

21ST INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC FIELDS IN MECHATRONICS, ELECTRICAL AND ELECTRONIC ENGINEERING

Electrical Machine with HTS winding: Analytical Design and Optimization

S. MEZANI, L. BELGUERRAS, J. LEVEQUE, T. LUBN, N. TAKORABET

Université de Lorraine, Groupe de Recherche en Energie Electrique de Nancy, France.

noureddine.takorabet@univ-lorraine.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006 - IMOTHEP

Pavia, September 12-15, 2023 - Museum of Electrical Technology

CONTENTS

- 1- Motivation
- 2- HTS tapes and operating current of a coil
- 3- Radial field synchronous machine with HTS rotor
- 4- Practical example: sizing a 2MW 5000 rpm HTS motor
- **5- Conclusions**

Motivation

Objective:

Increase power and torque density of direct drive electrical machines using HTS

Application area

- Marine propulsion, wind turbine generators
- Automotive, Aerospace, Gas & oil...

Only the increase of B due to the field winding is considered in this work because HTS is much mature for dc applications in which losses are reduced compared to the ac case.

J (A/m²)

J_c

Power lawe'< n: index of the power law E (V/m) J_c : critical current density E_c : critical electric field $E_c = 10^{-4} V/m$ E,

Both J_c and n depend on the applied magnetic field

Constitutive law of superconductors

Jc(B) curves comparison

1G tape : Di-BSCCO from SUMITOMO 2G tape : YBCO from FUJIWARA

The 2G HTS tape exhibits a much higher current density compared to the 1G tape (5T and 20K):

1G: **330** A/mm² vs 2G: **1640** A/mm² (5 times higher)

Constitutive law of superconductors

Kim's model

- For modeling purposes, it is more convenient to approximate the Jc(B) curve by an analytical function.
- Interpolation of the measured data $\rightarrow J_{c0}, \beta, B_0$

The measured data are freely available:

S. C. Wimbush and N. M. Strickland, "A Public Database of High-Temperature Superconductor Critical Current Data," *IEEE Transactions on Applied Superconductivity*, vol. 27, no. 4, pp. 1-5, June 2017, no. 8000105, doi: 10.1109/TASC.2016.2628700.

 $J_c \left(B_{\perp} \right) = \frac{J_{c0}}{\left(1 + \left| \frac{B_{\perp}}{B_{\perp}} \right| \right)^{\beta}}$

Operating current of an HTS coil

Definition of I_M (theoritical)

- Maximal allowable current avoiding thermal limits.
- Several criteria can be used (B_{max}, E_{max}, p_{max})
- The computation of I_M must be done while sizing the HTS device

Load line (or curve) method

- Easy to implement but does not consider n
- B_{max} criteria (magnetic field calculation needed)
- Take the worst case between B_{\perp} and $B_{//}$

Radial field synchronous machine with HTS rotor

Radial flux machine

- Slotless HTS rotor (2G YBCO)
- Slotless 3-phase armature winding (copper)
- Back-iron made from FeCo magnetic material

Cooling technology

- Cryocoolers @ 30K.
- The rotor is placed in a cryostat so the "magnetic" airgap (cryostat wall+mechanical clearance) is equal to 8 mm

2D cross section view of HTS machine (p=2, Ne=12 slots)

2D analytical model

Hypotheses

- Infinite iron permeability
- Only low permeability domains are considered to establish the 2D model (winding and airgap)
- The machine is decomposed into annular domains in which the solution is periodic owing the periodicity of the current density distribution in the winding

Solution

- Single source
- Vector potential formulation
- Separation of variables
- Polar coordinates
- Superposition of elementary solutions
 - \rightarrow Fully analytical solution

Decomposition into sub-problems in 2D

Analytical solution due to the rotor source

PDEs to solve (in polar coordinates)

- In subdomain 1 (HTS winding): $\Delta A_{r1} + \mu_0 j_r = 0$
- In subdomain 2 (air): $\Delta A_{r2} = 0$

Boundary and continuity conditions

$$\frac{\partial A_{r1}}{\partial r}|_{r=R_{br}} = \frac{\partial A_{r2}}{\partial r}|_{r=R_{bs}} = 0$$
$$A_{r1}(r=R_r) = A_{r2}(r=R_r)$$
$$\frac{\partial A_{r1}}{\partial r}|_{r=R_r} = \frac{\partial A_{r2}}{\partial r}|_{r=R_r} = 0$$

Current density distribution in the HTS winding (subdomain 1)

$$j_r(\theta) = \sum_{\substack{n=1\\odd}}^{\infty} J_{nr} \cos(np \ \theta)$$

Where:

$$J_{nr} = \sum_{\substack{n=1\\odd}}^{\infty} \frac{4.J_r}{n\pi} \sin\left(\frac{np\beta_r}{2}\right), \quad 0 < \beta_r < 1$$

Analytical solution due to the rotor source

Vector potential expressions

$$A_{r1}(r,\theta) = \sum_{\substack{n=1\\odd}}^{\infty} (U_{nr} \ (r/R_{br})^{np} + V_{nr} \ (r/R_{br})^{-np} + f_{nr}(r))\cos(np\theta)$$
$$A_{r2}(r,\theta) = \sum_{\substack{n=1\\odd}}^{\infty} W_{nr}(\ (r/R_{bs})^{np} + (r/R_{bs})^{-np})\cos(np\theta)$$

Where:

$$f_{nr}(r) = \begin{cases} \frac{\mu_0 \ J_{nr} r^2}{(np)^2 - 4} & np \neq 2\\ \frac{\mu_0 \ J_{nr} r^2 (1 - 4 \ln(r))}{16} & np = 2 \end{cases}$$

The integration constant for the air subdomain is:

$$W_{nr} = \frac{R_r f'_n(R_r) P_{np}(R_{br}, R_r) + n f_n(R_r) Q_{np}(R_{br}, R_r) - 2R_{br} f'_n(R_{br})}{2n Q_{np}(R_{br}, R_{bs})}$$

Where: $P_k(a,b) = (a/b)^k + (a/b)^{-k}$, $Q_k(a,b) = (a/b)^k - (a/b)^{-k}$

Similar expressions can be derived for U_{nr} and V_{nr}

Analytical solution due to the stator source

The results for the stator source problem are the same as for the rotor source problem. We only need to replace the subscript r by s in the solution of the rotor problem. It also necessary to adapt the current density distribution to the stator armature winding.

The vector potential in the air region is:

$$A_{s2}(r,\theta) = \sum_{\substack{n=1\\odd}}^{\infty} W_{ns}((r/R_{br})^{np} + (r/R_{br})^{-np})\cos(np\theta)$$

Where W_{ns} is obtained by changing the subscript r by s in W_{nr} expression given .

Torque expression:

Integration of the Maxwell stress tensor in the middle of the airgap: $R_e = \frac{R_r + R_s}{2}$. The expression of the torque due to the 1st space harmonic n=p pole pairs is:

 $T_{em} = (\pi p^2 L_u / \mu_0) W_{pr} W_{ps} (P_p(R_e, R_{br}) Q_p(R_e, R_{bs}) - P_p(R_e, R_{bs}) Q_p(R_e, R_{br}))$

Where: $P_k(a,b) = (a/b)^k + (a/b)^{-k}$, $Q_k(a,b) = (a/b)^k - (a/b)^{-k}$

Sizing a 2 MW - 5000 rpm HTS machine

Optimization tool - Office Calc interface with solver

- Single objective constrained optimization using GA-PSO under Libreoffice calc spreadsheet
- Objective is to maximize volumetric torque density

opti	im_moteur_H	HTS.od	ls - LibreOf	fice Calc														—	
ichier	r É <u>d</u> ition	<u>A</u> ffic	hage <u>I</u> ns	ertion Forma	i <u>t</u> St <u>y</u> les Fe <u>u</u>	<u>i</u> ille Donnée <u>s</u>	<u>O</u> utils Fe <u>n</u> é	ètre Aid <u>e</u>											
						L A	0.0.	(a), abç (▥,▥,		Z 🔽				1. 問 智 . !				
						<u> </u>		r∕d √ i		IZA ZV	AV ©∕II		1 3 2 * G9						
iberat	tion Sans		\sim	\sim	GIS	- A - M		= = =	<u> </u>			- % 0	0 171 00	00 ->					
			_		0 1 0				↑ =-				0 [2] 1,0#	,9X1 -		·····	40		
		~	$ \mid f_X \Sigma$	=											Options				
	А	1	в	с	D	E	F	G	н		J	к	L	м					
I S	Specificatio	n							Constraints				-		<u>M</u> oteur du Se	olveur : DEPS Evolu	tionary Algori	ithm	
2 P	2n (W)	Ntr	(rpm)	Tem (Nm)	Tem_maj				Çem	D_hts	Jcmax	Lu/Taup	Rbr		6				
;	5,00E+0	6	100	4,77E+0	5,73E+05	5			0,000181564	0,072346425	1,00E+0	9 2,538922925	1,368138177		L Paramètres :				
D	Dimensions	; (m)													🗗 🗹 Afficher l	'état du solveur avanc	cé		
j p)	Rbr	(m)	Wr 4 005 0	eg (m)	Ws (m)	Rr (m)	Rs (m)	Rbs (m)	Lu (m)	Rext	Re	Rint		Cycles d'a	apprentissage: 2000			
	ა.	2 1,5 No	62031004	1,20E-0.	2 1,00E-02	2,00E-02	1,574031004	1,584031004	1,604031004	3,95E-01	1,74334957	8 1,579031004	1,368138177		DE : Facte	ur d'échelle maximur	n (0 - 1,2): 0,5		
Ч	·	1	192	3.00F-0	as 1 8.00F-01	2 95F-02	0.026179939	0 107346425	41 4698347	4 64F+01	'	[DE : Facte	DE : Facteur d'échelle minimum (0 - 1,2): 0,5			
S	Sources (A)	m²)	202	0,002 0	0,002.03	2,002.02	0,020210000	0,201010120	12,1000011	1,012.02		Solveur			DE : prob	abilité de croisement	(0-1): 0,9		
0 J	lsrms(A/m ²)) Jr (/	A/m²)	Jsp (A/m²)	kfill	Wnsp	fn1s	dfn1s	fn2s	dfn2s	Jcu (A/m²)		[Estimatio	n des limites de varial	ole		
1	3,00E+0	6	2,96E+08	3,30E+0	6 7,00E-01	2,22E-03	0,010446869	0,013025769	0,010187978	0,012863356	4,28571428	<u>C</u> ellule cible		\$H\$16	Éditer				
2 P	Performanc	e calo	culus	-			-					Optimiser le rés	ultat à (Mautianu	conterim				
3 C	C_an (Nm)	Bpe	erp(T)	Bcmax	hcs (m)	hcr (m)	Jemax						,	e Ma <u>x</u> imu	m	_			
+	5,73E+0	5 2,1	99999998	L,i	5 0,139318574	0,193892827	1,44E+09	Vol. tot (m3)	Tuel/khim/m	3)	_		(O Minimu	m <u>A</u> ide			<u>O</u> K	<u>A</u> nnule
/ 5	8 120E+0	3 8	020E+03	1 04E+0	M_CU(KG)	10030 45644	457 0611007	3 76001817	126 6512440			-		_					
F	Flux		,3202.00	1,04210	4 513,3057002	10303,43044	457,0011007	3,70331017	120,0012440	, 			(◯ <u>V</u> aleur d	e				
з Ф	P Rbr (Wb)	ΦF	Rbs (Wb)	THD E															
) (0,15311044	8 0,1	10015051	1,00	7							Par modification des cellules \$A\$6:\$C\$6;\$E\$6;\$I\$6;\$C\$8;\$B\$11							
H	larmonics (calcu	lation									Conditions do	imitation						
k		Jnr	(A/m²)	fn1	dfn1	fn2	dfn2	Unr	Vnr	Wnr	Xnr	Conditions de	imitation						
-		1 1/1	1146837,3	0,52240236		0,51446/411	0,658/16005	-0,188626751	-0,156472537	0,066890997	0,06689099	<u>R</u> éférence d	e cellule		<u>O</u> pérateur	<u>V</u> aleur		^	
		5 53	4114003,0 313480 83	0,0419472	0,053299115	0,041310078	0,052692777	-0,010083847	-0,00920302	0,002031959	0,00263195	\$4\$6		Nombre entier ~			H		
		7 -842	24740.073	-0.00052279	5-0.000664276	6-0.000514854	-0.000659211	4.74876E-05	4.28907E-05	-3.66081E-06	-3.66081E-0								
	9	9 -373	321620,08	-0,00140098	3 -0,001780121	-0,001379703	-0,00176655	7,78384E-05	6,82572E-05	-2,99364E-06	-2,99364E-0	\$A\$6		-	<= ~	40	-	H	
	1	1 -	30535871	-0,00076731	8 -0,000974972	2 -0,000755663	-0,000967539	2,60908E-05	2,17972E-05	-4,93826E-07	-4,93826E-0								
3	1	3 -453	36398,628	-8,16152E-0	5 -0,000103702	2 -8,03755E-05	-0,000102912	1,699E-06	1,31258E-06	6 -1,57429E-08	-1,57429E-0	\$B\$6		7	=> ~	0,1	7	H	
2	1	5 17	//71163,2	0,00024014	0,000305136	0,000236499	0,00030281	-3,06132E-06	-2,07591E-06	1,38578E-08	1,38578E-0	\$0\$6			<- V	120-2		H	
-	1	0 000	902471,27 17728 350	7 58664E 0	0,000292789	7 4714E 05	0,000290557	-1,79906E-06	-9,64/6E-0/	3,97499E-09	3,97499E-0	3030		1	×=	128-3	Ť	<u> </u>	
,	2	1 -814	49849 326	-5.6189E-0	5 -7.1395E-05	5 -5 53355E-05	-7.08507E-05	1.646E-07	-8.8721E-11	-8 65524E-11	-8 65524E-1								
3	2	3 -161	188783,09	-9,30461E-0	5 -0,000118227	-9,16328E-05	-0,000117325	1,66976E-07	-8,20265E-08	3 -4,28228E-11	-4,28228E-1	Aide	Tout re	éinitialiser	Options	<u>F</u> ermer	<u>R</u> és	oudre	
ł	2	5 -	10662698	-5,18712E-0	5 -6,59087E-05	5-5,10833E-05	-6,54063E-05	5,70262E-08	-7,06821E-08	-7,13232E-12	-7,13232E-1								
: 1	2	7 21	19/101 91	0 100665 0		8 07120E 06	1 1/267E 05	6 13561E 00	1 46313E 09	3 7/01/F 13	3 7/01//E 1	2 2 07120E 06	7 00102E 06	E 01008E	13 E 10631E 10	1 15740E 05 0.0	0240441		
4	()) -	+	Analytical	model Ic2	RHTS Recu	tc													1
_			rulaiyucai	Induci IC2	orno riesu					1		- 1 m 1							
	_											1 6							

Sizing a 2 MW - 5000 rpm machine

Results for 2G HTS tapes @ 30K

- The analytical model allows fast computations: the cpu time is around 5 minutes ; the convergence of the algorithm is obtained after 1000-1500 iterations.
- For the sizing, the torque value has been increased by 20% to allow for stability during transients and to consider saturation not taken into account by the analytical model.
- The rotor current density Jr cannot exceed 90% of the operating current determined by the load line method
- The optimum is obtained for 14 pole-pairs which results in operating frequency of **1,166 kHz** (Litz wires may be necessary for the armature winding).
- An active power density of about 26 kW/kg is achieved which is 30% higher than state of the art oil-cooled radial field PMSM.

Name	Value
Number of pole pairs	14
External diameter	59 cm
Active length	58 mm
Airgap (including cryostat)	8 mm
Stator winding (Copper)	10 mm
thickness	
Rotor HTS (YBCO) winding	4 mm
thickness	
Stator back-iron (FeCo)	38 mm
thickness	
Rotor back-iron (FeCo)	68 mm
thickness	
Stator slot width / tooth pitch	0.8
ratio	
Rotor slot width / pole pitch ratio	0.5
Stator slot rms current density	15
	A/mm ²
Rotor HTS winding dc current	793
density	A/mm ²
Maximal perpendicular flux	3 T
density on HTS winding	
Active mass	76.5 kg
	14

Sizing a 2 MW - 5000 rpm HTS machine

Finite element validation

- Cobalt iron laminations are used which allows high saturation level (in excess of 2,4 T)
- The analytical model doesn't consider saturation so the max flux density in the HTS winding is limited to 3 T
- The analytical and FE results are in good accordance
- The torque difference doesn't exceed 10%

- HTS synchronous machine is sized via a combination of analytical model and optimization algorithm
- The computation tool is a free spreadsheet software which can easily
- 2D analytical models, validated by finite elements, for sizing and optimizing HTS machines taken into account the operating current of HTS coils
- Investigation of iron free machines are currently considered to reduce weight owing the high performances of the 2G tapes, in particular at higher flux densities.

THANK YOU FOR YOUR ATTENTION

Any question? Contact:

smail.mezani@univ-lorraine.fr