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Heterochromatin mediates various nuclear processes including

centromere function, gene silencing and nuclear organization.

Although it was discovered nearly 75 years ago, the pathways

involved in heterochromatin establishment, assembly and

epigenetic maintenance have been elusive. Recent reports have

demonstrated that distinct and novel chromatin-associated

factors, including DNA, RNA and histone modifications, are

involved in each of these events. These new findings define a

novel conserved mechanism of heterochromatin formation that

is likely to have an impact on all eukaryotic silencing pathways.
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Abbreviations
cenH centromere homologous repeat

dsRNA double stranded RNA

HMT histone methyltransferase

HP1 heterochromatin protein 1

KRAB Krupple-associated box

mAM mouse ATFa-associated modulator

PcG Polycomb group
PEV position effect variegation

RdRp RNA-dependent RNA polymerase

RISC RNA-induced silencing complex

RITS RNA-induced initiator of transcriptional gene silencing

RNAi RNA interference

siRNA small interfering RNA

Introduction
Heterochromatin was originally defined as the fraction of

the genome that remained visibly condensed during

interphase [1]. More recently, it has been defined as

the genomic regions that are gene-poor and are inacces-

sible to DNA-modifying reagents [2,3]. Because the DNA

within heterochromatin is condensed, it is largely

believed that these regions are transcriptionally silenced.

Early studies of heterochromatin led to the discovery of a

phenomenon known as position effect variegation (PEV)

[4], where a euchromatic gene placed near or within

heterochromatin becomes epigenetically silenced [5].

The implications of epigenetic silencing in normal devel-

opmental gene regulation, aging and cancer progression

have made heterochromatin the focus of intense inves-

tigation over the past few decades, although insights into

heterochromatin establishment and maintenance have

been lacking.

Recent findings have reshaped the way we think about

heterochromatin, especially how it is formed and epigen-

etically maintained. In this review, we discuss some of the

most recent findings in heterochromatin research with

particular emphasis on histone H3 lysine 9 (H3 Lys9)

mono-, di- and trimethylation and RNAi-mediated tran-

scriptional silencing. Additionally, we will discuss some of

the important implications of these recent findings and

predict what the next few years will bring.

Histone methylation and heterochromatin
Within the eukaryotic nucleus, DNA is packaged with

chromosomal proteins to form chromatin. The most fun-

damental repeating unit of chromatin is the nucleosome,

which consists of 146 bp of DNA wrapped around an

octamer of histone proteins made up of two copies each of

H2A, H2B, H3 and H4 [6]. These evolutionarily con-

served proteins consist of a globular C-terminal domain

critical to nucleosome formation and a flexible N-terminal

tail that protrudes from the nucleosome. These tails are

targets for a variety of post-translational modifications

including acetylation, phosphorylation and methylation.

Typically, these modifications are associated with specific

biological processes including cell division (phosphoryla-

tion), gene regulation, and DNA repair and recombination

(acetylation) [7–11]. Although it was initially described

forty years ago, the biological relevance of histone methy-

lation has only recently been revealed [12–14].

The field of histone methylation evolved quickly in the

past few years with the discovery of the first mammalian

histone methyltransferase (HMT), Su(var)3-9, which spe-

cifically methylates H3 Lys9 [15]. Previous studies had

demonstrated that Su(var)3-9 was a potent modifier of

PEV in Drosophila, immediately suggesting a direct role

for histone methylation in heterochromatin formation

[16–18]. Subsequent work definitively showed that H3

Lys9 methylation was required for the establishment and

epigenetic inheritance of the heterochromatic mating

type loci and centromeres in fission yeast, a pathway that

seemed to be conserved in all eukaryotes except for
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budding yeast [19]. In the meantime, two groups reported

that the chromodomain of the heterochromatin protein 1

(HP1) specifically bound to the methylated form of H3

Lys9 [20,21]. Indeed, the solution of the crystal structure

of this complex confirmed these findings [22,23].

Because HP1 was previously found to be essential for

constitutive heterochromatin formation, these new find-

ings led to a new model of heterochromatin formation in

eukaryotes involving a pathway mediated by histone H3

Lys9 methylation. A review of this pathway was pub-

lished recently [24].

This model also appears to apply to another region of

constitutive heterochromatin: telomeres. A new study

demonstrates that decreased H3 Lys9 methylation results

in abnormally lengthened telomeres [25]. Concomitant

with the loss of H3 Lys9 methylation was a decrease in

localization of chromodomain-containing Cbx proteins,

homologues of HP1. However, recent findings suggest

that this model may only be valid for constitutive hetero-

chromatin. For example, many labs have demonstrated

that H3 Lys9 methylation is an early event associated

with facultative heterochromatin formation in the mam-

malian inactivated X chromosome [26–28]. To date, there

is no definitive evidence that HP1 localizes to the inactive

X. These observations suggest that alternative pathways

are responsible for facultative heterochromatin formation,

possibly mediated by other H3 Lys9 methyl-binding

proteins. The identity of these proteins and the basis

of their selectivity for specific genomic regions, such as

the inactive X, remains elusive. In addition, as Suv39h1

and Suv39h2 are predominantly localized to pericentric

(constitutive) heterochromatin [15,29], the H3 Lys9

methylation of facultative heterochromatin is most likely

to be mediated by different H3 Lys9 HMTs such as G9a,

ESET/SETDB1 and/or EuHMTase1 [30–32].

To date, there is an overwhelming amount of data demon-

strating that a histone-methylation-mediated heterochro-

matin pathway is essential for a number of biological

processes in mammalian systems, including genomic

stability and development. Using knock-out mouse mod-

els, it was found that mice lacking Suv39h1/Suv39h2 not

only had decreased levels of H3 Lys9 methylation but

also displayed massive chromosomal mis-segregation

[33]. Similarly, mice lacking G9a, another H3 Lys9

HMT, also had decreased levels of H3 Lys9 methylation,

but presented a strikingly different phenotype: early

embryonic lethality attributed to severe differentiation

defects [34��]. These disparate findings raise several

questions. How can different enzymes that impinge on

the same target be associated with such different bio-

logical roles? Why do mammalian cells have so many

different H3 Lys9 HMTs? Shouldn’t the lack of one of

the enzymes be compensated for by the other H3 Lys9

HMTs? The answers to these questions are just begin-

ning to be elucidated.

Three degrees of methylation
One possible answer to these questions is that specific

HMTs differentially methylate H3 Lys9 to a certain

degree. The e-amino group of lysine can accept up to

three methyl groups and hence can be mono-, di- or

trimethylated [13]. Different mass spectrometric techni-

ques have identified several human histone lysine resi-

dues, including H3 Lys9, that are mono-, di- or

trimethylated in vivo [35–37]. Although the biological

significance of these differences was unknown, recent

reports indicate that these different degrees of methyla-

tion are correlated with different degrees of gene regula-

tion. For example, the conversion of dimethyl to trimethyl

histone H3 lysine 4 at gene promoters by the budding

yeast HMT, Set1, was exclusively associated with actively

transcribed genes [38]. Similarly, could increased methy-

lation of H3 Lys9 be associated with an increased repres-

sive state? A recent report demonstrates that recombinant

ESET, a murine HMT, dimethylates H3 Lys9 in vitro
[31]. Interestingly, when ESET is complexed with its

endogenous partner, a protein known as mAM (mouse

ATFa-associated modulator), ESET facilitates the con-

version of dimethyl to trimethyl H3 Lys9 [39��]. In

chromatin-templated assays it was found that H3 Lys9

dimethylation by ESET alone repressed transcription;

however, transcription was significantly repressed by

H3 Lys9 trimethylation by the ESET/mAM complex.

These in vitro findings are consistent with recent in vivo
findings. Two reports using methyl-specific antibodies

demonstrated that H3 Lys9 trimethylation, mediated by

the Suv39h1 and Suv39h2 HMTs, was enriched almost

exclusively within pericentric heterochromatin of mouse

cells [40��,41��] (Figure 1). H3 Lys9 trimethylation was

enriched within major satellite repeats of wild type cells

but significantly decreased in Suv39h1/Suv39h2 null cells

[41��]. Interestingly, with this decrease, there was a con-

comitant increase in H3 Lys9 monomethylation. These

findings suggest that H3 Lys9 must be monomethylated,

either by deposition of an H3 Lys9 monomethylated

histone or by an unidentified HMT, prior to conversion

to the trimethylated form by Suv39h1/Suv39h2. Consis-

tent with this, in vitro analysis demonstrates that mono-

methyl H3 Lys9 is the preferred substrate for both

Suv39h1 and Suv39h2 [40��].

In contrast to the localization of H3 Lys9 trimethylation

to constitutive heterochromatin, H3 Lys9 mono- and

dimethylation were found to be enriched within tran-

scriptionally silent regions in the chromosomal arms

[40��,41��] (Figure 1). These findings suggest that these

modifications are associated with facultative heterochro-

matin, although this has yet to be proven experimentally.

The G9a HMT was found to be responsible for the vast

majority of H3 Lys9 dimethylation and most monomethy-

lation in mouse embryonic stem cells. Consistent with its

proposed role in regulatory gene silencing, lack of G9a
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resulted in a global increase in histone modifications

associated with transcription [34��]. Importantly, the

severe phenotypes observed in the G9a knockout mice

imply that H3 Lys9 mono- and dimethylation play a

causative role in the establishment and maintenance of

developmentally regulated gene silencing [34��]. Much

like the discovery of HP1a, which binds to trimethyl H3

Lys9 at pericentric heterochromatin, it is likely that

factors binding to mono- and dimethyl H3 Lys9 will be

discovered and their role in silencing and heterochroma-

tin formation within the chromosomal arms will be elu-

cidated in the years ahead. Two possible candidates are

the HP1 b and gisoforms, which are both dispersed

throughout the nucleus, much like H3 Lys9 mono- and

dimethylation [42]. At present, these factors, if they exist,

remain a mystery.

Targeted for silence: transposons and
repeats
In addition to understanding the role of histone-modify-

ing activities and the factors that recognize differentially

modified histone tails, it is important to comprehend the

mechanisms that define specific chromosomal domains as

sites of heterochromatin assembly. In higher eukaryotes,

a significant amount of genomic DNA is assembled into

heterochromatic structures. Small blocks of silent chro-

matin structures are interspersed throughout the chromo-

somes and are essential for the maintenance of heritable

transcriptional states during development. The major

targets of heterochromatin formation, however, are

DNA repetitive elements such as transposons and the

satellite repeats associated with centromeres and telo-

meres [43]. It is largely believed that cellular defense

mechanisms have evolved in higher eukaryotes to neu-

tralize the invasion of these transposable elements and

viruses by forming repressive heterochromatin structures.

The specific features of transposons that are recognized by

the heterochromatin formation machinery, as well as the

features that distinguish them from endogenous genes, are

not fully understood. Increasing evidence indicates, how-

ever, that the repetitive nature of these DNA elements is a

key factor [44]. It was shown that ectopic transgenes and

repetitive DNA elements, particularly when present in an

inverted orientation, can induce homology-dependent

silencing [45–48]. In fission yeast, the dg and dh repeats

(also known as K repeats), which are associated with

centromeres, telomeres and the silent mating-type region,

are potent modulators of heterochromatin formation [43].

Also in fission yeast, the deletion of a DNA element (cenH),

which shares homology to centromeric repeats, resulted

in defects in heterochromatin assembly throughout a

20-kilobase chromosomal domain of the mating-type

region [49]. Moreover, it was demonstrated that cenH is

sufficient to nucleate heterochromatin assembly at an

ectopic, otherwise euchromatic, site in the genome

[50,51��]. Similar results were obtained with repeat

sequences derived from fission yeast centromeres [52].

In contrast to the involvement of centromeric repeats in

heterochromatin assembly, the transgene-induced silenc-

ing reported in plants and, to a lesser degree, in Droso-
phila has not yet been observed in fission yeast. One

possible explanation for these differences is that the

genome defense mechanisms against foreign elements

and transposons are more robust in organisms that utilize

DNA methylation to assemble silent chromatin (i.e.

plants) than in systems lacking DNA methylation (i.e.

fission yeast). This hypothesis may explain why DNA

methylation is prominently used in organisms with a

widespread transposon content in their genome, but

not in organisms that contain relatively few transposable

elements.

In the current models proposed to explain the detection

of repetitive elements by the heterochromatin formation

machinery, it has been suggested that the DNA–DNA

pairing between repeated sequences could result in

unique structures that are recognized by the silencing

machinery [44,53,54]. Consistent with this, the silencing

of homeotic genes in Drosophila, which requires the

binding of Polycomb-group (PcG) proteins to cellular

memory modules or PcG response elements (PRE), is

subject to mitotic pairing defects [55] (see also review by

Lund and van Lohuizen in this issue). In addition, a series

of elegant experiments performed by Cavalli and collea-

gues showed that Fab-7, a well-defined memory module,

promotes long-distance association of transgenes that

depend upon PcG proteins and DNA sequence homology

Figure 1
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Degree of histone H3 lysine 9 (K9) methylation defines specific
heterochromatic regions. The different known HMTs are depicted

above. Recent reports demonstrate that the Suv39h1 and Suv39h2

HMTs specifically trimethylate H3 K9 at constitutive heterochromatin

[40��,41��]. The G9a HMT is a dominant H3 K9 dimethylase and minor

monomethylase within the chromosomal arms, most likely at facultative

heterochromatin. The remaining H3 K9 monomethylation may be

attributed to EuHMTase1, an HMT with significant homology to

G9a [32]. Although it is known that ESET is an H3 K9 HMT in vitro,

it is unclear if it is a di- or trimethylase in vivo [39��].

232 Nucleus and gene expression

Current Opinion in Cell Biology 2004, 16:230–238 www.sciencedirect.com



[56]. A new model of homology-dependent gene silencing

has recently been described that involves RNA [57].

Evidence suggests that RNA, in particular double-

stranded RNA, produced from transgenes or repeats is

able to induce heterochromatin assembly at homologous

sequences in trans (see below).

DNA-based targeting of heterochromatin
Studies from plants, animals and fungi suggest that

multiple mechanisms may be responsible for the initial

targeting of heterochromatin complexes in different chro-

mosomal contexts. One of these mechanisms probably

involves factors that target specific DNA sequences.

Certain DNA-binding factors that recognize specific

DNA elements or silencers can nucleate heterochroma-

tin, one example being the Sir-mediated silencing in S.
cerevisiae. These DNA binding factors often possess mod-

ular structures with separable DNA binding domains and

an effector domain that recruits cofactors or silencing

proteins such as histone-modifying activities and struc-

tural chromatin proteins. For example, the Krupple-asso-

ciated box (KRAB) domain contains a DNA-binding

region and another region that recruits the KAP-1 cor-

epressor to cause transcriptional repression. Biochemical

studies indicate that KRAB/KAP-1 recruits histone dea-

cetylase activity and H3 Lys9-specific methylation and

may mediate repression by initiating the formation of

heterochromatic structures [58]. This form of heterochro-

matin recruitment is likely to be used for gene-specific

silencing during development. The localization of het-

erochromatin to specific promoters has also been impli-

cated in the silencing of cell-cycle-controlled genes,

directly implicating integral components of the hetero-

chromatin machinery in the regulation of normally

euchromatic genes [59,60]. It remains to be explored

whether specific DNA-binding proteins can recruit het-

erochromatin to heterogeneous repetitive sequences,

such as pericentric regions, in higher eukaryotes. This

type of recruitment is likely to be analogous to that of the

fission yeast CENP-B proteins that bind pericentromeric

DNA and are required for H3 Lys9 methylation and

heterochromatin assembly [61].

RNAi-mediated nucleation of
heterochromatin
In addition to the DNA-binding proteins, recent studies

suggest that RNA interference (RNAi), a new and increas-

ingly well-studied process, targets repressive chromoso-

mal complexes to specific chromosomal loci. In this

fundamentally novel process, RNA provides specificity

for the precise targeting of silent chromatin complexes to

particular genomic loci. RNAi is an evolutionarily con-

served silencing mechanism that is triggered by double

stranded RNA (dsRNA) and serves to regulate gene

expression at various levels, via mechanisms including

targeted degradation of mRNAs, translational repression

of mRNAs and transcriptional repression [62]. This

mechanism involves the generation of small interfering

RNA molecules (siRNAs), �22 nucleotides long, from

longer dsRNAs by an Rnase-III-like enzyme called Dicer

[62] (see also review in this issue by Murchison and

Hannon). siRNAs generated by Dicer associate with a

multiprotein RNAi effector complex called RISC (RNA-

induced silencing complex) to provide specificity for the

degradation of complementary mRNAs. One component

of this complex, the Argonaute family members, contain

a PAZ domain and a PIWI domain that have been

suggested to possess RNA- or DNA-binding activities

[63–65]. In some organisms, the RNAi response may also

require an RNA-dependent RNA polymerase (RdRp)

that is believed to amplify dsRNA [66].

Recent findings suggest that RNAi-mediated silencing

pathways play a role in heterochromatin assembly. In S.
pombe, Dicer (dcr1), RdRp (rdp1), and Argonaute (ago1)

are required for heterochromatin formation [51��,67��].
Deletion of any of these genes results in a loss of H3 Lys9

methylation and Swi6/HP1 localization to centromeric

repeats. Furthermore, it has been demonstrated that a

DNA element homologous to centromeric repeats and

the RNAi pathway cooperate to initiate heterochromatin

formation at the silent mating-type region, although they

are dispensable for the maintenance of the silent chro-

matin state [51��]. In Arabidopsis, both DNA methylation

and histone H3 Lys9 methylation require the RNAi

machinery [57,68,69��]. In Drosophila, the transcriptional

silencing induced by alcohol dehydrogenase transgenesis

requires PIWI, an Argonaute homologue, as well as Poly-

comb protein [70]. Furthermore, a recent study showed

that mutations in PIWI, aubergine (encoding another

Argonaute family protein) and homeless (encoding

DEAD-motif RNA helicase) also affect heterochromatin

formation at transgene arrays in Drosophila [71��]. These

defects in heterochromatin assembly correlate with the

loss of histone H3 Lys9 methylation and delocalization of

HP1 proteins. In a similar process in Tetrahymena, pro-

grammed DNA elimination that is associated with H3

Lys9 methylation requires another member of the Argo-

naute family, Twi1p, and the HP1-like chromodomain-

containing Pdd proteins [72��,73��,74]. Therefore, the

role of RNAi in regulating heterochromatin assembly

appears to be conserved among diverse species and is

likely to play an important role in the epigenetic structur-

ing of the genome.

An important feature of the RNAi-mediated heterochro-

matin pathway is the generation of siRNAs that are

homologous to the target loci. Recent studies have iden-

tified numerous siRNAs corresponding to repetitive

elements and transposons often associated with hetero-

chromatic regions [75��,76,77��]. These repeat-associated

siRNAs are likely to be derived from long dsRNAs

generated by bidirectional transcription of repetitive

sequences from adjacent promoters. Consistent with this,
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both DNA strands of the S. pombe centromeric repeats are

transcribed and can base-pair to form dsRNA [67��], and

siRNAs 20–26 nucleotides long that match centromeric

repeats have been identified [75��,78��]. The siRNAs

appear to function as specificity factors for the targeting

of chromatin-modifying activities to certain genomic loci.

For example, a recent finding suggests that siRNAs

participate in guiding the chromatin modifications for

elimination of dispersed sequences in Tetrahymena
[72��]. In addition, the synthesis of dsRNA from a hairpin

can lead to the formation of silent chromatin at homol-

ogous sequences in plants and S. pombe, which is linked

to generation of siRNAs [57,79��].

RITS: an RNAi effector complex for
heterochromatin assembly
Although they were known to be involved in this path-

way, it was not clear exactly how siRNAs promoted

targeted assembly of heterochromatin. It had been

hypothesized that a RISC-like heterochromatin-targeting

complex containing the Argonaute protein binds to

siRNAs and promotes their pairing to either nascent tran-

scripts or homologous DNA sequences at the target locus

[80,81]. A recent study provided the first direct evidence

for the existence of an RNAi effector complex called

RITS (RNA-induced initiator of transcriptional gene

silencing), which links siRNAs to heterochromatin assem-

bly in S. pombe [78��]. RITS contains an Argonaute family

protein, Ago1, a centromere-associated chromodomain

protein, Chp1, and a protein named Tas3. In addition

to the three protein subunits, RITS also contains siRNAs

�22–25 nucleotides in length that were shown to origi-

nate from known targets of heterochromatin assembly,

such as centromeric repeats. RITS was found to localize

to heterochromatic DNA regions in an RNAi-dependent

manner: in cells lacking Dicer, the protein subunits of

RITS were assembled into a complex without siRNAs,

but were unable to associate with chromatin. These

findings suggest that siRNAs are essential for the loading

of the complex onto target loci. In addition, RITS was

found to play an important role in the establishment of

heterochromatin-specific histone modification patterns

and in the localization of Swi6/HP1. The binding of

siRNAs to Ago1 is likely to mediate the targeting of

RITS followed by the recruitment of histone modifying

activities and the stabilization of the heterochromatin-

complex via Chp1 association with H3 Lys9 methylation

[78��]. These mechanisms are currently being investi-

gated in mammalian systems.

Step-wise model for RNAi-mediated
epigenetic gene silencing
Increasing evidence indicates that heterochromatin

assembly is a multi-step process. Heterochromatin is

believed to nucleate at specific regulatory sequences

and then spreads into neighboring sequences, resulting

in epigenetic gene silencing [80]. There seem to be

distinct requirements for the nucleation, spreading and

maintenance of heterochromatin structures [43] (Figure 2).

For nucleation, dsRNAs generated from the repetitive

sequences are processed into siRNAs by the Dicer ribo-

nuclease. These dsRNAs may result from transcription

from promoters within the repetitious element or from a

flanking promoter on the opposite strand. The identity of

the RNA polymerase involved in this process remains to

be determined. In addition, RdRps have been hypothe-

sized to use siRNAs as primers to synthesize from single

stranded transcripts. The strict requirement for RdRps in

the generation of siRNAs in some cases may indicate that

Dicer and RdRp activities may be closely coupled. In any

case, siRNAs join the RITS complex and guide the

complex to homologous sequences, which probably

involves pairing of siRNAs to nascent RNA transcripts

or directly to DNA [80]. The RITS-mediated recruitment

of histone modifying activities establishes a ‘histone code’

for the nucleation of heterochromatin proteins such as

Figure 2
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Mechanism for RNAi-mediated targeting of heterochromatin. dsRNA

generated from repetitive sequences are processed by Dicer to

generate siRNAs. siRNAs may serve as primers for RdRp to produce

additional dsRNAs from single stranded transcripts. siRNAs join the

RITS complex to provide specificity for localization of the complex to

homologous sequences. The recruitment of histone modifying
activities, such as the Clr4 H3 Lys9 HMT, by the RITS complex

creates a ‘histone code’ for the binding of the chromodomain-

containing proteins Chp1 and Swi6/HP1. The binding of Chp1

serves to stabilize RITS to the loci while the binding of Swi6/HP1

results in heterochromatic spreading as a result of the combined

activity of the H3 Lys9 methylation and associated Swi6/HP1.
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Swi6/HP1. In the RNAi-independent spreading step,

chromatin-bound Swi6/HP1 directly recruits histone-

modifying enzymes such as a H3 Lys9 HMT to methylate

an adjacent nucleosomes, thus creating additional Swi6/

HP1 binding sites. This process allows Swi6/HP1 and

heterochromatin-specific histone modifications to spread

in cis in a sequential manner leading to the epigenetic

silencing of genes surrounding the repeated sequences.

This mechanism, in which small RNAs provide the

specificity for localization of chromatin proteins, is likely

to be conserved in other organisms.

Conclusions
Quite recently, significant findings have led to a redefini-

tion of heterochromatin regulation in terms of histone

methylation and small RNAs. New data suggests that

different degrees of H3 Lys9 methylation define specific

heterochromatin domains (facultative versus constitutive)

(Figure 1). It is clear that the degree of methylation is

dictated by the specific HMT and where it is localized in

the genome. For example, Suv39h1 and Suv39h2 localize

to constitutive heterochromatin and specifically trimethy-

late H3 Lys9, which recruits HP1a. Although increasing

data suggests that these events are associated with het-

erochromatin formation and silencing, recent studies

suggest that factors other than histone methylation and

HP1 may be important for the maintenance of the het-

erochromatic state. Future studies will need to be per-

formed to verify this.

Genetic and biochemical studies in fission yeast and other

experimental systems have provided new insights into

the role of RNAi and siRNAs in heterochromatin assem-

bly. Increasing evidence indicates that RNAi-mediated

pathways are linked to other fundamental biological

processes including cell division and chromosome segre-

gation [82]. However, many central questions remain

unanswered. For example, it remains unclear exactly

how siRNAs guide the RITS complex to homologous

target sequences. Future studies addressing the role of

siRNAs and RNAi in higher-order chromatin assembly

will provide important insights into the mechanisms

responsible for protecting genomic integrity and devel-

opmental gene regulation.

Update
In recent paper, Freitag et al. showed that the HP1

homologue in Neurospora crassa was required for DNA

methylation at the relics of transposons [83]. This new

result extends previous studies by the Selker laboratory

demonstrating that the histone H3 Lys9 trimethyltrans-

ferase DIM-5 is required for all known DNA methylation

in Neurospora crassa [84]. Also recently, Chan et al. showed

that factors involved in the RNAi pathway, such as RNA-

dependent RNA polymerase 2 (rdr2), dicer-like 3 (dcr3),

silencing defective 4 (sde4) and Argonaute 4 (ago4) are

required for de novo DNA methylation and the establish-

ment of silencing but are dispensable for the maintenance

of preexisting silent state [85]. This situation closely

resembles the role of the RNAi pathway in the establish-

ment, but not maintenance, of the heterochromatic state

at the mating-type region of fission yeast [51��].
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