm. As we did
in the case of Ganymede, we now calculate the sweep-up
time for a particle with radius rp. We find �sweep � 5.5(rp /1
km) years at 50RJ and �sweep � 22(rp /1 km) years at 100RJ.
These growth time scales are �50 times faster than the drift
times for any given object size (see Fig. 5b).

The above sweep-up times do assume that the dust and
rubble surface density stays constant. Once the sweep-up
growth slows down due to dust and rubble depletion, con-
tinued embryo growth will depend on the drift augmented
accretion of satellitesimals. As we did for the inner disk, we
now ask what size embryo stands a significant chance of
capturing satellitesimals of characteristic size m1 drifting
into its feeding zone. We choose the criterion sl � ld as we
did before and find the characteristic quantities md � 2 �
1024 g, which corresponds to an embryo size of 690 km (for
�s � 1.5 g cm�3), and sl � 4.8 � 104 km at 50RJ. At 100RJ

we get md � 1.2 � 1024 g, corresponding to a radius of 580
km, and sl � 8 � 104 km. A wrinkle results from the small
scale-height and long drag times inherent in this problem. If
we calculate how long it took satellitesimal m1 to cross a
distance ld we find td � 3 years at 50RJ and td � 10 years
at 100RJ. These time scales are sufficiently long to allow
some satellitesimal growth during the time it takes to cross
the embryo’s feeding zone. Taking this effect into account
the corrected embryo sizes turn out to be slightly smaller
590 km at 50RJ and 540 km at 100RJ.

The first thing to notice is that the smaller embryo mass
now corresponds to the larger semi-major axis. This is
because the larger value for m1 at 100RJ led to longer time
scales to cross the feeding zone, thus requiring a smaller
embryo size to satisfy our capture condition. Even though
the smaller embryo size now occurs further out, the decrease
in size is not sufficient to compensate for the decrease in gas
surface density. The result is that inner embryos will drag in
first and drift augmented growth will stop (the small scale-
height means that all the dust and rubble will quickly be-
come depleted). Thus, in our model �500 km represents the
characteristic size that will form before drifting in to Cal-
listo’s radial location. This characteristic size decreases
significantly if one considers disks of higher solid concen-
tration (higher solid concentration disks may be desirable
for several reasons; see also Paper II). For instance, if we
keep the surface density of solids constant but decrease the
gas density by a factor of 4 we obtain md � 1.4 � 1023 g,
which corresponds to a size of �280 km at 100RJ (taking
into account satellitesimal growth).

As before, we need to address the issue of the capture
efficiency. For the outer disk, the gas density is too low and

the mass of the satellitesimals too high to avoid being
captured into resonances, if initially placed in low eccen-
tricity orbits. However, proto-Callisto may not have cap-
tured objects into resonance because the typical (for embryo
sizes in the range 100–500 km) embryo eccentricities near
Callisto’s orbital location are e � 0.02–0.07, where we
have assumed that the random velocities are on the same
order as their escape velocities (Appendix A). These eccen-
tricities are similar or larger than the critical eccentricity for
which capture probability sharply drops off: ecrit � � �
0.03 (Malhotra, 1993). Hence, for low gas surface densities
typical satellitesimal eccentricities may again lead to low
probability of resonance capture.

Having argued that resonant capture is unlikely to take
place, we ask what fraction of the population of objects that
drift into Callisto’s feeding zone will be accreted by it. In
the case of Callisto, the synodic time scale is much shorter
than the drift time across the feeding zone of the population
of feeders. In this weak gas regime, the accretion efficiency
is limited by the inclinations of the drifting satellitesimals.
Typical inclinations for such objects may be smaller than
their eccentricities (see Appendix A). In the neighborhood
of Callisto iH � ia/H � 0.06–0.26 for embryos in the range
100–500 km. Given that for Callisto rs /rH � 0.048, we can
use the simulations in Kary et al. (1993), their Fig. 12 to
estimate the accretion probability at �0.7. Hence Callisto
may capture most of the satellitesimals that drift into its
feeding zone (this argument also applies to proto-Callisto
nearly unchanged). It is interesting to compare the vertical
extent of the satellitesimals Hs to the feeding zone of Cal-
listo �2rH � 1.4RJ. From Appendix A, we see that equi-
librium sets a satellitesimal velocity dispersion u � vesc,
where vesc is the escape velocity for such a satellitesimal.
Then we can use Hs � u/� to get Hs � 0.3RJ for 100-km
satellitesimals at 30RJ, and Hs � 1.3RJ for 500-km satelli-
tesimals at 30RJ (for comparison H � 4RJ at 30RJ).

We can now calculate the time it takes to accrete Callisto
by the time it takes gas drag to clear the outer disk of such
embryos. Such a calculation yields an accretion time scale
for Callisto of 105–106 years. This is calculated under the
conservative condition that the gas density in the outer disk
does not decrease over time. Since the actual concentration
of solids is likely to be somewhat larger than given by
cosmic mixtures (see Paper II), we give �106 years as the
clearing time for the outer disk. For instance, a concentra-
tion factor of 4 would lead to embryo sizes �300 km, which
would take 2 � 106 years to drift in from 150RJ to Callisto’s
radial location (this time was obtained by integrating Eq.
(20) with �s � 1.5 g cm�3). This time scale is significantly
shorter than the gas dissipation time scale (taken to be the
photoevaporation timescale �107 years (Shu et al., 1993)),
so no embryos would be stranded outside of Callisto.

The upshot is that Callisto’s accretion time scale differs
significantly from that of Ganymede because Callisto draws
materials from much further out (�150RJ, compared to
23RJ for Ganymede). To complete its accretion it must
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contend with the drag times of embryos. Since the gas
density is much lower in the outer disk, the distances larger,
and the dynamical times longer, the resulting accretion time
scale for Callisto accretion will be much longer (�106

years) than it was for Ganymede (�103–104 years).
It is natural to ask how sensitive these calculations are to

the size of the disk. It turns out that the characteristic size of
the embryos does not change much with disk size. This is
because of the countering effects of the increase in Hill
radius with semi-major axis and the decrease in surface
density. A smaller disk size would yield similar embryo
sizes, which would take a slightly shorter time to evolve to
Callisto. A larger disk can also be considered, but in that
case one would need to explain why the irregular satellites
were not dragged into the planet.

6. Saturn’s regular satellite system

In order to apply our model to Saturn we first need to
constrain the nebula parameters for Saturn as we did for

Jupiter. First, we note that the ratio of the reconstituted
Galilean satellite masses to the saturnian satellite masses is
�3.7. On the other hand, the ratio of the atmospheric en-
velopes of Jupiter to Saturn is �3.7 for giant planet core
masses of �12 Earth masses, consistent with nominal val-
ues.

In Fig. 2, we plot two models. The first model simply
assumes the same mass ratio (�3.7) with respect to the
jovian satellite system applies to both the inner and the outer
disks. The second model puts just enough mass between 60
and 200RS to make Iapetus (since Iapetus is made of ice, the
minimum mass model requires a subnebula of �200MIapetus).

We get a disk size of �220RS by scaling the outer disk
of Jupiter (�150RJ) by the ratio of the Hill radii of Saturn
and Jupiter. It is encouraging to note that Phoebe is located
at 215RJ. This object has a retrograde orbit of high inclina-
tion and eccentricity, leaving little doubt that it was cap-
tured. Therefore, we adjust the size of Saturn’s outer disk
slightly to �200RS to fit in with the location of Phoebe. As
was the case with the irregular satellites of Jupiter, we use
gas drag to explain the absence of captured objects inside

Fig. 6. (a) Orbital decay times of satellitesimals of various sizes due to gas drag and gas tidal torque at 20RS. Unless otherwise indicated the density is �s

� 1.5 g cm�3. The gas surface density for our models is indicated in the plot. The decay times of smaller objects are dominated by gas drag, while larger
objects are controlled by gas tidal torque, with the transition occuring between 500 and 1000 km. (b) Orbital decay times of satellitesimals of various sizes
due to gas drag and gas tidal torque at 70RJ. Unless otherwise indicated the density is �s � 1.5 g cm�3. The gas surface density for our models is indicated
in the plot.
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the orbit of Phoebe (a couple of small irregulars are located
just inside of Phoebe).

To constrain the temperature of the saturnian subnebula,
we assume that the accretion of methane ice explains the
methane in Titan’s atmosphere (Lewis, 1972). That sets a
temperature of �100 K at 20RS. Inside this location the
subnebula is taken to be optically thick and the temperature
to vary inversely with radius. In Fig. 3, we have plotted the
subnebula temperature as a function of distance in units of
the planetary radius.

As we did before in the case of Jupiter, we calculate
characteristic masses based on the gas-free planetary accre-
tion model. In Saturn’s inner disk at �20RS with 
s � 900 g
cm�2 and �s � 1.5 g cm�3, we obtain m1 � 2.9 � 1016 g,
which corresponds to a satellitesimal radius of �1.7 km and
l1 � 30 km. The embryo size is m2 � 1.8 � 1024 g, which
corresponds to a embryo radius of �660 km and l2 � 1.2 �
104 km.

In Fig. 6a, we plot the orbital decay times at 20RS as a
function of the surface gas density for several particle sizes.
As one would expect, these evolution times are generally
longer than those we calculated for the case of Ganymede.
The reason is that the orbital period at Titan is longer than
the orbital period at Ganymede. If we add to this the fact

that the surface density of Saturn’s less massive and more
spread-out (due to Saturn’s larger Hill radius) disk is con-
siderably lower than that of Jupiter’s disk (see Fig. 2), we
find that the evolution times in Saturn’s disk are generally
about an order of magnitude longer than the corresponding
evolution times (for a similar-sized object) in Jupiter’s disk.
It is instructive to write the drag times at Saturn as

�gas � 13� �s

1 g cm�3�� rp

1 km� �90 K

T � 3/ 2

� �105 g cm�2

� � years. (27)

Now we turn to the process of satellite formation. As before,
first we build up embryos using a sweep-up of dust and
rubble. The time scale for this process at Saturn is

�sweep � 0.57� �s

1 g cm�3� � rp

1 km� � a

RS
� �90 K

T � 1/ 2

� �105 g cm�2

� � �Hp

H � years. (28)

We see that making a 1000-km embryo would take
�104Hp/H years at Titan’s location, or about 10 times

Fig. 6 (continued)
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longer than it took at Ganymede. Allowing Hp � H, the
sweep-up time scale is always shorter than the drag time
scale for a � 22RS. Beyond this distance our model has an
optically thin, quiescent disk with Hp � H. Therefore, in
general, �sweep � �gas. In the inner disk (inside of 20RS, T �
100 K), where the temperature is inversely proportional to
the radial location, the ratio of the sweep-up time to the gas
drag time is independent of semi-major axis and particle
size �sweep/�gas � Hp/H. Since the sweep-up times for Sat-
urn are about an order of magnitude longer than for Jupiter,
for Saturn there is an increased likelihood that bombard-
ment from outside the Roche-lobe disrupted embryo
growth. Furthermore, characteristic embryo sizes �1000
km are significantly smaller for Saturn’s disk. It seems
likely that more embryos were lost in the case of Saturn,
which might explain the absence of large satellites inside
Titan’s orbital radius where collisional events might have
been energetic enough to break up satellite embryos (Green-
berg et al., 1977). It must be mentioned, however, that
weaker turbulence in Saturn’s disk may reduce the value of
Hp/H and alter this conclusion.

Now we calculate the size of an embryo that will be
effective at capturing satellitesimals of mass m1 drifting
across its feeding zone. At Titan we find md � 3.5 � 1024,
which corresponds to �820 km (compared to �1500 km at
Ganymede) and a feeding zone of ld � 2.9 � 104 km. It took
an m1 satellitesimal 0.6 years (compared to 0.22 years at
Ganymede) to cross the embryo’s feeding zone. For Hp �
H, it will take 1.3 � 104 years to build an embryo of size
�820 km (compared with �2700 years at Ganymede to
form an embryo of size �1500 km). Decreasing the gas
density by a factor of 4 leads to an embryo size of �410 km
(compared to 760 km for the same concentration factor for
Ganymede). Such small embryos may be vulnerable to
break-up by hypervelocity impacts.

Given that the satellite formation time is the embryo
accretion time plus the drift accretion time of embryos, we
obtain a time of 104–105 years for Titan’s accretion (com-
pared with 103–104 years for Ganymede’s accretion).

6.1. Formation of Iapetus

We view Iapetus as an analog of Callisto in the sense that
it formed on a long timescale from the materials in the
optically thin outer disk. Aside from its size, there is one
way, however, in which Iapetus is quite different from
Callisto, namely, its low density �1.03  0.1 g cm�3

(Dermott and Thomas, 1994). It is likely that direct accre-
tion from materials in the solar nebula would have led to
larger density for this object. We speculate that the reason
for the low density of Iapetus is that for the low gas density
of Saturn’s envelope the source of the material in Saturn’s
outer disk came from the ablation of water and methane ice
of infalling planetesimals, because at the edge of the plan-
etary envelope refractories were lost as a result of dust
settling, or because of the preferential break-up of icy ob-

jects far from the planet. It is also possible that material was
derived from the ablation of planetesimals passing through
the circumplanetary disk after its formation. We note that
spectrally Iapetus is most like Hyperion (Owen et al., 2001),
which our model has forming in the transition region be-
tween the inner and the outer disks (see Sect. 6.2). It is also
worth noting that Phoebe’s visual spectral properties are
unlike those of Hyperion or Iapetus (e.g., Buratti et al.,
2002).

The time scale for formation of Iapetus varies signifi-
cantly depending on the specific model chosen for the sur-
face density in Saturn’s outer disk. For the sake of speci-
ficity, here we choose a model that yields enough
condensables for one Iapetus mass between 60 and 200RS

(see Fig. 2). This results in a minimum mass subnebula
model such that �200MIapetus is in the outer disk. We first
calculate the characteristic masses (for the dashed curve in
Fig. 2, Iapetus model). In Saturn’s outer disk at �70RS with

s � 1.3 g cm�2 and �s � 1 g cm�3 (which is the density
of Iapetus), we obtain m1 � 1.3 � 1011 g, which corre-
sponds to a satellitesimal radius of �0.03 km and l1 � 1.8
km. The embryo size is m2 � 3.7 � 1021 g, which corre-
sponds to a embryo radius of �96 km and l2 � 5.5 � 103

km.
At this location the size of an embryo that will capture a

significant fraction of the satellitesimals of mass m1 that
drift by is md � 1.6 � 1024 g, which corresponds to a radius
of �720 km and ld � 7.8 � 104 km. As was the case with
Callisto, however, the satellitesimal will grow due to rubble
and dust sweep-up as it crosses the embryo’s feeding zone
(assuming ��p � �g). Therefore, the above estimates need to
be corrected to take into account that the drift times increase
as the satellitesimal grows. Then we obtain md � 1.2 � 1024

g, which corresponds to a radius of �670 km and ld � 7.2
� 104 km. Assuming ��p � �g, it will take about 3.4 � 105

years to grow an embryo of that size by dust and rubble
sweep-up at that location. It is interesting to note that m2 �
md � MIapetus. A model with four times less gas density
leads to an embryo size of �350 km at Iapetus.

To complete the accretion of Iapetus we need to accu-
mulate several embryos. Since the time scale for drift of a
500-km embryo at Iapetus’ location is 106–107 years (see
Fig. 6b), we take this value to be the formation time scale
for Iapetus.

6.2. Formation of Hyperion

The origin of Hyperion in the 4:3 mean-motion reso-
nance with Titan presents a significant challenge. A tidal
origin of resonance capture as may apply to Galilean satel-
lites (Malhotra and Dermott, 1990) seems unlikely to apply
to the case of Titan and Hyperion. Given Titan’s size and
distance from Saturn, significant expansion of its orbit
would require Saturn’s dissipation parameter Q to be much
lower than the lower limit set by the proximity of Mimas.
Lee and Peale (2000) concluded that Hyperion could have
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formed with its present orbital properties by the accretion of
satellitesimals and subsequent capture into the 4:3 reso-
nance provided that (a) there was a steep gradient (� r�3) of
disk and particles densities, (b) Titan grew to its present size
and eccentricity on a timescale of 104–105 years, and (c) no
particles were added to the outside of the disk. Given that
our model puts Hyperion in the transition region of the
gaseous disk, where one would naturally expect steep den-
sity gradients (i.e., the steep density gradient would result
from the edge of the inner disk, not from global disk prop-
erties), we find that Lee and Peale’s model requirements
agree very well with our satellite formation scenario. We
note that these authors found gas drag to be necessary in
order to induce satellitesimal orbital decay and capture into
resonance.

It might appear that condition (c) is inconsistent with our
model but we argue otherwise. Particles from the outer, low
density disk would start arriving well after Hyperion’s ac-
cretion was already complete and would be composed of a
sparse population of rather sizeable objects (tens to hun-
dreds of kilometers) with significant eccentricities and in-
clinations (thus reducing the probability of resonant cap-
ture).

We now check to see whether proto-Titan may capture
satellitesimals into resonance in the gas regime correspond-
ing to its accretion. The threshold mass such that proto-
Titan can halt the inward migration of a satellitesimal in the
vicinity of a j � 1: j resonance is given by (Malhotra, 1993)

�TH � �MS

MP
�

TH

�
2

Cad

a

j� j � 1�
��vK�gas�

�1, (29)

where MS is the mass of the satellite, MP is the mass of the
planet, and Cad � C ad� /(1 � �/e*) � 3.3 is a numerical
constant. As in Malhotra (1993), we make the assumption
that in the strongly damped regime the quantity (1 � �/e*)
is roughly constant with forced eccentricity e* � �. In terms
of our model parameters, the threshold mass can be written
as

�TH 

2.9 � 10�3

j� j � 1� �1 g cm�3

�s
� � a

RS
� 1/ 2 � T

90 K�
1/ 2

� �1 km

rp
� � �

105 g cm�2� , (30)

which yields �TH 
 3.5 � 10�4 for a 1-km object for the
4:3 resonance with Titan located at Hyperion (24.5RS),
which is near the inner edge of the transition region (�Titan

� 2.4 � 10�4). It is possible that Titan migrated inward
over its history. This would place the 4:3 resonance in
regions of lower gas density, thus permitting even lower
threshold masses. Allowing for a factor of 3–4 less gas also
makes it easier for proto-Titan to capture satellitesimals into
resonance.

For Jupiter we can write

�TH 

2.3 � 10�3

j� j � 1� �1 g cm�3

�s
� � a

RJ
� 1/ 2 � T

130 K�
1/ 2

� �1 km

rp
� � �

105 g cm�2� , (31)

which yields �TH 
 1.6 � 10�3 for a 1-km object for the
4:3 resonance with Ganymede located at 18RJ (�Ganymede �
7.8 � 10�5). This may seem to indicate that Ganymede did
not capture a satellite in resonance because it was not
massive enough to stop the inward drag of satellitesimals
outside its orbit; however, there is also the possibility of
capturing a larger satellitesimal into resonance. Lee and
Peale (2000) argue that accretion does not generally proceed
within resonances because satellitesimal interactions may
scatter captured satellitesimals out of the resonance. In their
model Hyperion forms outside of resonance and then drifts
and gets captured into resonance. Given Jupiter’s nebula
parameters, a full-sized Ganymede (�Ganymede) cannot cap-
ture objects smaller than �100 km, while the corresponding
size for a full-sized Titan (�Titan) in Saturn’s disk is �5 km.
Hence, it is still possible that Ganymede did cap ture such
objects, which were subsequently lost due to collisions or
unstable orbits. It is also possible that other effects pre-
vented proto-Ganymede from capturing satellite embryos
by gas drag (Hahn et al., 1995).

6.3. Formation of satellites inside Titan

The first thing to note about the satellites inside Titan is
that by mass they constitute only �3% of the total mass of
the satellite system. The second thing is that they have low
densities (Tethys, Enceladus, and Mimas have densities
consistent with almost all ice, while Rhea is mostly ice (see
Table 1) with the exception of Dione (�s � 1.5 g cm�3). The
higher density for Dione may reflect a rockier composition
or some endogenic process (as evidenced by the observed
resurfacing on this satellite but not Rhea) such as cryovol-
canism that can close “pores” and lead to larger bulk den-
sity. Other factors, such as under-dense ice and the effects
of impacts, may mar a straightforward interpretation of
satellite densities based on composition alone. Nevertheless,
it is likely that as a group these satellites are mostly made of
ice. It is also important to note that there is a large gap
between the outermost satellite in this group (Rhea at 8.7RS)
and Titan (at 20RS). Last, we note that all large saturnian
satellites (with the exception of Iapetus) appear to be sorted
according to size, with the smaller satellites further in. We
consider this sequence to be significant. We will return to
this issue in Paper II.

We expect that these satellites accreted in the presence of
significantly less gas than did Titan (
 � 104 g cm�2; see
Paper II) about 105 years after the end of Saturn’s accretion,
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once the planet cooled enough for water-ice condensation
at the orbit of Rhea to take place. Despite their small size,
given their drag times, we estimate it took 104–105 years to
accrete these objects.

7. Uranian satellite system

As we did in the case of Saturn, we begin our discussion
of the satellite system of Uranus by comparing the ratio of
masses of the atmospheric envelopes to the ratio of masses
of the satellite systems. Assuming Saturn to have a �15
Earth mass core and Uranus a smaller �10 Earth mass core,
the mass ratio of the envelopes for the two planets is �18.
While substantially uncertain, this value compares favor-
ably with the mass ratio of the satellite systems of the two
planets �15.

All the regular satellites of Uranus are all well inside
Uranus’ centrifugal radius located at �57RU. The irregular
satellites Caliban and Stephano are found at 280 and 309RU,
or approximately RH/10. Inside the centrifugal radius, the
main satellites of Uranus are Oberon (at 22RU), Titania (at
17RU), Umbriel (at 10RU), Ariel (at 7RU), and Miranda (at
4.9RU). As before, it is more meaningful here to establish
correspondences between satellites not in terms of planetary
radii but in terms of the Hill radius of the planet (see Fig. 1).
Scaled by the Hill radius of the primary, the location of
Oberon corresponds closely to the location of Rhea in Sat-
urn’s satellite system. Moreover, the size of Oberon (760
km) is quite similar to the size of Rhea (764 km). Further-
more, there is evidence in the uranian system of sorting
according to size as there is in the saturnian system. The
main difference between the two families of objects is that
Saturn’s inner satellites (satellites inside of Titan) are con-
siderably less dense (presumably icier) than Uranus’ regular
satellites. In fact, of the uranian satellites, only Miranda has
a density (1.2 g cm�3) consistent with an object made
mostly of ice. It is indeed remarkable that here, too, there is
evidence of endogenic activity.

It has been suggested that the satellites of Uranus may
have been the by-product of the impact event that led to its
present obliquity (e.g., Pollack et al., 1991). However, such
a process is unlikely to lead to a sufficiently extended
particle disk to produce satellites as far as 22RU (Canup and
Ward, 2000). Furthermore, the evidence for possible sys-
tematic increases in density and size (see Fig. 1) for these
satellites is hard to reconcile with an isolated impact origin.
Instead, we choose to follow the same general outline to
form the satellites of Uranus as we applied to the formation
of the regular satellites of Saturn and Jupiter.

A minimum mass model in which the gas disk extends
out to the centrifugal radius of the planet at 57RU would set
the average gas density at 1.4 � 104 g cm�2, which corre-
sponds to a pressure of �1.5 � 10�3 bar at 22RU. This is
close to the surface gas density at which the disk becomes

optically thin (given gaseous opacity). The temperature gra-
dient in the uranian subnebula may not have been suffi-
ciently strong to drive turbulence. So we would expect a
cool, largely quiescent disk with gas surface density of
�104 g cm�2 as the environment in which the uranian
satellites accreted. This is similar to the environment we
hypothesize led to the inner Saturnian moons (see also
Paper II).

We interpret the gap between the location of the centrif-
ugal radius and the outermost satellite as suggestive of
significant satellite migration. These objects may have taken
�105 years to accrete.

8. Starved disk model

A scenario in which the giant planet satellites accrete
from a disk produced by the direct infall of gas and solids
from heliocentric orbit, leading to long satellite assembly
times �106 years despite the short disk accumulation times
�102 years (Stevenson, personal communication), has nu-
merous issues to overcome. Here we mention some of the
outstanding ones and leave development of such a model (if
viable) for later work.

First is the issue of satellite survival. Recent numerical
simulations show that opening a gap may not terminate
accretion of gas onto the planet (Lubow et al., 1999). Thus,
a starved disk may require strong turbulence to remove this
gas. But strong gas turbulence keeps the particle layer
puffed-up, with Hp � H. For such a model the sweep-up
growth times may be comparable to the drag times, increas-
ing the likelihood that satellite embryos will be lost to the
planet. Also, coagulation would be slowed down by the low
particle volume density and hindered by the large relative
velocities between particles of sufficient size (which would
result in shattering instead of sticking). Hence, satellitesi-
mals may have difficulty growing large enough to survive
the effects of gas drag, and a significant fraction of the solid
content of the disk may be lost (perhaps even before making
it to the decoupling size). If and when satellites do form,
they may be prevented from opening a gap (which we use in
Paper II to allow for long-term survival) by the gas turbu-
lence. As a result, even large objects would migrate due to
the tidal torque of the disk. Even if objects grow large
enough to open a gap in the disk, migration would continue
in a time scale controlled by the viscous evolution of the
strongly turbulent gas disk.

The alternative is a gas-free accretion model. However,
such a model is difficult to justify. First, gas may flow
through the gap. Second, turbulence may not be effective at
removing the gas disk. Third, disk truncation may prevent
gas from accreting onto the primary. Finally, as we discuss
in this paper and in Paper II, there are numerous issues that
argue in favor of the presence of gas during satellite accre-
tion.
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There is also the issue of the source of the solids. Flow
of gas through the gap may not imply infall of solids, since
the dust content of the gas at late times is expected to be low
(Mizuno et al., 1978; Weidenschilling, 1997). One may
argue in favor of mechanisms that delay dust coagulation,
but these same mechanisms may complicate planetesimal
and satellitesimal formation, perhaps resulting in the loss of
solids to the planet, or even prevent the planet itself from
forming. Also, the high specific angular momentum gas
flowing into the planet after gap-opening would orbit well
outside the centrifugal radius (see Sect. 3), whereas most of
the mass in the satellite system is inside this radius. Fur-
thermore, strong turbulence would increase the size of the
disk until it is cut-off by resonant or nonresonant tidal
effects possibly at �RH/2.

On the other hand, Mosqueira et al. (2000) considered
the feeding of large planetesimals, which would not be
coupled to the gas and whose dynamics have to be followed
independently. However, such a model may need to be
fine-tuned if it is to lead to a sufficient starved disk capture
rate instead of resulting in capture by the planet or removal
by gravitational scattering (as needed to produce the Oort
cloud). Since planetesimals in the outer solar system scatter
in a time scale of a million years (Gladman and Duncan,
1990), it must be shown that there would be enough plan-
etesimals arriving a million years after the formation of
Jupiter to make the Galilean satellites. While the delivery of
material from the solar nebula to Jupiter probably lasted
several million years (Wuchterl et al., 2000), the amount of
material arriving late is still a small fraction of the total.
Late arriving material has been proposed to explain the
large core of Neptune (Lissauer et al., 1995), but the issue
that concerns us here is the time scale over which the region
outside Neptune was cleared of planetesimals (recent work
indicates that planetesimals outside proto-Neptune’s feed-
ing zone may be prevented from colliding with it (Ida et al.,
2000)).

In addition, lengthening the satellite formation time ex-
poses the proto-satellites to prolonged bombardment from
the Roche-lobe. This is especially a problem for Jupiter’s
satellite system, where the velocity of the incoming projec-
tiles may be large enough to shatter objects as large as
�1000 km (Greenberg et al., 1977). In contrast, our model
has satellite embryos forming quickly, so that their exposure
to potentially disruptive bombardment is limited.

The angular momentum of the satellite system also pre-
sents a serious challenge to a starved disk model, particu-
larly one that is fed by planetesimals with small net angular
momentum with respect to the protoplanet. Even if the
planetesimals originate from the outer regions of the solar
nebula, one might still expect preferential capture of retro-
grade objects. In our model, the angular momentum of
Callisto and Iapetus may ultimately be the result of the tide
of the Sun on gas flowing into the giant planet from the

Roche-lobe. Since the starved disk is sporadically fed by
large planetesimals uncoupled to the gas, the Sun’s torque
may not be available to this model.

Even if all the above issues are resolved, there is no
guarantee that one would end up with satellite systems like
those of Jupiter and Saturn. Other issues such a model has
difficulties coping with include the locations of the irregu-
lars, the low densities of saturnian satellites other than Titan
(especially that of Iapetus), the different compositions and
spectra of regular and irregular satellites (see Section 9 for
a discussion), the concentration of mass in Titan, the capture
of Hyperion into a 4:3 mean-motion resonance with Titan,
the endogenic activity of the small moons of Saturn, the
mass to distance relationship in the uranian and inner sat-
urnian satellites (see Paper II), the location of the outermost
satellite of each planet, the location of the largest satellite of
each planet, the relative scarcity of regular satellites far
from the planet, the formation of a fully differentiated
Ganymede but only a partially differentiated Callisto, and
the sizes, positions, and densities of the Galilean satellites.
Using such a model one may argue that the compositional
gradation among the Galilean satellites is a consequence of
impact (Stevenson et al., 1986). That is, impacts close to the
planet from late arriving high-velocity planetesimals might
preferentially re-accrete rock. However, this argument is
hard to apply to Saturn, where the satellite density increases
fairly systematically out to Titan and then decreases again
for Iapetus. Conversely, one might use collisions with a
differentiated satellite to produce icy satellites, but one
would then need to explain why this did not happen for
Jupiter.

To close this discussion, we point out that regardless of
the details of such a model, it is likely that it would predict
a partially differentiated state for Titan. Accretion onto
Titan would have occurred even slower and at a lower
temperature (both of the nebula and of the object) than
Callisto’s accretion. Furthermore, a starved disk model may
preclude the presence of significant amounts of ammonia in
Titan or any other satellite (Prinn and Fegley, 1981). There-
fore, one is led to expect a partially differentiated (Callisto-
like) Titan. Recent work (Mousis et al., 2002) offers an
alternative to the model of Prinn and Fegley (1981, 1989).
These authors suggest that both NH3 and CH4 (but not CO)
might have been derived directly from the solar nebula. If
so, ammonia would also be likely to be present in Callisto,
and one would again need to explain the putative difference
between Callisto and Titan in this regard. In any case, this
work relies on unknown values of the nebula turbulence as
well as the initial ratio of N2/NH3 in the protosolar nebula.
Other possible differences between large satellites include
the effects of planetary tides and satellite rheology. How-
ever, in each of these cases one is forced to fine-tune the
model to ensure that both Ganymede and Titan would dif-
ferentiate, but Callisto would end up partially differentiated.
One may argue that the possibility still exists that Callisto
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will turn out to be fully differentiated. In that case, the
starved disk model would lose its main motivation.

9. Discussion and conclusions

We have used a consistent model for the accretion of
regular satellites of Jupiter, Saturn, and Uranus. We do
exclude coorbitals, small regular satellites found close to the
giant planet, and the satellites of Neptune from consider-
ation. The coorbitals will require a separate treatment,
which we do not attempt here. Small satellites close to the
planet are likely to have undergone significant collisional or
tidal evolution after their formation, so they may not pro-
vide useful constraints on satellite formation models. Fi-
nally, we have excluded the satellites of Neptune due to the
likely capture of Triton from heliocentric orbit (Goldreich et
al., 1989; McKinnon, 1984); nevertheless, we expect that
originally Neptune’s satellite system may have been largely
analogous to that of Uranus. Hence, it may not be surprising
that Nereid (a regular satellite disturbed by Triton’s capture)
is spectrally like the satellites of Uranus and unlike Centaur
objects (Brown et al., 1998).

Though a variety of accretion scenarios arise out of our
model, we argue that this is not tantamount to special
pleading for each satellite; rather, the various possibilities
all derive from the parameter space available to the model.
In our view, the complexity of the model is justified by the
observations. Of course, any satellite formation model must
contend with several uncertain parameters, most notably the
turbulence parameter �, and ours is no exception. The aim
of this study is not so much to explore the available param-
eter space as to describe a consistent model with a number
of desirable features. Our model does rely on the validity of
a two-component subnebula. However, we argue that such a
model may be natural inasmuch as it can account for the
location of the largest satellites and the outermost regular
satellites of Jupiter, Saturn, and Uranus (see also Paper II),
the anomalously large angular momentum of Callisto, its
partially differentiated state, the capture of Hyperion into
resonance, the large separation between Titan and Iapetus,
the absence of large satellites inside of Titan, and the rela-
tive scarcity of regular satellites far from the planet. It is
certainly possible to increase the size of the inner disk or of
the transition region. Considering that Callisto is likely to
have migrated inward, there is room for an inner disk
significantly more extended than we have chosen in this
paper. One must keep in mind, however, that the composi-
tional gradient of the Galilean satellites argues in favor of a
model where most of the mass in the disk is close to the
planet.

We investigate a model for giant planet regular satellite
formation in which the satellites accrete in the presence of
a dense (optically thick given gaseous opacity) inner gas-
eous disk extending out to the planet’s centrifugal radius
and from an extended, low density (optically thin given

gaseous opacity) outer disk extending out to a fraction of the
planetary Hill radius. The accretion of the satellites takes
place at the tail end of the formation of the giant planet, at
a time of heavy Roche-lobe planetesimal bombardment;
however, the bulk of the materials in the satellites is derived
from condensables left behind by planetesimal break-up or
dissolution in the giant planet’s extended, collapsing enve-
lope, from which the circumplanetary gas disk formed in a
relatively short time. As an initial condition, we assume a
minimum mass cosmic mixture model to estimate the mass
of the disks of Jupiter and Saturn and consider weak sub-
nebula evolution after that; and in light of the high-Z en-
hancement of the giant planets, we also consider increased
solid concentrations by a factor of 3–4. Our minimum mass
model uses Io, Europa (reconstituted), and Ganymede to set
the mass for the inner disk of Jupiter, and Titan for the inner
disk of Saturn. For the outer disks of Jupiter and Saturn, we
use a minimum mass disk model given by �100MCallisto for
Jupiter and �200MIapetus for Saturn, containing enough
condensables to form Callisto and (icy) Iapetus, respec-
tively. This may be appropriate because satellites forming in
the outer disk may be prevented from migrating to the inner
disk (see Paper II). We take the similarity of the reconsti-
tuted satellite mass ratio between Jupiter and Saturn (�3.7)
and the ratio of the atmospheric envelopes of these two
planets as an indication that (a) the same general process
applied to both of their satellite systems, and (b) the amount
of solid material left in the disk is related to the amount of
gas in the planet’s envelope. Similarly, the atmospheric
envelope mass ratio between Saturn and Uranus (�18)
compares well with the ratio of the masses in the satellite
systems of these two planets (�15). This leads us to use a
minimum mass disk model extending out to Uranus’ cen-
trifugal radius (and not to the present location of Oberon,
given that the uranian satellites probably migrated inward)
to estimate the gas surface density present in the uranian
inner disk subnebula.

To determine the size of the outer disk, we rely on the
locations of the irregular satellites of the giant planets.
Connecting their location to the size of the disk allows us to
explain the lack of irregulars closer to the planet. With this
in mind, we expect that the outer disks of Jupiter and Saturn
extended out to �RH/5. It is possible that the disk extended
farther out and resonant (such as an m � 2 vertical reso-
nance; Lubow (1981)) or nonresonant tidal mechanisms
removed part of the outer disk.

These parameters (see also Sect. 3) can be used to com-
pute the angular momentum of the subnebula. In Table 3 we
present the angular momenta of the satellite systems of
Jupiter, Saturn, and Uranus. A similar table appeared in
Korycansky et al. (1991). It is important to note that the
ratio of the total angular momentum (augmented and recon-
stituted) in the satellite systems divided by the spin angular
momentum of the primary is fairly constant for all three
giant planets. Our model explains the large angular momen-
tum stored in Callisto (similar to that of Ganymede) by the
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angular momentum initially present in the outer disk of
Jupiter.2

At present, the best candidate mechanism to generate
turbulence and outward angular momentum transport is an
entropy gradient in the subnebula leading to a nonbarotropic
equation of state (Lovelace et al., 1999; Li et al., 2000;
Klahr and Bodenheimer, 2001). However, it is still unclear
how a global radial entropy gradient can drive turbulence; it
is possible that at least close to the planet 3-D effects in the
presence of both a vertical and a strong radial entropy
gradient will result in the generation of turbulence and
outward transport of angular momentum (though one might
expect inward angular momentum transport, e.g., Quataert
and Chiang, 2000). It must be kept in mind, however, that a
model that transports angular momentum by the generation
of large scale vortices may not be described by the � model
prescription (Klahr and Bodenheimer, 2001). One particular
issue with this mechanism is that the dissipation of vortices
might tend to surpress the vertical entropy gradient. In any
case, such a model may lead to turbulence that is a function
of position and time. Following giant planet accretion, the
subnebula turbulence is likely to subside (perhaps to �
values of 10�6–10�4), thus allowing the subnebula to cool
down and particle coagulation to take place, possibly in a
regime of efficient particle sticking.

To the extent that a hot subnebula with strong turbulence
hinders the growth of particles (due to the large relative
particle velocities and the depletion of frost-covered silicate

particles), the subnebula’s condensable mass fraction may
not have changed significantly as it cooled, as long as most
of the mass resided in the form of small particles strongly
coupled to the gas. This statement is not necessarily incon-
sistent with a concurrent drop in opacity, since sufficiently
small particles may still coagulate, whereas particle growth
may have trouble getting past a given size (Weidenschilling
and Cuzzi, 1993; Suttner and Yorke, 2001). It must be
stressed, however, that the problem of the dust opacity and
coagulation of particles in the subnebula remains to be
studied. After cooling, isothermal portions of the disk (out-
side Callisto and Titan) should be nearly quiescent, with low
gas viscosity and long orbital decay times. In this respect,
we interpret the cut-off in the distribution of irregular sat-
ellites of Jupiter and Saturn as suggestive of a fairly sharp
decrease in the outer disk gas density in the neighborhood of
RH/5. Such a density gradient is consistent with laminar gas
flow at that location. On the other end, because the inner
disk of the giant planets (except perhaps in the case of
Uranus) is nonisothermal both radially and vertically, weak
turbulence is expected there at least as long as the gas
remains optically thick (with 
 � 104 g cm�2). Such a
turbulence model may lead to a fairly flat surface density
profile.3

Given our subnebula parameters, we show that gas drag
dominates migration for particles �500–1000 km, and the
tidal torque of the gas disk is stronger for larger objects. In
the inner disk, dust and rubble are swept up fast enough to

2 Since there are no outer uranian satellites, we did not estimate the
angular momentum of the outer uranian disk. Nonetheless, it is possible
that Oberon received some condensables from the outer disk.

3 One may also consider a turbulence-free model in which satellite tidal
torques would provide the viscosity (Goodman and Rafikov, 2001). In
Paper II, we advance a related mechanism to clear the gas disk.

Table 3
Angular momenta

Jupiter Saturn Uranus
Mneb/(MP � Mcore)

a �0.03 �0.03 �0.03

Spin angular momentum, planetb JP (g cm2 S�1) 4.4 � 1045 7.4 � 1044 1.3 � 1043

Orbit angular momentum, satellites Jsats 4.5 � 1043 9.3 � 1042 1.4 � 1041

Augmented satellite totalc J*sats � 100 5.7 � 1045 9.5 � 1044 1.4 � 1043

Augmented system totalc JP � (J*sats � 100) 1.0 � 1046 1.7 � 1045 2.7 � 1043

Total nebula angular momentum Jneb 7.8 � 1045 9.5 � 1044 2.2 � 1043

inner disk 4.8 � 1045 9.0 � 1044 2.2 � 1043

outer disk 3.0 � 1045 5.5 � 1043 —
Specific angular momentum, planet JP /MP (cm2 s�1) 2.3 � 1015 1.3 � 1015 1.5 � 1015

J*sats/M*sats 1.1 � 1017 6.8 � 1016 1.5 � 1016

Jneb /Mneb 1.4 � 1017 6.8 � 1016 2.7 � 1016

(J*sats � 100)/JP 1.3 1.3 1.3
Jneb /JP 1.8 1.3 1.7

Ganymede Titan Titania
Jsat /JP 3.9 � 10�3 0.012 4.3 � 10�3

Callisto Iapetus Oberond

Jsat /JP 3.8 � 10�3 2.5 � 10�4 4.3 � 10�3

a Jupiter, Saturn core mass � 12MQ. Uranus core mass � 10MQ.
b Calculating using density moments from Hubbard and Marley (1989).
c Reconstituted for lost volatiles and augmented by gas.
d Note that Oberon is in the inner disk.
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form a 1000-km satellite embryo in �103 years for Jupiter
and �104 years for Saturn, as long as some settling of the
particle layer takes place. This time scale may be suffi-
ciently short for the embryo to survive the effects of gas
drag and planetesimal bombardment from the Roche-lobe.
Once the embryo reaches �1000 km in size it will capture
a significant fraction of the satellitesimals that migrate in-
ward into its feeding zone due to gas drag, making it likely
that a considerable fraction of the condensable mass in the
disk ends up in the satellite system instead of being lost to
the planet. Thus, roughly speaking, a minimum mass model
may in fact apply to the formation of satellites.

We expect that satellites stopped growing when either
the disk ran out of accretable materials or an outer embryo
choked off the growth of proto-satellites inside of its orbit.
The latter possibility (perhaps in combination with colli-
sional disruption close to the planet) may explain the se-
quence of sizes of the Galilean satellites and the observation
that the largest satellites of both Saturn and Jupiter occur
just inside the centrifugal radius: Outside this radius the gas
density decrease may lead to smaller satellites, while inside
this radius the growth of a satellite may be limited by its
outer neighbor (e.g., Ganymede may have prevented Europa
from growing to Io size). Although it is possible that for the
largest satellites partial vaporization of infalling satellitesi-
mals and subnebula gap-opening may have reduced the
mass accretion rate, it is unlikely that these processes were
able to terminate accretion altogether. Nevertheless, for the
largest satellites (Ganymede and Titan) gap-opening may
have lowered the accretion efficiency of inwardly drifting
satellitesimals (a greater proportion of such objects may
“horseshoe” past a large satellite surrounded by a gap,
though this remains to be shown). Hence, the similarity in
their masses may be connected with this process. If so, their
final masses may not be determined solely by the total
amount of mass present outside their orbit and inside the
orbit of its outer neighbor. Perhaps both factors come into
play.

Our model forms Ganymede in Jupiter’s inner disk in
103–104 years at a temperature of �250 K and Titan in
Saturn’s inner disk in 104–105 years at a temperature of
�100 K. The upper bound is computed by estimating the
size of the region from which a satellite draws materials and
then computing the time scale for embryos to drag that
distance and form the satellite. The lower bound is obtained
by assuming that once an embryo grows to a size such that
it can capture most of the satellitesimals that drift into its
feeding zone, its growth accelerates. Also, the upper end of
the range may apply inasmuch as we may have significantly
overestimated the surface gas density for the inner disk. In
the case of Titan and Ganymede, we suggest that this ac-
cretion took place fast enough that these satellites avoided
extended inward migration (see Paper II). Thus, the satellite
embryo which led to their formation may have originated
from the neighborhood of the centrifugal radius of each of
the two planets. If so, it may be appropriate to set the disk

temperature to 250 K at the present location of Ganymede
and to 100 K at the present location of Titan, as we have
done in this study (Jupiter’s and Saturn’s cooling times are
longer than the formation times for Ganymede and Titan,
respectively). In that case, our model would lead us to
expect that Ganymede captured most ice-rich satellitesimals
that drifted into its feeding zone from cool regions of the
disk. Furthermore, since the satellite tidal torques would
have cleared the gas between Io and Ganymede in a time-
scale much shorter than the planetary cooling time, Io and
Europa would have ended up nearly ice-free as observed.

In the outer disk, the low, constant temperature of the gas
(�130 K for Jupiter and �90 K for Saturn) leads us to
expect that it is characterized by weak turbulence driven
only by the vertically thin particle layer shear (Cuzzi et al.,
1993). Therefore, despite the longer dynamical times and
low solid surface densities, the time scale for the formation
of embryos by dust and rubble sweep-up and by drift aug-
mented accretion of satellitesimals is about 50 times faster
than the orbital decay time scales for such embryos. Con-
sequently, we expect embryos to form quickly until the disk
becomes depleted of dust and rubble. Continued growth of
similarly sized embryos takes place at the Safronov time
scale and leads to sizes of several hundred kilometers in a
time scale comparable to their drift times. Once these em-
bryos reach the position of proto-Callisto most of them will
be accreted by it. We calculate characteristic embryo sizes
by comparing the drift times of satellitesimals across twice
the embryo’s feeding zone to the synodic time of two
objects separated by half that distance. In our model Cal-
listo’s accretion time scale is set by the inward drift of
embryos 300–500 km (with the smaller embryo size the
result of the longer satellitesimal drift time of a model with
four times greater concentration of solids) from as far away
as �150RJ (compared with �23RJ for Ganymede). Simi-
larly, the timescale for the accretion of Iapetus is set by the
drift of embryos from as far as �200RS. We show that the
Safronov time scale to build embryos �500 km at distances
�100RJ is about 106 years. Also, the orbital decay time of
such an object from that distance is �106 years (though the
time scale depends on the concentration of solids in the
disk). Although for the outer disk our model leads to long
formation times for full-sized satellites, the embryos that led
to the satellite formed quickly, and the long formation time
scale is derived from the slow accretion of dispersed
embryos.

A formation time scale of �106 years for Callisto (and
106–107 years for Iapetus) may be slow enough to lead to a
partially differentiated state for Callisto (Iapetus is mostly
made of ice) consistent with the two-layer model advanced
by Anderson et al. (2001), which has a clean ice layer of
�300 km overlying a mixed ice and rock-metal interior. It
must be stressed that although this model leads to large
embryos hitting the proto-satellite, they do so at the escape
velocity of the proto-satellite (as supposed to the hyperve-
locity impacts that would result from Roche-Iobe objects).
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In this energy regime, crater diameters are �3rs , so that the
penetration depth of such objects is likely on the order of
their radius, with excavation depths being even smaller
(Melosh, 1989). Thus, a single collision may not lead to
runaway differentiation of the proto-satellite. Although im-
pacts with satellite embryos hundreds of kilometers in size
will bury heat, one expects that the top �200-km layer of
slush would redistribute the energy of accretion down to the
ice I/III transition in any case. Perhaps most important, the
surface of the satellite may be prevented from freezing and
trapping heat inside by the presence of a thick atmosphere.
If so, an accretion time of �106 years may be long enough
for the atmosphere to radiate away the energy of accretion,
while avoiding a runaway greenhouse that might also lead
to a fully differentiated state (Kuramoto and Matsui, 1994).
It is also possible that particulate matter coupled to high
specific angular momentum gas flowing through the gap
after giant planet gap-opening, planetesimal capture, or ab-
lation by the extended, long-lived gas disk lengthens the
time scale of formation of regular satellites (but one should
keep in mind that at late times most of the solids are likely
to be in the form of planetesimals (Weidenschilling, 1997)
and that Iapetus’ density may be too low to be formed by
material accreted directly from heliocentric orbit). Still,
more work needs to be done to check whether our model
can realistically lead to a partially differentiated Callisto.

Callisto could then be said to be the result of slowly
assembling hundreds to thousands of volatile rich, “cold”
embryos. This may account for the preferential retention of
ices more volatile than water in Callisto compared to
Ganymede. This also means that (possibly unlike
Ganymede and Titan) both Callisto and Iapetus may have
migrated large distances (see Paper II for an explanation of
their locations). Lewis (1974) hypothesized that lower for-
mation temperatures for Callisto than for Ganymede would
likely have led to the accretion of solid ammonia hydrate in
Callisto. Our model indeed has Callisto forming cold; how-
ever, it does so in a region of the disk disconnected from the
inner, optically thick region where the temperature and
density might have led to the production of reduced ices
such as methane and ammonia (Prinn and Fegley, 1981).
Therefore, we expect Callisto bulk composition to adhere
closely to solar mixtures (though some chemistry could
have taken place in the giant planet envelope), which may
contain mostly oxidized ices. However, methane is known
to be present in many solar system objects, and the presence
of ammonia has not been ruled out (Mousis et al., 2002). It
is also worth pointing out that whereas Callisto and Iapetus
are likely to have accreted homogeneously (their accretion
time is longer than the disk cooling time at its location), the
same may not be true for Ganymede or Titan. It must be
stressed that despite the different predictions that our model
makes for satellites forming in the inner and outer disks, the
basic processes that led to their formation are essentially the
same.

Given our model, Titan’s methane atmosphere may still

be the result of the condensation of methane clathrate hy-
drate (Lewis, 1974). Another interesting if somewhat spec-
ulative possibility of our model is that Titan formed its
atmosphere as a result of a collision with a volatile-rich,
Iapetus-sized object. Given its location, it is unlikely that
Iapetus collected all the material in Saturn’s outer disk.
Therefore, large embryos could have formed outside the
centrifugal radius which ultimately ended up colliding with
Titan. Iapetus itself may owe its dark, reddish material to
the condensation of methane in the subnebula (Squyres and
Sagan, 1983). Also, since our model has an optically thick
inner disk, one might expect some production and outward
transport of ammonia, making it it possible that ammonia is
responsible for ancient volcanic plains in Tethys and Dione.
However, the outer regions of the disk might not be af-
fected. The lack of any resurfacing in Callisto and its pres-
ence in the much smaller Dione seems to indicate that
Callisto lacks ammonia but Dione has it. But it must be
pointed out that Rhea appears inert. It might be that Rhea
received less ammonia than Dione by virtue of its location.
On the other hand, it is also possible that ammonia fails to
resurface larger satellites (see McKinnon, 1999, and refer-
ences therein).

There is also the issue of the D/H ratio for the satellites.
While more work has to be done in this respect, to the extent
that neither Callisto nor Iapetus were coupled to a thick
subnebula one might expect an enhanced D/H ratio for these
satellites with respect to Ganymede and Titan. However,
given the location of Iapetus, Titan probably received a
substantial amount of material from the outer disk in the late
stages of its accretion. Hence, it may not be surprising that
the measured CH3D/CH4 ratio in Titan’s atmosphere (Cous-
tenis, 1989) is comparable but lower than that of comets
(Bockelee-Morvan et al., 1998), though later measurements
point to even lower D/H ratios for Titan’s atmosphere (Or-
ton, 1992). Unlike the scenario envisioned by Prinn and
Fegley (1981), which relies on the conditions prevalent in
the subnebula disk to process the volatiles derived from the
nebula, recent work by Mousis et al. (2002) hypothesizes
that Titan derived its volatile inventory from the solar neb-
ula itself. Because our model has Titan forming at the outer
edge of the weakly turbulent inner disk, it may be compat-
ible with either of these views. It is also possible that the
present D/H ratio in Titan’s atmosphere is the result of
photochemical enrichment of deuterium due to preferential
retention of that isotope during methane photolysis (Lunine
and Tittemore, 1993); however, this conclusion depends on
the unknown degree of mixing of processed gases in the
inner disk at the time of satellite formation and on the
assumption that the methane in the atmosphere of Titan is
not replenished from a ground reservoir as it is photodisso-
ciated (Mousis et al., 2001). Nevertheless, such a scenario
remains viable within the context of our model. Further-
more, the possibility has not been ruled out that the required
chemistry took place in the giant planet envelope during
planetary accretion, before the formation of the accretion
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disk took place. It is also unclear whether Ganymede’s D/H
ratio can be expected to be substantially lower than that of
Callisto, but the issue merits further study. Our model does
lead one to expect about an order of magnitude greater value
for the D/H ratio of Iapetus than the protosolar value.

Because Saturn’s disk is characterized by longer dynam-
ical times and has less gas spread out over a larger distance
than Jupiter’s disk, our model leads to significantly longer
accretion time scales for the satellites of Saturn. It is pos-
sible that no large satellites formed inside Titan because the
embryo formation time scale �104 years made them vul-
nerable to hypervelocity impacts close to the planet and the
collisional debris was then swept by gas drag (but see Paper
II for alternative explanations based on satellite migration).
This mechanism may work because characteristic satellite
embryos in Saturn’s disk are small (�1000 km).

We have seen that our model has Ganymede and Titan
forming in the inner disk and Callisto and Iapetus in the
outer disk. It also has Hyperion forming in the transition
region. This is significant because it fits well with the
formation model of Lee and Peale (2000), which has Hy-
perion captured into resonance by proto-Titan in the pres-
ence of a strong gas density gradient. Given our subnebula
parameters, we show that Titan satisfies the criterion for gas
drag resonance capture of satellitesimals as small as a kilo-
meter, whereas Ganymede requires that the object be sig-
nificantly larger. This may explain the presence of Hyperion
at Titan’s 4:3 mean-motion resonance location. Ganymede
itself may have captured such an object into resonance,
which was subsequently lost because its orbit was unstable
or due to collisional scattering. On the other hand, Callisto
may have formed in a region of the disk where the gas drag
was weak enough that typical satellitesimal eccentricities
were larger than the critical value such that resonance cap-
ture probability becomes small. If so, this may place con-
straints on the environment that gave rise to the regular
satellites of giant planets. This issue merits further work.

We extend this model to the satellites of Uranus. Though
for Uranus the mass for the inner or outer disks may not
have been enough to form a Titan or an Iapetus, we find
significant similarities between the uranian satellite system
and the inner saturnian satellites. We defer further discus-
sion of this issue to Paper II. Here we simply point out that
we interpret the gap between the centrifugal radius and the
outermost uranian regular satellite as suggestive of substan-
tial inward satellite migration. In the inner disk, satellite
formation times may have been sufficiently fast (�105

years) to explain why Titania (Uranus’ largest satellite)
shows evidence of resurfacing.

The question of the silicate fraction of the satellites is
likely to be quite complicated with many thorny issues that
are beyond the scope of this paper (see McKinnon et al.,
1997, for a review). Here we simply point out that our
model seems to fit better with the view that most of the
regular satellites of giant planets are not water-deprived but
water-enriched. By this we mean that regular satellites

forming in regions of the subnebula where water-ice con-
densation had taken place probably had more water avail-
able to them than given by solar mixtures, even if they lost
some of that water in the process of accretion. As has been
done before (e.g., Podolak et al., 1993), we note that all the
regular satellites of giant planets with the exception of Io
and Europa have silicate fractions well below those of
Triton, Pluto, and Charon (though at least Triton may have
lost a significant amount of water during its history). There
are several mechanisms that can lead to water enrichment,
and we suggest that their interplay may have the best chance
of explaining the observed silicate fractions of the regular
satellites of the giant planets. First, either ice ablation of
planetesimals hitting the envelope of the giant planet, dust
settling, preferential break-up of icy objects, or ablation of
planetesimals passing through the gas disk can add water
content relative to silicates to satellites forming far from the
planet (this may have played a major role in the case of
Iapetus, which might explain its low density, and to a lesser
extent in the case of Callisto). Second, more water may be
available under nebular conditions applicable to satellites
forming in the inner disk than given by solar mixtures (this
may apply to Ganymede, Titan, and to a lesser degree the
uranian satellites). Third, inhomogeneous accretion may
lead to selective loss of silicates (this may be applicable to
the inner saturnian satellites and perhaps to Miranda, though
it is more likely that collisional break-up followed by reac-
cretion left Miranda underdense). It is also possible that the
circumplanetary disks of the giant planets as a whole pref-
erentially lost silicates due to inhomogeneous accretion,
leaving the satellites relatively water-rich. Finally, the disk
might have been water-enriched because kilometer-sized
rocky objects penetrated too deep into the giant planet
envelope to be deposited in the accretion disk. However,
much more work will have to be done to check into these
issues.

We have already stated the possibility that Callisto and
Iapetus derived some condensables from material captured
from heliocentric orbit. However, this may be unlikely.4

Instead, we expect that this mass source was a small con-
tribution to the bulk of the satellites. Nonetheless, this may
not mean that captured objects or debris originating from
them did not leave their mark on Callisto and Iapetus (and
the outer satellites of Uranus). It is possible that the leading
and trailing asymmetries present in the outer uranian satel-
lites (Buratti and Mosher, 1991), perhaps Callisto (Bell,
1984), and Iapetus (Buratti et al., 2002, and references
therein) may be the result of interactions with material
originating from retrograde satellites exterior to their orbits
(Cruikshank et al., 1983). Buratti et al. (2002) argue in favor
of this alternative to explain the extreme leading and trailing
composition asymmetry of Iapetus. If so, this may explain

4 Though we are currently investigating the possibility that the ablation
of planetesimals passing through the disk contributed significantly to the
mass of solids in the satellite system.
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why the spectra of Iapetus and Hyperion (Hyperion tumbles
chaotically (Wisdom et al., 1984), but it may also have
undergone interactions with such a source of material) fit
with a two-component model of an icy satellite and D-type
material (and does not fit with Phoebe’s visual spectrum,
which is flat and more similar to a C-type asteroid). The
recent discovery of collisionally evolved retrograde satur-
nian (Gladman et al., 2001) and uranian (Gladman et al.,
2000) satellites may provide such a source. Thus, a scenario
which has regular satellites forming in a gaseous accretion
disk around the planet and in which the irregulars are
captured objects may account for the spectra and other
observed properties of both regular and irregular satellites,
a division which may pose a serious challenge to a starved
disk model (particularly a gas free one).

We briefly consider the alternative model that Callisto’s
accretion time scale was set by the time scale over which
solids were fed into the system and that all the regular
satellites of Jupiter and Saturn formed from a starved disk.
We conclude that this scenario faces significant hurdles.
Nevertheless, the issue needs to be settled. We propose that
a test of this alternative model is whether or not Titan is
differentiated. Our model leads us to the conclusion that,
although Titan took considerably longer to form than
Ganymede (due to the lower surface density and longer
dynamical times of Saturn’s disk compared to that of Jupi-
ter), it still formed in a fairly short time scale (�105 years),
making it very likely that it is fully differentiated. On the
other hand, the starved disk model implies a long accretion
time for Titan with low temperatures and small quantities of
NH3 present. While it may be possible to avoid this con-
clusion by fine-tuning parameters such as the size of the
impactors, the amount of ammonia present, or other satellite
properties, we suggest that such a model is likely to predict
a partially differentiated (Callisto-like) Titan. The Cassini
mission may resolve this issue conclusively.

Acknowledgments

We thank Jeffrey Cuzzi, Kevin Zahnle, Doug Lin, Peter
Bodenheimer, Sandy Davis, Dale Cruikshank, and Jeff
Moore for discussions. One of us (I.M.) had numerous, very
helpful discussions with Dave Stevenson. We also thank
Jeffrey Cuzzi, Kevin Zahnle, and Jack Lissauer for reading
the manuscript and suggesting improvements, and Steve
Squyres for discussions, comments on the manuscript, and
generous support of this work. This research was supported
by a grant from the Planetary Geology and Geophysics
program.

Appendix A: velocity dispersion in the outer disk

Because of the effects of gas drag, we expect the outer
disk will be populated by similar-sized embryos; smaller

objects would be quickly incorporated into larger ones by
drift augmented accretion. Given this, we ask what the
velocity dispersion of such objects is. The mean eccentric-
ities e and inclinations i are determined by the balance
between excitation due to gravitational encounters and
damping due to gas drag and inelastic collisions. Using the
average time rate of change of e and i determined by Adachi
et al. (1976, their Eq. (4.15)), as well as their mean-square
variations (Hayashi et al., 1977, Eq. (5.24)), we have

de2
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�
2e2
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where the characteristic time scales due to gas �g, inelastic
collisions �c, and gravitational interactions �cg are given by
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with the mean free path s � �2�srpu/3��s. We find solu-
tions for the cases in which gravitational interactions are
balanced by (a) inelastic collisions, (b) gas drag, and (c)
both inelastic collisions and gas drag. For these solutions we
assume that � � e,i, but we note that this may be only
marginally true. For case (a) in which we balance gravita-
tional interactions with inelastic collisions only, we have
(Hayashi et al., 1977)

e � �5i � 0.99��c /�cg�
1/4. (A7)

Here for a 500-km object at a � 150 RJ, we find that e �
0.23 and i � 0.1. For case (b) we get (Hayashi et al., 1977)

e � 1.7i � 0.78��g/�cg�
1/5. (A8)

We find that for a 500-km satellitesimal at a � 150 RJ with
a density of �s � 1.5 g cm�3, e � 0.17 and i � 0.1. For case
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(c) we cannot decouple the characteristic times from Eqs.
(A1) and (A2) in order to find a simple relationship between
e and i. We find a good estimate in the satellitesimal size
range we are interested in to be

e � 1.9i � 0.83��g/�cg�
1/5 �1.1 � �g/ 2e�c�

�1/5.

(A9)

In this case for a 500-km object at a � 150 RJ, we find that
e � 0.16 and i � 0.084.

In all three cases, we iterate to find solutions for e and i. We
have solved these three cases for a range of satellitesimal
masses at a � 150 RJ and plotted them versus the Safranov
parameter in Fig. 7. The satellitesimals are assumed to have a
density of �s � 1.5 g cm�3. The dashed line represents the
solution to case (a). The Safranov parameter decreases with
satellitesimal mass. This is due to the fact that there are fewer
inelastic collisions for larger particles. The dotted line corre-
sponds to case (b), where we balance the pumping of e and i
due to gravitational interactions and gas drag. Here � increases
with satellitesimal mass. Likewise case (c), which combines
both effects, corresponds to the solid line.

For all cases we find � � 1, indicating that over this
range of satellitesimal sizes the focusing is weak. Interest-

ingly, the ratio of drag time �gas to collision time �c can be
written as

�gas

�c
� 6�e

i� �130 K

T � 3/ 2 �150 RJ

a � 3/ 2

. (A10)

Notice that this is independent of particle size. Also note
that since e/i � constant the above ratio is independent of
the velocity dispersion. Likewise, the Safronov accretion
time scale is independent of velocity dispersion for Fg � 1.

Appendix B: collisional breakup of satellitesimals

Sufficiently large impacts, even occurring at velocities
close to the escape velocity of the target, have the potential
for fragmentation of the original body. The outcomes of
such impacts are most often characterized by a dimension-
less parameter

f1 � A�Edisr

Ep
� b

, (B1)

where Edisr is the disruption energy of the target, Ep is the
impact energy imparted by the projectile, A is a constant of

Fig. 7. Safronov parameter versus satellitesimal mass and radius (assuming �s � 1.5 g cm�3) in the outer disk. Gravitational encounters are balanced by
inelastic collisions (dashed curve), gas drag (dotted curve), and both gas drag and inelastic collisions (solid curve).
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order unity, and b � 0.8–1.25 for various target materials
(e.g., Fujiwara et al., 1977; Melosh, 1989; Davis et al.,
1999). The parameter f1 is the ratio between the mass of the
largest collisional fragment and the mass of the original
body. For f1 
 1, the collision leads to erosion of the target;
for f1 
 0.5 the target has suffered a significant break-up
(threshold of catastrophic disruption); and f1 � 1 indicates
a catastrophic break-up of the target into small fragments
(Melosh, 1989). The disruption energy of the target is gen-
erally taken to be a function of the target’s strength Y only;
however, for large objects one must consider the self-grav-
ity effects of the target, which we may express for spherical
objects with uniform mass as

Edisr �
4

3
	rs

3�c1Y �
4

3
c2	G�s

2rs
2� , (B2)

where c1 and c2 are dimensionless constants of order unity.
The crossover size such that the strength of the target is on
the same order as its gravitational binding energy has been
found to range from radii of several hundred kilometers to
as small as a few hundred meters (Ahrens and Love, 1996).
Assuming c1 � c2 � 3/5 (gravitational binding) in Eq. (B2),
one finds that the transition size may be expressed as rs �
(3Y/4	G�s

2)1/2, which yields objects tens of kilometers in
size for strengths in the MPa range.

As an example, we consider the collision of two equally
sized objects (rs � 100 km) in the outer disk assuming that
target strength is unimportant. The energy imparted into the
target is taken to be half of the total collisional kinetic
energy Ep � mpvp

2(1 � 2�)/4 � mpvesc
2 /2, where we assume

the remaining half of the energy remains in the projectile
and where the Safronov parameter is taken to be � � 0.5 as
a representative value (see Fig. 7). We find that f1 
 0.5–
0.7, which satisfies the criterion for partial disruption of the
target. This suggests that collisional disruption may have
played an important role in determining the accretion time
scale for satellite embryos in the outer disk.
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