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a b s t r a c t

This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel
performance by coupling a mesoscale irradiated microstructure model with a finite element fuel perfor-
mance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit
manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solu-
tion algorithm, microstructure-influenced material parameters are calculated by the mesoscale model
and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a
dynamic fitting technique is implemented to smooth roughness in the calculated material parameters.
5H10
4S05
4A30

The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model,
INL’s BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and
the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated
microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal
parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multi-
scale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed
in reactors.

Published by Elsevier B.V.

. Introduction

As light water reactor fuel undergoes irradiation, the neutron
ux and temperature gradient cause fission products and poros-

ty to form and migrate within the pellet (Olander, 1976). This
ocal restructuring of the fuel microstructure results in significantly
ifferent local material properties, including thermal conductiv-

ty, elastic constants and density (Allison et al., 1993). Ultimately,
hese properties impact power generation and fuel pellet/cladding
nteraction, which is a consideration in fuel failure.

Fuel performance codes attempt to consider the effect of
icrostructure evolution on the macroscale fuel behavior to assist

n the design of reactors. These models, such as those seen in Allison
t al. (1993), are typically based on empirical fits of experimen-
al data and do not explicitly model the microstructural changes.
herefore, while they can accurately interpolate within understood
onditions they cannot accurately extrapolate to new conditions.
phenomenological model of reactor fuel must directly consider
icrostructural changes to accurately describe the macroscale

ehavior.

∗ Corresponding author.
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aston), Cody.Permann@inl.gov (C. Permann), Paul.Millett@inl.gov (P. Millett),
len.Hansen@inl.gov (G. Hansen), Dieter.Wolf@inl.gov (D. Wolf).

Various models have been developed that predict radiation-
induced microstructural evolution. These models represent the
microstructure at the mesoscale, resolving grains, voids and bub-
bles but not individual atoms nor point defects. Tikare and Holm
(1998) and Oh et al. (2009) use the Monte Carlo Potts model to
describe the evolution of microstructure with existing voids and
bubbles. Rokkam et al. (2009) develop a phase field model to predict
the nucleation and growth of voids during irradiation. Mesoscale
models also provide a mechanism for predicting the effect of irradi-
ation on material properties such as thermal conductivity (Millett
et al., 2008). However, the computational expense of employing
a mesoscale approach to model a macroscale fuel pellet is pro-
hibitively large, due to the large number of degrees of freedom
involved.

The effect of radiation-induced microstructural evolution can be
considered at the macroscale by coupling mesoscale calculations to
a finite element (FE) fuel performance code. Because FE discretiza-
tions only consider the material behavior at integration points, a
coupled multiscale model need only resolve the microstructure at
these specific points, thus reducing the computational cost of the
simulation significantly. Linking between spatial scales is relatively
common (Bochev et al., 2004; Yu and Fish, 2002; Michopoulos et al.,
2005). However, linking mutually dependent (or coupled) multi-
scale simulations is more challenging, since operator splitting may
result in both stability and accuracy issues (Ropp et al., 2004; Ropp
and Shadid, 2005).
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In the approach proposed here, the Jacobian-free Newton Krylov
(JFNK) method (Knoll and Keyes, 2004) is utilized to solve the cou-
pled nonlinear problem. The mesoscale model is solved within the
JFNK function evaluation to provide closure for the FE fuel perfor-
mance code. The FE model provides the current state conditions for
the solution of the mesoscale model, which then returns a required
value (Beaudoin et al., 1993; Habraken and Duchene, 2004). Cou-
pling the scales within the JFNK function evaluation solves both
problems simultaneously and in a self-consistent fashion. It also
provides strong convergence of the composite solution, at the cost
of expensive function evaluations. The concept of using JFNK in this
manner to bridge scales was first proposed by Knoll et al. (2009) to
accelerate reactor neutronics calculations.

This paper proposes a general methodology to couple a
mesoscale irradiated microstructure model with a FE fuel perfor-
mance code, stressing the numerical aspects of the scale-bridging
approach. The approach is demonstrated on a simplified model
of heat conduction in an irradiated fuel pellet. In this model, the
Idaho National Laboratory’s BISON fuel performance code1 is used
to determine the temperature throughout the pellet using a paral-
lel preconditioned JFNK algorithm, while a phase field mesoscale
model (Rokkam et al., 2009) calculates the thermal conductiv-
ity in an irradiated microstructure at each integration point. To
the authors’ knowledge, this paper details the first application of
parallel preconditioned JFNK as a means of bridging macro- and
mesoscale calculations for reactor fuel performance.

This work begins in Section 2 by summarizing the multiscale
model methodology, discussing the approach and the numerical
requirements. Section 3 demonstrates the approach on a simplified
model of a fuel pellet. First, the simple model is presented where
the macroscale problem description, the mesoscale model, and the
coupling approach is summarized. Initial results from the multi-
scale model are then presented. Section 4 concludes the paper and
suggests future work.

2. Multiscale model methodology

To represent the effect of the evolving microstructure on the
behavior of an irradiated fuel pellet without resolving the entire
pellet at the mesoscale, a FE fuel performance code is fully coupled
with a mesoscale irradiated microstructure model. The fuel pellet
is described by the FE model, including the geometry and bound-
ary and initial conditions, while the mesoscale model resolves the
microstructure at the integration points on the FE mesh.

To define the multiscale problem, the domain is divided into
coarse and fine spaces. The coarse space is the engineering-scale
domain that spans the complete problem geometry, while the
fine space, i.e., the mesoscale model, exists only at the inte-
gration points. Further, the spatial projection of fine space is
assumed to be of measure zero in the coarse space. Given current
operating conditions from the macroscale, such as temperature,
radiation dose and dose rate at a specific time t, the mesoscale
model evolves the microstructure to arrive at the current time.
Rather than calculate average values such as stress or temperature
directly at the mesoscale, the mesoscale model provides effective
macroscale material parameters determined by testing the current
microstructure, e.g., the average temperature is not calculated at
the mesoscale, but rather the effective thermal conductivity. The
system of equations defining the problem can be summarized with
the residual equation

F(x, pe) = 0, (1)

1 BISON is built upon INL’s MOOSE: a parallel, nonlinear, computational framework
(Gaston et al., 2009).

where F is the residual vector, x is the solution vector and pe is a
vector containing all the effective material properties determined
by the mesoscale model.

The microstructure, and therefore the material parameters, vary
spatially at the mesoscale. However, this mesoscale spatial varia-
tion is negligible at the macroscale, giving a single effective material
parameter in the coarse space. The appropriate method with
which to calculate an effective material property over a mesoscale
microstructure depends on the property. For example, the effective
density is equal to the mean mesoscale density, while the effec-
tive thermal conductivity is calculated by testing the ability of the
microstructure to conduct heat in specific directions (Millett et al.,
2008).

The nonlinear system defined by (1) is solved via Newton iter-
ation. Traditional Newton methods require the Jacobian of the
residual equation, which is not available when the material param-
eters are determined from a mesoscale model. Therefore, the JFNK
algorithm, which does not require the Jacobian, is employed to
solve the system.

Newton methods (including JFNK) are based on a truncated Tay-
lor series

F(x + �x, pe) ≈ F(x, pe) + �x
∂F(x, pe)

∂x
, (2)

in which the higher order derivative terms are neglected. The accu-
racy of this approximation, and therefore the convergence of the
nonlinear solution, improves for small higher order derivatives.
Random noise in the function is of particular concern, since it results
in large higher order derivatives. Both the Potts (Tikare and Holm,
1998; Oh et al., 2009) and the phase field irradiated microstructure
(Rokkam et al., 2009) models can be stochastic, leading to random
noise in the calculated effective material properties pe. The noise is
reduced by increasing the mesoscale domain size, but this strategy
is generally computationally infeasible, as demonstrated in Section
3.3.

As an alternative means of reducing the random noise, a mul-
tidimensional dynamic curve-fitting process is used between the
length scales. Here, using a least mean squares algorithm, all values
of pe calculated by the mesoscale model are fit with a polynomial
surface. The macroscale model uses values obtained from the fit,
pe

fit, where each value calculated by the mesoscale model is used
to refine the fit. The fit is recalculated at the start of each nonlin-
ear iteration, and gradually improves in accuracy as more values are
calculated by the mesoscale model. Further, the dynamic fit records
locations of previously performed mesoscale calculations, allowing
one to economize solution time by reusing previous values if they
are “sufficiently close” to prior calculations. Most importantly, the
polynomial fit provides the required smoothness while still being
based on values calculated by the mesoscale model.

To summarize the algorithm, a fuel pellet is represented with a
macroscale FE model. At each time step, the JFNK algorithm is used
to solve the nonlinear system. During the nonlinear convergence
process, the mesoscale model evolves the microstructure at the
current conditions at each integration point and determines effec-
tive material parameter values pe. These parameters are fit with
a polynomial surface, which provides the parameter values pe

fit to
the FE model. This process is repeated, providing more calculated
values to improve the fit, until the solution converges. The evolved
mesoscale microstructure at each integration point becomes the
initial microstructure at the next time step. See Fig. 1 for a schematic
of the proposed multiscale methodology.

3. Simplified multiscale fuel pellet model

To demonstrate the multiscale approach summarized in the pre-
vious section, a simplified multiscale model of an irradiated fuel
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Fig. 1. Schematic of the the proposed multiscale methodology. At the current con-
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solution is similarly approximated, where v ∈ Vh is

v(x) =
n∑

j=1

vj�j(x), (5)

which allows the governing residual equations for heat conduction
to be written in weak form as (Newman et al., 2009).

F(T) = (k∇Tk+1, ∇�i) − (Q, �i) = 0. (6)

BISON uses a preconditioned JFNK method (Knoll and Keyes, 2004)
to solve (6). For more detail on the preconditioned JFNK algorithm,
see Knoll et al. (2009).

3.2. Mesoscale model

As a simplified description of nuclear fuel, the radiation-induced
microstructure evolution is represented by the phase field model
developed by Rokkam et al. (2009). As such, the fuel is described as
a generic, single component metal. Collision cascades from ener-
gized particles are assumed to only generate vacancies, neglecting
other point defects. The microstructure evolves within a two-
dimensional square domain with sides l = 1.28 �m defined by the
radial and axial dimensions. The internal pellet temperature varies
radially by approximately 200–250 K on the macroscale. Linearly
scaling the macroscale temperature gradient to the mesoscale
shows that the temperature will only vary by approximately 0.1 K
across the mesoscale domain. Thus, this small mesoscale tempera-
ture gradient is neglected within the model.

In the model, vacancies are represented by a concentration
field cv(r, t) and the void phase is defined by the continuous order
parameter 0 ≤ �(r, t) ≤ 1, where � = 0 in the solid material and
� = 1 in a void. This phase field approach is based on defining a total
free energy functional of the system such that two stable material
phases are defined, the matrix phase (� = 0 and cv = ceq

v ) and the
void phase (� = 1 and cv = 1). The functional is then used to derive
kinetic equations for cv and �. The free energy of the non-uniform
system is defined as

F(cv, �) = N

∫
V

[h(�) Gv(cv) + w(cv, �) + �v(∇cv)2 + ��(∇�)2]dV, (7)

where �v and �� are the gradient coefficients, N is the lattice site
density of the material and h(�) = (� − 1)2(� + 1)2 is a shape func-
tion which varies continuously from 0 to 1. The interfacial energy
contributions are defined by the two gradient terms. The free
energy of the matrix phase Gv is derived in terms of the enthalpic
and entropic contributions of the point defects as

Gv(cv) = Ef
vcv + kbT[cv ln(cv) + (1 − cv) ln(1 − cv)] (8)

with the vacancy formation energy Ef
v and Boltzmann constant kb.

The transition to the zero free energy in the void phase is defined
by the Landau-type functional

w(cv, �) = −A(cv − ceq
v )

2
� (� + 1)(� − 1)2 + B (cv − 1)2 �2, (9)

with coefficients A and B and the equilibrium vacancy concentration
ceq
v ≈ c0

v exp(−Ef
v/kbT).

Following standard procedure in the phase field approach, the
kinetic equations for the evolution of cv and � are

∂cv

∂t
= ∇ · Mv∇ 1

N

∂F(cv, �)
∂cv

+ Sv(r, t), (10)
itions, the mesoscale model determines effective parameter values pe which are
t with a polynomial surface at each nonlinear iteration. The macroscale FE model
btains values of pe

fit
from the latest fit.

ellet is presented. The dished pellet has a diameter of 8.26 mm
nd a height of 6.75 mm. In the simple model, the steady-state tem-
erature profile is determined in the fuel pellet using INL’s BISON
E code for a single nonlinear solution. At each integration point,
he mesoscale phase field model (Rokkam et al., 2009) evolves the

icrostructure at the current integration point temperature and
alculates the effective thermal conductivity. This value is then
sed by the FE model to determine the temperature for the next
onlinear iteration. Both the macroscale fuel pellet representation
nd the mesoscale model of the fuel material are significant sim-
lifications of actual fuel pellet behavior, as the purpose of this
reliminary work is to develop and demonstrate the multiscale
ethodology and not to develop an accurate fuel model.
The engineering and mesoscale models are summarized in Sec-

ions 3.1 and 3.2, respectively, and the coupling between the
odels is discussed in Section 3.3. Section 3.4 investigates the

umerical performance of the model and Section 3.5 presents initial
esults.

.1. Fuel pellet model

Heat conduction within the simplified fuel pellet is defined by

∇ · q − Q = 0 T ∈ ˝,
T = TC T ∈ � C,
n · q = 0 T ∈ � T ∪ � B,
T(t = 0) = T0 T ∈ ˝,

(3)

here T is the internal temperature, the density is assumed
onstant and fission reactions are assumed to generate heat at a uni-
ormly distributed constant rate, Q. In this expression, ˝ denotes
he fuel pellet, � T denotes the top and � B denotes the bottom
oundary of the fuel pellet, and � C denotes the outer circumfer-
ntial fuel pellet boundary such that � = � T ∪ � B ∪ � C . The heat
ux q within the pellet ˝ may be written as

= −k∇T, (4)
here k is the isotropic thermal conductivity (Newman et al., 2009).
he heat Eq. (3) in a fuel pellet is discretized using the finite ele-
ent method (FEM). To develop this approximation, the test space
is approximated by Vh using Lagrange finite elements such that

h ⊂ V and Vh = span{�i}n
i=1. The trial space hosting the macroscale

∂�

∂t
= − 1

N
Lv

∂F(cv, �)
∂�

+ Sv(r, t), (11)

where Mv = Dv/(kbT) is the spatially independent vacancy mobil-
ity with the diffusivity Dv = D0

v exp(Em
v /kbT) and Lv is the order
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Table 1
Values for the mesoscale model parameters.

D0∗
v 3620.0 �v 0.5 eV/nm2

c0
v 1.0 �� 1.0 eV/nm2

Em
v 1.0 eV Pcasc 5.0 × 10−5

Ef
v 1.0 eV V ∗

g 500.0
Lv 1.0 C1 0.0375 mK/W
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Fig. 2. The predicted void fraction, or porosity, in an irradiated material using the
parameter values from Table 1 at various temperatures, but identical time and radi-
ation dose. Note that each simulation is conducted using the same random seed in
the pseudo-random number generation. The results show significant increase in the
porosity with increasing temperature above T = 800 K.
A 1.0 eV C2 2.165 × 10 m/W
B 1.0 eV C3 4.715 × 109 WK/m
dt∗ 0.002 C4 16,361 K
t∗
max 150.0

arameter mobility. The stochastic driving force Sv represents the
tochastic increase in the vacancy concentration due to irradiation.
ts value is determined by Pcasc, the probability of cascades occur-
ing within a unit volume per time, and Vg , the maximum rate of
ncrease in vacancy concentration during a time step, i.e.,

v(r, t) =
{

0 if � > 0.8 or R1 > Pcasc

R2Vg if � ≤ 0.8 or R1 ≤ Pcasc
, (12)

here R1 and R2 are random numbers generated uniformly
etween 0 and 1 at each time step and at each grid point. The
ondition that � < 0.8 for Sv(r, t) > 0 ensures that cascades do not
ccur in the void phase. For more information about this model, see
okkam et al. (2009).

For this work, (10) and (11) are uniformly discretized in space
nd solved using an explicit finite-difference approach with for-
ard Euler time-stepping and periodic boundary conditions. The

ystem is solved in reduced units (r.u.) of time,2 such that the
icrostructure evolves for t∗

max = 150.0 r.u. with a time step dt∗ =
× 10−3 r.u. Given a vacancy diffusivity for a specific material, the

ctual time is determined according to

= t∗(10 nm)2

Dv
. (13)

able 1 summarizes the mesoscale model parameter values for the
eneric material used in this work. The values are such that the
on-dimensionalized mobility M∗

v (1100 K) = 1.0.

.3. Multiscale coupling

The microstructure evolution predicted by the phase field model
s temperature-dependent, due to the temperature dependence of
he vacancy equilibrium concentration ceq

v , the vacancy diffusivity
v and the vacancy mobility Mv. Phase field simulations conducted
ith the conditions mentioned in the previous section, for identical

ime and radiation dose, show a significant increase in void fraction,
r porosity, with increasing temperature above T = 800 K, as seen
n Fig. 2. The porosity is higher at higher temperatures because the
acancy mobility is higher, thus accelerating the vacancy migration.
andom scatter or roughness is also evident in the data, due to the
andom radiation source term Sv.

To calculate the effective thermal conductivity over an evolved
icrostructure, the spatially dependent mesoscale thermal con-

uctivity k′(r) must first be determined. To represent the thermal
onductivity in the bulk of the model fuel, a temperature-
ependent expression for the thermal conductivity in UO2 (Lucuta
t al., 1996) is used, i.e.,

1 C3
(

C4
)

bulk =
C1 + C2T

+
T2

exp −
T

, (14)

here the parameter values are given in Table 1. Points at which
he order parameter � > 0.8 are assumed to be in a void and the

2 See Rokkam et al. (2009) for a detailed description of the non-dimensionalization
f the phase field model.
Fig. 3. A schematic of the method used to calculate the effective thermal conduc-
tivity k. k is determined by solving (16) with a constant temperature (Tl = 800 K)
on the left boundary and a constant heat flux (q = 50î MW/m2) applied to the right
boundary.

void conductivity in this simple model is assumed to be that of He
gas, kvoid = 0.152 W/m K. Therefore, the mesoscale thermal con-
ductivity is determined according to

k′(r) =
{

kbulk if � ≤ 0.8
kvoid if � > 0.8

. (15)

The effective thermal conductivity of the mesoscale microstruc-
ture after irradiation is determined with the technique employed
by Millett et al. (2008). In this technique, the ability of the
microstructure to conduct heat in the radial direction is measured
with a virtual test procedure in which the left boundary is held at
a constant temperature Tl and a test heat flux q = qt î is applied
over the right boundary as illustrated in Fig. 3. Periodic boundary
conditions are applied over the top and bottom boundaries. The
temperature field throughout the microstructure is determined by
solving the steady-state heat conduction equation

∇ · (k′(r)∇T) = 0 (16)

using the same grid as that used for the phase field simulations. The
effective conductivity is determined with the expression

k = − qt

∂T/∂x
, (17)

where the derivative is approximated by

¯
∂T

∂x
≈ Tr − Tl

l
(18)

with T̄r the average temperature on the right boundary and l the
side length. At the macroscale, (18) is exact since the mesoscale is
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Fig. 5. The progress of the dynamic curve-fit of the thermal conductivity calculated
by the mesoscale model during the JFNK solution, where (a) is the fit after the first
nonlinear iteration, (b) is the fit after the third iteration, and (c) is the fit after the
fifth iteration. Note that each successive curve-fit considers all values of k calculated
during previous time steps.
ig. 4. Standard deviation of the random scatter in the thermal conductivity, �k̄ ,
etermined by the mesoscale model for various grid sizes. The standard deviation
ecreases with increasing grid size.

easure zero, i.e.,

∂T

∂x
= lim

l→0

T̄r − Tl

l
. (19)

n this work, the values Tl = 800 K and qt = 50 MW/m2 are used,
owever these values are arbitrary and have no effect on the value
f the calculated thermal conductivity.

The random radiation term Sv from (10) introduces random
oise into the mesoscale calculation, as seen in the calculated
orosity (see Fig. 2). To investigate to what extent increasing the
omain size reduces the magnitude of the roughness in the cal-
ulated thermal conductivity, the value of k is computed with the
esoscale model over a narrow band of temperatures (999.9 ≤ T ≤

000.1) using differing spatial domain sizes ranging from 128 ×
28 to 1024 × 1024, keeping the distance between grid points
onstant. The roughness in the mesoscale-calculated value of k is
uantified by calculating its standard deviation.

Fig. 4 shows that the standard deviation decreases with increas-
ng grid size, such that there exists a domain size where the
andomness will no longer impact the convergence rate of the
ultiscale solution. However, given the computational cost of

ncreasing the domain size, this is not a viable means of eliminating
he random noise in the effective thermal conductivity.

As discussed in Section 2, the values of the effective material
arameters are dynamically fitted with a polynomial to eliminate
his random noise. The curve-fit is improved at each nonlinear iter-
tion, as more values are calculated by the mesoscale model. In this
imulation, the effective thermal conductivity at each temperature
re fitted with a fourth-order polynomial. Fig. 5 demonstrates the
rogress of the curve-fit during the nonlinear iteration.

.4. Numerical performance

To investigate the performance of the multiscale model, two
imulations are conducted, one to evaluate the nonlinear conver-
ence and the other the parallel scalability of the approach. The
esoscale calculations employ the parameters from Table 1 to pre-

ict the void formation in the 2-D square of material discretized
ith a 128 × 128 finite-difference grid.

The first simulation considers the pellet with a constant temper-
ture TC = 810 K on the outer circumference and a uniform applied
eat source Q = 200 MW/m3. The pellet is discretized with 720
lements and the temperature distribution throughout the pellet

s calculated using the multiscale model. Fig. 6 shows the strong
onlinear convergence obtained by the proposed multiscale JFNK
pproach on this representative problem.

To evaluate the parallel scalability of the basic scale-bridging
ethodology suggested here, the pellet is maintained at a constant

Fig. 6. Plot of the nonlinear residual vs. number of Newton iterations during the
multiscale simulation. The model exhibits good nonlinear convergence.
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Fig. 7. The parallel scalability of the multiscale calculation. The problem size is kept
constant as the number of processors is increased. The multiscale model exhibits
near ideal scalability.
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ig. 8. Computed fuel pellet temperature profile, where color corresponds to
emperature. Snapshots above the pellet show vacancy concentration in the

icrostructure computed by the mesoscale model at the indicated radial positions.

emperature T = 810 K. For this simulation, the pellet is discretized
ith 5760 elements and the mesoscale model is evaluated once per

ntegration point, as only one iteration is required. The “strong” par-
llel scalability is investigated, i.e., the problem size is unchanged
hile it is solved using an increasing number of processors ranging

rom 3 to 1440. The method exhibits near ideal scalability, as shown
n Fig. 7. This result is not surprising, as each mesoscale calculation
s independent from the others, and run concurrently within each
FNK function evaluation.

.5. Results

In the previous section, the multiscale model was shown to
ave good nonlinear convergence and excellent parallel scalabil-

ty. In this section, the physical behavior predicted by the mesoscale
odel is investigated. The fuel pellet simulation used to investigate

he nonlinear convergence is repeated here, i.e., the temperature
rofile is determined in a fuel pellet of height h = 6.75 mm and
iameter d = 8.26 mm with a constant temperature TC = 810 K on
he outer circumference and a uniform applied heat source Q =
00 MW/m3. The pellet is discretized with 720 elements and the
esoscale model is solved in the manner detailed in the previous
ection.
Fig. 8 shows both the temperature profile within the fuel pellet

nd plots of the mesoscale vacancy concentration at three radial
ositions within the pellet. From these results, it is evident that
Fig. 9. Comparison between (a) the thermal conductivity and (b) the temperature
profile at various radii in an irradiated fuel pellet and in a pure pellet. Values are
measured at a height z = 3.825 mm from the base of the pellet.

the void formation has a strong radial dependence; at the pellet
center, many large voids surrounded by vacancy-depleted zones
have formed; at mid-radius, a larger number of small voids have
formed; on the outer circumference, only a few small voids are
present (see Sens (1972) for experimental observations showing
similar behavior). Thus, the multiscale model explicitly determines
the microstructure throughout the fuel pellet.

The radial variation in void formation results in radial variation
in thermal conductivity. The effect of void formation on thermal
conductivity and the pellet temperature is demonstrated by com-
paring the results to an unirradiated pellet in which the thermal
conductivity is determined with (14). The values of the thermal
conductivity and the temperature at various radii for the irradiated
and the pure, unirradiated pellets are shown in Fig. 9(a) and (b),
respectively.

Due to large voids in the center of the irradiated pellet, the ther-
mal conductivity is significantly lower than that in the pure pellet.
On the cooler outer edge, where only a few small voids have formed,
the thermal conductivity is only slightly lower than that in the pure
pellet. The low internal thermal conductivity reduces the transfer
of heat to the pellet surface, and therefore the center temperature
is 27 K hotter in the irradiated pellet than in the pure pellet. While
quite simple due to the elementary models employed at both scales,
these results reflect general behavior observed in fission reactors.

Due to the simple nature of this initial multiscale model, the
mesoscale model can be decoupled from the macroscale and used
to precalculate the relationship between thermal conductivity and
temperature in the irradiated material, providing curve-fits similar
to Fig. 5. These fits, in equation form, can then be independently

used in the macroscale calculation. However, in a more complex
transient problem where the mesoscale model is history dependent
and influenced by several variables such as temperature, neutron
flux, and density, precalculating the thermal conductivity would be
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difficult due to the dimension of the state space that must be sam-
pled. In such a case, or when details on the microstructure evolution
are required, a coupled approach is necessary. The fully coupled
multiscale model presented in this work is general and fully con-
sistent; it can be used for simple problems, as demonstrated here,
and also for complex, transient problems.

4. Conclusion

This work presents a methodology for coupling an FE fuel per-
formance code to a mesoscale irradiated microstructure model
to capture the effect of radiation-induced microstructure evolu-
tion on reactor performance. The FE model represents the fuel
pellet, while the mesoscale model evolves the microstructure at
each integration point and calculates effective material parame-
ters. The multiscale nonlinear system is solved via a JFNK algorithm,
where the mesoscale state is self-consistently coupled to the global
solution by being evaluated within the function evaluation. To mit-
igate the effect of random noise in the calculated effective material
properties on convergence rate, a dynamic curve-fitting approach
fits a surface to the calculated values that gradually improves in
accuracy until the solution converges. The curve-fit also serves to
significantly reduce the total number of mesoscale calculations by
adaptively focusing new calculations where data is needed, thereby
making the multiscale solution more economical.

The multiscale approach is demonstrated on a simple model
of a reactor fuel pellet. INL’s BISON fuel performance code cal-
culates the steady-state temperature profile in a fuel pellet. The
effective thermal conductivity due to radiation is calculated with
a simple phase field model of irradiated microstructures (Rokkam
et al., 2009). The proposed multiscale approach demonstrates good
nonlinear convergence and parallel scalability on a multiprocessor
simulation of the simplified fuel pellet. Radial dependence of void
formation on mesoscale temperature results in a lower thermal
conductivity in the center of the pellet than in a similar, unirradi-
ated pellet, and therefore a higher internal temperature. While an
engineering-scale calculation could capture the effect of irradiation
on thermal conductivity using an empirical fit of experimental data,
only a multiscale approach, as presented here, can demonstrate the
microstructure-based cause of this effect. Having demonstrated the
viability of this fully coupled approach on a simplified fuel pellet
model, more accurate pellet representations are being developed.
The macroscale problem will include more accurate boundary con-
ditions, transient heat conduction and fuel/cladding interactions. In
addition, a more detailed mesoscale model will describe a specific
model fuel material, such as UO2. This includes the consideration of
self-interstitials as well as vacancies, composition changes, fission
gas and fission product migration, polycrystalline materials, elec-
trostatics and the effect of stress and temperature gradients. The
model fuel material will provide a specific time scale, as shown in
(13), which can be compared to experimental results. Also, other
material parameters, including density and elastic constants, will
be passed between the macro- and mesoscales.
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