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Abstract

In the last few years it has been established that the connectivity distribution of the large
real-world networks often follows the power-law, i.e., they are scale-free networks. In this article
stochastic models leading to scale-free network are considered and a model close to them is
proposed. Deterministic models for creating scale-free networks with given nodes (static model)
are demonstrated. A characteristic of graphs, which could be used for determining the scale-free
topology of networks, is suggested.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Networks are used extensively to study and describe topologically complex real-world
systems: social networks, the World-Wide Web, the system of co-authorship in the
scienti9c community, etc. The beginning of the study of topology of the complex
networks started from the random graph theory of Erdos and Renyi ER in Ref. [1],
followed by the small-world model of Watts–Strogatz [2]. Recent advances in the
theory of complex networks by Barabasi (and his co-authors) in Refs. [3–8] led to the
introduction of preference and growth as elements of creating scale-free networks. In
Ref. [9] Dorogovtsev and Mendes have proved that aging (preference growth based on
the age of nodes) can also lead to scale-free networks.
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In the Erdos ER network the nodes are connected randomly and all nodes have the
same probability to be connected. Barabasi and Albert in Ref. [3] have suggested a
preference attachment as a part of the network model (BA). At each step a new node
is created and linked to the old nodes with probability proportional to the number of
links each node already has. In this case we have a preference function of connection
to node “i” Pr(BA)(i) = Ki, where Ki is the number of connections to node i. For
consistency we can assume that the Erdos ER network is created using a preference
function which is a constant (all nodes have the same, given in advance, probability to
be connected), i.e., the function using to link the nodes is Pr(ER)(i) = 1. Dorogovtsev
et al., in Ref. [10] have introduced another model DM with linear preference function
Pr(DM)(i) = Ki + D, where D is a constant (D¿ 0).
The goal of this paper is to present a network created using a diHerent preference

function, deterministic static models of scale-free networks and a property, which could
be characteristic of scale-free networks.

2. Two-levels network model

We will describe the 2-levels network model. Let us consider the collaboration graph,
i.e., the network presenting co-authorship (see Ref. [7]). It is true that each author
prefers co-authors with more links (publications). But it is also true that the quality of
the links matter. Authors with more respected co-authors will be preferred to authors
with the same number of links but co-authoring with authors having less links. In
Fig. 1 author 1 will be much more preferable than author 2 (in spite of the fact that
they both have 5 publications).
That is why it is worth considering a model where the preference function is the

sum of links of a node plus the sum of links of all nodes connected to it, e.g. to
use the formula Pr(i) = Ki +

∑
Kj. This preference function (we can call this model

“2-levels” model) has advantages—it takes into consideration the quality of links. But
it also has disadvantages—it values in the same way the publications of the author as
publications of his co-authors.
In Fig. 2 authors 1 and 2 have the same preference function equal to 12. If we

have to choose a co-author the obvious choice will be author 1 (with 6 publications)

Fig. 1. Co-authorship preference. Author 1 is more preferable as a co-author than author 2.
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Fig. 2. Co-authorship preference. Author 1 is more preferable as a co-author than author 2.

compared to author 2 (with only 2 publications). To take this into account we change
the preference function of the 2-levels model to Pr(2L)(i)=Ki+C:

∑
Kj. In the formula

the sum is on all nodes j connected to node i and C is a coeKcient: C ∈ [0; 1]. When
C=0 the preference of the 2-levels model (2L) is equal to the scale-free BA preference
function. When C = 1 we receive the 9rst suggested formula. All the test results with
model 2L, shown later, will use coeKcient C equal to 0.5.

3. Preliminary tests

The natural question is what is the topology of 2-levels networks? Is the behavior
of the 2L model similar to random ER networks or similar to scale-free networks? To
answer these questions we have run experiments to study the probability P(K) of a
node having exactly K links.
Fig. 3 uses logarithmic scales to present the P(K) as a function of K for a random

ER network and networks generated by using BA and the 2L preference functions. The
results show that the 2L model is closer to the BA model.
We used the model with linear preference function DM to 9nd the topology of the 2L

networks. We compared the hubs of the networks (the nodes with the maximal number
Kmax of links). The maximal connectivity for the random ER model is substantially less
than those for other models (K (ER)

max ¡ 0:15 K (BA)
max ) with the same size (nodes and links).

Comparing statistically the maximal connectivity for the BA model, the 2L model with
C = 0:5 and linear preference DM model with D= 4 (with the same number of nodes
and links) we have received:

K (DM)
max ¡K (2L)

max ¡K (BA)
max : (1)

Networks with the same number of nodes (up to 6000) and 2 links for each new node
are generated, using the 3 models. The maximal number of links for 2L is statistically
between the BA model and the linear preference model. The linear regression of the
numerical results gives K (DM)

max ≈ 0:55 K (2L)
max and K (BA)

max ≈ 1:4 K (2L)
(max).

Condition (1) is a clear indication that the 2L model is closer to BA models than
to random models—the probability of having a node with n-links for the 2L model
is between two power-law functions and it is substantially greater than exponential
functions.
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Fig. 3. Connectivity distribution for random, scale-free and 2-levels models. All three graphics use logarithmic
scales.

4. Relationships between network models

To 9nd more about the 2L topology we will compare the 2L network model with
the well-known models. Let us start initially with m0 nodes and m0 links, which form a
cycle. At each step we create a node, connecting it randomly to the “m” (m6m0) old
nodes (following the preference function). We use initially connected nodes because
we want (for easier comparison) all the models to be in the same conditions. If we
start models 2L and BA with unconnected nodes then the nodes, which after the 9rst
step are unconnected, remain unconnected—their probability for connection is 0. At
any given moment “t” (after “t” steps) there are (m0 + mt) links (edges) connecting
(m0 + t) existing nodes.
The random ER network model is a non-growing model. It starts with a 9xed number

of nodes (“n”) and then they are connected with probability “p”. We could assume
(for the purpose of this section) that a given ER network with “n” nodes and “k” links
(probability of connection p = 2k=n(n − 1)) is received by a “growth” process with
each new node connected to k=n nodes. This approximation for the ER model could
work for larger size networks because of the independent probabilities for connecting
the diHerent nodes.
The probability of connecting to one particular node (for all randomly generated

networks) is proportional to its preference function. To receive the probability functions
we have to normalize the preference functions. For the approximation of the random
ER model we have Pr(ER)(i) ∼= 1 and the probability function is

P(ER)(i) =
1∑
1
=

1
m0 + t

: (2)

For BA model probability we receive

P(BA)(i) =
Ki∑
Kj

=
Ki

2m0 + 2mt
: (3)

For DM model the probability function is

P(DM)(i) =
Ki + D∑
(Kj + D)

=
Ki + D∑
Kj +

∑
D

=
Ki + D

2m0 + 2mt + (m0 + t)D
: (4)
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To calculate the probability for the 2L model we will use the following notations: V
is the set of all nodes of the graph, E is the set of all edges of the graph, (i; j) is the
edge connecting nodes i and j. Then the probability is proportional to the preference
function Pr(2L)(i) = Ki + C

∑
(i; j)∈E Kj. To calculate the probability function we have

to calculate the sum:

∑
i∈V


Ki + C ∑

(i; j)∈E
Kj


 =

∑
i∈V

Ki + C
∑
i∈V

∑
(i; j)∈E

Kj :

For the second part of the sum we have: each node j contributes to the sum its
connectivity Kj exactly Kj times. This could be expressed by

∑
i∈V

∑
(i; j)∈E

Kj =
∑
j∈V

∑
(i; j)∈E

Kj =
∑
j∈V

Kj
∑

(i; j)∈E
1 =

∑
j∈V

KjKj =
∑
j∈V

K2
j :

For the total sum we receive:
∑

i∈V Ki +C
∑

i∈V K
2
j . The probability function for the

2L model is

P(2L)(i) =
Ki + C

∑
(i; j)∈E Kj

2m0 + 2mt + C
∑

j∈V K
2
j
: (5)

Let us assume that at moment “t” all models have generated the same networks
(this is true at least at the beginning t = 0). How do the connection probabilities for
the diHerent models relate? At any moment “t” the average number of connections is
(2m0 + 2mt)=(m0 + t). Let us consider the most connected node “Im” of the networks.
For Im: KIm¿ (2m0 + 2mt)=(m0 + t) is true. From here (see Appendix A) we have

P(ER)(Im)6P(DM)(Im)6P(BA)(Im) : (6)

Because of the diKculties calculating second-level connectivity instead of
∑

(Im; j)∈E Kj
we will use the average connectivity for the rest of the nodes (without Im): (2m0 +
2mt − KIm)=(m0 + t − 1). In Appendix B the following is proved

P(ER)(Im)6P(2L)(Im)6P(BA)(Im) : (7)

Inequality (7) is true only statistically (or on average) because instead of the real
second-level connectivity we have used its average value. There could be a moment t
and a graph for which the above is not true.
Let us consider the preference functions of DM and 2L models (Pr(DM)(i) =Ki +D

and Pr(2L)(i) = Ki + C:
∑
Kj). With constants D and C equal to zero both models

transform into the BA model. With increase in the constants both preference functions
move towards ER preference function. With the right proportion of C and D (for
every D we could 9nd a small enough C) we could write for the most connected
nodes

P(DM)(Im)6P(2L)(Im)6P(BA)(Im) : (8)
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More precisely condition P(DM)(Im)6P(2L)(Im) is equivalent statistically (or on
average) to the following conditions:

A1D¿A2C + A3CD; where coeKcients A1; A2; A3 are

A1 = (m0 + t − 1)
∑
j∈V

(KIm − Kj)¿ 0 ;

A2 = KIm


∑
j∈V

Kj(KIm − Kj) + (m0 + t)
∑
j∈V

K2
j −

∑
j∈V

Kj
∑
j∈V

Kj


¿ 0 ;

A3 =
∑
j∈V

(Kj − KIm)((m0 + t − 1)Kj − KIm)6 0 :

If A2 + A3D6 0 then condition (8) is true for every C¿ 0. If D¡ − A2=A3 then
A2 + A3D¿ 0 and condition (8) is true if C satis9es

C6A1D=(A2 + A3D) :

The exact conditions for coeKcients C and D which are necessary for (8) to be true
will be discussed in a future paper.

5. Characterization of the networks using dual graphs

We will introduce a characteristic of a graph, which could play a role in describing
real networks. For a given graph G we create its dual (edge-dual) graph G′ in the
following way: for each edge (link) of G we create a vertex (node) of G′; two nodes
of G′ are connected if their corresponding links in G have a common node. For graph
G′ we calculate its average connectivity—twice the number of edges divided by the
number of vertexes. This number (which could be called “dual connectivity”) can
characterize graph G.
Why do we think that dual connectivity can play a role in characterizing real net-

works? The real networks are characterized with the existence of hubs (nodes with
very high connectivity).
Let us calculate the dual connectivity for some types of graphs:

• Chain (graph with n vertexes and n − 1 edges, no vertex has more than 2 corre-
sponding edges) with n nodes has a dual graph which is also a chain with n − 1
nodes and the dual connectivity is [2(n− 2)]=(n− 1)¡ 2.

• Cycle (connected graph with n vertexes and n edges, each vertex has exactly 2
corresponding edges, there are no subcycles) with n nodes has as dual graph a cycle
with n nodes and the dual connectivity is 2.

• Star (hub) with n+ 1 nodes (graph with n+ 1 vertexes and n edges, each vertex is
connected to one central vertex) has a dual graph, which is a complete graph with
n nodes and [n(n− 1)]=2 links. The dual connectivity of the star is (n− 1).
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Fig. 4. Dual connectivity. Statistical results for diHerent sizes and models of networks.

• Complete graph (graph with n nodes and [n(n− 1)]=2 links) has a dual graph with
each node connected to exactly 2(n− 2) so the dual connectivity is 2(n− 2).

It is clear that hubs and nodes with higher connection can ensure the increase of the
dual connectivity with the increase of the size of the network. On the other hand lack
of such structures will keep the dual connectivity constant.
To study the behavior of the dual connectivity we conduct a number of tests.

We started with graphs with 3 nodes all connected and generated random networks
using preference functions following the random ER, BA, 2L and the linear preference
DM models. On each step we added a node with 2 random links. The average results
are given in Fig. 4.
As we can see the dual connectivity is increasing for scale-free models and stays

almost constant for the Erdos random network.
To support the statement that the dual connectivity is increasing in scale-free net-

works we will prove it for the deterministic model of Ref. [6]. At each step “k” the
most connected hub of the model is connected to 2k+1−2 nodes, which means that the
dual graph will have a complete subgraph with 2k+1−2 nodes and (2k+1−2)(2k+1−3)=2
edges. The total number of edges in the graph [6] at step “k” is 2:3k − 2k+1, i.e., the
dual graph will have the same number of nodes. Hence the total connectivity of the
dual graph will be greater than

(2k+1 − 2)(2k+1 − 3)
2:3k − 2k+1 =

(1 − 1
2k )(1 − 3

2k+1 )
1
2

3k

4k − 1
2

1
2k

= 2
(1 − 1

2k )(1 − 3
2k+1 )

( 34 )
k − ( 12 )

k
:

With increasing of total steps k the denominator ( 34 )
k − ( 12 )

k decreases and hence the
dual connectivity increases.

6. Examples of deterministic models for a scale-free network with (xed nodes

The model we are going to describe is a deterministic static model, which could
be constructed implementing the rule “each set of k nodes must be controlled by a
node”—“k-control” network model. Let us start with n nodes. From these nodes we
assign n=(k+1) to be responsible for controlling the others (the division here is integer,
we pick the biggest possible integer number not greater than the fraction). The rest
n− n=(k +1). nodes are said to be in 1-level. Each node from the controlling nodes is
connected to k of the nodes from 1-level. The last controlling node could be connected
to more than k nodes (but no more than 2k: k nodes plus the remainder of the integer
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Fig. 5. “2-control” networks with 6, 9 and 12 nodes.

Fig. 6. “2-pyramid” networks with 4, 7 and 10 nodes.

division). From the nodes of 2-level we pick some nodes to control the others, i.e.,
we create 3-level nodes. In the 3-level we have (n=(k + 1))=(k + 1) nodes. Each node
of 3-level is connected to k subordinate nodes from 2-level (the last node could have
more connections) and k(k+1) (or more) corresponding subordinate nodes of 1-level.
We continue this way until the upper level has less than k+1 nodes. Each node, from
any level higher than 1, is connected to all of its subordinates—direct or remote.
In Fig. 5 “2-control” networks are shown (the numbers correspond to the levels of

the nodes).
Let us consider another model, which could be called the “k-pyramid” model. Let

us start with “n” nodes and we want to have hubs, connected to km nodes (n and k
are given integer numbers). First we are going to describe a complete k-pyramid with
“p” levels. (See Fig. 6).
The basis level (or 1-level) consists of kp−1 nodes. The second level (or 2-level)

has kp−2 nodes and each node of 2-level is linked to k nodes from 1-level (no 1-level
node is connected to 2 nodes of 2-level). On the 3-level we have kp−3 nodes and each
of them is connected to k2 nodes of 1-level (no 1-level node is connected to 2 nodes
of 3-level). Actually, for each 3-level node, we select k nodes of 2-level and connect
their corresponding nodes from 1-level to the node. We continue this way until we
connect the only node of p-level to all nodes from 1-level. The k-pyramid with “p”
levels has 1 + k + k2 + · · · + kp−1 = (kp − 1)=(k − 1) nodes.
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To create the graph with “n” nodes we follow the steps A–D:

(A) First we have to 9nd “p” -the number of levels of k-pyramid we are going to
implement. Let “p” be the biggest number satisfying the condition

1 + k + k2 + · · · + kp−16 n :

(B) We will start building k-pyramids. We have enough material (nodes) to build
one complete k-pyramid with “p” levels. If we have enough material to build
more than one pyramid with “p” levels, i.e., the condition is satis9ed, s(1 + k +
k2 + · · · + kp−1)6 n, for s¿ 1 we build s k-pyramids (the maximal number of
possible k-pyramids is k).

(C) If we do not have enough nodes to build the next pyramid with “p” levels and
we still have nodes left, we build pyramids with “p−1” levels or “p−2” levels,
etc. until all nodes are in pyramids with diHerent levels.

(D) All nodes from 1-level we connect with a cycle with no subcycles—each node is
connected to 2 other nodes from 1-level.

Now we can calculate the connectivity distribution probabilities. For easy calculation
we will assume that n= 1+ k + k2 + · · · + kp, i.e., we have built a complete (p+ 1)
levels pyramid. Let us consider (s + 1)-level of the pyramid. Each of its nodes is
connected to ks nodes (from 1L) and there are exactly kp−s nodes in this level. From
here we can receive

P(ks) =
kp−s

n
=

kp−s

1 + k + k2 + · · · + kp =
kp−s(k − 1)
kp+1 − 1

=
kp(k − 1)
kp+1 − 1

1
ks
:

As [kp(k − 1)]=(kp+1 − 1) is a constant (not depending on “s”) we have received:
P(ks) ≈ 1=ks, i.e., the connectivity distribution follows the power-law with degree 1.
We will calculate the dual connectivity using again complete pyramid with n= 1+

k + k2 + · · ·+ kp. The pyramid has kp links between 1-level nodes, k:kp−1 = kp links
between 2L nodes and 1L nodes, k2:kp−2 = kp links between 3L and 1L nodes,: : :, kp

links between (p+1)-level node and 1L nodes. The total number of links is (p+1)kp,
hence it is the number of nodes in the dual graph.
Each node from 1L has (2+p) links, which means that each edge between 1L nodes

has 2(p+1) adjacent edges, which means 2(p+1) links in the dual graph. Each edge
connecting 2L node and 1L nodes has (k−1)+(p+1)=k+p adjacent edges. Each edge
connecting 3L node and 1L nodes has (k2 −1)+(p+1)=k2 +p adjacent edges. Each
edge connecting the (p+1)-level node and 1L nodes has (kp − 1)+ (p+1)= kp+p
adjacent edges. The total links in the dual graph is

T = kp(2p+ 2) + kp(k + p) + kp(k2 + p) + · · · + kp(kp + p)

= kp
(
1 + p(p+ 2) +

kp+1 − 1
k − 1

)
:

For the dual connectivity we receive

T
(p+ 1)kp

= (p+ 1) +
kp+1 − 1

(k − 1)(p+ 1)
;
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which means that the dual connectivity for the k-pyramid increases with the increase
of the number of nodes.
Both versions of the deterministic models are with similar characteristics, which

mean that the 9rst version is also scale-free. The process of constructing the graph for
the 9rst version is without elements of growth, i.e., it is static (the second model could
be interpreted as a result of the growth of k-pyramids and the increase of the number
of the levels).

7. Conclusions

In this article we have proposed a stochastic model for generating networks—2L
model. The 2L models could be found in the real world (we even think that the 2L
model represents co-authorship networks better than the BA model). An idea similar to
the 2L idea is used for Google’s page-ranking procedure. Although we have proved that
the 2L connectivity function is between two scale-free functions (for some coeKcients
C) the following questions remain: What is the topology of the 2L networks? How
does the topology of the 2L models reacting to the changes of their coeKcients?
Next we have suggested a property of graphs—dual connectivity. This characteristic

of graphs increases when the network has hubs (or nodes with high connectivity).
The dual connectivity (or “normalized dual connectivity”—dual connectivity divided
by the connectivity of the original graph) could be used as indicator for BA topology
of networks.
We have also created deterministic static models for scale-free networks. It extends

earlier works where growth (preferential or aging) is an essential element of the scale-
free networks creation. The interesting fact for the models is that they are created for
a given number of nodes, which could be an indication that the scale-free topology is
not necessarily related to the growth of the network.
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Appendix A. Proof of inequalities (6)

Starting from inequality of connections for the most connected node “Im” of the
networks, KIm¿

2m0+2mt
m0+t

, we have

KIm(m0 + t)¿ 2m0 + 2mt ;

KIm(m0 + t)D + (2m0 + 2mt)KIm¿ 2m0D + 2mtD + (2m0 + 2mt)KIm ;
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KIm [2m0 + 2mt + (m0 + t)D]¿ (2m0 + 2mt)(KIm + D) ;

P(BA)(Im)¿P(DM)(Im) :

From the same inequality we get

KIm(m0 + t)¿ 2m0 + 2mt ;

KIm(m0 + t) + D(m0 + t)¿ 2m0 + 2mt + D(m0 + t) ;

(KIm + D)(m0 + t)¿ 2m0 + 2mt + D(m0 + t) ;

P(DM)(Im)¿P(ER)(Im)

which proves (6):

P(ER)(Im)6P(DM)(Im)6P(BA)(Im):

Appendix B. Proof of inequalities (7)

Instead of
∑

(Im;j)∈E Kj we will use the average connectivity for the rest of the nodes
(without the most connected node “Im”): (2m0 + 2mt − KIm)=(m0 + t − 1).
Using the following inequalities we obtain

KIm(m0 + t)¿ 2m0 + 2mt ;

(2m0 + 2mt)(m0 + t) − 2m0 − 2mt¿ (2m0 + 2mt)(m0 + t) − KIm(m0 + t) ;

(2m0 + 2mt)(m0 + t − 1)¿ (2m0 + 2mt − KIm)(m0 + t) ;

2m0 + 2mt − KIm
m0 + t − 1

6
2m0 + 2mt
m0 + t

;

i.e., the average connections of the rest of the nodes (without Im) are less than the
average connections for the whole network. From here we get∑

(Im; j)∈E
Kj6

∑
(Im; j)∈E

2m0 + 2mt
m0 + t

6KIm
2m0 + 2mt
m0 + t

: (9)

The above inequalities are true only statistically (or on average).
Now we can estimate the probability function for the 2L model. Let us start from

the inequality between arithmetic and quadratic averages and use (9)

∑
j∈V

K2
j =(m0 + t)¿


∑
j∈V

Kj=(m0 + t)




2

;

∑
j∈V

K2
j ¿

(2m0 + 2mt)2

m0 + t
;
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KIm
∑
j∈V

K2
j ¿KIm

(2m0 + 2mt)2

m0 + t
= (2m0 + 2mt)

(
KIm

2m0 + 2mt
m0 + t

)

¿ (2m0 + 2mt)
∑

(Im; j)∈E
Kj :

Using C¿ 0 we get

KIm(2m0 + 2mt) + C:KIm
∑
j∈V

K2
j ¿ (2m0 + 2mt)C

∑
(Im; j)∈E

Kj + KIm(2m0 + 2mt) ;

KIm


(2m0 + 2mt) + C

∑
j∈V

K2
j


¿ (2m0 + 2mt)


KIm + C ∑

(Im; j)∈E
Kj


 ;

P(BA)(Im)¿P(2L)(Im) :

To prove the other part of inequality (7) we will start with the inequality∑
j∈V

(KIm − Kj)((m0 + t − 1)Kj − KIm)¿ 0 ;

which is true because KIm is the most connected node and its connectivity is less than
m0 + t − 1. From here we get∑

j∈V
(KIm − Kj)(m0 + t − 1)Kj −

∑
j∈V

(KIm − Kj)KIm¿ 0 ;

(m0 + t − 1)
∑
j∈V

KImKj − (m0 + t − 1)
∑
j∈V

K2
j + KIm

∑
j∈V

Kj − (m0 + t)K2
Im¿ 0 ;

(m0 + t)
∑
j∈V

KImKj − (m0 + t)K2
Im¿ (m0 + t − 1)

∑
j∈V

K2
j ;

(m0 + t)KIm


∑
j∈V

Kj − KIm


¿ (m0 + t − 1)

∑
j∈V

K2
j ;

(m0 + t)KIm
2m0 + 2mt − KIm
m0 + t − 1

¿
∑
j∈V

K2
j ;

(m0 + t)
∑

(Im; j)∈E
Kj¿

∑
j∈V

K2
j : (10)

Using (10) with C¿ 0 we get

C


∑
j∈V

K2
j − (m0 + t)

∑
(Im; j)∈E

Kj


6 06

∑
j∈V

(KIm − Kj) ;

∑
j∈V

Kj + C
∑
j∈V

K2
j 6 (m0 + t)C

∑
(Im; j)∈E

Kj + (m0 + t)KIm ;

P(ER)(Im)6P(2L)(Im) :
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Inequality (7)

P(ER)(Im)6P(2L)(Im)6P(BA)(Im)

is true only statistically (or on average) because instead of the real second-level con-
nectivities we have used their average values.
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