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Abstract

The peridynamic theory of continuum mechanics allows damage, fracture, and long-range forces to be treated as natural
components of the deformation of a material. In this paper, the peridynamic approach is applied to small thickness two- and
one-dimensional structures. For membranes, a constitutive model is described appropriate for rubbery sheets that can form
cracks. This model is used to perform numerical simulations of the stretching and dynamic tearing of membranes. A similar
approach is applied to one-dimensional string like structures that undergrow stretching, bending, and failure. Long-range
forces similar to van der Waals interactions at the nanoscale influence the equilibrium configurations of these structures, how
they deform, and possibly self-assembly.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical theory of solid mechanics, because
it relies on partial differential equations, contains in-
herent limitations when applied to problems involv-
ing failure of materials: since the spatial derivatives
do not exist on crack tips or surfaces, the differential
equations cannot be applied directly on these singu-
larities. The traditional way of working around this
issue is through the special techniques that have been
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developed in the field of fracture mechanics. These
special techniques are not always satisfactory, ei-
ther physically or mathematically, in part because
of the need for supplemental relations that control
crack growth (for example, crack growth velocity as
a function of stress intensity factor). In the present
work, an alternative approach is pursued, which is to
reformulate the fundamental equations of continuum
mechanics in such a way that they can be applied
regardless of whether a discontinuity occurs as a
result of deformation. This alternative approach is
called theperidynamicmodel[1,2]. The peridynamic
model uses integral rather differential equations, so
the mathematical structure does not break down when
a discontinuity occurs. Instead, fracture is treated as
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a natural outcome of deformation that emerges accord-
ing to the equations of motion and constitutive model.
Consequently, simulation of fracture growth within the
peridynamic model does not require supplemental ki-
netic relations that, in traditional fracture mechanics,
would be needed to determine crack initiation, growth
velocity, direction, arrest, branching, and other fea-
tures. Another aspect of the peridynamic model that
makes it attractive for certain applications, particularly
at the nanoscale, is that long-range forces, such as in-
termolecular and surface forces, can be incorporated
easily as part of the constitutive model. This is because
the model treats all forces between particles in a con-
tinuum as though they act across a finite distance, in
contrast with the fundamental assumption in the clas-
sical theory that all forces internal to a body result
from contact. The purpose of this paper is to discuss
the properties of the peridynamic model for simulating
the deformation, interaction, and failure of thin two-
and one-dimensional structures. After briefly review-
ing the full three-dimensional theory, a peridynamic
model is described for elastic sheets that can undergo
damage and fracture. This model is applied to the tear-
ing of sheets and to the dynamic fracture of a stretched
membrane. The theory is then further specialized to
stringlike structures, similar to long molecules, that
sustain tensile loads while interacting with each other
through intermolecular and contact forces.

2. Peridynamic theory

The peridynamic theory may be thought of as a con-
tinuum version of molecular dynamics. The accelera-
tion of any particle atx in the reference configuration
at timet is found from the equation of motion,

�ü(x, t)=
∫
Hx

f (u(x′, t)− u(x, t), x′ − x)dVx′
+ b(x, t), (1)

whereHx is a neighborhood ofx, u is the displace-
ment vector field,b is a prescribed body force density
field, � is mass density in the reference configuration,
and f is apairwise force functionwhose value is the
force vector (per unit volume squared) that the particle
x′ exerts on the particlex. In the following discussion,
we denote the relative position of these two particles

in the reference configuration by� and their relative
displacement by�:

�= x′ − x, �= u(x′, t)− u(x, t). (2)

Using these definitions,� + � represents thecurrent
relative position vector between the particles. The di-
rect physical interaction (which occurs through un-
specified means) between the particles atx andx′ will
be called abond. The concept of a bond that extends
over a finite distance is a fundamental difference be-
tween the peridynamic theory and the classical theory,
which is based on the idea of contact forces (interac-
tions between particles that are in direct contact with
each other). It is convenient to assume that for a given
material there is a positive number�, called thehori-
zon, such that

|�|> � �⇒ f (�, �)= 0 ∀�. (3)

For the remainder of this discussion,Hx will de-
note the spherical neighborhood ofx in R with ra-
dius� (Fig. 1). A material is said to bemicroelasticif
the pairwise force function is derivable from a scalar
micropotential w:

f (�, �)= �w

��
(�, �) ∀�, �. (4)

Themicropotential is the strain energy in a single bond
and has dimensions of energy per unit volume squared.
The energy per unit volume in the body at a given
point (i.e., the local strain energy density) is therefore
found from

W = 1
2

∫
Hx

w(�, �)dV�. (5)

The factor of 1/2 appears because each endpoint of
a bond “owns” only half the energy in the bond. If
a body is composed of a microelastic material, work
done on it by external forces is stored in recoverable
form in much the same way as in the classical the-
ory of elasticity. Furthermore, it can be shown that the
micropotential depends on the relative displacement
vector� only through thescalardistance between the
deformed points. Thus, there is a scalar-valued func-
tion ŵ such that

ŵ(y, �)= w(�, �) ∀�, �, y = |�+ �|. (6)
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Fig. 1. Each pointx in the body interacts directly with points in
the sphereHx throughbonds.

Therefore, the interaction between any two points in
a microelastic material may be thought of as an elas-
tic (and possibly non-linear) spring. The spring prop-
erties may depend on the separation vector� in the
reference configuration; the material is isotropic ifŵ

is independent of thedirection of �. Combining (4)
and (6) and differentiating the latter with respect to
the components of� leads to

f (�, �)= �+ �

y
f̂ (y, �), y = |�+ �| ∀�, �, (7)

wheref̂ is the scalar-valued function defined by

f̂ (y, �)= �ŵ

�y
(y, �) ∀y, �. (8)

Eq. (7) shows that the force vector in a bond is parallel
to the current relative position vector between the two
particles. It also shows that the force vector exerted
by any particlex′ on x equals minus the force vector
thatx exerts onx′. Conservation of angular and linear
momenta is therefore automatically satisfied by a mi-

croelastic material model. Also, sincêw is invariant
with respect to rigid rotation of a bond, the require-
ment of objectivity is trivially satisfied. The function
f̂ in (8) explicitly contains� because internal forces
within a solid body depend not just on the relative po-
sition of particles in thedeformedconfiguration, but
also on their relative position in thereferenceconfig-
uration. (This, of course, is true in the classical the-
ory as well as the peridynamic theory.) However, for
the modeling of long-range forces, such as van der
Waals forces, the positions of particles in the reference
configuration are not usually important. So, for these
types of forces, the scalar interparticle forcef̂ can be
assumed to have no explicit dependence on� but de-
pendence only on the deformed interparticle distance
y. For example, later in this paper, material models
with the following form will be used:

ŵ(y, �)= ŵ1(y, |�|)+ ŵ2(y). (9)

Here,w1 represents the solid behavior of the mate-
rial, whilew2 models the long-range forces. These two
terms can have different horizons, i.e., the long-range
interactions may be exist at distances beyond the hori-
zon for solid interactions.
Damage may be incorporated into a peridynamic

constitutive model by allowing the bonds for solid
interactions to break irreversibly. The simplest as-
sumption is that this breakage occurs when a bond is
extended beyond some predetermined critical bond
deformed length. Since the breakage is irreversible,
time and position must now be included as arguments
in the interparticle force, for example

f̄ (y, �, x, t)= f̂ (y, �)�(�, x, t), (10)

where� is a history-dependent scalar-valued function
that takes on values of either 1 or 0:

�(�, x, t)

=
{
1 if y(�, x, t) < y0 for all 0� t ′� t,

0 otherwise,
(11)

wherey0 is the critical value of bond deformed length
for breakage. (y0 may depend on reference bond length
|�|.) Recall that any particle in the continuum has an
infinite number of bonds connecting it to other parti-
cles. During deformation, some of these bonds may
break as determined by (11), and breakage of the bonds
occurs independently among different bond lengths
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and orientations� for a given particle. In practice,
bond breakage in a peridynamic body usually evolves
in such a way as to form two-dimensional surfaces.
These surfaces correspond to cracks; their growth is
the way fracture propagation occurs spontaneously in
the peridynamic theory. The initiation and growth pro-
cess occurs without reference to any supplemental ki-
netic relation that controls crack growth on the basis
of a stress intensity factor or similar quantity. In this
sense, fracture modeling in the peridynamic theory
is “autonomous” and represents a fundamental differ-
ence between the present theory and the techniques of
traditional fracture mechanics.

3. Membranes

The finite deformation of elastic membranes has a
long history of experimental study[3–5]. The appli-
cations of membrane mechanics continue to grow and
are evident in such diverse fields as biomechanics,
for example[6]; and thin films and nanostructures,
for example[7,8]. The theory of elastic membrane
deformation similarly has been fertile ground for the
development of new and important mathematical and
computational techniques related to the modeling of
large deformations including wrinkling, dynamics,
stability, rupture, and fracture, such as in[9–14],
among many others. Similarly, the study of fibers,
including networks of fibers, from a continuum me-
chanics point of view is gaining importance in the
molecular biology, cell biology, and nanoscience com-
munities, concurrently with ab initio and molecular
dynamics methods of analysis[15–18]. With a view
toward investigating the relevance of the peridynamic
model to these phenomena, the three-dimensional
theory outlined in the previous section will now be
specialized to two-dimensional membranes, and in
Section 6, to fibers. Here, amembranemeans a body
that is sufficiently thin that its resistance to bending
is very low. To specialize (1) to membranes, it is nec-
essary merely to change the volume integrals to area
integrals:

�ü(x, t)= h

∫
Hx

f (u(x′, t)− u(x, t), x′ − x)dAx′
+ b(x, t), (12)

Fig. 2. Micropotential (strain energy in a bond per unit volume
squared) as a function of bond stretch.

whereh is the thickness of the membrane (in the ref-
erence configuration) and dAx′ is a differential area of
the membrane at the pointx′ in the reference configu-
ration. All other variables in (12) have the same mean-
ings and dimensions as in the full three-dimensional
expression (1). However, because the membrane lacks
bonds that extend to particles off of the surface, a given
f will result in different bulk material response when
used in (12) than in (1). Displacements are permitted
in any direction, including normal to the surface. It is
not assumed that the membrane is flat in the reference
configuration.h is assumed constant for present pur-
poses, but the theory is easily generalized to variable
thickness membranes. As a prototype material model
for an isotropic rubbery membrane, consider the fol-
lowing micropotential:

ŵ(y, �)= w(�, |�|)
= c(�2+ 1/�2− 2) g(|�|), 0< |�|��,

(13)

where c is a positive constant,g is a scalar-valued
function, and� is the bondstretchdefined by

�= y/|�|, y = |�+ �|. (14)

Thismicropotential function is graphed inFig. 2. From
(8) and (14), it follows that the interparticle force
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corresponding to (13) is

f̂ (y, �)= �ŵ

�y
= dw
d�
d�
dy

= 2c|�| (�− 1/�
3) g(|�|), 0< |�|��. (15)

The functiong is includedmainly for completeness: its
meaning is that bonds with differentreferencelengths
can have different elastic response. In practice,g has
little effect except with regard to deformations that
occur on a length scale smaller than the horizon. For
example, the wave dispersion properties of the mate-
rial at small wavelengths are affected by terms of this
type [1].
There is a parallel between the present notion of

a constitutive model in the peridynamic theory and
models for rubbery materials that have been developed
in the classical theory involving networks of molecu-
lar chains[19]. Each point in a peridynamic body is
connected to many other points through microelastic
bonds whose energy as a function of stretch is pre-
scribed; the bulk properties of the solid follow from
the properties of this bond energy. The same is basi-
cally true of molecular chains in the rubber models,
so there is an analogy between these molecular chains
and peridynamic bonds. Along the same lines, various
alterations of (13) may be made to introduce harden-
ing response at large stretches[20] due to limits in
chain extensibility[21,22], for example a power-law
model of the form

wn(�)= [c(�2+ 1/�2)+ c′�n] g(|�|) (16)

may be useful wherec′ andn are constants,n >1.
It will now be demonstrated that the peridynamic

membrane model given in (13) coincides with a rea-
sonableclassicalelastic material, at least for purposes
of homogeneous deformations. To do this, consider
a homogeneous deformation of a peridynamic mem-
brane and letF = 1+ ∇u be the usual deformation
gradient tensor.Without loss of generality, assume that
in some Cartesian coordinate system the components
of F are given by

[F] =
[
�1 0
0 �2

]
, (17)

where�1 and�2 are the principal stretches. The bulk
response will be determined by finding the strain en-

ergyW(F) per unit volume contained in all the peri-
dynamic bonds connected to any pointx in the body.
The bond stretch is now found from (14),

�= |F�|
|�| =

√
�21 cos2 �+ �22 sin

2 �, (18)

where the polar coordinates of� are � = |�|, �1 =
� cos�, and�2=� sin �. Combining this with (5) and
(13) and carrying out the integrations leads to

W(F)= h

2

∫ �

0

∫ 2�

0
w(�(�), �) �d�d�

= �hcR

2

(
�21+ �22+

2

�1�2
− 4

)
(19)

where

R =
∫ �

0
� g(�)d�. (20)

The macroscopic strain energy densityW in (19) de-
pends only on the principal stretches and is symmetric
with respect to interchange of these stretches,�1←→
�2. Further, it can be shown that (19), although it does
not explicitly include any out-of-plane stretch�3, is
obtainable from the three-dimensional elastic material
given by

W = �hcR

2

(
�21+ �22+ �23+

1

�21�
2
2�
2
3

− 4
)

(21)

under the requirement that the out-of-plane stress com-
ponent�33 vanish. The material specified in (21) is a
special case of the Blatz–Ko material, a standard con-
stitutive model for compressible materials like foam
rubber[23].

4. Membranes with damage

At this point damage can be introduced into the
material model for this elastic membrane by setting
a critical stretch for bond breakage. Following (10),
(15) is replaced by

f̄ (y, �, x, t)= 2c|�| (�− 1/�
3) g(|�|) �(�, x, t),

0< |�|��, (22)

where� is defined by (11) such that bonds break when
their deformed length equalsy0 = |�|�0, where �0
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is a critical bond stretch for failure. For the moment,
�0 will be assumed constant, although possible de-
pendence on|�| will be introduced later. Now con-
sider the bulk response of this material when dam-
age is included. Suppose the membrane is subjected
to a time-dependenthomogeneousdeformation such
that �1 and �2 are non-decreasing and, for simplic-
ity, �1��2 for all t. First, it is necessary to determine
which bonds have broken as a function of the current
principal stretches. From (18), the directions� of bro-
ken bonds are found from the condition

�20��21 cos
2 �+ �22 sin

2 �. (23)

Hence broken bonds occupy the wedges

|�|��0(�1, �2) and |�− �|��0(�1, �2), (24)

where

�0(�1, �2)= sin−1
√

�21− �20
�21− �22

,

1��2��0��1. (25)

Letw0(�) denote the strain energy in a bond of initial
length� when it breaks. By (13), this is

w0(�)= c(�20 + 1/�20 − 2) g(|�|). (26)

Now compute the strain energy remaining in the body
as it stretches, accounting for broken bonds. For ac-
counting purposes, it is assumed that the strain energy
in broken bonds equals the strain energy at the time
they broke (seeFig. 2). So, to find the current energy
density, the integral in the first of (19) becomes

W̄ (F)= 2h
∫ �

0

{
w0(�) �0(�1, �2)

+
∫ �/2

�0(�1,�2)
w(�(�), �)d�

}
�d�, (27)

where�(�) is supplied by (18). The term on the left
within the braces represents the contribution of the
broken bonds, while the term on the right is for the
unbroken bonds. Carrying out the integrations in (27)

Fig. 3. Force per unit undeformed area as a function of bond stretch
in a membrane for three combinations of damage parameters and
transverse stretch. In all three cases damage initiates when the
membrane is stretched to�1 =	�.

leads to

W̄ (F)= 2hcR

[(
�20 +

1

�20

)
�0 +

(
�21+ �22

)

×
(

�
4
− �0
2

)
+ sin 2�0

4
(�22− �21)

+ 1

�1�2
tan−1

(
�1
�2
cot �0

)
− �

]
, (28)

whereR is defined in (20). In the case of zero damage
(�0 ≡ 0), (28) reduces to (19). The corresponding
Piola stress component�11 as a function of�1 is shown
in curves (b) and (c) inFig. 3. The two curves are for
different (but constant) transverse stretch�2.
Just as the bond elastic properties can de-

pend on their reference length (throughg(�)),
the bond critical stretch can also depend on this
length. For example, the following two-parameter
family of critical bond stretches allow longer
bonds to fail either before or after shorter ones
in a homogeneous deformation, depending on the
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choice of parameters:

�0(�)= 	0 + (	� − 	0)�/�, 0< ���, (29)

where	0 and	� are positive constants representing
the critical values of bond stretch at�=0 and at�=�,
respectively. A variety of damage-related phenomena
may be exhibited in the bulk response of this fam-
ily of materials, as illustrated inFig. 3. As the three
curves in the figure illustrate, depending on the dam-
age properties and transverse stretch, the stress may
reach a global maximum at a plateau or a cusp, or a
local maximum followed by a further increase. Ad-
ditional flexibility in the model can be obtained by
allowing the critical bond stretch to depend on other
quantities, such as time, rate of stretch, external fields,
and damage at nearby points.

5. Crack growth in membranes

The analysis at the end of the previous section
assumes that the deformation remains homogeneous
while the stretches are varied, but in an initial value
problem non-homogeneities such as phase boundaries
or localizations would be expected from such a ma-
terial. Also, any pre-existing defect in the membrane
would be expected to strongly influence the way in
which failure would occur. Homogeneous deforma-
tions therefore tell only part of the story with regard
to material failure, and from the point of view of the
peridynamic theory this is one of the less interesting
parts. Of greater interest is the possibility of fracture
and the conditions under which it can occur in a mem-
brane composed of this material. Recall that damage
occurs at the level of an individual bond, and each ma-
terial particle is connected to an infinite number of its
neighbors by such bonds. The energy requirement to
advance an existing crack in a peridynamic membrane
will now be computed. To break an individual bond
requires an amount of workw0(�) per unit volume
squared, where this work is permitted to depend on
initial bond length through dependence ong(�) and
on some bond breakage model such as (29). The work
required to pull apart two portions of a membrane
across a crack surface is therefore the sum, per unit
crack area, of all the bonds that initially connected
one portion of the membrane to the other. Referring to

Fig. 4. Computation of energy release rate in Eq. (30) by summa-
tion of the work required to break bonds, such as the line segment
AB, that initially connected the two sides separated by the crack.

Fig. 4, this quantity is given by

G= 2h
∫ �

0

∫ �

z

∫ cos−1(z/�)

0
w0(�) �d
d�dz, (30)

wherew0 is defined in (26). The significance of this
result is that if a crack is present in a deforming body,
then it is possible that the energyG needed to extend
a crack according to (30) is less than what is required
to deform the body further at constant crack length
according to (5). This situation makes it energetically
favorable for the crack to grow, and is simply a restate-
ment of the Griffith energy criterion for crack growth.
The difference in the peridynamic approach is that any
crack growth, when the conditions are right, occurs
spontaneously as a result of the equation of motion
and the constitutive model.

6. Fibers and long-range forces

To model fibers of constant cross-sectional areaA,
the appropriate equation of motion is

�ü(x, t)= A

∫
Hx

f (u(x′, t)− u(x, t), x′ − x)dsx′
+ b(x, t), (31)

where dsx′ is a differential path length along the fiber
at the pointx′ in the reference configuration and all
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other variables have the same meanings and dimen-
sions as in (1). It is not assumed that the fiber is
straight in the reference configuration.Allowing for in-
teraction between fibers (and between different points
on the same fiber), the constitutive model is of the
form (9),

ŵ(y, �)= w1(�, �)+ w2(y), (32)

where� is still defined by (14). The termw1 describes
the solid-like response of the fiber, whilew2 describes
the interactions through long-range forces (that are in-
dependent of�). Thus,w2 depends only on thecur-
rentdistance between two particles, not on their initial
positions. Therefore, a reasonable prototype material
model for a fiber is

w1(�, �)= c

(
�2+ 1

�2
− 2

)
g(�),

w2(y)= �
(

a

y

)12
− �

(
a

y

)6
, (33)

wherea, �,�, andc are positive constants;a repre-
sents a characteristic length for the long-range inter-
actions. This particular choice ofw2 has the form of a
6-12 van der Waals potential, but many other alter-
native forms are possible. Because of the strongly
singular nature of the van der Waals force as two
particles are brought close together, it does not make
sense to apply this force to mutually interacting
“neighboring” particles in a continuous body. On the
other hand, it can be applied to interactions between
the particles of two separated continuous bodies, a
fact that is exploited in analyzing the physics of sur-
faces[24]. In the peridynamic model, this notion of
long-range interaction between separate bodies (or
possibly separate parts of the same body) is conve-
niently included by permitting the long-range forces
to discriminate between particles along the fibers.
Thus, the coefficients in the van der Waals terms
vary according to the particle pairs, i.e.,�(x, x′) and
�(x, x′), provided the dependence of these func-
tions satisfies the conservation of linear momentum
requirement

�(x, x′)= �(x′, x) and �(x, x′)= �(x′, x). (34)

The pairwise force function for the fiber follows from
(7), (14), and (33),

f =
[
1

|�|
�w1

��
+ dw2
dy

]
m

=
[
2c

|�|
(
�− 1

�3

)
g(�)− 12�

a

(
a

y

)13

+6�
a

(
a

y

)7]
m,

m= �+ �

y
, y = |�+ �|, �= y/|�|. (35)

The concept of damage in the peridynamic sense ap-
plies only to the solid-like interactions, so damage in
the fiber is incorporated as

f̄ =
[
2c

|�|
(
�− 1

�3

)
g(�) �− 12�

a

(
a

y

)13

+ 6�
a

(
a

y

)7]
m, (36)

where� has the same definition as before, given by
(11). To compute the energy per unit areaG required to
create an isolated fracture in the fiber due to stretching,
the bond breakage energiesw0 are summed across the
crack surface:

G= A

∫ �

0

∫ �

z

w0(�)d�dz. (37)

Solid-like connections between fibers (cross-links) are
easily included in the formulation by defining peridy-
namic bonds between them in the reference configu-
ration. The work required to break these cross-linked
connections can be evaluated by summing up their re-
spectivew0 as illustrated above for the case of a break
within a single fiber. The work required to overcome
any long-range forces between two fibers initially in
contact with each other would also be included in this
calculation.

7. Examples

This section presents some examples of predictions
of membrane and fiber deformation and failure accord-
ing to the theory discussed above. Because it is based
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Fig. 5. (a–d) Tensile loading of a membrane containing a slit, showing transition to dynamic fracture (Example 1).

on integral equations, which are less amenable to ex-
act solutions than PDEs in initial value problems, all
of the present results were obtained using a numerical
solution method. The numerical method itself is de-
scribed elsewhere[25]; it relies on a straightforward
approximation of the integral in (1) by a finite sum
arising from discretization of the continuous body into
nodes. It will also be shown in work to be documented
separately that in the ideal case of a uniform grid
with spacing�x, the error in this approximation is of
order�x2.

7.1. Dynamic growth of a single crack from a defect

In problem 1, a square elastic membrane of thick-
ness 0.5mm and side length 50mm contains a narrow
slit of length 10mm. The edges of the membrane par-
allel to the slit are pulled apart, creatingmode I loading
at the tips of the slit. The other two edges are free. The
membrane is represented using the constitutive and
damage models discussed above with properties cor-
responding to a longitudinal wave speed of 1000m/s
and a mass density of 1200 kg/m3. The critical bond
stretch for failure is�0 = 2. The membrane is free in

the transverse (through the thickness) direction at all
points other than the clamped ends. The slit is cre-
ated in the numerical model by breaking all the peri-
dynamic bonds that intersect the slit anywhere along
its length. In this way, a uniform numerical grid may
be used without any special grid generation method
in the vicinity of the damaged region of the mem-
brane.Fig. 5 shows how the slit evolves into a dy-
namic crack at four different times. In view (a), the slit
has not yet started to grow. Wrinkles are visible along
the slit edges. The wrinkles are “seeded” using small
initial displacements that vary sinusoidally throughout
the numerical model. Otherwise, these wrinkles occur
spontaneously. The wrinkles occur because the mem-
brane is free along the edges normal to the slit and
therefore tends to develop compressive strains paral-
lel to the slit. In the remaining views inFig. 5, the
crack is propagating. Wrinkles appear in the wake of
the crack. In view (d), the crack has grown to the free
edges of the membrane, and the two resulting halves
of the membrane are rebounding. InFig. 6, the pre-
dicted crack growth velocity is plotted as a function
of crack tip position. The increase in crack velocity
up to an asymptotic limiting value (in this case about
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Fig. 6. Crack growth velocity in a membrane as a function of
crack tip position (Example 1).

400m/s), as well as oscillations in the velocity, are
characteristic of dynamic fracture in brittle solids (see,
for example, Fig. 20 in[26]). The value of the limiting
velocity in this case is well below the Rayleigh wave
speed, which is about 700m/s, that under ideal con-
ditions is an upper bound for mode I dynamic crack
speed[27]. The general features of the static and prop-
agating crack in the peridynamic solution, especially
the pronounced blunting, are consistent with results
in the classical theory for crack tip singularities and
elliptical holes[28–32]. However, physically impos-
sible unbounded strains do not occur in the peridy-
namic result, and therefore the crack tip fields differ
fundamentally from the classical finite elasticity re-
sults. (The same is true of crack tip fields in certain
other non-local theories[33].)

7.2. Bursting of a balloon

In this problem, a spherical membrane subjected
to an internal pressure is struck by a rigid fragment.
The resulting damage at the impact point develops
into dynamic cracks that grow along the sphere. The
unpressurized balloon has density 1200 kg/m3 and
elastic properties corresponding to a bulk modulus of
800MPa. The critical stretch for failure is�0 = 1.75.
The radius of the sphere is 0.1m and the thickness is
0.0015m. The internal pressure is 1.5MPa, resulting

in a hoop stress of 50MPa.Fig. 7 shows the prop-
agation of dynamic fractures from the point of im-
pact around the circumference of the balloon. The
cracks are blunt and irregular, and they occasionally
release fragments of the membrane. It is not yet known
whether these irregularities are indicative of experi-
mentally observed instabilities[34,35] or if they are
due to purely numerical effects.

7.3. Tearing of a membrane

In this example, a rectangular membrane is held
fixed along three sides. The fourth side is free, ex-
cept for a segment that is pulled upward (out of the
plane) and forward (toward the interior of the mem-
brane) with constant velocity. The membrane has a
density of 1200 kg/m3 and a thickness of 0.5mm. It
is modeled as a brittle microelastic material with a
bulk modulus of 300MPa and a critical stretch to fail-
ure �0 = 0.1. Stress concentrations are created at the
ends of the segment that is lifted. These stress concen-
trations eventually nucleate cracks that propagate into
the rectangle. The two cracks, when they are nucle-
ated, are mostly in mode III, but as they advance they
become mostly mode I. This mode transition occurs
because, as the cracks move away from the bound-
ary, the membrane can more easily displace and rotate
out of the plane in such a way that the loading near
the crack tips becomes tensile. This loading is such
that the cracks tend to advance toward each other and
eventually intersect, forming a more or less triangular
fragment that completely separates from the remain-
der of the membrane.Fig. 8 shows the predicted re-
sult just before the two cracks merge and the trian-
gular section separates. Because of the asymmetry of
the boundary condition (the prescribed velocity seg-
ment is closer to one rigid boundary than the other),
the cracks grow at different speeds and curve as they
grow. As the problem progresses, the slower of the
cracks starts to be influenced strongly by the free sur-
face created by the faster crack, and it turns sharply
toward this free surface. This tendency of initially par-
allel cracks in a membrane to merge as they advance
is familiar to anyone who has unwrapped a packaged
CD or a candy bar. It is also of technological inter-
est in predicting damage to thin structures, such as
aerospace structures as a result of impact.
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Fig. 7. Simulation of an internally pressurized spherical membrane damaged due to impact of a sharp fragment (Example 2). Shading has
no significance other than as an aid to visualization.

Fig. 8. (a and b) Tearing of a rectangular membrane (Example 3).

7.4. Oscillatory crack path in a membrane

Experimental observations have shown that when
a blunt tool is forced through an elastic membrane
edge-on, the resulting crack can follow an oscillatory
path [36,37]. The reason for these oscillations is not
obvious, since intuition would perhaps suggest that

a straight crack path would provide the most direct
means for the system to reduce its potential energy
with no apparent energetic barrier to be overcome. The
peridynamic numerical code was applied to this prob-
lem as shown inFig. 9. The membrane is clamped
along its long edges and free along its short edges.
It has a density of 1200 kg/m3 and a thickness of
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Fig. 9. Oscillatory crack path predicted when a blunt tool is forced
through a membrane (Example 4).

0.2mm. It is modeled as a brittle microelastic material
with a bulk modulus of 300MPa and a critical stretch
to failure�0=0.03. The blunt tool, in this case a rigid
cylinder, starts at the short edge at the rear in the figure.
It advances at a constant velocity of 1.0m/s. Themem-
brane contains a small notch on its rear free surface
that serves as an initiation site for a crack. The notch
is off-center by a distance equal to the tool radius from
the point where the tool first touches the membrane.
The asymmetry provided by the notch is crucial in the
development of the oscillatory crack path—without it,
the straight path is predicted. Also, the oscillations are
predicted only when friction between the membrane
and the tool is included in the model. (It is not known
whether friction is important in the experimental re-
sult.) An additional modification to the peridynamic
code was required in modeling this problem: the crack
tip was permitted to advance only incrementally from
its current position at any time. Without this modi-
fication, branch cracks tend to form along the crack
surface where it rubs against the tool. These spurious
branch cracks occur because small perturbations in the
numerically predicted crack surface can occasionally
act as nucleation sites for new cracks.

The figure shows the predicted crack evolution and
the resulting oscillatory crack path. The gross features
of this result agree qualitatively with typical exper-
imental results. The oscillations occur in the model
because of an interaction between bending and rota-
tion of the membrane out of the plane (which tends to
create mode III loading) and stretch within the plane
(which tends to create mode I loading) as the tool
tries to push folded material out of its way. The pre-
dicted amplitude and wavelength of the oscillations
are too large compared with the experimental results.
These errors occur because the peridynamic model of
a membrane tends to resist bending (out of the plane)
when the radius of curvature is less than or on the or-
der of the horizon for the material, which in this case
was about one half the tool radius. So, the folds that
occur in the membrane as it slides up (or down) the
tool have too large a radius of curvature, leading to
oscillations that are too large.

7.5. Long-range forces within a fiber

Long-range forces play an important role in the
shaping of macromolecules such as proteins. In this
example, a peridynamic fiber is divided into segments.
Each segment attracts the adjacent one through in-
teractions similar to van der Waals forces, while all
others repel each other weakly. The fiber has diam-
eter 1.0 nm, a density of 3000 kg/m3, and microe-
lastic properties corresponding to a bulk modulus of
40GPa. The segments that attract or repel each other
are 7.0 nm in length. The initial shape of the fiber is
nearly straight, although it contains small deviations
that serve as initiation sites for bending deformation.
The fiber spontaneously deforms into the shape shown
in the upper plot inFig. 10, which shows a helix that
includes a change in the direction of the chirality near
the midpoint of the fiber. It should be noted that be-
cause of their highly non-linear nature, systems that
interact through long-range forces of this type depend
strongly on the history of deformation. Therefore the
present results depend to a large extent on the initial
conditions.
For a different pattern of attractive and repulsive

long-range forces, the lower plot inFig. 10is obtained.
In this case, two segments near opposite ends of the
fiber strongly attract each other, while other segments
weakly repel each other. The attracting segments are
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Fig. 10. Fiber deformed by long-range interactions between dif-
ferent parts of the fiber (Example 5).

not only in contact, but partially wind around each
other as a means to pull together tightly over as much
surface area as possible. Models of this typemay prove
to be useful in the study of the mechanics of long
molecules, which is topic with biological applications
such as protein folding and the behavior of DNA, for
example[38] and[39].

7.6. Large deformation of a network of fibers

In this example, a square membrane-like network
of fibers is stretched from opposite clamped ends. The

Fig. 11. Stretching of a network of fibers that interact with each other through long-range forces (Example 6). Colors indicate elastic
energy. (a) Initial. (b) Deformed.

fibers have a critical bond stretch�0 = 0.3 and a mi-
cromodulus corresponding to a Young’s modulus of
1.5GPa. The fibers interact with each other, but not
with themselves, through long-range forces similar
to van der Waals forces. These interactions influence
the deformed shape of the network, which includes
cellular patterns, as shown inFig. 11. Membrane-like
networks of electrospun polymer continuous fibers
of nanometer scale diameters have been recently
produced in the laboratory[40]. It is of importance
to analyze the mechanical behavior of such mem-
branes built from randomly oriented fibers or from
aligned fibers. In this example we use a model with
two families of directional fibers generated inside a
box of dimensions 200 nm× 200nm× 5nm. In or-
der to mimic manufacturing variability, the fibers of
same length have irregular configurations. Locally,
the direction of the fiber deviates from the imposed
direction (horizontal and vertical inFig. 11) by means
of a Gaussian random distribution with zero mean
and standard deviation� = 0.15. The starting points
for the fibers are also randomly chosen, with a uni-
form distribution, in narrow regions at the right end
and bottom of the membrane in the figure. Fibers that
are close enough or in contact with one another are
considered perfectly bonded. They interact through
peridynamic forces, as well as through long-range
forces similar to van der Waals forces. These inter-
actions influence the deformed shape of the network,
which includes cellular patterns, as shown in the
figure.
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8. Discussion

Traditional fracture mechanics proceeds from the
assumption of a defect within a body and examines
the possible growth of the defect based on local con-
ditions. Because in practice all macroscopic structures
contain some defect at some size scale, this assump-
tion has served the engineering community well for
many years. However, at the nanoscale, it has been
demonstrated that it is possible to build structures that
are, in effect, perfect or nearly perfect for purposes of
mechanics. So, it is perhaps open to question whether
traditional fracture mechanics should be applied with-
out modification to nanostructures. The peridynamic
model, because it incorporates damage and failure as
a natural aspect of deformation, does not require a
pre-existing defect to initiate crack growth. It there-
fore may offer a means to analyze the deformation and
failure of nearly perfect materials such as may occur
at the nanoscale. At the macroscale, the theory also
offers the advantage of “autonomous” crack model-
ing, in which supplemental relations that control crack
evolution are not necessary. For example, there is no
need for a relation that governs crack growth speed
or direction in terms of a stress intensity factor. The
crack growth instead is determined directly as a con-
sequence of the equation of motion and constitutive
model. Therefore this approach may allow for arbi-
trarily complex patterns of growth among multiple,
mutually interacting cracks.
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