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Five algorithms proposed in the literature for library search identification of unknown 
compounds from their low resolution mass spectra were optimized and tested by matching 
test spectra against reference spectra in the NIST-EPA-NIH Mass Spectral Database. The 
algorithms were probability-based matching (PBM), dot-product, Hertz et al. similarity 
index, Euclidean distance, and absolute value distance. The test set consisted of 12,592 
alternate spectra of about 8000 compounds represented in the database. Most algorithms 
were optimized by varying their mass weighting and intensity scaling factors. Rank in the 
list of candidate compounds was used as the criterion for accuracy. The best performing 
algorithm (75% accuracy for rank 1) was the dot-product function that measures the cosine of 
the angle between spectra represented as vectors. Other methods in order of performance 
were the Euclidean distance (72%), absolute value distance (68%), PBM (65%), and Hertz et 
al. (64%). Intensity scaling and mass weighting were important in the optimized algorithms 
with the square root of the intensity scale nearly optimal and the square or cube the best 
mass weighting power. Several more complex schemes also were tested, but had little effect 
on the results. A modest improvement in the performance of the dot-product algorithm was 
made by adding a term that gave additional weight to relative peak intensities for spectra 
with many peaks in common. (1 Am Sot Muss Spectrom 1994, 5, 859-866) 

T 
he present method of choice for the analysis of 
organic compounds in complex mixtures is low 
resolution, electron ionization mass spectrometry 

in combination with chromatographic separation tech- 
niques. Thousands of instruments with this capability 
are purchased each year, a large proportion of which 
are delivered with a computerized data system that 
contains a searchable reference library of mass spectra. 
Searching this library for compounds that have spectra 
that match a measured spectrum is the most common 
use of this library. This is usually done either to 
confirm a tentative identification or to suggest a list of 
candidate compounds that may have generated the 
measured spectrum. Compounds that have similar 
spectra are presented in a “hit list,” which is ordered 
according to a numerical similarity index generated by 
the search algorithm. The details of the search algo- 
rithm can determine the effectiveness of the search [l], 
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and various algorithms have been proposed and im- 
plemented [Z]. 

Clerc and co-workers [l, 31 have examined the gen- 
eral methods of searching spectral libraries. Two meth- 
ods commonly applied in mass spectroscopy are iden- 
tity searches and similarity searches; each has different 
requirements. In an identity search the spectrum of the 
unknown compound is presumed to be contained in 
the reference library and only experimental variability 
prevents a perfect match of unknown and reference 
spectra. In the more difficult similarity search the refer- 
ence library does not contain a spectrum of the un- 
known compound and may not even contain similar 
spectra. Information that concerns the structure of the 
unknown must be inferred from the list of matches 
and their similarity indices. The present analysis is 
concerned only with identity searches. 

An ideal identity search algorithm would assign 
probabilities to the candidate compounds in the hit list 
that reflect the true likelihood that each is the correct 
match. Although recent progress has been made in this 
area [41, inherent difficulties in determining the proba- 
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bility that an unknown compound is actually in the 
library require the use of empirical relations. Spectra of 
the same compound obtained on different instruments 
or under different analysis conditions can differ sub- 
stantially. Even more serious is the inability of conven- 
tional mass spectrometry to distinguish clearly be- 
tween members of certain classes of isomers and ho- 
mologs. In these latter cases even the best matching 
algorithm along with the highest quality spectra can- 
not guarantee correct identification. 

These factors will limit the performance of any 
search algorithm, and the relative performance of each 
algorithm is to a degree a measure of how successfully 
it deals with them. Determining retrieval accuracies is 
also straightforward because the compound identities 
in the test set are known. Such testing does, however, 
require the use of a large representative test set with 
searching against a single comprehensive reference li- 
brary. 

Two algorithms have gained widespread use due to 
their availability on commercial mass spectrometer 
data systems. One of these is the thoroughly docu- 
mented probability-based matching system (PBM) of 
McLafferty and co-workers [5], which uses peak occur- 
rence statistics in its spectral comparison logic. The 
other algorithm, first widely used in the INCOS data 
system* [6], compares unknown and reference spectra 
by computing the cosine of the angle (dot-product) 
between their vector representations. Performance of 
the latter algorithm has not been documented except 
in a limited environmental context [7] and details of its 
implementation appear only in a technical manual [6]. 
Rasmussen and Isenhour [8] performed the only previ- 
ous comparative study of search algorithms for mass 
spectra with a relatively large database, but with a test 
set of only 40 spectra and without the use of the 
above-mentioned commercially implemented algo- 
rithms. The primary objective of the present study is to 
evaluate the retrieval performance for a wider range of 
algorithms with a much larger test set. Furthermore, 
when possible, algorithm performance is optimized by 
varying the scaling and mass weighting of the peak 
intensities. An optimal composite search algorithm, 
which used the optimized dot-product function to- 
gether with an additional term based on ratios of peak 
intensities, also was developed from an analysis of 
performance results. 

Background 

A mass spectrum can be represented as a row vector 
composed of the ordered peak intensities in a spec- 
trum. An individual spectrum also can be considered 
to represent a single point in a multidimensional hy- 
perspace defined by the mass (m/z> variables consid- 
ered. Each of the intensities in the row vector repre- 

*The mention of commercial products in this work does not imply 
recommendation or endorsement by the Natiorwl in&itute of Starr 
dards and Technology nor does it impiy that it is the best available 
for the purpose 

sents the value of the coordinate of the spectral point 
along the individual mass axis in this hyperspace. See 
Figures 1 and 2 for an example in three dimensions. If 
two spectra being compared are identical with respect 
to all the mass intensities, then their point representa- 
tions in this hyperspace will coincide. If spectra are 
very similar with respect to the chosen mass variables, 
their point representations will be close in the space. 

In spectral library searching the ideal situation 
would be to obtain a perfect match of the unknown 
spectrum with a single library spectrum. This would 
require one-to-one correspondence between each peak 
intensity in the unknown and reference spectra. Be- 
cause of instrumental variability, this generally is not 
possible. Instead, the matching process can be visual- 
ized as the determination of the spectral points within 

M3 
4 

x”.- Ml 
Figure 1. Vector representation of a hypothetical three-peak 
unknown WI and library CL) mass spectrum in tluedimen&mal 
space (peaks have mass Ml, M2, and M3). 
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/.’ Ml 
Figure 2. Point representation of library search results CL) for 21 
hypothetical three-peak unknown (U) spectrum (masses Ml, M2, 
and M3) 
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a specific volume element centered at the spectral 
point of the unknown in the hyperspace determined by 
the search variables. For the case where the unknown 
is present in the library, the hypervolume will be 
ideally contracted to include a unique point closest to 
the unknown spectral point. For a case where the 
unknown is not in the library, those spectral points 
within the defined hypervolume are listed up to a 
maximum distance and structural information con- 
cerning the unknown is inferred from this list. See 
Figure 2 for an example in a three-dimensional space. 
If a fixed number of spectral points are considered, this 
method is equivalent to the so-called K-nearest- 
neighbor method. 

The various search algorithms that have been pro- 
posed consist of two major components that determine 
the differences among them: data preprocessing and 
spectral similarity calculation. Data preprocessing con- 
sists of peak selection, peak intensity scaling, and 
weighting of peak intensity by mass position. The 
similarity of two spectra, which may be regarded as 
the inverse of their “distance” apart, has been mea- 
sured in various ways, including a Euclidean distance 
(sum of the squares of the differences between the 
chosen weighted peak intensities), an absolute value 
distance (sum of the absolute differences between the 
chosen weighted peak intensities), or some less easily 
interpreted “similarity index” such as the one used by 
Hertz et al. [9]. This latter index is an average weighted 
ratio of the known to unknown spectra taken mass for 
mass divided by 1 plus the fraction of intensities in 
both spectra that are not matched. The empirical 
weights for the ratios in the average are dependent on 
the larger of the intensities in the ratios. The dot-prod- 
uct algorithm [6], which is commonly employed, uses 
the cosine of the angle between the unknown and 
library spectral vectors. For unit-normalized spectral 
vectors, this angular measure is equal to 1 minus 
one-half the square of the distance between the two 
spectral points in the multidimensional space and 
therefore is also a distance measure. The PBM method, 
unlike the others, cannot be represented simply as an 
analytic function; it is based on peaks in an unknown 
and library spectrum falling within predefined abun- 
dance windows. Nonmatching peaks in the unknown 
spectrum are treated as impurities, unmatched peaks 
in the reference spectrum are “flagged,” and both peak 
occurrence probabilities and empirical corrections are 
used to produce “reliability rankings” that serve to 
order the candidate list [5b]. 

Procedures 

Library and Test Spectra 

these studies. A collection of 12,592 alternate spectra of 
about 8000 compounds that were represented in the 
database was used as the test set. These spectra com- 
prise the selected replicates file, which is provided 
along with the NIST database. Each compound in this 
set has a Chemical Abstracts Service registry number 
that matches one in the NIST database. All spectra in 
this collection have been selected from a larger archive 
on the basis of quality by an experienced evaluator. 
The selected spectra were contributed from a large 
number of laboratories and they represent a wide 
range of chemical structures and analytical conditions 
of practical interest. Another test set of 370 spectra, 
which had been used previously to optimize the per- 
formance of the PBM system [5b, d], were used princi- 
pally to evaluate our implementation of PBM. 

Search Software 

A modified version of the software supplied with the 
personal computer version of the NIST database was 
used for library searching. Only “forward” searches 
were performed (all peaks in test and library spectra 
were used in matching). To improve the speed of 
retrieval, a single preliminary screening step was used 
with all algorithms. This selected those library spectra 
that had the largest number of major peaks in common 
with the test spectrum. The step accepted, on average, 
about 100 spectra per search and was 98% effective in 
retrieving the matching spectra. To test for any influ- 
ence of screening on results, in separate studies all 
screened-out matching spectra were specifically added 
to those spectra that passed the screen. This had no 
effect on the relative search performance of the differ- 
ent algorithms. 

Search Algorithms 

In the implementation of most algorithms, spectral 
compression steps that may have been applied previ- 
ously were not used. Compression had been done 
primarily to reduce computer storage requirements. 
This is no longer necessary. Also, no spectrum screen- 
ing methods used in previous studies were employed 
here because the present screening algorithm, as men- 
tioned above, was very efficient and produced no bias. 
Peak intensity weighting, where the contribution of a 
peak to the similarity computation was represented as 
[mass (m/z)]” [abundance]“‘, was adjusted for most 
algorithms to find optimal n and m values, as ex- 
plained later. The only exception to the these adjust- 
ments was for the implementation of PBM, where 
recommended spectral compression and peak weight- 
ings were needed to use available correlation tables 
15.101. 

.se algorithms examined are listed in Table 1. The 
Hertz et al. similarity index and the Euclidean distance 
and absolute value distance measures were previously 
studied by Rasmussen and Isenhour [PI. PBM and the 
dot-product algorithm have not been subjected to com- 

The 1992 release of the National Institute of Standards 
and Technology-Environmental Protection Agency 
National Institutes of Health Mass Spectral Database, 
(hereafter called the NIST database) of 62,235 com- 
pounds served as the library of reference spectra for 
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Table 1. Search &orithms investigated a 

Euclidean distance 

Absolute Value Distance 

1 , + cw-WUI -’ 
CW” 1 

Hertz et al. 191 
average of weighted peak intensity ratios 

[l + fraction of unmatched intensities] 
Dot-product (cosine). Fd 

Probability-based matching (PBMI [5b, 5d, 10~1 
Uses probability that, by chance, peaks match within an 
abundance window (W value) by using uniqueness values 
for mass (U value) and abundance (a) along with a 
variev of rules and correlation tables. 
Composite: 

F, = Dot-Product Term Above 
F, = Ratio of Peak Pairs (below) 
W = [Peak IntensityI” [Masslm = Weighted Intensity 
N= Number of peaks 

where n= 1 or -1 when the term in parentheses is less 
than or greater than unity, respectively 

i 

02. 

0.0’ I I I 

0.2 0.4 0.6 0.8 1 .o 

RECALL 

Figure 3. Recall-reliability plot 1131 for PBM and dot-product 
algorithms with 370 test spectra Ill]. The dot-product (triangles) 
uses conventional peak weighting ([mass]’ [abundance]“z); PBM, 
present implementation (squares); PBM results from ref 11 
(circles) Recall is the fraction of all correct hits retrieved and 
reliability is the probability that a retrieval is correct. 

smaller peaks. Because the higher mass peaks in a 
spectrum are the most diagnostic, weighting their con- 
tribution in the algorithm also improves performance. 
Both types of preprocessing were investigated in this 
study. Because of the complex interdependence of pa- 
rameters in the PBM system and because they already 
have been optimized, no new scaling was applied to 
this system. However, “quadratic scaling” [5b] was 
used as recommended with PBM and also tested with 
other algorithms. This scaling procedure was designed 
to compensate for systematic mass-intensity variations 
due to mass discrimination by quadrupole mass filters 
or varying sample concentrations du&g scans. Two 
spectrum “normalization” schemes recommended in a 
commercial implementation of the dot-product algo- 
rithm [6] also were tested. 

‘Subscripts: L= library. U= unknown. L&U =peak in both li- 
brary and unknown spectrum. 

parative examination. The composite method origi- 
nates from the present work. 

The PBM comparison logic was relatively complex 
[5, 101 and its implementation deserves special com- 
ment. All recentlyrecommended features [5b, d] were 
implemented, including spectral compression, contam- 
ination correction, peak flagging, reliability ranking, 
and quadratic scaling. The correctness of our imple- 
mentation was confirmed by the agreement of our 
results with those previously reported [Ill. Results of 
tests using the same set of 370 test spectra against the 
same NIST database are shown in Figure 3. Also, by 
using this test set, the present PBM implementation 
gave an accuracy, counting all stereoisomers as correct 
hits, of 67% versus a reported 69% [ 121 against another 
comprehensive database. Furthermore, addition of sev- 
eral features recommended for improvement of PBM 
showed improvements in search results comparable in 
magnitude to those reported [lob, cl. 

Performance Measurement 

The primary measure of performance in this study was 
the rank of the correct compound in the hit list. This is 
easily understood and is independent of the numerical 
scoring schemes produced by the algorithms. It di- 
rectly measures the key function of a search algorithm, 
to place the correct result as high as possible in the 
ranked candidate list. The correct library compound 
was taken as the one whose CAS registry number 
matched the test compound. Because each test com- 
pound had one spectrum in the primary MST database, 
there was exactly one correct answer per test spectrum. 
For the purposes of testing, stereoisomers of test com- 
pounds in the library, even though they generally have 
indistinguishable mass spectra, were not counted as 
being correct. 

Peak Intensify Scaling 

Preprocessing of spectral intensities can have a benefi- 
cial effect on search performance and is commonly 
implemented in search systems. Peak intensities are 
frequently scaled to increase the relative significance of 

” Recall-reliability plots [ 131, which have been used to 
document overall search system performance, were 
not used here as the principal measure of comparative 
performance because they are not sensitive directly to 
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the rank of a retrieval and can depend on the absolute 
magnitude of similarity values. 

Results and Discussion 

Rasmussen and Isenhour [8], in their evaluation of 
mass spectral search algorithms, used a test set of 40 
spectra with a library of about 17,000 spectra. They 
examined different peak intensity normalization 
schemes, various peak selection methods, and three 
distance or similarity measures. The two distance mea- 
sures were the Euclidean and the absolute value. The 
Hertz et al. [9] similarity index also was studied. With 
this small test set this study did not discern statisti- 
cally significant differences in search results for the 
algorithms, each of which made 29 to 30 correct rank 1 
identifications. In another comparative test of methods 
of identifying mass spectra 1141, where only environ- 
mentally important compounds were considered, the 
dot-product algorithm was found to give the best 
performance, exceeding even the accuracy of an expe- 
rienced analyst. A test set of 85 compounds was used. 
Other methods evaluated in this latter study included 
a clipped Fourier transform spectral compression 
search system and a search algorithm based on a 
mass-weighted similarity index. 

Algorithm Performance 

A principal objective of the present study was to com- 
pare the search performance of the optimal forms of 

Table 2. Performance of various algorithms 

the three algorithms studied by Rasmussen and Isen- 
hour [8] as well as the more commonly used PBM and 
dot-product algorithms. Each algorithm was indepen- 
dently optimized for performance by using peak inten- 
sity scaling and peak weighting by mass, with the 
exception of the PBM system. The test spectra were a 
large set (12,592 spectra) of good quality replicate 
spectra. The compounds should be representative of 
practical mass spectral identification problems because 
the availability of a replicate spectrum generally means 
that the compound was of interest to more than one 
mass spectrometry laboratory. 

The performance results, expressed as percent cor- 
rect as a function of rank in the hit list, for the algo- 
rithms studied are given in Table 2. Some representa- 
tive results obtained by varying mass and intensity 
scaling are included in this table along with the perfor- 
mance of the optimized algorithms. Table 2 also shows 
results obtained by using the scaling employed in a 
commercially available dot-product algorithm [ 61 
(first-order mass power and square-root intensity). 
Comparing results for the optimized forms of the algo- 
rithms studied here, by using rank 1 results, shows 
that the dot-product algorithm performed best with 
75% correct, followed by the Euclidean distance at 
72% correct. The performances of the PBM and Hertz 
et al. algorithms were the worst at 64-65%. If ranks 
l-3 are considered, the accuracies of all algorithms 
increased by approximately 18%. The results up to a 
rank of 10 are shown in Figure 4 for the most com- 
monly used algorithms (dot-product and I’BM) as well 
as for a composite algorithm that is discussed later. 

Algorithm 

Dot-product 

Optimized 

Euclidean distance 

Optimized 

Absolute distance 

Optimized 

PBM 

Hertz et al. 
Optimized 

Composite 

1 

72.9 
73.2 
72.8 
74.9 

65.8 
69.9 
71.9 

61.4 
66.8 
67.9 

57.1 
64.0 
64.7 

59.9 
64.4 

75.7 

% Correct at Rank 

1 -2 

85.9 
86.3 
85.9 
86.9 

79.3 
82.9 
83.9 

74.9 
79.4 
80.3 

71.5 
77.7 
78.4 

73.9 
77.2 

88.0 

1-3 

90.8 
91.0 
90.8 
91.7 

84.9 
88.2 
88.9 

81.2 
85.1 
85.5 

78.5 
84.3 
84.8 

81.1 
83.2 

92.5 

Scaling /Comments 

Mass Intensity 
POWW POWEX 

1 0.58 
1 0.5b 
1 0.5 
3 0.6 

0 0.5 
1 0.5 
2 0.6 

0 1 
1 1 
2 0.9 

“k Yalue”c 
Reliability” 
Complete= 

0 See ref 9 
2 0.5 

3,o’ 0.5,l’ 

‘Used local and global “normalization” [61. 
bUsed local “normalization” 161. 
‘Based on “reverse-search” overall spectral match factor 1101. 
dAll recommended features except “quadratic scaling” I5b. dl. 
eAll recommended features [5b. dl. 
‘The first value is for the dot-product term and the second value is for the peak ratios term. The second and third power of the mass were 

equally efCctive for the first term. 
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i 

601 ,.,.,,,..,I 

0 5 10 

Rank 
Figure 4. Search accuracy-rank position plot for composite, 
dot-product, and PBM algorithms. Composite (triangles); dot- 
product (s uares) uses conventional peak weighting ([massI 

9 [abundance “‘), PBM, present implementation (circles). Each 
point gives the percentage of searches in which the correct 
retrieval was found among a given number of the best (top) 
retrievals. 

Differences in performance are perhaps not as large 
as might have been expected considering the wide 
variety of comparison functions. This is due in large 
measure to the fact that a large fraction of the test 
spectra, perhaps 50%, are unique, so that virtually any 
simple distance measure will elevate the spectrum of a 
matching compound to the top of the hit list. In addi- 
tion, some test compounds are mass-spectrometrically 
equivalent to other library compounds, so no algo- 
rithm could distinguish one from the other. These two 
factors, one that assists exact identification and the 
other that limits it, serve to significantly restrict the 
range of performance of any algorithm. This restriction 
was sufficiently strong to prevent the observation of 
significant differences in algorithm performance in the 
studies of Rasmussen and Isenhour 181. Nevertheless, 
with the present large test set and optimized scaling, 
clear differences in the abilities of the different algo- 
rithms to place the correct match at the top of the hit 
list are evident. Examination of results shows that this 
is primarily due to their different abilities to find the 
one correct spectrum among a group of somewhat 
similar spectra. 

No significant effects on the relative results would 
be expected if all mass-spectrally indistinguishable 
compounds were accepted as correct matches or if 
replicate spectra were present in the library. About 
12% of the test compounds had stereoisomers or aro- 
matic ring-positional isomers with virtually indistin- 
guishable spectra in the library. If these were accepted 
as correct matches, the performance of all algorithms 
would have increased by about 5%. 

Efiects of Scaling and Mass Weighting 

It is well known that scaling to compress the range of 
mass spectral peak intensities improves search perfor- 

J Am %c Mass Spectrom 1994,5,859-866 

mance [ 151. For most algorithms studied, scaling of 
intensities by the 0.5-0.6 power was optimal. (See 
Tables 2 and 3 for representative results.) Thus the 
commonly used scaling with the dot-product algo- 
rithm is nearly optimal. It also was found that logarith- 
mic scaling of peak intensities, which has been used in 
interpretative analysis, drastically degrades retrieval 
performance because of exaggeration of the relative 
importance of low intensity peaks. Also, too low a 
power of scaling reduced the ability of spectral com- 
parison functions to find the best match among library 
compounds that had similar, but distinguishable mass 
spectra. More complex intensity scaling procedures 
recommended to reduce effects of mass discrimination 
[6] were also tested with the dot-product algorithm. 
However, as shown in Table 2, they had no apprecia- 
ble net effect on the search results. Any increase in the 
number of correct matches moved to the top of the hit 
list was balanced by the number of correct hits moved 
to lower positions. Although this form of scaling may 
offer some benefit for spectra known to be skewed, 
it does not seem to be needed for spectra obtained 
with properly calibrated spectrometers when using the 
present reference library. It should be noted that at the 
time this normalization procedure was first recom- 
mended, the intensity scale of quadrupole mass spec- 
trometers often was not calibrated as it routinely is 
today. 

It is common practice to place an increased weight 
on higher mass peaks. This deemphasizes the more 
variable and less characteristic lower mass range in a 
spectrum and emphasizes the more informative high- 
er mass ions near the molecular ion. Weighting by 
various powers of the mass showed that squaring 

Table 3. Effects of scaling on performance of the 
dot-product algorithma 

Scaling Accuracy of 
Mass Intensity Rank 1 
Power Power Identification (94) 

0 0.5 69.9 
0.5 0.5 71.7 
1 0.5 72.9b 
2 0.5 73.6 
3 0.5 73.7 
4 0.5 72.6 

1 0.3 62.8 
1 0.4 69.4 
1 0.5 72.9 
1 0.6 73.5 
1 0.7 73.2 
1 0.8 71.9 
1 0.9 70.9 

3 0.6 74.9c 

‘These results are meant to be representative. Many other mass 
and intensity scaling values were tested an the dot-product alQC+ 
rithm. Other algorithms showed similar sensitivities. 

bThis is the scaling used most commonly [Sl. 
‘Optimized scaling; see Table 2. 
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or cubing was near optimal (Table 3). In an exam- IOO- 
ination of simple exponential “tilting,” the function 
exp(mass/50) was found to be near optimal, although 

E 
.p __A_ -A----r~4~=:1 

it was less effective than the square or cube of the 5 go- 
mass. E 

/s’.-;:-_:_._ .--.-- 

The more complex quadratic scaling, which is im- E 
l /- 

plemented in the PBM method, was tested with the 
other search algorithms, but had no net effect on their 

; ao- 

22 
identification accuracy. Although useful in PBM for b .f 

- ./’ 

; 70- 
. 

allowing the peaks of two spectra of the same com- 
pound to match within preset windows, such scaling 1 
appears to offer no advantage for the continuous com- 

_ . 

parison functions examined here. cl 5 10 

Rank 
PBM and Rot-Product Algorithm Performances 

It is particularly interesting to compare the perfor- 
mance of the two commercially implemented algo- 
rithms-the complex statistically-based PBM algo- 
rithm and the dot-product algorithm. A clear differ- 
ence in results of the two methods can be seen in 
Figure 3, which is a recall-reliability plot that used a 
set of 370 test spectra that had been used in PBM 
studies [ll]. Results are shown for the original [II] and 
present implementation of PBM. A significant differ- 
ence between PBM and dot-product results is their 
maximum recall, that is, the largest fraction of all 
correct hits retrieved. For the two PBM implementa- 
tions this value is 81 and 89% versus 98% for the 
dot-product function. This means that ll-19% of the 
correct hits were rejected by PBM because not enough 
significant peaks fell within preset windows to pass its 
filters. This is the principal reason for the PBM recall- 
reliability curves falling below the dot-product curve 
at high recall. 

Figure 5. Search accuracy-rank position plot with 370 spectra 
test set [ll]. Composite (triangles); dot-product with conven- 
tional scaling ([masse’ [abundance]“*) (squares); PBM, present 
implementation (circles). Each point gives the percentage of 
searches in which the correct retrieval was found among a given 
number of the best (top) retrievals. 

spectra, this has been found to cause an undesirable 
reduction in its recall [lo]. 

Composite Optimized Algorithm 

As is apparent from Table 2, the dot-product algorithm 
is the best of the original five optimized search algo- 
rithms tested. Some effort was spent in an attempt to 
improve its performance. Manual inspection of search 
results in cases where the correct compound was not at 
rank 1 in the hit list, but where an experienced analyst 
might have selected it correctly, suggests that insuffi- 
cient use of relative peak intensities for pairs of spectra 
with many peaks in common was a significant cause. 
Accordingly, an additional term was added to the 
optimized dot-product algorithm that measured only 
the relative intensities of neighboring peaks present in 
both library and test spectra (see Table 1). The contri- 
bution of this second term to the overall algorithm was 
weighted so that it increased in importance as the 
proportion of common peaks increased. This composite 
function, also listed in Table 1, outperformed the opti- 
mized dot-product algorithm alone as shown in Fig- 
ures 4 and 5. Also, when the composite function was 
used, it was found that the search performance with 
first, second, and third power mass weighting became 
nearly equal. 

Differences in performance also can be seen in Table 
2, where the “conventional” dot-product algorithm 
produces 75% accuracy for rank 1 hits compared to 
65% for PBM with the present large test set. This is 
also evident in Figure 4, where the percent accuracy is 
plotted against the rank on the retrieval list for the 
PBM, dot-product, and present modified dot-product 
(composite) algorithms. Both the dot-product and the 
composite algorithms outperform the PBM method 
even if the results up to rank 10 are used, although 
differences diminish with increasing rank. Approxi- 
mately the same relative performance is exhibited us- 
ing the PBM test set of 370 spectra (Figure 5). Examina- 
tion of the search results suggests that these differ- 
ences in performance are due to fundamental differ- 
ences in matching criteria. The dot-product algorithm 
treats peak intensity differences in library and refer- 
ence spectra in a continuous manner and produces its 
maximum value only when spectra are identical. PBM, 
on the other hand, uses abundance information only to 
determine whether or not peaks in the test and refer- 
ence spectra fall into the same window. Although the 
use of narrower windows would improve the ability of 
PBM to find the best match among similar library 

Conclusions 

Clear differences were found in the abilities of various 
optimized mass spectral comparison algorithms to cor- 
rectly identify compounds. Of the previously proposed 
algorithms examined in the present study, the best 
performance (75% correct rank 1 identifications) was 
from the dot-product algorithm; next was the Eu- 
clidean distance method (72%), followed by the abso- 
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lute value distance method (68%), PBM (65%), and 
Hertz et al. (64%) methods. It is interesting that the 
two algorithms specially designed for mass spectrome- 
try performed the worst. Various intensity normaliza- 
tion schemes proposed for correcting biased spectra 
had little effect on results. However, scaling peak in- 
tensities by taking their square root and weighting 
peak intensities by powers of the mass, usually a 
square or cube, did have a clearly beneficial effect. 
Based on attempts to correct deficiencies of the dot- 
product algorithm, a new composite algorithm was 
developed that modestly outperformed the others. It 
consisted of two terms. The first was a dot-product 
function with intensity scaling to the 0.6 power and 
weighting by the cube of the mass. The second term 
used nonscaled intensity ratios of neighboring peaks. 

Rasmussen and Isenhour [8] reported no statisti- 
cally significant differences in performance of three of 
the algorithms examined here. The present studies 
show an 8% difference in rank 1 identification for 
these algorithms. This apparent difference in results 
can be explained by the relatively small test set used in 
the earlier studies and differing peak processing and 
scaling procedures. 

The search algorithm performances obtained in this 
study are realistic estimates with a diversity of test 
spectra. If one includes only the first candidate on the 
hit list, a 76% identification accuracy is expected. If the 
top three candidates on the hit list are considered, a 
93% accuracy can be expected. The performance on 
complex real samples will certainly be less accurate. 
On the other hand, use of these algorithms with spe- 
cialized libraries and higher quality unknown spectra 
is likely to produce better results. 

The present work examined only the performance 
of algorithms for exact compound identification. Al- 
though features of “hit lists” produced by these algo- 
rithms may suggest that the unknown compound is 
not in the library [4,5cl, different algorithms are needed 
to optimally retrieve similar compounds. The testing 
and optimization of such “interpretive” algorithms is 
now underway in our laboratory. 
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