

21ST INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC FIELDS IN MECHATRONICS, ELECTRICAL AND ELECTRONIC ENGINEERING

Electrical Machine with HTS winding: Analytical Design and Optimization

S. MEZANI, L. BELGUERRAS, J. LEVEQUE, T. LUBN, N. TAKORABET

Université de Lorraine, Groupe de Recherche en Energie Electrique de Nancy, France.

noureddine.takorabet@univ-lorraine.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006 - IMOTHEP

1 Pavia, September 12-15, 2023 - Museum of Electrical Technology

CONTENTS

- **1- Motivation**
- **2- HTS tapes and operating current of a coil**
- **3- Radial field synchronous machine with HTS rotor**
- **4- Practical example: sizing a 2MW – 5000 rpm HTS motor**
- **5- Conclusions**

Motivation

Objective:

Increase power and torque density of direct drive electrical machines using HTS

Application area

- Marine propulsion, wind turbine generators
- Automotive, Aerospace, Gas & oil…

Only the increase of B due to the field winding is considered in this work because HTS is much mature for dc applications in which losses are reduced compared to the ac case.

4

J,

Constitutive law of superconductors

Jc(B) curves comparison

1G tape : Di-BSCCO from SUMITOMO 2G tape : YBCO from FUJIWARA

The 2G HTS tape exhibits a much higher current density compared to the 1G tape (5T and 20K):

1G: **330 A/mm²** vs 2G: **1640 A/mm² (5 times higher)**

Constitutive law of superconductors

Kim's model

- For modeling purposes, it is more convenient to approximate the $Jc(B)$ curve by an analytical function.
- Interpolation of the measured data \rightarrow I_{c0} , β , B_0

The measured data are freely available:

S. C. Wimbush and N. M. Strickland, "A Public Database of High-Temperature Superconductor Critical Current Data," *IEEE Transactions on Applied Superconductivity*, vol. 27, no. 4, pp. 1-5, June 2017, no. 8000105, doi: 10.1109/TASC.2016.2628700.

β

 J_{c0}

 B_\perp $\overline{B_{0}}$

 $1 +$

 $J_c(B_{\perp})=$

Operating current of an HTS coil

Definition of I_M (theoritical)

- Maximal allowable current avoiding thermal limits.
- Several criteria can be used (B_{max}) , E_{max} , p_{max})
- The computation of I_M must be done while sizing the HTS device

Load line (or curve) method

- Easy to implement but does not consider n
- B_{max} criteria (magnetic field calculation needed)
- Take the worst case between B_{\perp} and $B_{//}$

Radial field synchronous machine with HTS rotor

Radial flux machine

- Slotless HTS rotor (2G YBCO)
- Slotless 3-phase armature winding (copper)
- Back-iron made from FeCo magnetic material

Cooling technology

- Cryocoolers @ 30K.
- The rotor is placed in a cryostat so the "magnetic" airgap (cryostat wall+mechanical clearance) is equal to 8 mm

2D cross section view of HTS machine (p=2, Ne=12 slots)

2D analytical model

Hypotheses

- Infinite iron permeability
- Only low permeability domains are considered to establish the 2D model (winding and airgap)
- The machine is decomposed into annular domains in which the solution is periodic owing the periodicity of the current density distribution in the winding

Solution

- Single source
- Vector potential formulation
- Separation of variables
- Polar coordinates
- Superposition of elementary solutions
	- **→ Fully analytical solution**

Decomposition into sub-problems in 2D

Analytical solution due to the rotor source

PDEs to solve (in polar coordinates)

- In subdomain 1 (HTS winding): $\Delta A_{r1} + \mu_0 j_r = 0$
- In subdomain 2 (air): $\Delta A_{r2} = 0$

Boundary and continuity conditions

$$
\frac{\partial A_{r1}}{\partial r}|_{r=R_{br}} = \frac{\partial A_{r2}}{\partial r}|_{r=R_{bs}} = 0
$$

$$
A_{r1}(r = R_r) = A_{r2}(r = R_r)
$$

$$
\frac{\partial A_{r1}}{\partial r}|_{r=R_r} = \frac{\partial A_{r2}}{\partial r}|_{r=R_r} = 0
$$

Current density distribution in the HTS winding (subdomain 1)

$$
j_r(\theta) = \sum_{\substack{n=1 \text{odd}}}^{\infty} J_{nr} \cos(np \theta)
$$

Where:

$$
J_{nr} = \sum_{\substack{n=1 \text{odd}}}^{\infty} \frac{4 \cdot J_r}{n \pi} \sin\left(\frac{np \beta_r}{2}\right), \quad 0 < \beta_r < 1
$$

Analytical solution due to the rotor source

Vector potential expressions

$$
A_{r1}(r,\theta) = \sum_{n=1}^{\infty} (U_{nr} (r/R_{br})^{np} + V_{nr} (r/R_{br})^{-np} + f_{nr}(r))\cos(np\theta)
$$

$$
A_{r2}(r,\theta) = \sum_{\substack{n=1 \text{odd}}}^{\infty} W_{nr} ((r/R_{bs})^{np} + (r/R_{bs})^{-np})\cos(np\theta)
$$

Where:

$$
f_{nr}(r) = \begin{cases} \frac{\mu_0}{(np)^2 - 4} & np \neq 2\\ \frac{\mu_0}{2} & np = 2\\ \frac{\mu_0}{2} & np = 2 \end{cases}
$$

The integration constant for the air subdomain is:

$$
W_{nr} = \frac{R_r f'_n(R_r) P_{np}(R_{br}, R_r) + n f_n(R_r) Q_{np}(R_{br}, R_r) - 2 R_{br} f'_n(R_{br})}{2n Q_{np}(R_{br}, R_{bs})}
$$

Where: $P_k(a,b) = (a/b)^k + (a/b)^{-k}$, $Q_k(a,b) = (a/b)^k - (a/b)^{-k}$

Similar expressions can be derived for U_{nr} and V_{nr}

Analytical solution due to the stator source

The results for the stator source problem are the same as for the rotor source problem. We only need to replace the subscript r by s in the solution of the rotor problem. It also necessary to adapt the current density distribution to the stator armature winding.

The vector potential in the air region is:

$$
A_{s2}(r,\theta) = \sum_{\substack{n=1 \text{odd}}}^{\infty} W_{ns}((r/R_{br})^{np} + (r/R_{br})^{-np})\cos(np\theta)
$$

Where W_{ns} is obtained by changing the subscript r by s in W_{nr} expression given.

Torque expression:

Integration of the Maxwell stress tensor in the middle of the airgap: $R_e = \frac{R_r + R_s}{2}$ $rac{\tau \Lambda_S}{2}$. The expression of the torque due to the 1st space harmonic n=p pole pairs is:

$$
T_{em} = (\pi p^2 L_u / \mu_0) W_{pr} W_{ps} (P_p (R_e, R_{br}) Q_p (R_e, R_{bs}) - P_p (R_e, R_{bs}) Q_p (R_e, R_{br}))
$$

Where: $P_k(a,b) = (a/b)^k + (a/b)^{-k}$, $Q_k(a,b) = (a/b)^k - (a/b)^{-k}$

Sizing a 2 MW - 5000 rpm HTS machine

Optimization tool - Office Calc interface with solver

- Single objective constrained optimization using GA-PSO under Libreoffice calc spreadsheet
- Objective is to maximize volumetric torque density

Sizing a 2 MW - 5000 rpm machine

Results for 2G HTS tapes @ 30K

- The analytical model allows fast computations: the cpu time is around 5 minutes ; the convergence of the algorithm is obtained after 1000-1500 iterations.
- For the sizing, the torque value has been increased by 20% to allow for stability during transients and to consider saturation not taken into account by the analytical model.
- The rotor current density Jr cannot exceed 90% of the operating current determined by the load line method
- The optimum is obtained for 14 pole-pairs which results in operating frequency of **1,166 kHz** (Litz wires may be necessary for the armature winding).
- An active power density of about 26 kW/kg is achieved which is 30% higher than state of the art oil-cooled radial field PMSM.

Sizing a 2 MW - 5000 rpm HTS machine

Finite element validation

- Cobalt iron laminations are used which allows high saturation level (in excess of 2,4 T)
- The analytical model doesn't consider saturation so the max flux density in the HTS winding is limited to 3 T
- The analytical and FE results are in good accordance
- The torque difference doesn't exceed 10%

Radial flux density distribution in the middle of the airgap (full load, saturated FE)

- HTS synchronous machine is sized via a combination of analytical model and optimization algorithm
- The computation tool is a free spreadsheet software which can easily
- 2D analytical models, validated by finite elements, for sizing and optimizing HTS machines taken into account the operating current of HTS coils
- Investigation of iron free machines are currently considered to reduce weight owing the high performances of the 2G tapes, in particular at higher flux densities.

THANK YOU FOR YOUR ATTENTION

Any question? Contact:

smail.mezani@univ-lorraine.fr