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a b s t r a c t

Continuous jets of non-Newtonian fluids impinging on a fluid surface exhibit instabilities from jet buck-
ling and coiling at low Reynolds numbers to delayed die swell, mounding, and air entrainment at higher
Reynolds numbers. Filling containers with complex fluids is an important process for many industries,
where the need for high throughput requires operating at high Reynolds numbers. In this regime, air
entrainment can produce a visually unappealing product, causing a major quality control issue. Just prior
to the onset of air entrainment, however, there exists an ideal filling regime which we term ‘‘planar fill-
ing,’’ as it is characterized by a relatively flat free surface that maintains its shape over time. In this paper,
we create a steady-state, 2-D axisymmetric finite element model to study the transition from planar fill-
ing to the onset of air entrainment in a container filling process with generalized-Newtonian fluids. We
use this model to explore the operating window for Newtonian and shear-thinning (or, more generally,
deformation-rate-thinning) fluids, demonstrating that the flow behavior is characterized by a balance
between inertial, viscous, and gravitational forces, as characterized by the Reynolds and Froude numbers.
A scaling analysis suggests that the relevant parameters for calculating these dimensionless numbers are
located where the jet impacts the liquid surface, and simulations show that the transition from planar
filling to air entrainment often occurs when Re � Oð10Þ. We found that the bottom and side surfaces
of the container drastically influence this transition to entrainment, stabilizing the flow.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A jet of a rheologically complex fluid impinging onto a liquid
surface can exhibit a variety of flow regimes, including jet dripping
and pinch-off [1–4], hydraulic jumps [5,6], buckling, coiling, and
mounding [7–16], and submerging flow and unstable air entrain-
ment [17–21]. This range of behavior has implications in many
industrial applications, such as the filling of bottles and containers.
Understanding this behavior is especially important in industry,
where the fluids filling containers are often highly non-Newtonian,
exhibiting some combination of viscoelastic, shear-thinning, and
yield-stress properties. Overall product appearance, such as the ab-
sence of air bubbles in a transparent product, is highly important.

The production capacity of industrial plants is often limited by
the speed at which containers can be filled. Containers often have
labels applied before filling, and in some cases containers are al-
ready loaded in cardboard boxes, leading to a low tolerance of con-
tainer over-fill or of product splashing out of the container.
Regulations in some regions limit the amount of void space at
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the tops of container, requiring a precise fill process [22]. Precise
filling also allows the use of smaller containers, saving container
and transportation costs. Sales of some products also rely on their
clarity, and any entrained air bubbles can detract from their
appearance. For these and other reasons, it is of great interest to
understand the operating conditions that lead to the various flow
profiles seen in container filling processes, especially for complex
fluids. This understanding will allow an increase in throughput
while meeting product quality constraints.

Fig. 1 shows four experimental flow regimes found in container-
filling processes. The two regimes of most interest are mounding and
air entrainment. While a mounding flow can be seen in Fig. 1b, the
air entrainment regime is inherently unsteady and a snapshot is
not shown in Fig. 1. At relatively low jet velocities, complex fluids of-
ten exhibit mounding behavior, where the jet diameter greatly in-
creases as it nears the liquid pool. These mounds can be stable or
unstable, forming ripples, coils, or buckles, all of which may entrain
air. These mounds may also grow very tall, reaching the top of the
container before the sides completely fill. Taylor [24] discovered this
phenomenon in experiments from the late 1960s. Over a decade la-
ter, [7,8] performed an extensive experimental investigation into
this behavior for Newtonian, viscous jets, finding the jet length-to-
diameter ratio, H=D, to be a key physical parameter in determining
buckling behavior. Surface tension was found to play a significant
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Fig. 1. Experimental images of a sample shear-thinning fluid jet, illustrating the different flow regimes that are often seen in container-filling processes [23]. Nozzle velocity
is increasing with each successive image.
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role in stabilizing the jet, while the Reynolds number (which is the
ratio of inertial to viscous forces) must be low enough (Re < 1:2)
to ensure that inertia does not overpower the viscous and surface
tension stresses, preventing the buckling instabilities. The Reynolds
number, along with other relevant dimensionless numbers, are dis-
cussed in more detail in Section 3.

Theoretical analysis of unstable mounding flows was first per-
formed by [9], who compared a one-dimensional model for coiling
with experimental results [7]. This has been an active area of re-
search since that time, including recent experimental and theoreti-
cal efforts [10–16,25], with some studies addressing complex fluids
[11]. In particular, [15] used 3-D simulations to model coiling in a
container filling process. Container filling in industrial practice,
however, normally does not encounter mounding and buckling,
due to the high jet velocities, and therefore Reynolds numbers, that
are used.

The entrainment of air near the jet impact region occurs at higher
Reynolds numbers than mounding behavior and is hence of more
practical interest when trying to address container filling through-
put. A thorough experimental investigation of air entrainment was
first presented by Lin and Donnelly [17,18], who studied the onset
of air entrainment for a variety of viscous ð0:9 cP < l < 400 cPÞ
Newtonian fluids and surfactant mixtures into a large receiving pool.
A key finding from this study is a correlation for the minimum air
entrainment velocity involving the Weber (which is the ratio of iner-
tial to surface tension forces) and Reynolds numbers, We ¼ 10Re0:74.
This correlation applies to Newtonian fluids with viscosities in the
range of 10–400 cP; in less viscous fluids, such as water, air entrain-
ment only occurs if the jet is perturbed [26]. Over the next few
decades, there were a number of experimental studies on air
entrainment which are nicely summarized by [19,20]. More re-
cently, experimental work has focused on the rate of air entrainment
in laminar and turbulent jets [21,27,28].

Until the late-1990s, there was very little theoretical or compu-
tational understanding of submerging jets. Tomé and coworkers
[29,30] studied container filling of viscous planar jets with a tran-
sient 2-D marker-and-cell numerical method, validated by experi-
ments [30]. While [29] focused on stable filling and buckling, [30]
showed two higher velocity regimes, deemed splashing and splut-
tering. This numerical method was then modified to admit axisym-
metric flows [25] and was used to model the filling of cylindrical
tubs and containers. Later, this numerical method was again ex-
tended to 3-D, allowing the study of arbitrarily shaped jets in addi-
tion to planar and axisymmetric ones [10]. The focus of these
papers, however, was primarily on the development of the numer-
ical method, rather than on a parametric analysis of the flow re-
gimes. Later, Alexandrou and co-workers used 2-D simulations to
observe a wide range of filling regimes for yield-stress materials
[31,32]. All of these methods, however, rely on expensive transient
simulations, and a quick method of probing a large parameter
space would be advantageous.

The previous experiments on high-speed flows [17–21,26–28]
were all for Newtonian fluids in very large receiving pools, showing
the formation of a cusp-like interface from which air bubbles en-
trained in the liquid. However, the authors of the current work are
interested in understanding the physics behind air entrainment
for non-Newtonian fluids filling smaller containers. A common
non-Newtonian behavior seen in industrial fluids is shear-thinning,



Fig. 2. Plot of the viscosity curve for the Carreau–Yasuda model used in this study.
Base case parameters (also found in Table 1) are l0 ¼ 150 P, l1 ¼ 0:02 P, n = 0.2,
k = 0.2 s, and a = 0.8.
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where the viscosity decreases under applied shear. Those fluids are
often modeled with power-law or Carreau models [33]. Shear-thin-
ning models are easily fit to rheological data and have been used
extensively to study flows involving free surfaces [1–4,34–40]. These
computational studies include film flows [34,35], stability analyses
[36,37], coating flows [38–40], and jet pinch-off [1–4], among others.
Recent experiments for shear-thinning fluids in a confined geometry
shown in Fig. 1, show the full range of filling behaviors, including
unstable coiling (Fig. 1a), axisymmetric mounding (Fig. 1b), planar
filling (Fig. 1c), and submerging (Fig. 1d) [23].

For the high filling speeds of interest (above the coiling regime),
the observed fluid profile is generally axisymmetric, thus a 2-D axi-
symmetric model can provide insight into these phenomena while
reducing computational effort as compared to a 3-D model. While
some may refer to this geometry as 3-D axisymmetric [41], we will
use the phrase 2-D axisymmetric to make clear that we utilize a 2-
D computational mesh to solve this axisymmetric problem.
Although the filling of a container is an inherently transient pro-
cess (the container becomes more full and the fluid interface ap-
proaches the top of the container), the experiments shown in
Figs. 1b–d are used in industry to investigate flow regimes in con-
tainer filling processes. The steady-in-time nature of the interface
profiles in these images suggest that a steady-state model may
be able to capture the correct interfacial profiles with a significant
reduction in computational expense over transient simulations.

Therefore, in this paper we present a steady-state, 2-D axisym-
metric finite element model (FEM) to study the transition from
mounding flow to the onset of air entrainment in confined, con-
tainer-like geometries. This reduced-order model (as compared
to a fully transient 3-D model) will provide practitioners with
the ability to perform a computation that runs quickly on an inex-
pensive workstation and allows exploration of a wide range of
operating conditions for a specific process. We use the model to de-
velop operability windows in terms of dimensionless parameters,
which can be used for process design.

This paper is organized as follows. In Section 2, we describe the
governing equations, geometry, and computational methods used
for this study. A scaling analysis is performed in Section 3 to deter-
mine the relevant dimensionless parameters. In Section 4, we then
proceed with a systematic study of the geometric and rheological
parameters, first studying Newtonian fluids, then probing a shear-
thinning fluid. Finally, in Section 5, we present our conclusions.

2. Model

In this section, we first present the physical governing equa-
tions for Newtonian and shear-thinning fluids (Section 2.1). We
then show the container-like geometry (Section 2.2) and boundary
conditions for that geometry (Section 2.3). Finally, we show details
of the finite element method and solution strategy that is used
(Section 2.4).

2.1. Governing equations

Fluid flow is governed by the Cauchy momentum equation and
the mass conservation equation for an incompressible liquid,

q
@v
@t
þ v � $v

� �
¼ �$pþ $ � sþ qg; ð1Þ

$ � v ¼ 0; ð2Þ

where the fluid stress tensor is given by s ¼ lð _cÞ $v þ ð$vÞT
� �h i

. In
these equations v is the velocity, p the pressure, q the density, qg
the gravitational force, lð _cÞ the apparent viscosity, and t is time.
Here we use a generalized-Newtonian viscosity that is a function
of the shear rate, _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 traceðD �DTÞ

q
, which is the second invariant
of the rate-of-strain tensor, D ¼ $v þ ð$vÞT [33]. The dynamics of
the surrounding air phase are neglected, as its viscosity and density
are small compared to the fluid.

In this paper, we consider two models for the fluid rheology. The
simplest of these is the Newtonian fluid with constant viscosity,

lð _cÞ ¼ lnewt; ð3Þ

where lnewt is the Newtonian viscosity. Many fluids with micro-
structure, such as surfactant solutions and suspensions, exhibit
shear-rate dependent behavior. This behavior can be captured by
a shear-thinning model, such as the Carreau–Yasuda model [33].
Some publications [1,3,4] use the more general phrases ‘‘deforma-
tion-rate’’ and ‘‘deformation-rate-thinning’’ to encompass both the
shearing and extensional flows that are observed in our problem.
However, we have chosen to use the more conventional phrases
‘‘shear-rate’’ and ‘‘shear-rate-thinning’’ to describe these deforma-
tions. The Carreau–Yasuda model is shown in Fig. 2 and defined by

lð _cÞ ¼ l1 þ ðl0 � l1Þ 1þ ðk _cÞa
� �n�1

a : ð4Þ

This model exhibits a zero-shear viscosity plateau at low shear
rates, l0, an infinite-shear viscosity plateau at high shear rates, l1,
and a smoothed power-law behavior in between. Three parameters
govern the thinning region; 1=k is a characteristic shear rate gov-
erning when the transition between l0 and the power-law region
takes place, n is the shear-thinning parameter or power-law index,
which can take values between 1 (Newtonian) and 0 (infinitely
thinning) and determines the slope of the power-law region, and
a is a parameter governing the smoothness of the transition. In this
paper, all fluids are assumed to have a density of q ¼ 1 g=cm3 and
surface tension r ¼ 22 dyne=cm.

2.2. Geometry

A schematic of the geometry used for this study is shown in
Fig. 3. The geometry consists of an overflowing container and a
nozzle, and is characterized by a number of parameters, including
the total nozzle height, H, nozzle radius, r, container radius, W, and
container height, L. The height of the nozzle above the container is
h = H � L, and the nozzle diameter, D = 2r, is often used. Fluid flows
out of the nozzle into the container, where it can then overflow the
container and run down its sides. This geometry is aligned verti-
cally, such that the nozzle and container axes are aligned with
the z coordinate, with gravity aligned in the negative z direction
g ¼ �gez. Here, ei is the coordinate vector in the i direction.

This geometry was chosen to mimic a filling container,
while still allowing a steady-state calculation, due to the fluid
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overflowing the cup. This geometry is consistent with the experi-
mental geometry used in industry for similar studies (Fig. 1). In
Section 4, we show that this geometry can reasonably be used to
study transient container-filling processes.
H

L

r

W

Fig. 3. Schematic of the nozzle/container geometry. Key physical parameters are
labeled. In the base case (found in Table 1), L = 3 cm, H = 9 cm, W = 6 cm, r = 0.3 cm.

Fig. 4. Sample 2-D axisymmetric mesh f
2.3. Boundary conditions

A number of boundary conditions are specified for the solution
of this problem. At all fluid-solid boundaries, such as the container
sides and bottom and the nozzle walls, no-slip and no-penetration
conditions are appropriate, v ¼ 0. The velocity at the nozzle inlet
(top) is specified to be a uniform velocity field v ¼ �Vez with V
as the mean nozzle velocity. We have ensured that the nozzle is
long enough to obtain a fully-developed Poiseuille flow field upon
exiting the nozzle.

Free fluid-air interfaces are governed by a balance of normal
stresses across the interface, n � s ¼ 2jrn, which introduces capil-
lary effects into the problem. In this equation, n is the outward
pointing normal vector to the interface, j is the interfacial curva-
ture, j ¼ $s � n=2, and r is the interfacial tension. The operator
$s is the surface gradient operator, defined as $sf ¼ ðI� nnÞ � $f .
The location of the free interface is evolved with a kinematic
boundary condition, n � ðv � vsÞ ¼ 0, while conditions of axisym-
metry are applied at the internal symmetry boundaries. Here, vs

is the velocity of the interface. At steady-state, vs ¼ 0, leading to
the simplified kinematic condition n � v ¼ 0.

2.4. Computational method

This model consists of a 2-D axisymmetric mesh, shown in
Fig. 4. The mesh is comprised of unstructured quadrilateral ele-
ments created using a combination of domain mapping and paving
or the geometry described in Fig. 3.
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methods and generated by CUBIT [42]. The equations are discretized
with the Galerkin finite element method (FEM) using an arbitrary
Lagrangian-Eulerian (ALE) scheme [43,44] to accommodate move-
ment of the mesh. This method was pioneered by Scriven and co-
workers for coating-related problems [45–47], and has since been
used to solve a number of free surface flows, including drop
dynamics [48–51] and liquid bridges [52,53]. The mesh is modeled
as a computational Lagrangian solid, following the momentum bal-
ance for a quasi-static elastic solid,

$ � T ¼ 0; ð5Þ

where T is the total pseudo-solid stress, given by the neo-Hookean
constitutive equation [43]. The mesh boundaries of free fluid-air
interfaces are located with the kinematic boundary condition,
n � ðv � vsÞ ¼ 0, while conditions of axisymmetry are applied at
the internal symmetry boundaries. Here, vs is the velocity of the
interface and n is its outward pointing normal vector.

All of these computations are performed in GOMA, a full-New-
ton FEM code developed by Sandia National Laboratories [54].
GOMA has been used to solve a wide variety of free-interface
problems, including those with shear-thinning rheology [55,56].
Solution of the resulting linear matrix system is performed in
TRILINOS [57] using the SUPERLU_DIST parallel direct solver [58].
Simulations were performed in parallel on a modern quad-core
processor. Performance of this method is briefly discussed
in A.3.

As the desire is to calculate a steady-state solution for the inter-
facial and velocity profiles, an initial guess is required for the inter-
facial profile, velocities, and pressure. The initial guess for the
interfacial profile is a simplified jet generated in CUBIT [42] using
simple geometric components. Shown in Fig. 4a, this profile has
the jet smoothly flowing into the pool and overflowing the con-
tainer. The initial guess for the velocities and pressure is zero. Fur-
ther details on the convergence and refinement of the mesh are
included in A.1.

Throughout this paper, results are presented in terms of the
minimum nozzle velocity required to obtain a given flow profile
or transition. This nozzle velocity will be characterized by a ‘‘criti-
cal velocity’’ or ‘‘critical Reynolds number.’’ To determine this
velocity, a first-order continuation method is used. The solution
is first converged at a relatively low velocity. Then, a series of stea-
dy-state solutions are obtained by incrementing the velocity using
first-order continuation [59],

xguessðVnewÞ ¼ xoldðVoldÞ þ DV
@x
@V

; ð6Þ

where x is the solution vector and V is the nozzle velocity. xguess is
used as the initial guess for each subsequent solution. This proce-
dure is continued until the desired interface profile is achieved.
The full details of the continuation algorithm, including conver-
gence of the initial profile, are included in A.2.
3. Scaling analysis

While the numerical computations described in Section 2 are
conducted using the full dimensional form of the governing equa-
tions, additional physical insight may be gained by defining a con-
sistent set of characteristic dimensional parameters to use in
analyzing the computational data. A naı̈ve approach to this may
be to use the most obvious scales, the mean nozzle velocity V
and nozzle diameter D for velocity and length scales and the New-
tonian viscosity for viscous scalings. For a shear-thinning fluid, the
choice of a viscous scaling becomes more difficult, as there are
many options (zero-shear viscosity, infinite-shear viscosity, or
something in between). A non-dimensionalization based on these
parameters and a pressure scaled with an inertial scaling ðqV2Þ
yields a dimensionless form of the momentum equation,

Dv
Dt
¼ 1

Re
$ � bð$v þ ð$vÞTÞ
h i

� $pþ 1
Fr

g; ð7Þ

where Dv=Dt ¼ @v=@t þ v � $v is the total derivative. Here, b repre-
sents the dimensionless Carreau–Yasuda viscosity,

b ¼ lð _cÞ
l1
¼ 1þ ð�b� 1Þ 1þ ðWi _cÞa

h in�1
a ð8Þ

with the viscous term scaled by l1. The normal stress balance also
yields a dimensionless form,

n � s ¼ 2jn=We: ð9Þ

In (7–9), all variables (such as v, p, _c, and s) are dimensionless.
This scaling yields a number of dimensionless parameters, including
the Reynolds number Re ¼ qVD=l1, Froude number Fr ¼ V2=gD,
Weber number We ¼ qV2D=r, viscosity ratio �b ¼ l0=l1, and
dimensionless characteristic inverse shear rate for shear-thinning,
similar to a Weissenberg number Wi ¼ kV=D.

We can imagine that the various length scales present in the
problem could be important to stability transitions. This scaling
introduces three dimensionless length scales, one of which, h=D,
has been shown to be a critical parameter in some regimes
[19,20]. Since we have a finite pool depth, where the bottom of
the pool will affect the flow, L=D may also be important. Walls
introduce another scaling, W=D. Thus, the critical Reynolds num-
ber may be function of all of these dimensionless parameters,

Recrit ¼ f Fr;We;Wi;
h
D
;

L
D
;
W
D
; �b

� �
: ð10Þ

However, we propose that the important physics in this prob-
lem occur where the jet impacts the fluid pool, not in the nozzle.
Therefore, it is useful to approximate the relevant values there,
rather than those associated with flow in the nozzle. Gravity acts
to accelerate, and therefore thin, the jet at it flows towards the
bath. This change in velocity can be calculated using Bernoulli’s
equation[60],

p
q
þ ghþ 1

2
V2 ¼ constant; ð11Þ

assuming any changes in pressure are from gravity and the viscous

effects are negligible. This yields a jet velocity V jet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2gh

q
,

where the jet has been accelerated by gravity over the distance of
the nozzle height, h. Conservation of mass leads to a jet diameter,
Djet ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=V jet

p
. The physical location of these velocity and length

scales is shown in Fig. 5. To incorporate shear-thinning effects into
the viscosity scale, we must have a characteristic shear rate to use
in the Carreau–Yasuda model. The jet velocity and diameter can
be used to estimate this characteristic shear rate at impact,
_cjet ¼ V jet=Djet, which can then be used to calculate a characteristic
viscosity (for shear-thinning fluids) from (4),

ljet ¼ lð _cjetÞ ¼ l1 þ ðl0 � l1Þ 1þ k
V jet

Djet

� �	 
a� �n�1
a

; ð12Þ

which captures the localized physics of the jet impact region. This
analysis is similar to that presented by [26] for Newtonian fluids.

Using these jet-impact based scales, a new Reynolds number
can be defined that more accurately represents the relevant bal-
ance for forces at jet impact, Re ¼ qV jetDjet=ljet. This Reynolds
number can then be related back to the naı̈ve parameters defined
using geometric and inflow parameters



V

D

Djet

Vjet

h

Fig. 5. Schematic of a thinning jet for a large nozzle height. Nozzle inlet scalings, V
and D, used to calculate the naı̈ve Reynolds number Re are shown, along with the
Bernoulli-based jet scalings, V jet and Djet , used for the impact Reynolds number Re.
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Re ¼ Re 1þ 2
Fr

h
D

� �1=4 1
b̂

ð13Þ

with a new dimensionless viscosity

b̂ ¼
ljet

l1
¼ 1þ ð�b� 1Þ 1þ Wi 1þ 2

Fr
h
D

� �3=4
" #a !n�1

a

: ð14Þ

From (13), two different regimes of Froude number dependence
are observed. For large Froude numbers, we will see a dependence
only on the inflow Reynolds number, Re, and the dimensionless
characteristic shear rate, Wi. In this limit, Re ¼ Re=b̂. At small Fro-
ude numbers, the dimensionless length-scale, h=D, becomes more
important. As is shown in Section 4, Froude numbers in this study
range from 10�2 to 102, so a combination of these limiting behav-
iors will be observed.

Eq. 13 also suggests alternative scalings for the other dimen-
sionless parameters in (10). The Froude number is first redefined
to be based on the nozzle height rather than the diameter,
Fr ¼ Frðh=DÞ ¼ V2=gh. The dimensionless characteristic inverse
shear rate can also be redefined using the alternative scaling as
Wi ¼WiðV jet=VÞðD=DjetÞ ¼ kV jet=Djet. The remaining length scales
can also be made dimensionless by the jet-based diameter, such
as L=Djet . We use these definitions of the dimensionless parameters
in the remainder of our analysis.

Due to the presence of a free surface in this problem, one may
be interested in the importance of capillary forces in this analysis.
A calculation of the Weber number yields the relative importance
of inertial forces to surface tension forces. Calculation of the Weber
number for the data presented in Section 4 yields a range of
15 < We < 430, all of which suggest that inertial forces should
dominate over surface tension forces. Indeed, upon examining
the data using the Weber (or Capillary) number, no correlation
was found. Therefore, we do not further explore surface tension
effects here.
4. Results and discussion

As the purpose of this study is the identification of an ideal
operating regime for container filling processes that is free of air
entrainment, we must first identify the flow regimes which will
be used to characterize these flows. Fig. 6 illustrates four distinct
regimes, all of which were calculated using the base state rheology
and geometry, which is set forth in Table 1. The lowest velocity re-
gime, shown in Fig. 6a, is characterized by a widening of the jet
diameter prior to joining the liquid pool and is known as ‘‘mound-
ing.’’ In this regime, which is at higher velocities than coiling flows
occur [7,8], the flow is stable and does not entrain air, although the
velocity is slower than desired for most filling processes. This re-
gime can lead to container under-filling or overflowing of the con-
tainer, if the mound reaches the top of the container before the
sides have filled. The second regime (Fig. 6b) is a transitional flow
deemed the ‘‘planar flow.’’ As it is fast enough to be of practical
interest, yet still slow enough to not threaten air entrainment, it
is an ideal operating condition. This flow is signaled by a sharp
transition from a jet of nearly constant diameter to a relatively flat
pool, with no mounding or submerging observed. As the velocity
continues to increase, the jet begins to submerge into the fluid
pool, as illustrated in Fig. 6c. While this ‘‘submerging’’ regime does
show that the jet does reach lower than the top of the pool and air
is present below the liquid interface, full 3-D transient simulations
(discussed later) suggest that this flow is stable and the air layer
surrounding the jet does not entrain air bubbles into the pool. Fi-
nally, a critical flow profile, deemed ‘‘entrainment,’’ is reached
where the air layer becomes unstable and the edge of the fluid pool
curls over towards the jet at the point of entry (Fig. 6d). At this
point, the submerged interface of the fluid pool is parallel to the
jet. While [21] show stable flow profiles that are clearly past this
regime, the thin air layers shown would be extremely sensitive
to small perturbations and are therefore not suitable for high-
speed, vibration-prone filling operations. Therefore, this curl-over
regime will be used to signal the beginning of air entrainment.

While these guidelines for determining flow regimes are reliable,
each flow profile looks slightly different and identification of the re-
gimes can be subjective. In particular, differences in the details of the
surface profile can lead to some uncertainty in determining the pla-
nar-flow transition. These uncertainties may lead to some of the data
scatter seen in the results presented in this section.

The flow profiles generated from our model can be easily visu-
alized; Fig. 7a shows velocity streamlines for a sample submerging
flow. The streamlines show that the jet is moving at a very high
speed, and that the velocity decreases sharply as soon as the jet im-
pacts the pool. The viscous forces then dissipate the momentum
from the liquid jet both radially and axially. Fluid leaving the con-
tainer speeds up slightly, then develops a laminar film-flow profile
down the outside of the container. The corresponding pressure
field is shown in Fig. 7b, where the pressure is lowest where the
jet leaves the nozzle, as it is in extension, and rises throughout
the falling jet, reaching a local maximum at impact.

While an extensive verification and validation study of our
model was not performed, the model does qualitatively agree with
interface profiles of similar geometries generated computationally,
as summarized in Fig. 8. Transient 3-D simulations were performed
using two methods. First, FLOW-3D [61] was used to model the
current ‘‘overflowing cup’’ geometry in a transient 3-D simulation.



Fig. 6. Illustration showing the various flow regimes for the model shear-thinning fluid of Fig. 2. The nozzle velocity is increasing in successive images, other parameters
having the base case values, given in Table 1. The color function is the apparent viscosity, lð _cÞ (in units of Poise).

Table 1
Base case values for rheological and geometric parameters. The parameter values are
used for all simulation results, unless otherwise specified.

Parameter name Symbol Value

Density q 1 g/cm3

Surface tension r 22 dyne/cm
Zero-shear viscosity l0 150 P
Infinite-shear viscosity l1 0.02 P
Power-law index n 0.2
Inverse characteristic shear-rate k 0.2 s
Transition parameter a 0.8
Container height L 3 cm
Nozzle height, total H 9 cm
Container radius W 6 cm
Nozzle radius r 0.3 cm
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This simulation was allowed to run until it reached a steady-state
profile, and the results for two nozzle velocities are shown in
Figs. 8b and e. Second, OpenFOAM [62] was used to run a simula-
tion in a tall cylindrical container. As this simulation will never
reach a steady state (as the liquid meniscus continues to rise high-
er in the container with time), a snapshot of the interface profile
was taken when the height of the fluid interface was 3 cm, which
is the height of the cup in the previous simulations. These profiles
are shown in Figs. 8c and f. Comparisons can be made between
these transient simulations and the results of our model, for which
a 3-D visualization is shown in Figs. 8a and d.

Our simplified model shows an excellent comparison to these
transient 3-D simulations in the jet impact region. While the calcu-
lations for our model and the FLOW-3D model were performed at
identical nozzle velocities, the nozzle velocities required to obtain
a similar interface profile were slightly lower in the OpenFOAM
simulations. This discrepancy suggests that our model may slightly
over-predict the critical nozzle velocities that would occur in a true
container. However, results from these and other simulations sug-
gest that the trends that we report in this section are qualitatively
correct, even if they are not in exact quantitative agreement.



Fig. 7. Typical flow profile for a submerged shear-thinning fluid at the base state parameters in Table 1. In (a), streamlines (colored by the magnitude of the velocity using a
logarithmic color scale) show that the flow is quite simple and does not have any recirculation regions. The gray background denotes the interior of the container, where fluid
is present. The pressure field is shown using a logarithmic color scale in (b).
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Similar interfacial profiles are also observed in experiments
with a shear-thinning fluid impinging on a shallow pool, shown
in Figs. 1b and d. While the rheology and operating parameters
are not identical between the computations shown in Fig. 8 and
these experiments, the general trends observed hold. All four re-
gimes have been similarly observed experimentally, and the inter-
face profiles are consistent with those shown by Tomé and
coworkers [10,29,30].

In the following presentation of our analysis, we discuss the re-
sults in terms of the four flow regimes previously identified
(mounding, planar, submerging, and entraining). We will primarily
focus on the two transition regimes, planar flow and entrainment.
One exception to this is Newtonian fluids, which do not readily
show mounding behavior. Instead, the impact region of Newtonian
jets are always slightly submerged, with no clear transition from a
mounding to a submerging profile. Therefore, in our Newtonian
analysis, we only discuss the onset of air entrainment.

In the following subsections, we first explore the effect of the
container geometry on the flow regimes for Newtonian fluids, also
analyzing the effect of the Newtonian viscosity on entrainment
behavior. We then proceed to shear-thinning fluids, where a thor-
ough investigation of the Carreau model parameters is presented.

4.1. Geometry effects on Newtonian fluids

A key difference between container filling and the experiments
of [18] is the geometry; containers present a confined geometry,
where the fluid dynamics near the jet impact are strongly influ-
enced by the presence of the bottom and sides of the container.
This influence is clearly demonstrated in Fig. 9, where the critical
air entrainment velocity is shown for three container radii. In these
results, the critical Reynolds numbers are Re� O(1), while the cor-
relation of [18] predicts Re � 0.0098 for the same fluid and nozzle
diameter, a difference of two orders of magnitude. We also note
that [18] use much less viscous fluids (0:009 P < l < 4 P) than
are of interest here (l � 100 P), and that the Reynolds number pre-
dicted for our fluid is far outside the range of their correlation’s
data (the lowest Reynolds number in [18] is Re � 8).

Not only does the presence of container walls have a significant
impact on the critical entrainment Reynolds number, but the dis-
tance of the walls from the jet impact also strongly affects this
behavior. A clear downward trend in the critical Reynolds number
with increasing container radius is shown in Fig. 9. This behavior
not only confirms our deviation from the results of [18], but also
shows that slight deviations to the radius of the container (think
undulations in the contour of the container as it fills) could make
a significant difference in the flow regime throughout a filling
process.

Besides simple changes to the critical Reynolds number, widen-
ing the container beyond W � 6.5 cm can lead to a drastic change
in the flow profile, as shown in Fig. 10. This unconverged simula-
tion for a wide container (W = 14 cm) shows the development of
a flow recirculation region near the jet impact. This recirculation
leads to a drastic change in the interface shape, from the smooth
‘‘U’’-shaped profile shown in Fig. 7 to the trumpet-shaped profile
seen in many previous studies [18,20,21]. All of these previous
studies have had very large liquid pools, and the ‘‘U’’-shaped pro-
file is consistent with previous simulations with confined geome-
tries [30, figure 15]. This recirculation allows the momentum
dissipation to take place over a larger area and for the velocity to
remain high near the impact region, with fluid particles in the jet
plunging deep into the pool before slowing down. This transition
in flow profiles from narrow to wide baths illustrates that there
is a significant difference between jets impinging in container-like
geometry and in an unconfined pool. The substantial modification
of the flow profile due to the presence of side walls greatly stabi-
lizes these flows, forcing the onset of air entrainment to higher
Reynolds numbers.

Other geometric parameters, such as the bath depth L and noz-
zle height h, play a role in determining the entrainment velocity.
Fig. 11 shows two regimes of behavior for the bath depth. At dee-
per bath depths ðL=Djet J 10Þ, there is little variation in the critical
entrainment Reynolds number, while in shallower pools
ðL=Djet K 10Þ, there is a sharp increase in the critical entrainment
Reynolds number. When the bath is very shallow ðL=Djet K 10Þ,
the flow in the impact region feels the effect of the container bot-
tom, causing the fluid to spread horizontally, rather than plunging
deeper. This spreading motion inhibits the submerging motion,
requiring a higher velocity to entrain air. This effect is similar to
what was seen with the container radius, shown in Fig. 9. As the
bath becomes deeper, the impact region interacts less with the bot-
tom, allowing air entrainment to occur at lower velocities. In
industrial container filling operations, this means that when a con-
tainer is being filled from a nozzle with a constant inlet velocity, air
entrainment is more likely to happen late in the filling process,
when the bath is deeper, rather than earlier. A possible method
of reducing the risk of air entrainment is decreasing the nozzle
velocity (and therefore the Reynolds number) throughout the



Fig. 8. Comparison of the present model with 3-D transient calculations using
FLOW-3D [61] (b, e) and OpenFOAM [62] (c, f). The rheology is described by the
Carreau–Yasuda model with l0 ¼ 214 P, l1 ¼ 0:122 P, k ¼ 0:22 s, n = 0.2, and
a = 0.82 and geometric parameters from Table 1. FLOW-3D calculations are using
an overflow geometry identical to the one used in our model, while the
OpenFOAM calculations were performed in a cylindrical bottle geometry, and the
snapshots are taken when the fluid height is similar to the height in the overflow
geometry.
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filling process. This would allow a higher velocity early in the fill-
ing process and an overall faster container fill than if the nozzle
velocity was held constant (at a lower value) throughout the fill.

The nozzle height (h) and diameter (D), along with the fluid vis-
cosity, also play a role in determining the container-filling behavior,
as illustrated in Fig. 12. In order to compare the naı̈ve calculation of
the nozzle-based dimensionless numbers with our jet-based sca-
lings (calculated in Section 3 from Bernoulli’s equation), we show
both sets of data in Fig. 12. The nozzle-based parameters, shown in
Fig. 12a, show a significant spread to the data, with many values of
the Reynolds number appearing for a single Froude number. These
data also show a strong trend of higher critical entrainment Rey-
nolds numbers as the Froude number increases. The Bernoulli-based
scalings, shown in Fig. 12b, however, are much less dependent on
the Froude number. These simulations are for Newtonian fluids with
a large range of viscosities (60 P < lnewt < 160 P) and nozzle veloc-
ities (200 cm=s < V < 600 cm=s); however it is important to note
that the critical entrainment Reynolds number (jet-based) is rela-
tively constant over this entire range. This behavior is consistent
with the scaling analysis of (13), as when Fr� 1 we do not expect
the Reynolds number to have a Froude number dependence. There
is only a slight dependence on the Froude number with this data
ðRe � Fr�0:05Þ. This relatively constant scaling allows us to conclude
that the onset of air entrainment is governed by a balance between
the inertial forces of the jet and the momentum dissipation in the li-
quid pool. It also reinforces our assertion that the correct scaling for
our equations are indeed based on the jet properties near the impact
region, as estimated using the Bernoulli scalings introduced in Sec-
tion 3. One caveat to this behavior is for h = 3 cm, shown with the
open symbols in Fig. 12b. At this height, the nozzle is so close to
the bath impact region that the presence of the nozzle itself inter-
feres with the jet behavior. The jet immediately slows and expands
as soon as it leaves the nozzle, and does not develop the thinning jet
profile used in the development of (13). If these outlying points are
ignored, the scatter of these data is significantly less than in the noz-
zle-based scalings.

4.2. Shear-thinning fluids

A key motivation of this work is understanding the flow regimes
for shear-thinning fluids and how the Carreau model parameters
affect the flow. In Section 4.1, we showed that the Reynolds num-
ber is a good metric for understanding and predicting the onset of
air entrainment in Newtonian fluids. In this section, we use the
Carreau–Yasuda model (4) to study the transitions from planar



Fig. 10. Unconverged simulation of the jet impact region for a Newtonian simulation with a wide container, W = 14 cm. Interface profile shows the emergence of the trumpet-
like profile seen in previous studies [18,20,21]. Streamlines are shown colored by the magnitude of the velocity (in units of cm/s), illustrating that this trumpet-like profile is
due to the recirculation zones present, in contrast with the steady flow of confined geometries shown in Fig. 7. Rheological parameters are the same as in Fig. 9.
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flow to air entrainment of shear-thinning fluids. We use the Rey-
nolds number to characterize the ideal operating window for these
fluids. Such a model is appropriate for many micellar solutions.

Before addressing the characteristic parameters of shear-thin-
ning fluids, we must first understand any qualitative differences
between Newtonian and shear-thinning fluids and determine what
role the nozzle geometry plays. This issue of nozzle height and
diameter is addressed in Fig. 13, where we use the Reynolds num-
ber to parametrize the transition regimes (planar-flow and air
entrainment) for the model shear-thinning fluid described in
Fig. 2. As discussed at the beginning of this section, the ideal oper-
ating conditions are in the planar-flow regime, ensuring a fast fill
without threatening air entrainment.

In Fig. 13a, we show the critical Reynolds number for the pla-
nar-flow and air entrainment transitions as a function of the
dimensionless nozzle height, h=D. This parameter has been used
in previous studies to understand buckling behaviors [12], as well
as air entrainment [20]. While this parameter selection yields a
monotonic behavior when the nozzle height h is varied, there is
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ies, nozzle heights, and nozzle diameters. Other geometric parameters as in Table 1.
tries where h = 3 cm.



Fig. 13. Critical Reynolds number versus dimensionless numbers for values of h and D. Open symbols represent the planar-flow transition (Fig. 6b) and closed symbols
represent the air entrainment transition (Fig. 6d). Nozzle diameters are h = 0.3 cm, s = 0.6 cm, and / = 0.9 cm. Other rheological and geometric parameters are from Table 1.
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a systematic deviation when different nozzle diameters D are
studied.

A better presentation of these data is by using the Froude num-
ber rather than h=D, as shown in Fig. 13b. This parametrization col-
lapses the data, showing that the critical Reynolds number for
varied nozzle heights and diameters can be understood through a
single scaling. While the pre-factor to the power-law fit to these
data varies between the planar-flow and entrainment transitions
(as expected), the scaling power is identical ðRe � Fr�0:05Þ. This
scaling is identical to the Newtonian fluid data shown in Fig. 12.
This demonstrates that although the Reynolds numbers are slightly
higher for the shear-thinning fluids (Re � 15, as compared to
Re � 5 for Newtonian fluids), the underlying physics behind both
systems is similar. Differences in the Reynolds numbers between
Newtonian and shear-thinning fluids can be attributed to the ma-
jor differences in the systems, and the simplifications that are
made in characterizing them by a single number. While Newtonian
fluids have a constant viscosity throughout the entire flow profile,
the viscosity of shear-thinning fluids vary over two orders of
magnitude. While we have estimated a characteristic viscosity in
Section 3, the actual system is much more complicated.

From a practical standpoint, one interesting observation is that
the transition from mounding flow to air entrainment happens
very quickly, over a very small range of Reynolds numbers. When
these Reynolds numbers are translated back to nozzle velocities,
the mean difference between the planar-flow and air entrainment
regimes is DV � 10 cm=s, whereas the actual nozzle velocities can
be as high as V � 150 cm=s, a range of only 10%. This leaves a
very small operating window for successful container filling.
While the nozzle velocities in systems can range significantly
(50 cm=s < V < 150 cm=s), the critical Reynolds number changes
very little. This is also of practical importance when designing a
container-filling operation, as calculating the Reynolds number
will enable a prediction of the ideal operating nozzle velocity for
a number of configurations.

With the Reynolds number established as an effective parame-
ter to study both Newtonian and shear-thinning liquids, we can
now address the various rheological parameters. The zero-shear
viscosity l0 is an analog to the Newtonian viscosity discussed in
Section 4.1, and can be seen in Fig. 2 at low shear rates. Fig. 14
shows the dependence of the operating window on l0. As can be
seen from Fig. 14a, increasing l0 significantly increases the critical
transition velocities. This behavior is consistent with our previous
assertion that the critical Reynolds number is approximately con-
stant, as increasing l0 increases the characteristic viscosity (12),
ljet. Because of the relatively constant Reynolds numbers shown
in Fig. 14b, we expect that inertial forces (i.e. nozzle velocity) must
balance viscous forces at the constant Reynolds number, and there-
fore we expect that the nozzle velocity must rise with increasing
l0, as is observed. These results further reinforce the choice of
the jet-based Reynolds number as the correct parametrization, as
it remains relatively constant over a wide range of viscosities and
nozzle velocities.

On the other end of the shear-rate spectrum is the infinite-shear
viscosity l1, seen at high shear rates in Fig. 2. Because the charac-
teristic shear rates in the vicinity of jet impact, _cjet, are rarely high-
er than 103 s�1, the local apparent viscosity at impact is typically
ljet � Oð1 PÞ. Therefore, two regions of behavior are observed
when varying l1, shown in Fig. 15. At low shear rates
( _c < 1 s�1), the characteristic impact viscosity is relatively unaf-
fected by changes to l1, which is reflected by the small changes
to the critical nozzle velocities shown in Fig. 15a. However, as
l1 increases to near 1 P, the characteristic viscosity begins to in-
crease. This increase in viscosity causes an increase in critical noz-
zle velocities, as is seen at the higher shear rate in Fig. 15a. In both
of these regimes, the Reynolds number remains an effective
parameter of the system, as it remains relatively constant.

The shear rate at which the transition from the zero-shear vis-
cosity to the shear-thinning regime begins is determined by k, and
this parameter’s effect on the entrainment transitions is shown in
Fig. 16. Referring to Fig. 2, as k increases, the power-law region
shifts to lower shear rates. This shift yields a lower characteristic
viscosity at the characteristic shear rate (12). In Fig. 16a, a higher
value of k leads to a lower value of the critical velocities, as ex-
pected from the lower characteristic viscosities. These deviations
can be framed in the context of the Reynolds number and dimen-
sionless characteristic inverse shear rate, shown in Fig. 16b. This
figure shows that while the Reynolds number has a slight positive
dependence on Wi, the variation is quite small compared to the
variation in the nozzle velocity, characterizing the system well.
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Similar behavior is seen when examining the effect of the
power-law exponent n. As n increases, the slope of the shear-thin-
ning transition (see Fig. 2) increases. This leads to overall higher
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constant in Fig. 17b. The slight decrease in the critical Reynolds
number with increasing n seen in Fig. 17b is consistent with an
asymptotic approach to the Newtonian behavior, which had a crit-
ical Reynolds number of Re � 4. These results again reinforce our
choice of the Reynolds number as an effective parameter for under-
standing the transitions from mounding to air entrainment.
5. Conclusions

In this paper, we demonstrated that container-filling processes
for complex fluid systems can exhibit a wide range of behaviors,
and the ideal operating window, in terms of nozzle velocity, can
be quite narrow. Experiments and transient 3-D simulations have
shown that the interface profiles near the ideal operating condi-
tions are axisymmetric and relatively steady, and so a reduced-or-
der computational model can be useful in determining optimal
operating conditions. We proposed a simple steady-state, 2-D axi-
symmetric FEM model for studying this system. This model was
used to determine the ideal filling velocity, deemed the planar flow
velocity, and the minimum air entrainment velocity in confined
cylindrical geometries.

A suitable scaling of the governing equations suggested a num-
ber of dimensionless parameters to use in characterizing these
flows. In calculating these dimensionless parameters, choosing
the correct scaling parameters can be quite difficult, particularly
for shear-thinning fluids, where the viscosity varies over four or-
ders of magnitude. The correct choice of these scalings has a signif-
icant effect on the applicability of using these dimensionless
numbers to characterize the flow transitions. Our analysis of this
system suggests that the key physics occur where the jet impacts
the liquid pool, and Bernoulli’s equation may be used to estimate
the relevant parameters at that location. We showed that the Rey-
nolds and Froude numbers are most useful in characterizing these
flows, as they relate the relevant forces: inertial, viscous, and grav-
itational. Our results also supported the assertion that the key
physics occur at the impact region, as our Bernoulli-based scalings
led to Reynolds numbers that were relatively constant over a wide
range of geometric and rheological parameters.

This model was used to study the transitions from mounding
flow to submerging flow to air entrainment for model Newtonian
and shear-thinning fluids. We also investigated what effect the
container geometry has on the ideal operating conditions. For
Newtonian fluids, we found that the presence of a confined con-
tainer has a significant stabilizing influence over a large uncon-
fined receiving pool. The presence of side walls drastically
changes the flow profile, creating ‘‘U’’-shaped submerged regions
with a laminar flow profile in submerging regimes, rather than
the thin trumpet shapes with recirculation zones seen previously
[18,20,21]. Study of the bath depth shows that when a container
is being filled from a nozzle with a constant inlet velocity, air
entrainment is more likely to happen late in the filling process,
when the bath is deeper, rather than earlier.

For shear-thinning fluids, the critical nozzle velocities were
found to be highly dependent on some of the rheological model
parameters. While the critical velocities are relatively insensitive
to the infinite-shear viscosity, there is a strong trend of higher crit-
ical velocities as the zero-shear viscosity increases. The parameters
affecting the power-law region of the Carreau model, n and k, also
had a strong influence on the critical velocities. The effect of all of
the rheological parameters can be best understood by understand-
ing how they influence the characteristic viscosity at moderate
shear rates, _c � 103. When the characteristic viscosity at the jet im-
pact increases, the inertia necessary to overcome these viscous
forces must also increase. The rise in inertia is a result of an in-
crease in the critical nozzle velocities.

When taking all of the data into account, it becomes clear that
the relevant physics governing the transition from mounding to
submerging flow is a balance between the inertia of the jet and
the viscous forces in the receiving pool. While there were slight
trends observed in the Reynolds number when certain parameters
were varied, overall the Reynolds number remains relatively con-
stant for a wide range of rheological and geometric parameters,
identifying it as an important parameter for characterizing these
flows.

We have shown that this model should be applicable to many
filling operations. However, further experimental validation stud-
ies need to be performed to ensure its predictive capability. Also,
many industrially relevant fluids exhibit yield-stress or viscoelastic
character, and further studies are planned to explore any addi-
tional effects these rheological properties may have on container-
filling operations.
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Appendix A. Details of the numerical method

In this appendix, we detail the numerical algorithm used to ar-
rive at the critical nozzle velocities presented in Section 4. Addi-
tionally, we discuss proper selection of the mesh size and the
parameter ranges where this model is applicable. Performance of
this model is also discussed.
A.1. Mesh sizing and refinement

The computational meshes shown in Fig. 4 are representative of
all of the simulations reported in this paper. The nominal size of
the element sides at the bottom of container and in the outflow re-
gion was x = 0.15 cm per side, giving an element area of
x2 ¼ 0:0225 cm2. In the nozzle, jet, and at the free interface near
the impact region, however, a more refined mesh is necessary to
capture the rapidly changing velocity and viscosity fields, and to
accurately capture the shape of the interface. In these areas, the
element sides were typically 1/2 to 1/4 of the length, with a length
of x = 0.05 cm being very typical in the submerging regime shown
in Fig. 4b.

To confirm the validity of the interface shapes for the typical
mesh, a mesh refinement study was conducted on two meshes
with constant nominal element size, with results shown in Figs. 18,
19. Two measures are key for the accurate modeling of this prob-
lem. First, as there are regions within the system that have highly
varying apparent viscosities, accurate spatial resolution of these
viscosities must be captured. Fig. 18 shows the L2 norm of the vis-
cosity, which gives an overall measure of the accurate spatial res-
olution of the viscosity changes, with increasing mesh resolution.
As the mesh size decreases, the resolution increases and the L2

norm appears to converge to the ‘‘correct’’ value, determined by
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Fig. 18. L2 norm of the viscosity for various levels of mesh refinement, normalized
by the L2 norm for the most refined mesh of side length x = 0.025 cm. Results for
two profiles are presented, one for a flat interface, shown in Fig. 19a, and the other
for a submerged interface, shown in Fig. 19b.
the most highly-refined mesh (side length of x = 0.025 cm). It is
important to note, however, that most of the cases shown in
Fig. 18 are within 1% of the ‘‘correct’’ value, so there is high confi-
dence in the spatial resolution for the mesh sizes used in this work.

The other key measure is the accuracy in which the mesh can
capture the true shape of the free interface, particularly near the
jet impact. This measure is important, as it is used to determine
the transition velocities presented in this paper. Fig. 19 compares
the interface shape for two levels of mesh refinement in two differ-
ent flow regimes, with Fig. 19a showing a flat interface and Fig. 19b
showing a submerged interface. In these illustrations, the 2-D
mesh has a nominal element side length x = 0.1 cm, while the
interface shape for a more highly refined mesh, with nominal ele-
ment side length x = 0.025 cm, is shown as the darker line. As
shown in Fig. 19a, the less refined mesh nearly perfectly captures
the true interface shape for the flat interface. For the submerged
case in 19b, the interface is mostly captured by the coarse mesh,
with the exception of slight deviations at the bottom of the dip.
Refining the mesh to x = 0.5 cm, however, allows for a smooth rep-
resentation of the interface.

A.2. Continuation and convergence algorithm

Obtaining the initial converged solution for a given geometry
and rheology is a multi-step process, which we describe in detail
here.

1. Prepare the initial mesh, similar to Fig. 4a, with the desired
geometry, including nozzle radius r, nozzle height h, container
radius W, and container height L.

2. Holding the mesh fixed, converge a simulation for a Newtonian
fluid at a low nozzle velocity. If a simulation of a Carreau fluid is
the final goal, use the zero-shear viscosity l0 as the Newtonian
viscosity. In this context, a ‘‘low’’ nozzle velocity is a velocity
that is expected to be well within the mounding regime for
the final simulation, and must be selected with some prior intu-
ition as to what it should be, or by trial and error.

3. Using the solution from step 2 as the initial guess, reinstate the
kinematic boundary condition, allowing the mesh to deform,
and converge a Newtonian free-interface solution.

4. Remesh the converged solution from step 3 using the reme-
shing procedure described in A.2.1.

5. For simulations of Carreau fluids, use the first-order continua-
tion algorithm described in Section 2.4 to decrease the shear-
thinning parameter n until the desired rheological parameters
are converged. This process may take anywhere from 5 to 30
steps, depending on the difficulty of the simulation, and the
continuation step size is dynamically adjusted to maximize step
size while ensuring convergence of each steady-state solution.
Occasionally throughout this continuation process, the interface
shape will deform significantly enough to warrant interim
remeshing (see A.2.1). The final converged solution is also
remeshed and should be in the ‘‘mounding’’ regime.
Using this method, we are regularly able to converge simula-
tions with n as low as 0.2. While it may be possible to converge
for even lower values, the problem becomes much more com-
putationally challenging, requiring much smaller continuation
steps and more ‘‘tricks’’ to converge the Newton iterations.
However, for the fluids of interest in this study, n = 0.2 fits the
available rheological data well, and continuation lower than
n = 0.2 is unnecessary.

6. In order to determine the critical nozzle velocities described in
Section 4, the first-order continuation algorithm is used to
increase the nozzle velocity V in small steps, observing the pro-
gression of the interface shape. The converged and remeshed
solution from step 5 is used as the initial guess for this process.



Fig. 19. Interface profiles shown for two levels of mesh refinement. The entire mesh is shown for mesh size x = 0.1 cm, while a thick line at the interface is shown for the most
refined mesh, x = 0.025 cm.
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Multiple interim remeshing steps (see A.2.1) are performed
throughout the continuation as the mesh deforms significantly.
The ‘‘flat’’ (Fig. 6b) and ‘‘entrainment’’ (Fig. 6d) flow profiles are
identified visually and the velocity at which these profiles occur
are recorded for analysis.

7. In addition to continuing in nozzle velocity, simulations for dif-
ferent geometric and rheological parameters can be obtained
without repeating all steps 1–5, but instead taking a converged
solution from step 5 and using the continuation algorithm to
slowly vary the desired parameter. This method was used to
obtain the majority of results in Section 4 and is much more
efficient than repeating the entire procedure for each set of
parameters.

A.2.1. Remeshing schemes
Occasionally during this continuation process (steps 4–7),

geometry evolution leads to excessive mesh distortion, where the
nodes of individual mesh elements cross mesh lines or become
co-linear. Too much distortion undermines the numerical accuracy
and convergence of the method. To prevent this, the mesh is mon-
itored throughout the continuation process, and when poorly
shaped elements are observed, the simulation is paused. The de-
formed geometry is then re-meshed in CUBIT [42] using the same
criteria used to generate the initial mesh. The solution from the de-
formed solution is then mapped onto the newly meshed geometry,
and the continuation process is resumed. If the mesh deforms too
much during this continuation process, it may be difficult, or even
impossible, to obtain a valid solution upon restart. Therefore, care
must be taken to monitor the mesh deformation and pause at any
sign of overly-deformed elements.

A.2.2. Relaxed Newton iterations
Oftentimes, the equations are sufficiently nonlinear or the ini-

tial guess is sufficiently far away from the true solution that simu-
lations will not converge under full-Newton iterations. To address
this issue, GOMA has implemented a dynamically adaptive, relaxed
Newton iteration scheme that can greatly increase the range of
convergence of this algorithm. In this method, the Newton itera-
tion formula is

xiþ1 ¼ xi � r
Ri

@Ri=@xi
; ð15Þ

where x is the solution vector, R is the residual vector, i is the iter-
ation counter, and r is the relaxation parameter, with r<1 relaxing
the iteration and r=1 representing a full-Newton iteration. The value
of r is dynamically chosen depending on the L2 norm of the residual
vector, which represents how close the iterations are to conver-
gence. The relaxation parameter r can start off low (r � 0:1) and in-
crease as the iterations near convergence. However, a typical set of
parameters for this scheme is r=0.6 for the L2 norm > 10�3, r=0.8 for
the L2 norm > 10�4, and r=1.0 for the L2 norm < 10�4.
A.3. Performance

A key advantage to the use of this reduced-order model is the
reduction in time necessary to perform the analysis for a wide
range of geometric and rheological parameters. Simulation times
can vary widely, depending on the difficulty of the problem and
complexity of interface shape. However, an average steady-state
simulation takes approximately 1–3 minutes to converge, with
the longest times being required when strong relaxation of the
Newton iterations (A.2.2) is necessary. While there are many steps
to the entire presented in A.2, this entire process (steps 1–6) is con-
tained in a script and is mostly automated. Typical run times for
this algorithm are 2–3 h. However, through the use of step 7, con-
verged solution can be used to significantly reduce this time to
approximately 1 hour in some instances. This total simulation time
is significantly shorter than the times required to run the 3-D tran-
sient validation simulations shown in Fig. 8, which often require
24–48 h on an eight-core machine.
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