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This account briefly traces the growth of our theoretical and experimental knowledge of electron–positro

production by photons, from the prediction of the positron by Dirac [1928a. The quantum theory of the electron

R. Soc. (London) A 117, 610–624; 1928b. The quantum theory of the electron. Part II. Proc. R. Soc. (London) A

1928b, 351–361] and subsequent cloud-chamber observations by Anderson [Energies of cosmic-ray particles. Phys

43, 491–494], up to the present time. Photons of energies above 2mec
2 (1.022MeV) can interact with the Coulom

of an atomic nucleus to be transformed into an electron–positron pair, the probability increasing with incr

photon energy, up to a plateau at high energies, and increasing with increasing atomic number approximately

square of the nuclear charge (proton number). This interaction can also take place in the field of an atomic electro

photons of energy in excess of 4mec
2 (2.044MeV), in which case the process is called triplet production due to the

of the recoiling atomic electron adding to the tracks of the created electron–positron pair. The last syste

computations and tabulations of pair and triplet cross sections, which are the predominant contributions to the p

mass attenuation coefficient for photon energies 10MeV and higher, were those of Hubbell et al. [Pair, triplet, an

atomic cross sections (and mass attenuation coefficients) for 1MeV–100GeV photons in elements Z ¼ 1–100. J.

Chem. Ref. Data 9, 1023–1147], from threshold (1.022MeV) up to 100GeV, for all elements Z ¼ 1–100.

computations required some ad hoc bridging functions between the available low-energy and high-energy theo

models. Recently (1979–2001), Sud and collaborators have developed some new approaches including using dis

wave Born approximation (DWBA) theory to compute pair production cross sections in the intermediate energy

(5.0–10.0MeV) on a firmer theoretical basis. These and other recent developments, and their possible implicatio

improved computations of pair and triplet cross sections, are discussed.

Published by Elsevier Ltd.
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industrial irradiation and gauging, nuclear power

shielding, security surveillance and diverse other

cations, requires quantitative and accurate know

of the mechanisms by which the photons in

with the atoms of the target materials. The dom

interaction mechanisms include the atomic photo

coherent (Rayleigh) and incoherent (Compton) s

ing, and, in the photon energy region above 1
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electron–positron pair (and triplet) production. Sys-
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2. Pair and triplet measurements: a brief history and
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tematic tabulations of the probabilities, or

sections, for these processes, and their totals in the

of mass attenuation coefficients m/r, extendi

photon energies above 1MeV, have been develo

NBS/NIST and elsewhere and revised from time to

for example by White [Grodstein] (1952), Gro

(1957), Hubbell and Berger (1965, 1968), Plechat

Terrall (1968), Storm and Israel (1970), Hubbell

1982), Berger and Hubbell (1987), and Cullen

(1997). A compilation by Hubbell and Seltzer

including both m/r and the mass energy-abso

coefficient men/r, utilizing the theoretical work of S

(1993) for the men/r computations, should al

mentioned. This report is intended to summ

historical and current information on pair and

production, the dominant processes above a few

The photon energy threshold for the disappeara

a photon in the field of a bare nucleus and creation

electron–positron pair is 2mec
2 in which me

mass of an electron e� or positron e+ and c is the

of light in a vacuum, giving a threshold val

1.022MeV. This threshold applies in the case

both positron and electron are created in the conti

If the electron is created in a bound state of an ato

threshold is lowered by the binding energy of the o

into which the electron is created. For pair produc

the field of an atomic electron, called ‘‘triplet pr

tion’’ due to the visualization in a cloud chamber

recoil of the struck electron along with the tracks

created electron and positron, the kinematics req

higher threshold of 4mec
2, or 2.044MeV.

The probability, or cross section, for the pair cr

process, is approximately proportional to the squ

the target-particle charge. Hence, for pair product

the field of a nucleus, the cross section kn per ato

kn / Z2

in which Z is the atomic number, or proton numb

the target nucleus. For triplet production, for whi

target electron has unit charge, the cross section k
neutral atom with Z electrons is

ke / Z

and thus

ke=kn ’ 1=Z

for incident photon energies well above the dif

thresholds.

For detailed descriptions and information on pa

triplet production, beyond what will be included

brief report, reference can be made to the various

review articles on these processes, for example by

et al. (1969), Tsai (1974), Hubbell et al. (1980), her

referred to as ‘‘HGØ’’, and Eichler (1990).
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The experimental investigations of these pro

started soon after a theoretical observation by

(1928a, b), who noted a ‘‘difficulty’’ in the rela

wave equation for a free electron (e�), in th

solutions yielded negative energy states as w

positive energy states, thus suggesting the existe

electrons with the opposite charge sign e+, the

charge as for a proton. This theoretical observatio

soon followed by Anderson’s (1932, 1933) experim

observation in his cosmic ray studies using a

chamber in which a strong magnetic field was im

of symmetrical tracks curving in opposite direction

signature of the creation of an electron–positron p

and e+, by a photon generated in the shower indu

the cosmic ray particle. Also, Perrin (1933) point

the possibility of pairs being produced in the fi

atomic electrons.

Further cloud chamber photographic exper

followed, for example by Blackett and Occ

(1933), Chadwick et al. (1934), and Simons and

(1937) with some quantitative interpretation by

(1938). I. Curie and Joliot (1933a, b) describe

interpreted their observations, but did not publis

photos. Later, striking photos of the trident signat

triplet production were obtained using photog

emulsions, for example by Mohanty et al. (1961

Castor et al. (1970), also using a streamer chamb

Jousset et al. (1970) and Augerat et al. (1971, 197

In addition to the two- and three-pronged

signatures of the pair production process, an

signature results from the ultimate fatal encoun

the positron with an ordinary electron, in which th

particles annihilate and their combined mass-ene

2mec
2 is de-materialized into two photons. S

photon annihilation can also occur; see, e.g.,

(2000). If the positron has effectively come to rest

target before annihilating, the most probable resu

pair of 1mec
2 (0.511MeV) photons departin

annihilation site in opposite directions, provid

measurable signature using detectors paired in

cidence on either side of the target material. For

energy incident photons, and annihilation in fli

high positron velocities, the two photons will be e

at forward angles, and at higher energies.

The introduction by Hofstadter and McIntyre

of the NaI(Tl) scintillation detector spectromete

vided the necessary tool for such coincidence me

ments. However, the first scintillator material use

pair production cross section measurement, by

et al. (1952), seems to be the organic crystal anthr

The many such coincidence pair production

section measurements, up to a few MeV above thr

using radionuclide photon sources include, for exa



the works by Dayton (1953), Staub and Winkler (1954),
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Schmid and Huber (1955), West (1956), Titus and

(1966), Henry and Kennett (1972), Avignone and

(1981), Khalil and Avignone (1982) and Avignon

(1985).

At higher photon energies the pair and triplet

sections dominate the total attenuation coef

which can in turn be used to obtain experimental

for pair and triplet by subtracting the relatively

scattering (coherent and incoherent) and atomic

effect theoretical cross sections. A complicating fa

the intermediate energy region 5–40MeV is the pr

of the isotopically dependent photonuclear gian

nance cross section, peaking in a low-Z targ

example 12C at 23MeV and for a high-Z target s
235U at 12.2MeV, amounting at peak to 5.9% and

of the total ‘‘electronic’’ cross section for thes

nuclides, respectively. This photonuclear cross s

information was taken from Hubbell (1969), Tabl

supplied by E.G. Fuller. More detailed and exha

photonuclear cross section data can be obtained

Dietrich and Berman (1988).

This complicating factor, however, stimula

number of high-accuracy total attenuation coef

measurements in regions from a few MeV up to

tens of MeV, for example the works Ahrens et al. (

Gimm and Hubbell (1978), Gurevich et al. (198

Sherman et al. (1980, 1985, 1987), Sherman and

(1981, 1983), Sherman and DelBianco (1988)

primary objective of these measurements was to

and evaluate the photonuclear giant resonance

sections. However, as a secondary objective, the

able pair and triplet theoretical cross sections

intermediate energy region could also be tested

example, these measurements, treating the elec

cross sections as a baseline under the photonuclea

section resonance peak, suggested that the pa

triplet cross sections tabulated by Hubbell (196

used also by Storm and Israel (1970) were 1%, 2%

5% too low for Cu, Sn and Pb, respectively, for 1

incident photons. On the other hand, these me

ments were found to be in excellent agreement w

Hubbell et al. (1980) calculated and tabulated

electronic cross sections above, below and unde

the photonuclear resonance peaks.

A notable set of total attenuation coefficient me

ments between the pair threshold and photon

main peak was that of Henry and Kennett (1971

used (n,g) photons from reactor neutrons to dedu

production cross sections in W, Pb and U from 1.

10.827MeV, obtaining good agreement with a

empirical formula of Øverbø et al. (1968). Othe

attenuation coefficients, extending well above the

nuclear peak region, are indexed and graph

comparison with theory in Hubbell (1971). Most n

of these, supporting the high-energy theory then a
y
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(1959) at Cornell for 12 elements from H to U, a

10GeV measurements in C and 13.5GeV in Li,

and Pb by Fidecaro et al. (1962) at CERN. Add

total attenuation coefficient measurements in th

production region, beyond the sampling mention

this brief report, are cited and indexed in the surv

Sud (1987) and Hubbell (1994).

Some wide-angle electron–positron pair prod

measurements in C in the region 1 to 2GeV were

at DESY by Blumenthal et al. (1966), Asbury

(1967) and Alvenslaben et al. (1968). More rec

some other measurements have been made at

mediate and extreme high photon energies fo

production aspects other than cross section

Examples of these are the 50 and 100MeV me

ments by Asai and Skopik (1999) of asymmetry ra

pair production and degree of linearly pol

photons, and the measurements by Moore et al.

and Kirsebom et al. (1998) of the enhancement o

production by 5–150GeV photons in the strong c

line fields of tungsten and other targets.

Most recently, Dauvergne et al. (2003) have mea

photon impact ionization of the K shells of Ag (Z

and Au (Z ¼ 79) in the 1-GeV photon energy ran

demonstrate that the triplet cross section is dom

by a new channel called vacuum-assisted photoi

tion (Ionescu et al. 1999). For their source, Dauv

et al. (2003) used high-energy photons generat

Compton backscattering of laser photons from

6GeV electron beam from the European Synch

Radiation Facility (ESRF) at Grenoble. As a che

their experimental technique they also measured

lute e+–e� total (kn+ke) pair production proba

as a function of target foil thickness. They cons

their measured atomic cross sections, 14.2b and

for Ag and Au, respectively, to be in good agre

with the HGØ (1980) tabulated theoretical val

14.70b and 36.90b at 1GeV.
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Soon after Dirac’s (1928a, b) positron predictio

its experimental confirmation by Anderson (1932,

and others, the theoretical probability for the e

n–positron pair production process was quickly

lished by Oppenheimer and Plesset (1933) to hav

dependence on the atomic number Z for a given p

energy. This Z2 dependence was independently

firmed in quantitative cross section calculatio

Nishina et al. (1934) in which (aZ)2 was neglec

comparison with l2, where a is the fine structure co
and l is the quantum number for the azimuthal

function of the hydrogen-like atom, also by Heitl
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treatment they encountered integrals which in g

cannot be evaluated analytically. For the total pai

section, Racah (1934, 1936) derived expressions in

of elliptic integrals which involved no high-e

approximation.

Bethe and Heitler (1934) and Bethe (1934)

developed more-detailed theory, using the Born

approximation [see also Schiff (1949)], which is st

starting point for modern pair and triplet prod

cross section computations, and by Jaeger and H

(1935, 1936) who explored the validity of the

approximation and concluded that it led to good

at extreme high energies. For intermediate p

energies the effects of screening of the nuclear c

by the atomic electrons requires substantial correc

For these corrections, Wheeler and Lamb

developed expressions into which atomic models

as the statistical model of Thomas (1927) and

(1928) could be inserted. Following a lull in theo

activity during World War II, the work by Jost

(1950), examining the recoil of the nucleus in

production, renewed the chain of evolving refinem

White (Grodstein) (1952), in her ground-bre

systematic 10 keV to 100MeV compilation of p

cross sections and attenuation coefficients f

elements H to U plus air, NaI, water and con

drew on the above available pair production theo

models, with some adjustments based on the me

ment data base up to that time. From thr

(1.022MeV) to 2.5MeV White used the non

calculations of Jaeger and Hulme (1936) and

(1936), guided also by Hough (1948a, b), and

10MeV she used the Bethe–Heitler (1934) Born-ap

imation with (Thomas, 1927; Fermi, 1928) scr

included according to the Wheeler–Lamb (1939

mulation. The gap from 2.5 to 10MeV was filled in

graphical interpolation. For the triplet (electron

pair production) cross section she used the Bor

(1947a, b) results from threshold (2.044MeV)

50MeV, beyond which she extrapolated to 100

guided by the Wheeler–Lamb results. These pa

triplet cross sections were incorporated in the Da

(1955) review article.

A further advance in pair production theor

the work of Davies and Bethe (1952), Beth

Maximon (1954) and Davies et al. (1954) in

integrations were successfully performed witho

Born approximation and its limitations. These adv

were then incorporated in the revised cross s

and attenuation coefficient compilation by G.

Grodstein (Grodstein, 1957) [now using her m

name] for 24 elements H to U plus water, NaI, ca

phosphate (for bone), air and concrete. Of inter

cosmic ray physics also was the work of Migdal

at extreme high photon energies, of the order of 10
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(1969) drew together and presented all of the abov

and triplet cross section theoretical models and e

sions for computations, plus subsequent high-e

results such as by Suh and Bethe (1959), and Ko

et al. (1964). An additional work by Kudryavtsev

(1968) explored the effect of a condensed mediu

angular distributions, in limiting cases reproduci

Bethe–Heitler (1934) spectrum and the Migdal

condensed-medium result. Another notable theo

effort at this time was the work of Deck et al. (1969

derived compact and simple correction terms

order aZ, where a is the fine structure constant E
to the Bethe–Heitler formulae for the pair prod

cross section in an unscreened point Coulomb fie

Incorporating the above theoretical inform

where applicable, plus using the simple, rapidly c

ging Born-approximation expressions by Ma

(1968) for low and high energies, respectively, d

from the Racah (1934, 1936) results, Hubbell and B

(1965) and Hubbell (1969) [NSRDS-NBS 29] up

the White-Grodstein (1957) compilation, extendi

energy range up to 100GeV. Other refinements

Hubbell (1969) nuclear-field pair production theo

evaluations, beyond the Grodstein work, were the

screening corrections calculated by Sørenssen

1966) using Hartree–Fock–Slater wave function

0pqp0.3, and the Thomas–Fermi model of the

for 0pqp8.0 where q is momentum transfer in mc

Also used was the radiative correction of Mor

Olsen (1965) in the Hubbell (1969) evaluation whic

also interpolated and used by Storm and Israel (19

their all-Z (1–100) widely used compilation.

For the triplet cross section computations fo

above compilation, Hubbell and Berger (1965

Hubbell (1969) [NSRDS-NBS 29] followed Gro

(1957) using the Ghizzetti (1947) and Bor

(1947a, b) expressions, with screening from the W

er–Lamb (1939) formulation, but now modified

correction obtained by Mork (1967) by integrati

Votruba (1948a, b) expressions numerically.

In the decade following NSRDS-NBS 29, up to

the group at Clermont–Ferrand examined v

aspects of pair production theory including the

lomb correction by Roche et al. (1968a, b), Prori

Roche (1974) and Roche and Jousset (1975), a

cross sections by Dugne and Proriol (1970), mol

coherence effects by Proriol and Roche (1972), scr

by Proriol (1972) and Dugne (1976), and an an

continuation to the tip of the positron spectrum

point Coulomb calculation by Dugne and M

(1977). Other important work in this decade in

screening calculations by Tseng and Pratt (1971

application by Fink and Pratt (1973) of F

Sommerfeld–Maue wave functions to obtain diffe

pair production cross sections, and an examinat



polarization correlations by Tseng and Pratt (1974) in
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which they concluded that such correlation

practically independent of atomic-electron screen

Also in this decade up to 1980, the gro

Trondheim provided major pair production fo

tions and sample computations including

unscreened calculations by Øverbø et al. (1973), e

tion of the Coulomb correction at intermediate

by Øverbø (1977), screening corrections for interm

and high-energy photons by Øverbø (1978) an

intermediate and low-energy photons by Øverbø (

Other works in this decade to be mentioned a

screening effect calculations at intermediate and

energies by Borie and Arenhövel (1972), and Tsen

Pratt (1972, 1980) at low energies. Also, Borie

used Furry–Somerfeld–Maue wave functions to

pute Coulomb corrections at medium and high en

From the point of view of the evaluator and

maker for scientific, medical and technological pr

applications, the next major milestone in this pa

triplet cross section evolutionary process was the

to 100GeV, Z ¼ 12100 computation and tabulat

Hubbell et al. (1980) in HGØ. As described in de

HGØ, in these computations, the above various

and corrections to the nuclear-field pair prod

cross section kn, and to the electron-field (triple

production cross section ke, were considered

independent.

For kn from threshold to 5MeV, the re

theoretical models and modifications were

together according to

kn ¼ kBHn kØMO
n

�
kBHn

� �
kBHn � DkBn ðscrÞ
��

þDkTPØn � ðscr; h:o:Þ
��
kBHn

�

in which kn
BH is the Bethe–Heitler unscreened

approximation cross section computed usin

Maximon (1968) expansions, kn
ØMO are the Cou

corrected results of Øverbø et al. (1968), Dkn
B(scr)

exact-Born screening correction from an ela

computation involving the atomic form factor

taken from the relativistic Hartree–Fock compilat

Hubbell and Øverbø (1979), and Dkn
TP-Ø(scr, h.o

the near-threshold Tseng-Pratt (1980) screening c

tions including higher-order effects pointed o

Øverbø (1979).

Above 5MeV, up to 100GeV, the HGØ result

computed according to

kn ¼ kBHn kBHn � DknBn ðscrÞ þ DkTP-Øn ðscr; h:o:Þ
� ����

�DkØn ðCoulÞ
�
½1þ Dðrad:corr:Þ�

in which Dkn
Ø(Coul) is the Coulomb correction

puted from the expressions given by Øverbø (1977

D(rad. corr.) is the Mork–Olsen radiative corr

arbitrarily turned off in HGØ using a sine fu
e
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unphysical results near threshold.

In a somewhat analagous fashion the HGØ ele

field (triplet) pair production cross sections

computed according to

ke ¼ kBGe kHe =k
BG
e

� �
kHe � DkBHe ðscrÞ
� ��

kHe
� �

1:01

in which ke
BG is the Borsellino (1947a, b)-Gh

(1947) unscreened triplet cross section including re

tion, the ratio ke
H/ke

BG uses the Haug (1975, 1981,

results to include the g–e interaction and exc

effects, and the Dke
BH(scr) screening and electron-b

effects were computed according to the Bethe–H

(Wheeler–Lamb) expression, using the non-rela

incoherent scattering functions S(x,Z) compiled by

bell et al. (1975) from various available sources, a

triplet radiative correction factor 1.01, as advis

Mork (1967), is taken as this constant value ov

entire energy range.

The HGØ computed tabulation of kn and ke, su
together with the incoherent and coherent scat

cross sections and the atomic photo effect, have

shown to be in close agreement with measureme

the photonuclear region by Gurevich et al. (1980

Sherman et al. (1980, 1985, 1987) Sherman and

(1981, 1983), Sherman and DelBianco (1988),

considerable improvement, for high-Z materials

the 1969 values by Hubbell (1969) and Storm and

(1970) which appear to be as much as 4% low f

highest Zs in this energy region.
-

e

-

e

te

)

f

e

c-

y

e

Þ

-

d

n

n

The formulations used by Hubbell et al. [HGØ]

might yield more accurate values of the pair and

cross sections if the screening effects calculations

were repeated using the relativistic Hartree–Fock–

modified atomic form factors F(x,Z) compute

tabulated by Schaupp et al. (1983), and for ke usi
relativistic Dirac–Hartree–Fock incoherent scat

functions S(x,Z) computed and tabulated by K

(1998).

Maximon and Gimm (1981) provided new

simplified expressions for the recoil distributi

triplet production, from which Gimm (1982), usi

same Hubbell et al. non-relativistic S(x,Z) values a

in HGØ (1980), recomputed ke for all element

12100 and all energies above 10MeV, presenti

results compactly in the form of 7-parameter polyn

fits. Also, Haug (1985) re-examined the energ

angular distributions of electrons in triplet produ

refining and simplifying the expressions of Jar

Mork (1973). More recently, Haug (2004) has in

gated the production of electron–positron pairs in
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(triplet, ke) and nuclei (kn), of interest in astrophy
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2 (1.022
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et al. 1996 and the references therein). See als
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Preliminary examination and evaluation of the

able old and new treatments, experimental

Sherman et al., 1980, 1985, 1987; Sherman and E

1981, 1983; Sherman and DelBianco, 1988; Gurev

al., 1980; Dauvergne et al., 2003) and theor

suggests that new calculations are advisable, b

dramatic changes in recommended cross sectio

anticipated, likely 2–3% at most. However, it is ob

that new computations, beyond HGØ (1980), will

be a ‘‘witch’s brew,’’ combining interdependent t

tical models, effects and corrections, a worthy cha

for the next table-maker of high-energy photon

sections and attenuation coefficients to serv

medical, industrial and other user communitie

require such data.
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