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Abstract

Glucocorticoids are a vital class of endogenous steroid hormones that regulate essential biological processes including growth, development,
metabolism, behavior and apoptosis. Most, if not all, of these actions are thought to be mediated through the glucocorticoid receptor. The exact
mechanisms of how one hormone, via one receptor, modulates such diverse biological functions are largely unknown. However, recent studies
from our lab and others have suggested that a contribution for the diversity results from multiple isoforms of the glucocorticoid receptor that
result from alternative RNA splicing and translation initiation of the glucocorticoid receptor mRNA. Additionally, each isoform is subject to
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everal post-translational modifications, including phosphorylation, ubiquitination and sumoylation, which have been shown to mo
eceptor protein stability and/or function. Together these data provide potentially diverse mechanisms to establish cell type specific
f gene expression by a single transcription factor. Here, we summarize the recent advances and processes that generate these rec
nd these post-translational modifications. We speculate that the composition and proportion of individual isoforms expressed in
ellular contexts account for the diverse effects of glucocorticoid hormones.
ublished by Elsevier Inc.
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. Introduction

Glucocorticoids (GCs) are a class of stress-induced, en-
ogenously synthesized steroid hormone molecules. Under
ontrol of the hypothalamic–pituitary–adrenal (HPA) axis,
hese hormones are synthesized in the adrenal cortex and cir-
ulated systemically, regulating a variety of cell-, tissue- and
rgan-specific biological functions including development,
rowth, metabolism, behavior and apoptosis[1,2]. Clini-
ally, glucocorticoids represent one of the most commonly
rescribed drugs worldwide, effectively used for their anti-

nflammatory or immune-suppressive effects in asthma, der-
atitis, rheumatoid arthritis, prevention of graft rejection,
nd autoimmune diseases[3–6].

Glucocorticoids are thought to diffuse freely across the
ell membrane because of their lipophilicity. Once in the cy-
oplasm, they interact with the glucocorticoid receptor (GR)
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which mediates most, if not all, of the hormone-induced
tions. Similar to other members of the nuclear receptor su
family, GR is a modular protein with each domain carry
distinct functions (Fig. 1) [7]. The first 421 amino acids
the protein at the N-terminus encode primarily the cons
tive transcriptional activation function 1 (AF1). In contra
the next 65 amino acids in the protein central region c
prise a highly conserved zinc finger DNA-binding dom
(DBD). This motif plays a critical role in receptor homo
imerization, DNA-binding specificity, and interaction w
cofactor proteins. At the C-terminus is a moderately c
served region of approximately 250 amino acids. It enc
primarily the ligand-binding domain (LBD), and contains
motif for ligand-dependent transcriptional activation func
2 (AF2). Functionally, this C-terminal region is also involv
in protein–protein interactions with either cytosolic cha
ones or co-regulators, depending on the absence or pre
of a ligand, respectively. In addition to these three major
tifs, nuclear localization signals are identified embedde
both the DBD and LBD regions[8].
039-128X/$ – see front matter. Published by Elsevier Inc.
oi:10.1016/j.steroids.2005.02.006
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Fig. 1. Functional motifs of the human glucocorticoid receptor (hGR). The N-terminus represents the constitutive transcriptional activation function 1 (AF1),
while the C-terminus encodes the ligand-binding domain (LBD) and ligand-dependent activation function 2 (AF2). The highly conserved DNA-binding domain
(DBD) is located in the central region of the protein. In addition, the domains involved in nuclear localization, receptor dimerization, and cofactor binding are
mainly localized to the C-terminal ligand-binding motif. H, hinge region.

The ligand-free receptor is largely present in the cytoplasm
as a multi-protein complex. Upon ligand activation, the re-
ceptor translocates into the nucleus where it either enhances
or represses transcription of target genes. While this highly
simplified signaling cascade has significantly enriched our
understanding of the GR’s mechanism of action, it does not,
however, convey the extreme complexity of gene-, cell- and
tissue-specific activity of glucocorticoids. Generally, the na-
ture and magnitude of a cell’s response to glucocorticoids are
dependent on the hormone levels it is exposed to as well as
the concentration of receptor in a cell, in addition to the ef-
ficiency of GR-mediated signal transduction[9–13], and the
genomic accessibility of glucocorticoid-responsive genes. In
particular, multiple GR isoforms are generated as a result
of alternative splicing and alternative translation initiation
as well as post-translational modifications, and each isoform
presents different signal transduction potentials. In this arti-
cle, we focus on recent advances and processes that produce
these diverse receptor isoforms. We speculate that the com-
position and proportion of individual isoforms expressed in
a particular cellular context account for the diverse effects of
glucocorticoid hormones differentially.

2. Mechanisms of glucocorticoid action
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action is further stabilized by the recruitment of coactivators
which in turn initiate assembly of the general transcription
machinery, leading to the enhancement of gene transcrip-
tion. Alternatively, ligand-bound GR can bind to a number of
poorly-defined negative GREs (nGREs) on promoter region
of target genes to suppress transcription. A number of nGRE-
mediated genes have been identified including bovine pro-
lactin [16], human immunodeficiency virus type 1[17], hu-
man osteocalcin[18], type 1 vasoactive intestinal polypeptide
(VIP) receptor[19], human corticotropin-releasing hormone
[20], and neuronal serotonin receptor (5-HT1A)[21]. The ex-
act mechanism of nGRE-mediated repression is largely un-
clear, but perhaps results from interference with either the
assembly of the general transcription machinery[18,22,23]
or with transcriptional activation elicited by other positively
acting transcription factors[24].

In addition, transcriptional modulation by GR can be
achieved through its cross-talk with other transcription fac-
tors such as nuclear factor-�B (NF-�B), activator protein-1
(AP-1), Sma and Mad-related protein (Smad), and signal
transduction and activator of transcription (STAT) (Fig. 2). It
is generally assumed that GR interaction with NF-�B and/or
AP-1, and the subsequent suppression of their target genes,
is the major mechanism by which glucocorticoids protect
against inflammation[25–27]. Both NF-�B and AP-1 are
rapidly activated by proinflammatory cytokines, bacterial
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Prior to ligand-binding, GR primarily resides in the cy
lasm associated with two molecules of heat shock pr
0 and several immunophilins such as FKBP51 (Fig. 2). Fol-

owing activation by a ligand, the receptor undergoes a s
f conformational alterations, leading to its dissociation f

he cytoplasmic chaperones and exposure of its nuclear
zation signals. These signals are then recognized by a
f nuclear translocation proteins, which actively shuttle
eceptor into the nucleus[14,15]. Once inside, readily forme
eceptor homodimers recognize and interact with specificis-
cting sequences called glucocorticoid-responsive elem
GREs) in target gene promoters. The receptor–DNA in
nd viral infection agents, and proapoptotic stimuli suc
V irradiation. Once activated, they quickly upregulate t
cription of immunoregulatory genes, including cytokin
ytokine receptors, chemotactic proteins, and adhe
olecules. Induction of these pro-inflammatory gene

ritical for an organism’s defense system to identify and e
nate threatening agents. Nevertheless, excessive stimu
f these responses leads to cell or tissue damage and
eath. The glucocorticoid receptors are essential to ma

his balance appropriately. Not only does GR atten
F-�B and AP-1-mediated production of proinflammat
ytokines by forming an inactive complex with NF-�B
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Fig. 2. Signaling pathways of GR-mediated transcriptional regulation. Following binding to glucocorticoids, the cytosolic GR dissociates from chaperone
proteins such as Hsp90 and translocates into the nucleus. Once there, GR readily dimerizes and modulates target gene transcription via: (A) direct interaction
with cis-DNA elements including GREs and nGREs; (B) cross-talk with other DNA-bound transcription factors such as AP-1, NF-�B, Smad, and/or STAT;
(C) interaction with both DNA elements and other transcription factors. The resulting modulation of target gene transcripts leads to altered protein expression.
GTM, general transcription machinery; TF, other transcription factors.

[28,29] or AP-1 [30,31] through direct protein–protein
interactions, but GR also enhances transcription of certain
anti-inflammatory cytokines. In contrast to NF-�B and AP-1,
the TGF-�-activated Smad family of transcription factors is
primarily involved in wound healing and fibrosis. GR has
been reported to antagonize TGF-�-induced transcription of
genes, such as fibronectin[32], collagen[33,34], and type-1
plasminogen activator inhibitor[35], through its interaction
with Smad [35]. Another common class of transcription
factor influenced by GR is the STAT family, factors mainly
involved in mammary gland development and function.
Unlike with the others, physical association of GR with
STAT can lead to enhanced transcription of STAT-mediated
target genes, as exemplified by�-casein[36,37].

Involvements of GR interactions with both the DNA el-
ements and other transcription factors have also been sug-
gested in several target gene regulations (Fig. 2). Depending
on specific promoter contexts and/or transcription factors,
these GR dual interactions can lead to either up- or down-
regulation of transcription. For example, Hermoso et al.[38]
have recently showed that the toll-like receptor 2 (TLR2) are
synergistically induced by the cotreatment of A549 cells with
TNF-� and dexamethasone. The synergism requires the inter-
action of NF-�B, STAT, and GR with their cognate enhancer
elements in the promoter region of the TLR2 gene, and the
potential protein–protein association among these receptors.
W t the

GR cross-talk with STAT led to a downregulation of GRE-
containing MMTV reporter construct[36].

3. Genomic structure of the hGR gene

The hGR cDNA was first cloned in 1985[39], and later
mapped to chromosome 5q31-32[40,41]. To date there is
only one gene for GR. Examination of the receptor genomic
structure revealed the presence of 10 exons spanning a 110 kb
region[42] (Fig. 3A). The 184 nucleotides of exon 1 represent
solely the 5′-untranslated region. Exon 2 (1197 bp) encodes
most of the receptor N-terminus, including the constitutive
AF1 transactivation domain. The two zinc-finger motifs in-
volved in DNA-binding are separately encoded by exon 3
(167 bp) and exon 4 (117 bp). A total of five exons (exons 5,
6, 7, 8, 9� or 9�) together make up the ligand-binding do-
main and ligand-dependent AF2 as well as the 3′-untranslated
regions[42,43]. Promoter analysis of the GR gene revealed
an apparent lack of a TATA box and a CCAAT motif in the
5′-flanking region[42,43]. Instead, multiple GC boxes, AP-
1, AP-2, Sp1, cAMP-responsive elements (CRE), Yin Yang1
(YY1), NF-�B and several tissue-specific transcription factor
binding sites have been identified[43–47]. This information
is consistent with the notion that GR is constitutively ex-
pressed in virtually every cell type, but with a tissue-specific
p
hereas in other systems, Stocklin et al. reported tha
 attern.
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Fig. 3. Generation of multiple hGR isoforms from a single gene. (A) Genomic structure of the hGR gene. The gene contains a total of 10 exons, spanning
a 110 kb genomic region. Exon 1 represents solely the 5′-untranslated sequence, and contains three isoforms (1A, 1B and 1C), each controlled by a diverse
upstream region (promoters 1A, 1B and 1C). (B) Generation of multiple hGR transcripts as a result of alternative RNA splicing. Five exon 1 variants (1A1, 1A2,
1A3, 1B and 1C) can join to the same acceptor site on exon 2, yielding transcripts containing various 5′-untranslated sequences. Alternative splicing of exon
9 gives rise to two mRNAs coding for hGR� or hGR�. Alternative splicing of other exons has been described, including GR� containing a three-nucleotide
insertion between exons 3 and 4; GR-A missing exons 5–7; and GR-P lacking exons 8 and 9. (C) Generation of multiple hGR protein isoforms as a result of
alternative translation initiation. Translation can be initiated at the first AUG (Met1) to give rise to GR-A (hGR� or hGR�) or internal AUG (Met27) to produce
GR-B. Alternative translation initiation has been demonstrated for both hGR� and hGR� transcripts. The amino acid labels refer to the full-length hGR�

receptor and are from references listed in the text. (D) Post-translational modifications of the protein. P, phosphorylation; S, sumoylation; U, ubiquitination.



J. Zhou, J.A. Cidlowski / Steroids 70 (2005) 407–417 411

4. Alternative splicing and promoter usage

A more detailed analysis of the hGR promoter sequence
revealed at least three distinct regulatory regions present with
each controlling a unique exon 1 isoform (1A, 1B and 1C)
[45] (Fig. 3A). Exon 1C (184 bp) is identical to the exon 1
originally characterized in[39], which is under the control
of promoter 1C. Immediately upstream of the promoter 1C
is exon 1B (77 bp), driven by promoter 1B of approximately
1 kb in size. Much further upstream (27 kb) of the transcrip-
tion start site for exon 1C is exon 1A (981 bp), which is reg-
ulated by promoter 1A (1075 bp). Three alternative splice
donor sites are separately contained on exon 1A, giving rise
to three 1A transcripts including 1A1 (212 bp), 1A2 (383 bp)
and 1A3 (981 bp). All of these five exon 1 isoforms (1A1,
1A2, 1A3, 1B and 1C) are spliced onto the same acceptor
site on exon 2 (Fig. 3B).

Despite the fact that none of the exon 1 isoforms encodes
protein information, they, together with their respective pro-
moters, play an important role in regulating cell-type specific
hGR gene expression. For example, exon 1A3-containing
transcripts were detected at higher levels in cancer cells of
hematopoietic origin such as IM-9, CEM-C7, and Jurkat than
other cancer cells such as Hela and WI-38[45], whereas no
apparent differences were observed for exon 1B and 1C tran-
scripts among the same cells lines. Similarly expression pat-
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two receptor isoforms. hGR� binds to the classical recep-
tor agonist corticosteroids or the antagonist RU486, translo-
cates into the nucleus upon ligand activation, and modulates
transcription of target genes in a hormone-dependent manner
[39]. This information is consistent with the expectations of
the glucocorticoid receptor acting as a ligand-dependent tran-
scription factor, and therefore, extensive attention has been
focused on this isoform for quite a few years. In contrast,
hGR� does not interact with glucocorticoids and exhibits
transcriptional inertness on glucocorticoid-responsive genes
[7,39,50]. Furthermore, when hGR� was transiently trans-
fected together with hGR�, a dominant negative effect of
hGR� was observed on the functional potentials of hGR�
[50,51]and mineralcorticoid receptor[52], leading to the hy-
pothesis that the cellular ratio of hGR� to hGR� may have a
profound influence on a cell’s sensitivity to glucocorticoids.

Interest in the physiological significance of hGR� did not
emerge until the development of hGR�-specific antibodies
and the demonstration of its natural existence in a variety
of human cell lines and tissues[53,54]. Since then, ele-
vated levels of hGR� have been positively correlated with
glucocorticoid resistance in several disease states such as
asthma, rheumatoid arthritis, and ulcerative colitis[55–62].
Recently, Hauk et al.[63] demonstrated that overexpression
of the hGR� isoform in mouse hybridoma cells generated
a GC-resistant phenotype, in strong accordance with the
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ern of exon 1A1- and 1A2-containing transcripts was
erved, but this pattern was drastically different from
f 1A3. Furthermore, when CEM-C7 and IM-9 cells w

ransiently transfected with the same construct conta
he promoter 1A and subsequently treated with dexam
one, an enhanced transcript expression in CEM-C7
ut a repression in IM-9 cells, was detected. Together t
ata suggest that glucocorticoid-responsive elements ar

ained in the promoter 1A, and that these elements are ut
n a cell-type specific manner. Nevertheless, it remains
nown whether the diversity of exon 1-containing transcr
ould necessarily lead to distinct expression profiles o
GR protein.

In addition to splicing events at the 5′-end of hGR cDNA
enerating a heterogeneous population of untranslated
, alternative splicing has also been observed for exon 9

ng rise to two mRNAs encoding hGR� and hGR�, respec
ively (Fig. 3B) [39]. The hGR� and hGR� are identical up
o exon 8 (encoding amino acids 1–727) after which the
erge. hGR� contains exon 9� of 2475 nucleotides in size,
hich the first 150 bp encode for 50 amino acid residues.
rated by a 158 bp short intron sequence downstream
xon 9�, the exon 9� continues for another 1478 nucleotid
ith the first 45 coding for 15 distinct residues of the hG�
-terminus.
The existence of two alternatively spliced transcri

GR� and hGR�, was established ever since the clonin
GR cDNA[39]. Similar transcripts are found in rat[48], but
ot in mouse which contains only GR� [49]. However, func

ional analyses indicate apparent distinctions between
otion that increased hGR� expression contributes to gl
ocorticoid insensitivity. However, given the low levels
ndogenous hGR� detected in numerous cell lines and
ues[53,54,64,65], several researchers have argued tha
mount of hGR� may not be sufficient to underlie its dom
ant negative activity[66,67]. In support of this, no correla

ion has been found between the levels of hGR� and cytokine
nduced glucocorticoid insensitivity[68] or glucocorticoid
esistant childhood leukemia[69]. While further studies ar
ertainly necessary to reconcile this contradiction, it is po
le that the contribution of hGR� to glucocorticoid-inertnes

s restricted to certain cell lines or diseases. In addition
elative expression of hGR� to hGR� that are detected

single stage or time point in cells or tissues may no
ect the actual progression of glucocorticoid-resistanc
he corresponding alteration in protein levels of these
soforms. For example, studies from our lab have shown
ven within the same tissues, the levels of hGR� may vary
onsiderably among different cell types[53]. Additionally,
xposure of cells to agents such as proinflammatory cyto
uch as TNF-� and IL-1[47], microbial superantigens[59],
nd cortisol[70] can lead to induction of hGR�, but suppres
ion of hGR�, and thus a preferential proportion of hGR�.
onsequently, the enhanced ratio of hGR� to hGR� may lead

o diminished glucocorticoid responsiveness.
It is clearly of importance to identify factors that reg

ate the alternative splicing from the same pre-mRNA
ursor. A recent study by Xu et al.[71] suggested tha
erine–arginine-rich protein p30 (SRp30c) was respon
or the specific generation of hGR� transcripts over its coun
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terpart in neutrophils. In addition, the RNA splicing may also
be influenced by other factors such as transcription factors
interacting with their cognate elements in target gene pro-
moters[72], or hormones[73]. Thus, preferential production
of a single transcript, hGR� or hGR�, is possible depending
on particular cellular contexts and the agents the cells are ex-
posed to. The molecular mechanisms underlying the selective
generation of hGR� by SRp30c are currently unclear. Nev-
ertheless, further studies should provide insights about how
pathologic conditions may modulate the level of this specific
enzyme, thereby affecting the alternative hGR splicing.

Studies from our lab and others have indicated that hGR�
can bind to the GRE, heterodimerize with hGR�, and inter-
act with Hsp90[51,74]. The molecular basis for the domi-
nant negative effect of hGR� has been localized to two critical
residues, L733 and N734, within the unique 15 amino acids of
hGR� [75]. Although the exact mechanism by which hGR�
plays its inhibitory roles via these two residues is still un-
clear, the current hypothesis attributes to the formation of a
transcriptionally inactive hGR� and hGR� heterodimer.

In addition to hGR� and hGR�, Rivers et al.[76] have
detected another splicing variant hGR�, which is expressed
at a level between 3.8 and 8.7% of the total GR transcripts
(Fig. 3B). hGR� differs from the others by a 3-base, thus
one amino acid (arginine), insertion between exons 3 and 4
encoding the DNA-binding domain. Previous studies have
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Studies from our lab by Yudt et al. have clearly demonstrated
that this is not the case[75] (Fig. 3C). When a single hGR�
cDNA was transiently transfected into receptor-less COS-1
cells or synthesized using transcription and translation reac-
tion in vitro, a doublet band was clearly detected by Western
Blot analysis. A similar result with hGR� was observed as
well (Jewell and Cidlowski, unpublished data). The recep-
tors were named hGR-A (94 kDa) and hGR-B (91 kDa) based
on their molecular weight. Further studies demonstrated that
the shorter GR-B resulted from alternative translation initia-
tion at the internal ATG codon corresponding to methionine
27 (M27). Site-directed mutagenesis of the ATG encoding
methionine 1 or 27 to ACG specifically eliminated the cor-
responding GR-A or GR-B proteins, indicating that leaky
ribosomal scanning was responsible for the generation of
these two isoforms. Functional analyses indicate that both
GR-A and GR-B isoforms exhibit similar sub-cellular dis-
tribution and ligand-induced nuclear translocation. However,
the transactivation, but not transrepression, activity of the two
isoforms differed, with GR-B being nearly twice as effective
as the longer form GR-A. Interestingly, the shorter isoform
GR-B was also observed endogenously in several cell lines
such as HeLa, HEK293, CEM-C7, suggesting that the al-
ternative hGR translation initiation is a naturally occurring
phenomenon.
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uggested that this single residue insertion decreases
eptor transactivation potential by nearly half[77]. Consis
ent with this, a recent report suggests a positive correlati
GR� expression levels with childhood acute lymphobla

eukemia[78]. Additionally, two other splice variants ha
een identified in human multiple myeloma cells by Mo
t al.[79] (Fig. 3B). hGR-P misses exons 8 and 9, and hG

acks exons 5, 6 and 7. Both variants have been asso
ith glucocorticoid-resistant phenotypes[79–81]. Interest

ngly, although the hGR-P truncation mutant by itself ex
ted lower transactivation activity than hGR�, cotransfectio
f both constructs suggested an enhanced effect of hGR

he ligand-induced hGR� activity [81]. However, the mecha
ism of this enhancement is currently unclear. Taken toge
everal transcripts have been described from the com
GR precursor RNA, including hGR�, hGR�, hGR�, hGR-
and hGR-A. In comparison to hGR�, most of them hav

ecreased transactivation potentials. As of yet none have
valuated for their potential to induce rapid glucocorticoi
on-genomic actions. Thus, it is reasonable to predict tha
elative levels of these variants play a role, at least part
ifferential glucocorticoid-induced responsiveness, par

arly as it relates to human disease.

. Alternative translation initiation of the GR

Since the initial cloning of hGR in 1985 by Hollenberg
l., it had been thought that each of the two alternative
cripts, hGR� and hGR�, gave rise to only a single prote
-
. Post-translational modification of the hGR

In addition to the remarkable complexity of multiple
eptor isoforms generated by alternative splicing and a
ative translation initiation, each isoform is subject to a v
ty of post-translational modifications including phosph

ation, ubiquitination and sumoylation (Fig. 3D). The post
ranslational modifications of the GR have been a subje
esearch for the past two decades. As with other prot
tudies indicate that these modifications play important
n the receptor’s subcellular distribution, protein turno
nd transcriptional activities.

.1. Phosphorylation

Among the nuclear receptor superfamily, the GR has
ne of the earliest proteins evaluated for potential phos
ylation. Early evidence that the receptor was an end
ous phosphoprotein came from studies using ligand-b
ffinity columns, [32P]-ATP incubation, and Western B
nalysis[82–85]. The receptor is constitutively phospho

ated under physiological conditions, but also undergoe
gonist-induced and cell cycle-dependent hyperphosp

ation[86–89]. Eight phosphorylation sites on the mouse
ave been identified, most of which are serine residue
ated on its N-terminus at positions 122, 150, 212, 220,
15 and 412, and one threonine at 159[90]. Sequence com
arisons of the mouse receptor with human and rat su

hat most of these residues are conserved among specie
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they are indeed the major sites of phosphorylation as demon-
strated later[91]. The major kinases postulated to be re-
sponsible for the receptor phosphorylation include mitogen-
activated protein kinases (MAPK), cyclin-dependent kinases
(CDK) [92], glycogen synthase kinase-3 (GSK-3)[93] and
c-Jun N-terminal kinases (JNK)[93,94], with each having
distinct specificities for potential phosphorylation residues.

To understand how GR phosphorylation status affects re-
ceptor function, Mason and Housley[95] initially tested the
effect of a series of single or multiple phosphorylation site
mutations on mouse GR activation of a MMTV-driven re-
porter construct. Surprisingly, even when all seven residues
were simultaneously substituted with alanine, only a slight
reduction in GR’s transcriptional activity was observed. Con-
sistent with this, Webster et al.[96] showed that a combi-
nation of receptor mutants devoid of various phosphoryla-
tion sites had little effect on receptor expression, distribution,
ligand-induced nuclear translocation, and transcriptional ac-
tivation of the similar MMTV reporter. However, significant
decreases of transcription by the mutant receptors were ob-
served on another reporter construct under the control of min-
imal GREs, suggesting that the effect of phosphorylation on
GR’s activity is probably promoter-specific. Therefore, it is
likely that the phosphorylation status of GR contributes to
endogenous gene-specific regulation, perhaps in a cell type
specific manner where the use of kinases might differ.
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lished data[96,98]which indicate that most, if not all, of the
glucocorticoid receptor translocates into the nucleus follow-
ing treatment with dexamethasone.

It has been suggested that GR undergoes a dynamic pro-
cess of phosphorylation and dephosphorylation in response
to the presence of receptor ligands, variances in cell-cycle,
and/or physiological state. By analogy to kinases, phos-
phatases are also critical for proper function of the recep-
tor. For example, protein phosphatase type 1 (PP1), type 2a
(PP2a)[99] and type 5 (PP5)[100] have been shown to regu-
late the nucleocytoplasmic shuttling of the receptor. In addi-
tion, the treatment of cells with okadaic acid, a phosphatase-
specific inhibitor, resulted in enhancement of GR’s transcrip-
tional activity[101]. Likewise, suppression of PP5 expression
induced both constitutive and ligand-activated GR transcrip-
tional potential[102]. Nevertheless, the exact mechanisms
by which these phosphatases affect the receptor’s localiza-
tion and activity are largely unclear. For example, it is un-
known if the effect is directly resulted from the dephospho-
rylation of GR by these phosphatases, or indirectly from the
dephosphorylation of receptor-associated chaperones such as
Hsp90. Also, it is currently unclear which residues are most
affected by these enzymes.

6.2. Ubiquitination
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The functional significance of individual phosphory
ion residues was further explored in a recent study u
hospho-specific antibodies recognizing either hGR S2
211[97]. Wang et al. showed that distinct kinetics was
erved for ligand-induced hyperphosphorylation of these
esidues. S211 displayed a more robust and sustained
horylation in comparison to S203. Intriguingly, followi

igand activation, the S211-phosphorylated hGR recepto
etected solely in the nucleus by both Western Blot an
is and immunofluorescence. In marked contrast, the S
hosphorylated isoform was located primarily in the c
lasm. This diverse pattern of localization was not only
erved in U2-OS cells with stably transfected hGR, but
ith the endogenous receptor in A549 cells. Consistent

he subcellular distribution, when a panel of receptor
ists/antagonists was examined for their effects on lig

nduced phosphorylation at these two residues and on r
or’s transactivation potential, the extent of receptor con
ng the phosphorylated S211 residue showed a strong co
ion with the receptor’s activity. Together, these data sug
hat the phosphorylation status of individual residues
ave profound effects on the receptor subcellular loca

ion, and more importantly, on its modulation of target g
ranscription. However, caution needs to be exercised w
nterpreting these data, since previous reports have s
hat the receptor mutants lacking all identified phosph
ation sites behave similarly to the wild type receptor w
egard to ligand-induced nuclear translocation of the re
or [95,96]. In addition, the cytoplasmic retention of S20
hosphorylated receptor is somewhat inconsistent with
-

Ubiquitination is another important post-translatio
odification process that cells use to target specific prot

ia the attachment of multiple ubiquitin molecules, to
roteasome for degradation. Ubiquitin is a highly conse
6 amino acid molecule universally distributed among
aryotes. The molecule is first activated by E-1 activa
nzymes, then transferred to E-2 conjugating enzymes
ubsequently passed on to E-3 ligases. E-3 ligases reco
wide range of target substrates by their conserved ubi
ation motifs and attach ubiquitin to the appropriate resi
n the target proteins. Once tagged, the proteins ar
raded by proteasome complexes in a series of program
teps.

In vitro studies by Wallace and Cidlowski have indica
hat GR is a potential substrate for ubiquitination[103]. Treat-
ent of COS-1 cells expressing mouse GR with the pro

ome inhibitor MG132 leads to a block of ligand-indu
R degradation and an enhancement of GR transcript
ctivity, suggesting that the proteasome is involved in re

or turnover. Direct ubiquitination of GR was demonstra
sing co-immunoprecipitation assays in COS-1 cells t
iently cotransfected with constructs encoding GR and u
itins. Consistent with this, computer analysis of prim
R sequences from human, mouse, and rat identified a

erved PEST motif, which is important for substrate re
ition by E2/E3 enzymes[104]. When residue K426 of th
R PEST motif was mutated to alanine, the receptor be

esistant to ligand-induced degradation and possessed
anced transcriptional activity, similar to the results obta
ith MG132 treatment. These data suggest that this resid
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critical for GR protein degradation, possibly as an ubiquitin
acceptor site. However, it is not clear if this K426 residue has
any direct effect on receptor ubiquitination, and if that is the
only site involved. Interestingly, when Hela cells were treated
with MG132, increased transcriptional activity of GR was
also observed, suggesting that ubiquitination-induced protea-
some degradation might occur for the endogenous receptors
as well. However, further studies are necessary in order to
fully establish the involvement of ubiquitination in regulat-
ing receptor degradation endogenously.

6.3. Sumoylation

Small ubiquitin-related modifier (SUMO) is an 11 kDa
protein moiety that can be covalently ligated to lysine residues
in a variety of target proteins. The protein is similar to ubiq-
uitin in both size and three-dimensional structure, yet the
functional consequences of sumoylation are distinct. While
ubiquitination largely leads to the proteasome-mediated tar-
get protein degradation, modifications by SUMO regulate
more diverse biological effects including protein–protein in-
teractions, subcellular localization, protein stability, and tran-
scriptional capacity[105–108]. Recent work from in vitro
studies indicate that hGR is a sumoylation target protein with
three lysine residues (K277, K293 and K703) identified as the
potential acceptor sides for SUMO attachment[109–111].
H rsial.
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the mutations necessarily cause a glucocorticoid-insensitive
phenotype. For example, the N363S mutant leads to gluco-
corticoid hypersensitivity and may contribute to male obesity
although controversy exists on the issue[113].

8. Conclusion

It is clear that multiple isoforms of the GR protein are
generated endogenously as a result of alternative RNA splic-
ing and alternative translation initiation. In addition, each
isoform is subject to a variety of post-translational modifica-
tions including phosphorylation, ubiquitination and sumoy-
lation. Consequently, the potential existence of an enormous
number of receptor variants, each having differential charac-
teristics in expression, localization, transcriptional activity,
and/or degradation, comprises a tissue- or cell-specific hGR
population contributing substantially to unique biological re-
sponses.
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owever, interpretation of the data has been controve
ith mutation of all three lysine residues to arginine, dim

shed GR sumoylation and enhanced transcriptional ac
f the receptor was reported by Tian et al.[110], suggest

ng that sumoylation might inhibit the receptor’s transact
ion potential. In marked contrast, Le Drean et al. publis
ata indicating that overexpression of SUMO-1 together
R increased the receptor’s transactivation potential by
ight-fold[111]. Despite the apparent controversy regard
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nd thus its transcriptional activity modulated.

. Glucocorticoid receptor mutations and
olymorphisms
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lear example of how small changes in the gene may affe
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linical manifestations. So far, a total of fifteen misse
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een polymorphisms have been identified from either pat
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for a recent review, see[112]). Most of these have been a
ociated with glucocorticoid resistance. However, not a
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