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Motivation

Objective:

Increase power and torque density of direct drive electrical machines using HTS

Application area

- Marine propulsion , wind turbine generators

- Automotive, Aerospace, Gas & oil…

Limits of conventional machines 

(copper + PM) :

• Saturation of tooth 

𝐵 ≈ 0,9 𝑇

• Cooling systems

Limited cooling factor 𝐻𝐽

Γ ∝ 𝑉 . 𝐵. 𝐻

Torque [𝑁𝑚]

Machine volume 

(air gap)

Normal flux density [𝑇]
(Field winding)

Tangential magnetic 

field [𝐴/𝑚] (Armature winding)

Only the increase of B due to the field winding is considered in this work because HTS 

is much mature for dc applications in which losses are reduced compared to the ac case.
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Constitutive law of superconductors

Superconducting state → 3 critical parameters

• Critical Temperature:    𝑇𝑐 < 110 K

• Critical magnetic field 𝐵𝑐 < few Teslas 

• Critical current density: 𝐽𝑐 < hundreds of  A/mm² 

High Temperature Superconductors (HTS) → power law at fixed T

n: index of the power law

Jc : critical current density

Ec : critical electric field 𝐸𝑐 = 10−4 𝑉/𝑚

Both Jc and n depend on the applied magnetic field

𝐸 = 𝐸𝑐
𝐽

𝐽𝑐

𝑛

Superconductor

Normal

Power 

lawe’<
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Constitutive law of superconductors

Jc(B) curves comparison

1G tape : Di-BSCCO from SUMITOMO

2G tape : YBCO from FUJIWARA

The 2G HTS tape exhibits a much higher current

density compared to the 1G tape (5T and 20K):

1G: 330 A/mm² vs 2G: 1640 A/mm² 

(5 times higher)

1G Di-BSCCO H type
2G YBCCO FESC-SCH12 type
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Kim’s model

- For modeling purposes, it is more convenient to 

approximate the Jc(B) curve by an analytical function.  

- Interpolation of the measured data → 𝐽𝑐0, 𝛽, 𝐵0

𝐽𝑐 𝐵⊥ =
𝐽𝑐0

1 +
𝐵⊥
𝐵0

𝛽

The measured data are freely available:

S. C. Wimbush and N. M. Strickland, "A Public Database of High-Temperature Superconductor 

Critical Current Data," IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, 

June 2017, no. 8000105, doi: 10.1109/TASC.2016.2628700.

𝑩⊥

𝑩//

HTS tape under applied magnetic field

• 𝐽𝑐 and 𝑛 depend on B

• Anisotropic behavior: the perpendicular 

component 𝑩⊥ has the most important influence 

on the value of Jc. 

Constitutive law of superconductors

𝐽𝑐 𝐵⊥ =
4794

1 + 𝐵⊥/1.22 0.666

𝐽𝑐 𝐵⊥ =
3428

1 + 𝐵⊥/0.847 0,593
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Operating current of an HTS coil

Definition of 𝐼𝑀 (theoritical)

• Maximal allowable current avoiding 

thermal limits.

• Several criteria can be used (Bmax, 

Emax, pmax)

• The computation of IM must be done 

while sizing the HTS device

Load line (or curve) method
• Easy to implement but does not 

consider n

• Bmax criteria (magnetic field calculation 

needed)

• Take the worst case between 𝐵⊥ and 

𝐵//

Stack of 
HTS tapes

Operating 
current
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Radial field synchronous machine with HTS rotor

Radial flux machine

• Slotless HTS rotor (2G YBCO)

• Slotless 3-phase armature winding 

(copper)

• Back-iron made from FeCo

magnetic material

Cooling technology

• Cryocoolers @ 30K.

• The rotor is placed in a cryostat 

so the “magnetic” airgap 

(cryostat wall+mechanical

clearance) is equal to 8 mm

Rotor iron

Stator iron

HTS coils

Armature winding

2D cross section view of HTS 

machine (p=2, Ne=12 slots)
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2D analytical model

Decomposition into sub-problems in 2D

Solution
• Single source  

• Vector potential formulation

• Separation of variables

• Polar coordinates

• Superposition of elementary solutions 

→ Fully analytical solution

Hypotheses
• Infinite iron permeability

• Only low permeability domains are considered to 

establish the 2D model (winding and airgap)

• The machine is decomposed into annular domains in 

which the solution is periodic owing the periodicity 

of the current density distribution in the winding

+ =Rbr

Rr

Rbs Rbr

Rs

Rbs Rbr

Rr

Rbs

Rs
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Analytical solution due to the rotor source

PDEs to solve (in polar coordinates)
• In subdomain 1 (HTS winding): ∆𝐴𝑟1 + 𝜇0𝑗𝑟 = 0
• In subdomain 2 (air): ∆𝐴𝑟2 = 0

Boundary and continuity conditions
𝜕𝐴𝑟1
𝜕𝑟

|𝑟=𝑅𝑏𝑟 =
𝜕𝐴𝑟2
𝜕𝑟

|𝑟=𝑅𝑏𝑠 = 0

𝐴𝑟1 𝑟 = 𝑅𝑟 = 𝐴𝑟2(𝑟 = 𝑅𝑟)

𝜕𝐴𝑟1
𝜕𝑟

|𝑟=𝑅𝑟 =
𝜕𝐴𝑟2
𝜕𝑟

|𝑟=𝑅𝑟 = 0

Current density distribution in the HTS winding 

(subdomain 1)

𝑗𝑟 𝜃 = ෍
𝑛=1
𝑜𝑑𝑑

∞

𝐽𝑛𝑟 cos 𝑛𝑝 𝜃

Where:

𝐽𝑛𝑟 = ෍
𝑛=1
𝑜𝑑𝑑

∞
4. 𝐽𝑟
𝑛𝜋

sin
𝑛𝑝𝛽𝑟
2

, 0 < 𝛽𝑟< 1

Rbr

Rr

Rbs

𝜇 → ∞

𝜇 → ∞

Subdomain 1 

(HTS winding)

Subdomain 2 

(air)

𝜋/p

𝛽𝑟𝜋/𝑝
2𝜋/𝑝

𝜃

𝛽𝑟𝜋/2𝑝

𝐽𝑟

-𝐽𝑟

𝑗𝑟(𝜃)
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Analytical solution due to the rotor source

Vector potential expressions

𝐴𝑟1(𝑟, 𝜃) = ෍
𝑛=1
𝑜𝑑𝑑

∞

𝑈𝑛𝑟 (𝑟/𝑅𝑏𝑟)
𝑛𝑝+ 𝑉𝑛𝑟 (𝑟/𝑅𝑏𝑟)

−𝑛𝑝+ 𝑓𝑛𝑟(𝑟) cos(𝑛𝑝𝜃)

𝐴𝑟2(𝑟, 𝜃) = ෍
𝑛=1
𝑜𝑑𝑑

∞

𝑊𝑛𝑟 (𝑟/𝑅𝑏𝑠)
𝑛𝑝+ (𝑟/𝑅𝑏𝑠)

−𝑛𝑝 cos(𝑛𝑝𝜃)

Where:

𝑓𝑛𝑟 𝑟 =

µ0 𝐽𝑛𝑟 𝑟²

(𝑛𝑝)2−4
𝑛𝑝 ≠ 2

µ0 𝐽𝑛𝑟 𝑟²(1 − 4 ln(𝑟))

16
𝑛𝑝 = 2

The integration constant for the air subdomain is:

𝑊𝑛𝑟 =
𝑅𝑟𝑓𝑛

′ 𝑅𝑟 𝑃𝑛𝑝 𝑅𝑏𝑟 , 𝑅𝑟 + 𝑛𝑓𝑛 𝑅𝑟 𝑄𝑛𝑝 𝑅𝑏𝑟 , 𝑅𝑟 − 2𝑅𝑏𝑟𝑓𝑛
′ 𝑅𝑏𝑟

2𝑛𝑄𝑛𝑝 𝑅𝑏𝑟 , 𝑅𝑏𝑠

Where:     𝑃𝑘 𝑎, 𝑏 = (𝑎/𝑏)𝑘+ (𝑎/𝑏)−𝑘 , 𝑄𝑘 𝑎, 𝑏 = 𝑎/𝑏 𝑘− (𝑎/𝑏)−𝑘

Similar expressions can be derived for 𝑈𝑛𝑟 and 𝑉𝑛𝑟
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Analytical solution due to the stator source

The vector potential in the air region is:

𝐴𝑠2(𝑟, 𝜃) = ෍
𝑛=1
𝑜𝑑𝑑

∞

𝑊𝑛𝑠 (𝑟/𝑅𝑏𝑟)
𝑛𝑝+ (𝑟/𝑅𝑏𝑟)

−𝑛𝑝 cos(𝑛𝑝𝜃)

Where 𝑊𝑛𝑠 is obtained by changing the subscript r by s in 𝑊𝑛𝑟 expression given .

Torque expression:

Integration of the Maxwell stress tensor in the middle of the airgap: 𝑅𝑒 =
𝑅𝑟+𝑅𝑠

2
.

The expression of the torque due to the 1st space harmonic n=p pole pairs is:

𝑇𝑒𝑚 = (𝜋𝑝²𝐿𝑢/𝜇0)𝑊𝑝𝑟𝑊𝑝𝑠(𝑃𝑝 𝑅𝑒 , 𝑅𝑏𝑟 𝑄𝑝 𝑅𝑒 , 𝑅𝑏𝑠 − 𝑃𝑝 𝑅𝑒 , 𝑅𝑏𝑠 𝑄𝑝 𝑅𝑒 , 𝑅𝑏𝑟 )

Where:     𝑃𝑘 𝑎, 𝑏 = (𝑎/𝑏)𝑘+ (𝑎/𝑏)−𝑘 , 𝑄𝑘 𝑎, 𝑏 = 𝑎/𝑏 𝑘− (𝑎/𝑏)−𝑘

The results for the stator source problem are the same as for the rotor source problem. 

We only need to replace the subscript r by s in the solution of the rotor problem.

It also necessary to adapt the current density distribution to the stator armature winding.
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Sizing a 2 MW - 5000 rpm HTS machine

Optimization tool - Office Calc interface with solver
• Single objective constrained optimization using GA-PSO under Libreoffice calc spreadsheet

• Objective is to maximize volumetric torque density
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Sizing a 2 MW - 5000 rpm machine

Results for 2G HTS tapes @ 30K
• The analytical model allows fast computations: 

the cpu time is around 5 minutes ; the 

convergence of the algorithm is obtained after 

1000-1500 iterations.

• For the sizing, the torque value has been increased 

by 20% to allow for stability during transients and 

to consider saturation not taken into account by 

the analytical model.

• The rotor current density Jr cannot exceed 90% of 

the operating current determined by the load line 

method

• The optimum is obtained for 14 pole-pairs which 

results in operating frequency of 1,166 kHz (Litz

wires may be necessary for the armature 

winding).

• An active power density of about 26 kW/kg is 

achieved which is 30% higher than state of the art 

oil-cooled radial field PMSM. 

Name Value
Number of pole pairs 14
External diameter 59 cm
Active length 58 mm
Airgap (including cryostat) 8 mm
Stator winding (Copper) 

thickness
10 mm

Rotor HTS (YBCO) winding 
thickness

4 mm

Stator back-iron (FeCo) 
thickness

38 mm

Rotor back-iron (FeCo) 
thickness

68 mm

Stator slot width / tooth pitch 
ratio

0.8

Rotor slot width / pole pitch ratio 0.5
Stator slot rms current density 15 

A/mm²
Rotor HTS winding dc current 

density
793 

A/mm²
Maximal perpendicular flux 

density on HTS winding
3 T

Active mass 76.5 kg
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Sizing a 2 MW - 5000 rpm HTS machine

Finite element validation
• Cobalt iron laminations are used which allows high saturation level (in excess of 2,4 T)

• The analytical model doesn’t consider saturation so the max flux density in the HTS winding is limited 

to 3 T

• The analytical and FE results are in good accordance

• The torque difference doesn’t exceed 10%

Density Plot: |B|, Tesla

3.040e+000 : >3.200e+000

2.880e+000 : 3.040e+000

2.720e+000 : 2.880e+000

2.560e+000 : 2.720e+000

2.400e+000 : 2.560e+000

2.240e+000 : 2.400e+000

2.080e+000 : 2.240e+000

1.920e+000 : 2.080e+000

1.760e+000 : 1.920e+000

1.600e+000 : 1.760e+000

1.440e+000 : 1.600e+000

1.280e+000 : 1.440e+000

1.120e+000 : 1.280e+000

9.600e-001 : 1.120e+000

8.000e-001 : 9.600e-001

6.400e-001 : 8.000e-001

4.800e-001 : 6.400e-001

3.200e-001 : 4.800e-001

1.600e-001 : 3.200e-001

<1.770e-007 : 1.600e-001

Density Plot: |B|, Tesla

3.040e+000 : >3.200e+000

2.880e+000 : 3.040e+000

2.720e+000 : 2.880e+000

2.560e+000 : 2.720e+000

2.400e+000 : 2.560e+000

2.240e+000 : 2.400e+000

2.080e+000 : 2.240e+000

1.920e+000 : 2.080e+000

1.760e+000 : 1.920e+000

1.600e+000 : 1.760e+000

1.440e+000 : 1.600e+000

1.280e+000 : 1.440e+000

1.120e+000 : 1.280e+000

9.600e-001 : 1.120e+000

8.000e-001 : 9.600e-001

6.400e-001 : 8.000e-001

4.800e-001 : 6.400e-001

3.200e-001 : 4.800e-001

1.600e-001 : 3.200e-001

<1.770e-007 : 1.600e-001

Radial flux density distribution in the middle 

of the airgap (full load, saturated FE)



16

Conclusions

• HTS synchronous machine is sized via a combination of

analytical model and optimization algorithm

• The computation tool is a free spreadsheet software which can

easily

• 2D analytical models, validated by finite elements, for sizing

and optimizing HTS machines taken into account the operating

current of HTS coils

• Investigation of iron free machines are currently considered to

reduce weight owing the high performances of the 2G tapes, in

particular at higher flux densities.
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