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In this work, we develop and analyze a formalism for solving boundary value problems in arbitrarily-
shaped domains using the MADNESS (multiresolution adaptive numerical environment for scientific
simulation) package for adaptive computation with multiresolution algorithms. We begin by implement-
ing a previously-reported diffuse domain approximation for embedding the domain of interest into
a larger domain (Li et al., 2009 [1]). Numerical and analytical tests both demonstrate that this
approximation yields non-physical solutions with zero first and second derivatives at the boundary. This
excessive smoothness leads to large numerical cancellation and confounds the dynamically-adaptive,
multiresolution algorithms inside MADNESS. We thus generalize the diffuse domain approximation,
producing a formalism that demonstrates first-order convergence in both near- and far-field errors. We
finally apply our formalism to an electrostatics problem from nanoscience with characteristic length
scales ranging from 0.0001 to 300 nm.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Boundary value problems (BVPs) in irregular domains arise
in many applications, ranging from fluid dynamics to photonics,
and present additional computational challenges compared to their
analogues in regular domains. First is the issue of function rep-
resentation. Uniform, structured grids are often inefficient, requir-
ing smaller-than-desirable grid spacings to resolve irregularities in
the domain’s shape. Unstructured meshes can adequately handle
any irregularities; however, their generation is both expensive and
problem-specific. Second, the imposition of boundary conditions
can be non-trivial, depending on the choice of function repre-
sentation. Multiresolution methods ameliorate many of the first
concerns by providing efficient, adaptive representation schemes
that hone in on computationally-troublesome regions to effectively
utilize the available computational resources. Unfortunately, mul-
tiresolution methods perform best on regular domains; enforcing
boundary conditions on an arbitrary surface is not straightforward.
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Domain embedding techniques seem ideal for using multireso-
lution methods on irregular domains; as the name suggests, they
embed the irregular domain into a larger, and usually simpler, do-
main. The two main obstacles to domain embedding techniques
are (i) extending all pertinent quantities into the larger domain,
and (ii) mapping the original surface BVP into the larger domain.
The diffuse domain approximation (DDA) confronts these issues by
broadening the embedded boundary into a finite-width boundary
layer and using this finite-width layer to smoothly switch from the
desired PDE in the interior to a simple PDE in the exterior [1].
Auxiliary source terms are introduced near the boundary layer to
enforce the desired boundary condition, and a variety of meth-
ods can be employed to solve the resulting volume problem in the
larger domain. Li et al. [1] derived several DDAs by matching the
interior and exterior solutions at the boundary; however, no an-
alytical or quantitative numerical investigations were reported to
assess solution quality on the boundary or in the far-field regions
(interior or exterior).

Our primary goals in this communication are threefold. First,
we aim to quantitatively explore the efficacy of DDAs for pro-
ducing acceptable solutions on the boundary and in the domain
of interest. Second, we seek to combine the DDA with multires-
olution methods, enabling general and practical techniques for
solving BVPs in irregular domains. Third, we want to extend the
MADNESS (multiresolution adaptive numerical environment for
scientific simulation) environment [2,3], previously reported by
us, to handle embedded boundary conditions. MADNESS’s initial

http://dx.doi.org/10.1016/j.cpc.2011.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:harrisonrj@ornl.gov
http://dx.doi.org/10.1016/j.cpc.2011.07.001


2 M.G. Reuter et al. / Computer Physics Communications 183 (2012) 1–7
applications in chemistry, atomic and molecular physics, nuclear
physics, solid-state physics, and fluids [3–7] have so far only re-
quired free-space or periodic boundary conditions on regular do-
mains; the ability to treat embedded problems will expand MAD-
NESS’s utility to new applications, including solvation models and
electromagnetism. In this paper, we analyze and improve upon
previously-reported DDAs [1,8] for embedding irregular domains
inside larger domains and then demonstrate them, using MAD-
NESS, with an example from nanoscience.

We commence by presenting pertinent details of the multireso-
lution refinement algorithms employed by MADNESS in Section 2.
Section 3 introduces the DDA used in this work, which is inspired
by the previously-reported DDAs [1]. We proceed, in Section 4,
to implement this DDA in MADNESS and numerically assess its
robustness with several test problems. While the DDA properly
converges to the correct solution in some cases, other examples
exhibit slow and/or stalled convergence. The analytical results pre-
sented in Appendix A expose the origins of these failures and
accurately determine the viability of the DDA. Finally, we ap-
ply our DDA to an electrostatics problem relevant to nanoscience
in Section 5, calculating the electrostatic potential affected by
nanometer-scale structures.

2. Multiresolution analysis in MADNESS

MADNESS is a high-level environment for solving integral and
differential equations in many dimensions. Applications are com-
posed in terms of functions and integral/differential operators, and
computation appears to the user as being basis-set free. To pre-
serve this high-level composition and to maintain the underlying
guarantees of precision, we seek methods to incorporate boundary
conditions that are compatible with the existing “analysis-based”
approach. In particular, we wish to avoid incorporating either spe-
cial elements or meshes not controlled by the multiresolution al-
gorithms, since these will make it hard to maintain the expected
guarantees of precision and will destroy the illusion of basis-free
computation.

Multiresolution analysis in multiwavelet bases [9] enables con-
struction of fast algorithms with guaranteed precision (e.g., for
the multiplication of two functions) as well as fast application of
integral operators (e.g., the Coulomb and bound-state Helmholtz
Green’s functions) [3,4,9]. The guarantee of precision is provided
by dynamic adaptive refinement of the mesh underlying the func-
tion resulting from application of an operator to one or more input
functions.

The underlying discontinuous spectral-element basis is com-
prised of the tensor product of Legendre polynomials within each
adaptively-refined element. By construction, this basis facilitates
sparse representations of functions and many physically-important
integral operators, including convolution with the Coulomb Green’s
function [3,4,9]. For many problems, the integral form has superior
numerical properties to the corresponding differential form, and,
hence, an important feature of MADNESS is the ability to apply
many integral operators using a single block-sparse, matrix–vector
product. Furthermore, this basis quantifies both local error and lo-
cal smoothness, which, in turn, enables adaptive, local refinement
(refinement only occurs if the local error in the approximation is
above a specified truncation threshold). Finally, the local error al-
lows estimation of the global error, leading to precision guarantees
for both representing a function and applying an operator to a
function. More details on this basis are presented in Ref. [9] (Sec-
tion 3.3.2 therein is particularly relevant).
3. Diffuse domain approximation

Li et al. presented DDAs for numerous differential operators
subject to either Dirichlet-, Neumann-, or Robin-type boundary
conditions [1]. For simplicity, this paper will focus on the prob-
lem

∇2u(x) = f (x), x ∈ ΩD ,

u(x) = d(x), x ∈ ∂ΩD (1)

for an irregular domain ΩD with boundary ∂ΩD . Extensions
to other differential operators and/or boundary conditions are
straightforward.

Embedding ΩD into a larger domain (Ω) with a DDA requires
a domain mask [ϕε(x)] that is 1 inside ΩD , is 0 outside ΩD , and
smoothly varies from 0 to 1 in a layer of width O(ε) around ∂ΩD
(ε → 0+). The DDA we study here is

∇2uε(x) − α(ε)Sε(x)
[
uε(x) − d(x)

] = ϕε(x) f (x), x ∈ Ω, (2)

where uε approximates the exact solution u (limε→0+ uε = u),
α(ε) is a penalty for enforcing the boundary condition, and Sε

approximates the surface delta function on ∂ΩD as ε → 0+ . We
extend f and d to be constant along surface normals in the exte-
rior domain.

This DDA deviates from the previous work in two key ways.
First, Eq. (2) generalizes a DDA from Ref. [1]; only α(ε) = ε−2 was
considered there. As will be seen, vide infra, MADNESS’s multires-
olution methods inadequately resolve the boundary layer when
α(ε) = ε−2, resulting in poor solution quality (and thus prompting
us to generalize the DDA). Second, we choose ϕε and Sε differ-
ently to facilitate an analytical analysis of these problems when
combining MADNESS with DDAs. In this work we employ

Sε(x) = 1

ε
√

2π
exp

(
− s(x)2

2ε2

)
(3)

and

ϕε(x) = 1

2

[
1 − erf

(
s(x)

ε
√

2

)]
, (4)

where s gives the signed, minimum distance from the surface;
s(x) < 0 in the interior domain and s(x) > 0 in the exterior. In
the results that follow, all reported trends are duplicated if ϕε and
Sε from Ref. [1] are used instead.

Since MADNESS works most efficiently with integral opera-
tors, we use the Coulomb operator’s free-space Green’s function,
G(x,x′) = −(4π |x−x′|)−1 in three dimensions, to invert the Lapla-
cian in Eq. (2). This produces

uε(x) + α(ε)

∫
Ω

d3x′ G
(
x,x′)Sε

(
x′)uε

(
x′)

=
∫
Ω

d3x′ G
(
x,x′)[α(ε)Sε

(
x′)d

(
x′) − ϕε

(
x′) f

(
x′)], (5)

which is solved using the generalized minimal residual (GMRES)
method [10].

Before proceeding, we note that the exact Green’s function
(as opposed to the free-space Green’s function) would obviate
the need for linear solvers. This exact Green’s function would be
problem-specific—depending on both the shape of the domain and
the desired boundary condition—making it difficult to obtain and,
most likely, inefficient to use. The image method is an alternative
method for using only the free-space Green’s function; however, its
utility is limited to particular differential operators on sufficiently
regular domains [11]. Our method is not hampered by either of
these restrictions.
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Table 1
Test problems. The interior domain is a sphere of radius R centered at the origin and the exterior domain is the box [−2,2]3. f (x) is the inhomogeneity in the interior
domain, d(x) is the Dirichlet boundary condition on the sphere, and u(r, θ,φ) is the analytical solution. Note that spherical coordinates are used here; φ is the azimuthal
angle and is not related to the domain mask function (ϕε ).

Problem f (x) d(r = R, θ,φ) u(r � R, θ,φ) u(r > R, θ,φ)

1 0 1 1 (r/R)−1

2 0 cos(θ) (r/R) cos(θ) (r/R)−2 cos(θ)

3 0 (3 cos2(θ) − 1)/2 (r/R)2(3 cos2(θ) − 1)/2 (r/R)−3(3 cos2(θ) − 1)/2
4 6R−2 1 (r/R)2 (r/R)−1

Fig. 1. Various convergence metrics (one in each column) for the four test problems in Table 1 (each row) with R = 1. Penalties are of the form α(ε) = cε−2 with c = 0.5 in
blue, c = 1 in green, and c = 1.5 in red. The various metrics are defined in Section 4. None of the tests converge on the boundary, and test problems 2–4 converge linearly
(or slightly sub-linearly) for the other three metrics. This behavior is independent of both c and R , within all ranges tested. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
4. Test problems & numerical results

Four test problems will be used to evaluate the efficacy of this
DDA [Eqs. (2) and (5)] inside MADNESS. Each problem considers
ΩD to be the interior of a sphere of radius R < 2 centered at
the origin and Ω to be the box [−2,2]3. Table 1 lists these test
problems, along with their analytical solutions. Furthermore, four
criteria will be used to assess the convergence of uε → u: (i) the
interior integral error,

∥∥ϕε(u − uε)
∥∥

2 ≡
[∫
Ω

d3xϕε(x)2(u(x) − uε(x)
)2

]1/2

; (6)

and the relative error at specific points (ii) in the interior domain
(ΩD ), (iii) on the boundary (∂ΩD ), and (iv) in the exterior domain
(Ω \ ΩD ). We use (0,0, R/10) for the interior error, (0,0, R) for
the boundary error, and (0,0,2) for the exterior error. Note that
the exterior error is generally an irrelevant metric; however, since
test problems 1–3 are homogeneous, it assesses any differences
between convex and concave boundaries.

Using the penalty from Ref. [1] as a starting point, Fig. 1 dis-
plays the four convergence criteria for the four test problems
when R = 1 and α(ε) ∝ ε−2 (the green lines show the previously-
reported DDA, α(ε) = ε−2). Regardless of the penalty’s proportion-
ality constant, only the exterior error appears to converge for test
problem 1, and it does so linearly. The other test problems exhibit
linear (or slightly sublinear) convergence in the interior integral,
interior, and exterior metrics; however, they still fail to converge
on the boundary. Convergence at the boundary is superlinear, usu-
ally better than cubic, when ε � 0.025, but is stymied as ε be-
comes smaller.

These convergence difficulties were not reported, and probably
not observed, by Li et al. [1] for two reasons. First, the problems
are not manifest unless ε � 0.01, and the previous work focused
on ε � 0.025. Second, as discussed in Appendix A, α(ε) ∝ ε−2

fails to trigger MADNESS’s adaptive refinement algorithms at the
boundary layer. Inadequate resolution of the boundary layer results
in poor solution quality and arrested convergence. The analysis in
Appendix A further reveals that α(ε) ∝ ε−2 (i) over-penalizes at
the boundary (at the expense of the interior and exterior regions)
and (ii) causes an undesirable loss of precision as ε → 0+ .

Reducing the penalty to α(ε) ∝ ε−1 appears to remedy the
convergence maladies, as seen in Fig. 2 and as discussed in
Appendix A. First, all four convergence criteria converge linearly for
all four test problems. The kinks in the interior and exterior errors
are caused by transitions from over-estimating to under-estimating
the true solution at the point of interest (or vice versa); averaging
over the domain (the interior integral error) removes these effects.
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Fig. 2. Various convergence metrics (one in each column) for the four test problems in Table 1 (each row) with R = 1. Penalties are of the form α(ε) = cε−1 with c = 1
in blue, c = 2.5 in red, and intermediate c shaded in between. The various metrics are defined in Section 4. Neglecting the dimples at large ε (which are transitions from
over-estimating to under-estimating the true solution, or vice versa), all convergence metrics are seen to converge linearly for all four test problems and all investigated
values of c. Furthermore, the magnitudes of the errors are generally smaller than in Fig. 1, suggesting that DDAs with penalties of this form are well-suited for solving BVPs
with Dirichlet-type boundary conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Second, the errors reported in Fig. 2 are generally smaller than
those in Fig. 1, particularly for metrics other than the boundary
error. The boundary errors when α(ε) ∝ ε−1 converge slower and
are larger than when α(ε) ∝ ε−2 with ε � 0.025; however, conver-
gence when α(ε) ∝ ε−1 is not limited to large ε. Taken collectively,
the global convergence and improved solution quality throughout
the interior domain suggest that penalties of the form α(ε) ∝ ε−1

produce an acceptable DDA for solving BVPs with Dirichlet-type
boundary conditions.

4.1. Computational costs

The computational cost of our method depends on the size of ε
relative to the size of the total computational domain (Ω). Smaller
values of ε require additional refinement, which in turn increases
the computational cost. Our code was initially written and tested
on a 2009 MacBook Pro with 4 GB RAM; the test problems with
large ε (� 0.1) easily ran on this machine. Test problems with
smaller ε, which yielded a sharper interface description, were run
on Jaguar at the National Center for Computational Sciences be-
cause of the increased memory costs for the additional refinement
required. The example nanoscience problem in Section 5 was also
run on Jaguar, using 14,400 cores for approximately 10 minutes.
No effort was made to optimize the code.

5. Example: Electrostatics in nanoscale systems

Nanometer-sized (nanoscale) systems often exhibit intriguing
behavior compared to larger-sized systems, offering advances in
applications such as sensors, solar cells, and catalysts. These sys-
tems are difficult to computationally model due to their numerous
length scales, not to mention the various physical processes occur-
ring on these disparate scales.

For example, the scanning tunneling microscope (STM) is a
powerful device for investigating surface chemistry that brings a
sharp metallic tip into the vicinity of a surface and measures
electric current through the junction [12]. The application of a
bias between the tip and surface is vital for the STM’s operation,
and illumination of the junction by a laser can also be desirable.
Thus, the relevant length scales are (i) the dimensions of the STM
tip—one or several atoms in diameter at the apex [O(0.5 nm)]
and O(> 300 nm) in length; (ii) the dimensions of the surface,
O(> 300 nm); (iii) the distance between the tip and the surface,
O(5 nm); and (iv) the electronic [O(0.01–0.1 nm)] and nuclear
[O(0.0001 nm)] charge densities from molecules in the gap. Mod-
eling a tip alone is a challenging computational task because of
its disparate dimensions [13], highlighting the advantages of using
MADNESS for simulating these systems.

An electrostatics framework can be used to describe the junc-
tion between a STM and a surface in the absence of laser irradia-
tion, such that

∇2 V (x) = −ρ(x)/ε0, (7)

where V is the electrostatic potential, ρ is the external charge
density, and ε0 is the permittivity of free space (assuming our
domain is in a vacuum). The applied bias enters through Dirichlet-
type boundary conditions; V (x) is specified on the boundaries of
the tip and of the surface. The sample system we consider is as
follows. The STM tip is modeled by a paraboloid, has an elec-
trostatic potential of 0.5 V, and is placed 10 nm above a surface
at −0.5 V. A hydrogen molecule is placed in the center of the
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Fig. 3. System setup (top) and calculated electrostatic potential (bottom) for the sample system described in Section 5. The domain mask [(a) and (b)] show the division
between ΩD (red) and Ω \ ΩD (blue), with the boundary layer in white. The electronic density of the H2 molecule and the charge density around one nucleus are shown
in (c) and (d), respectively. The calculated electrostatic potential at each magnification is shown below. The coarser levels [(e) and (f)] indicate the proper enforcement of
boundary conditions (0.5 V on the paraboloidal tip and −0.5 V on the surface), and the finer levels [(g) and (h)] show the local modifications caused by the molecule. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
gap, contributing an electronic density.1 The nuclear charge densi-
ties are approximated by sharply-peaked Gaussians. For use in the
DDA, α(ε) = 1.75/ε and ε = 0.6 nm. Finally, Fig. 3 shows both the
system setup and the electrostatic potential calculated with Eq. (5)
in MADNESS; the seven orders of length scales are not problem-
atic.

The electrostatic potential in such a STM junction provides the
electric field,


E(x) = −
∇V (x), (8)

which is expected to be large since the distance between the STM
tip and the surface is small. This electric field can induce molecular
excitation and/or motion, leading to interesting physics, including
tip-enhanced Raman spectroscopy [15] and coherent control [16].
Finally, extending this work to time-dependent problems adds lay-
ers of computational complexity (see Refs. [13,17] for discussions
of modeling electrodynamics in nanoscale systems); such studies
will be reported at a later time.

6. Conclusions

In this communication, we have demonstrated that embedded
domain techniques and diffuse domain approximations, in partic-
ular, are capable of enforcing Dirichlet boundary conditions on
arbitrarily-shaped domains when using adaptive multiresolution
methods. Specifically, we have shown that the penalization term
in the DDA greatly affects the convergence behavior of the solu-
tion both inside the domain and on the boundary (i.e., enforce-

1 For simplicity, the hydrogen molecule’s electronic density was obtained from an
independent quantum mechanical calculation using the GAMESS package [14]. The
density is expressed as a sum of Gaussian basis functions.
ment of the prescribed boundary condition). The penalization term
α(ε) ∝ ε−1 yields linear error convergence as ε → 0+ for analyti-
cal test problems. We have further demonstrated the robustness of
this methodology for a realistic nanoscience problem with multiple
length scales of interest.

Though not explicitly explored, this approach can be easily
extended to treat both Neumann- and Robin-type boundary con-
ditions as well as moving boundaries in transient problems [1].
Demonstration of these capabilities will be forthcoming in a future
communication.
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Appendix A. Analytical analysis

Figs. 1 and 2 show how the form of the penalization term in the
studied DDA has a large effect on the DDA’s efficacy. Most notably,
α(ε) ∝ ε−2 has trouble converging on the boundary for small ε,
whereas α(ε) ∝ ε−1 appears to exhibit global, first-order conver-
gence. This appendix offers an analytical/asymptotic investigation
into this behavior.
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Table 2
Expansion coefficients of the Taylor series about r = R = 1 [Eq. (A.1)] for solutions of test problem 2 [Eq. (2) and Table 1].

Coefficient α(ε) = cε−2 α(ε) = cε−1

u0 1 − 2
√

2πc−1ε3 + O(ε4) 1 − 48πc−1(16π + 3c
√

2π + c2)−1ε + O(ε2)

u1 −3πc−2ε2 + O(ε3) −3π(6π + 3
√

2πc + c2)−1 + O(ε)

u2 −(12 + c)
√

2πc−2ε + O(ε2) −12
√

2π(16π + 3
√

2πc + c2)−1ε−1 + O(ε0)

u3 −√
2π(4cε)−1 + O(ε0) −√

2πc(6π + 3
√

2πc + c2)−1ε−2/4 + O(ε−1)

u4 −c−1ε−2 + O(ε−1) (
√

2π − c)(16π + 3
√

2πc + c2)−1ε−3 + O(ε−2)

Fig. 4. Computed and analytical solutions of test problem 2 with R = 1. (a) α(ε) = ε−2, ε = 0.025; (b) α(ε) = ε−2, ε = 0.0015625; (c) α(ε) = ε−1, ε = 0.025; (d) α(ε) = ε−1,
ε = 0.0015625. In each plot, the red line is the exact solution (Table 1), the green lines are the asymptotic solutions of Eq. (2) [coefficients in Eqs. (A.2) and (A.3)], the blue
line is the series expansion ũε about r = R , and the black dots are the solutions computed with MADNESS. Each solid black line shows the lineshape of the surface “delta”
function, Sε (not to scale), with the dashed vertical lines corresponding to 1 + nε, n ∈ {−3,−2,−1,0,1,2,3}. When α(ε) = ε−2 [(a) and (b)], the transitions from the series
expansions to the asymptotic forms occur around 1 ± 2.5ε. The smoothness of Sε here fails to trigger the autorefinement algorithms in MADNESS, resulting in poor solution
quality as ε → 0+ . Conversely, this transition moves to 1 ± 1.5ε when α(ε) = ε−1 [(c) and (d)], where the form of Sε elicits appropriate refinement. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Since all of the test problems have variable-separable analytical
solutions, we approximate solutions of the DDA as series expan-
sions about the surface (r = R),

ũε(x) =
∑

k

uk f (θ,ϕ)(r − R)k. (A.1)

Empirically, we find it necessary to include terms up to k = 4. By
construction, ũε will exhibit the correct asymptotic r-dependence;
the question becomes the rate of convergence of the asymptotic
coefficients to their correct values as ε → 0+ . The three regions
of interest are then (i) the interior, (ii) the exterior, and (iii) the
boundary.

Focusing on problem 2 with R = 1 (similar analyses can be
performed for other problems and radii), the solution should be-
have as uε(x) ∼ c0r cos(θ) in the interior domain (r � 1), uε(x) ∼
c∞r−2 cos(θ) in the exterior domain (r � 1), and as uε(x) = ũε(x)

near the boundary (r ≈ 1). Calculating the series expansions, we
find the asymptotic coefficients to be

c0 = α(ε)

(
1 − u0

3
− u2

3
ε2 − u4ε

4 + O
(
ε6)), (A.2)

c∞ = α(ε)

(
1 − u0

3
+

(
1 − u0 − u1 − u2

3

)
ε2

− (u1 + 3u2 + 3u3 + u4)ε
4 + O

(
ε6)). (A.3)

The expansion coefficients for α(ε) = cε−2 are displayed in Table 2.
Substituting these expansion coefficients into Eqs. (A.2) and (A.3)
shows that the asymptotic coefficients when α(ε) = cε−2 correctly
approach 1 as ε → 0+ .

Figs. 4(a) and (b) display these analytical/asymptotic solutions,
the exact solution, and the numerical solution obtained with MAD-
NESS for ε = 0.025 and ε = 0.0015625 [α(ε) = ε−2], respectively.
In both cases, the numerical solution is close to the exact solu-
tion at the boundary, but completely misses the derivative discon-
tinuity, instead displaying non-physical smoothness. The solution
quality thus degrades rapidly as we move away from the bound-
ary, indicating an over-penalization at the boundary. This figure
also shows that the series expansions transition to the asymptotic
forms near r = R ± 2.5ε. The surface delta function (Sε) is quite
smooth in these regions, and fails to invoke the autorefinement
algorithms inside MADNESS. This is not problematic with large ε
[the numerical and analytical/asymptotic solutions agree, Fig. 4(a)];
however, MADNESS fails to adequately resolve the boundary layer
as ε becomes small, leading to poor solution quality [Fig. 4(b)].

This analytical analysis also exposes a more general problem
(not specific to MADNESS) when α(ε) ∝ ε−2. Moving to a distance
O(ε) from the boundary, the series expansions show that uε −d ∼
O(ε2). Multiplication by α(ε) makes the entire boundary term in
the DDA appear as O(ε0). The resulting loss of significant digits
as ε → 0+ also contributes to the unacceptable solution quality
demonstrated in Fig. 4(b). We note that numerical calculations in
Maple are able to reproduce the analytical/asymptotic solution in
Fig. 4(b), but only with highly-increased precision.

Owing to the over-penalization and undesirable cancellation
when α(ε) ∝ ε−2, we now consider penalties of the form α(ε) =
cε−1. The series expansion coefficients are given in Table 2; the
asymptotic coefficients again approach unity as ε → 0+ . Note that
this reduced penalty also alleviates the cancellation problems ex-
perienced when α(ε) ∝ ε−2.

Figs. 4(c) and (d) display similar information as panels (a) and
(b), respectively, for α(ε) = ε−1. First, we see larger errors at the
boundary, indicating reduced penalization there, as well as a more
reasonable approximation of the derivative discontinuity. Second,
the asymptotic solutions are closer to the exact solution, translat-
ing to better solution quality in the interior and exterior domains.
Finally, the transitions from series expansions to asymptotic forms
now occur near r = R ± 1.5ε, where Sε triggers MADNESS’s au-
torefinement algorithms. With adequate resolution of the boundary
layer, penalties of the form α(ε) ∝ ε−1 produce acceptable solu-
tions in MADNESS, even as ε becomes small [Fig. 4(d)].
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