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A personal perspective of the historical development of the flowing afterglow (FA) tech- 
nique for measuring thermal energy ion-molecule reaction rate constants is presented. The 
technique was developed in the period starting in late 1962 in what was then the National 
Bureau of Standards in Boulder, Colorado. The motivation was primarily to obtain a 
quantitative understanding of the ion chemistry of the terrestrial ionosphere, a program 
that was substantially achieved. The thermal energy measurements were extended in 
temperature from 300 K to a range of 80 K-900 K and subsequently to a center-of-mass 
kinetic energy range up to - 2 eV with the introduction of a drift tube into the FA. 

The chemical versatility, in regard to both the ion and the neutral reactants measured, 
remains unequaled and FA systems are currently in widespread use around the world for a 
variety of chemical research programs. (J Am SIX Mass Spectrom 1992, 3, 479-486) 

A 
n account of the early development of the 
flowing afterglow (FA) technique for ion-mole- 
cule reaction studies during the past almost 30 

years may have some general historical interest for 
mass spectroscopists and ion-molecule chemists and 
physicists. I welcomed this opportunity to write such 
an account from my personal perspective. This is a 
congenial endeavor for me at this time when I have 
recently switched my own research interests away 
from ion chemistry largely to environmental matters, 
such as chemical aspects of the “greenhouse” effect. I 
remain in contact with my two collaborators in the 
development of the FA technique, Art Schmeltekopf 
and Fred Fehsenfeld, both of whom switched their 
research efforts to neutral atmospheric chemical prob- 
lems many years ago (again becoming leaders in their 
fields). I have also maintained close ties, including 
several recent collaborations, with a number of active 
practitioners in the field, some of them alumni of our 
Laboratory, and I have prevailed on many of these 
participants in the FA saga to help correct my mem- 
ory lapses and errors of commission and omission. 
The defects remaining are entirely my own responsi- 
bility. 

This is not in any sense a comprehensive survey or 
review of the by-now very widely spread field of flow 
tube studies of ion-molecule reactions. The monu- 
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mental comprehensive effort of Susan Graul and Bob 
Squires [l] will serve that purpose beautifully for a 
long time to come. 

The invention of the FA was, like much of science, 
more a matter of serendipity than of judiciously calcu- 
lated planning. The story for me began when, frus- 
trated with the dual demands of research and a nine- 
hour teaching load, I chose to concentrate on the 
former and left a tenured faculty position in Physics at 
the University of Texas, Austin, for a position in the 
Upper Atmosphere and Space Physics Division of the 
National Bureau of Standards (NBS) in Boulder in 
1%2. This opportunity was arranged for me by a close 
friend, the late H. P. Broida, a senior scientist in NBS 
Washington at that time, and one of the world’s 
leading spectroscopists and atomic physicists. I was 
offered the opportunity to create a laboratory aeron- 
omy program in support of the NBS mission in radio 
propagation. It was my exceptionally good fortune at 
that time to have two extraordinarily able graduate 
students at Texas, Art Schmeltekopf and Fred Fehsen- 
feld, who joined me in this new endeavor in Boulder. 
We called the new group the Atmospheric Colliiion 
Processes Group. 

We soon learned that the subject of atmospheric 
ion chemistry was in a primitive state. Satellite- and 
rocket-borne mass spectrometers were obtaining at- 
mospheric ion composition data, but none of the 
relevant ion-neutral chemistry was understood. Art, 
Fred, and I had had a brief and informal introduction 
to ion-molecule chemistry shortly before this on the 
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occasion of a visit to the University of Texas by Joe 
Franklin from Rice and found the subject to be one of 
considerable interest. 

The standard technique for measuring ion-mole- 
cule reactions at that time utilized conventional mass 
spectrometers with specially designed ion sources that 
served as reaction chambers, the familiar technique 
used with such great success by Joe Franklin, Frank 
Field, Fred Lampe, Burnaby Munson, and others. 
This technique was far too limited in chemical versatil- 
ity to contribute significantly to atmospheric ion 
chemistry. The reasons for this must be readily appar- 
ent to this audience. 

Another approach, pioneered by Jim Sayers and 
John Hasted in England, and by Wade Fite, Larry 
Puckett, Carl Lineberger, Fred Biondi, and Art Phelps 
in the United States, was the stationary afterglow 
(SA) in which a gas mixture in a bulb was subjected to 
an ionizing pulse and the ion composition was moni- 
tored at the wall as a function of time after the 
cessation of ionization, the ion composition varying in 
time due to ion reactions with the neutrals. The lack 
of chemical versatility of this approach is also evident. 
In addition, there were problems associated with un- 
known states of the ions and even the neutral re- 
actants, both of which had been subjected to a 
discharge. The few ionospherically relevant measure- 
ments available from SAs in 1964 on common reac- 
tions were in order of magnitude disagreement, e.g., 
the reactions between O+ and N, and between O+ 
and 0,. In brief, the situation in 1962 was that no 
single atmospheric ion-molecule reaction rate constant 
was unambiguously determined! 

Our initial plan was to utilize an SA with the hope 
of overpowering the situation with diagnostic capabil- 
ities. While waiting for the arrival of the parts we had 
ordered, as well as the completion of our new labora- 
tory space, Art spent one month at NBS in Washing- 
ton with Herb Broida doing optical spectroscopy on 
the original “flowing afterglow,” a glass tube of about 
10 cm diameter and 1 meter length, exhausted by very 
large Roots Blower pumps. An electrodeless mi- 
crowave discharge was initiated at a constriction in 
the tube. The light emission downstream in the fast 
flow, i.e., the “afterglow,” was examined spectro- 
scopically [2]. The gas flow speed was on the order of 
10,000 cm/set, about one tenth of sound speed. Upon 
Art’s return to Boulder he was anxious to have such a 
spectroscopic light source in the lab, for aesthetic as 
well as scientific reasons. Afterglows in glass tubes 
are colorful and interesting as well as effective places 
to do atomic and molecular physics and chemistry. 
We quickly realized that the light emission from the 
He afterglow must be due to electron-ion recombina- 
tion, specifically the collisional-radiative process de- 
scribed shortly before (1962) by Bates et al. [3]. Ergo, 
ions must exist in the afterglow, and hence the possi- 
bility of studying ion chemistry in such a tube was 
suggested, Our expectation was that the FA might be 

useful in a qualitative survey fashion for determining 
suitable conditions for the operation of our ultrahigh 
vacuum SA under construction. SA experiments are 
necessarily tedious and time consuming. The very 
first time the FA was turned on, however, we realized 
that we had a very useful tool on our hands. (Indeed, 
the SA was never turned on!) Our first He flowing 
afterglow was not spectroscopically pure, unsurpris- 
ingly. A glass tube had been connected to a pumping 
port with O-rings, etc. The characteristic blue nitro- 
gen emission spectrum was a clear indication of an air 
leak, and there was a large NC signal in the 
quadrupole mass spectrometer (which was home- 
made because they were not commercially available at 
the time). There was also an O+ signal and lesser N: 
and 0: signals. The N* signal was by far the largest, 
over four times larger than the oxygen ion signals, 
and it was therefore clear that the dissociative ioniza- 
tion of N, by He+ was very fast. This had an impor- 
tant geophysical consequence that we immediately 
recognized. 

David Bates and Tom Patterson [4] had very re- 
cently (1962) published a paper theorizing that the 
mysterious escape of He from the Earth’s atmosphere 
might be due to the very exothermic reaction of He+ 
with O,, invoking a mechanism giving the light He 
atom sufficient energy (2.4 eV) to escape the Earth’s 
gravitational field. This followed a fmding by Nicolet 
that the rate of photoionization of He in the Earth’s 
atmosphere was equal to the He loss required to yield 
a steady state. This assumed that He ions would not 
react with N,, The hrst FA experiment showed clearly 
that this was not the case! This, of course, got us off 
to an exciting start in “Flowing Afterglowery” (51; 
but of more substantial importance, we quickly 
learned that we could get rather good rate constants 
from a very simple hydrodynamic flow analysis. This 
was established by comparing our measured rate con- 
stants for the reaction of He+ with Nz and Oz with 
those that had been measured by Sayers and Smith 
[6] at Birmingham and reported at a Faraday Society 
meeting a few months earlier. Also in these cases the 
measured rate constants were approximately equal to 
the collision rate constant, which seemed unlikely 
to be a chance coincidence. From that point on, FA 
rate constants for ionospheric ion-molecule reactions 
emerged in a steady stream. The pre-FA rate con- 
stants of all categories numbered in the - 100 range 
[7], a number quickly surpassed in Boulder. 

The hydrodynamic analysis was quickly improved, 
with the help of an NBS mathematician, Steve Jarvis, 
leading to uncertainties on the order of only about 5% 
for chemically simple reactions. We were working in 
the uncharted ionospheric chemistry held where there 
were order of magnitude questions to be answered 
(even yes/no questions as in the case of the He++ N, 
reaction, the N; + 0 reaction, and others), and we 
were quite satished with this accuracy. By this time 
there had been a number of US and Soviet rocket- 
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borne mass spectrometer measurements of atmo- 
spheric ion composition, and there were fertile fields 
to plow with the frrst lab data. 

The huge advantage of the FA arose from the 
separation of the ion production region from the neu- 
tral addition region, which in turn led to the still 
unsurpassed chemical versatility of the FA. With re- 
gard to ions, successive reactions prior to neutral 
addition could be used to produce a great variety of 
ions, indeed, all those ions of early ionospheric inter- 
est. For example, the reaction of He+ with N, gave 
both N+ and N: ions for further reaction (e.g., with 
0,). Penning ionization by the abundant He metasta- 
bles in the afterglow was also an efficient ionization 
source for any neutral, even such unlikely prospects 
as iron and magnesium, vaporized from small fur- 
naces introduced into the FA for atmospheric meteor 
ion chemistry studies. Negative ions could be formed 
either by direct electron attachment or by sequences 
of ion-neutral reactions. Later, for lower ionosphere 
studies, it was necessary to study cluster ion chem- 
istry, and modihcations in the flow tube by David 
Fahey [8] allowed multiply hydrated (or otherwise 
solvated) ions to be produced for reaction studies. 

Of course, the physical separation of the neutral 
reactant from the ionization source region eliminated 
the problems associated with neutral excitation by the 
ionization source. The early errors in SA measure- 
ments of the O++ N, reaction were later traced to 
vibrational excitation of the N, by the ionizing dis- 
charge pulse. The Birmingham and London SAs had 
produced quite different rate constants because the 
ionizing pulse lengths were different, leading to dif- 
ferent extents of vibrational excitation of the N2 and 
consequently quite different Of+ N, + NO++ N re- 
action rate constants. The measurement in the FA of 
this rate constant as a function of N2 vibrational 
quantum number remains a classic experiment of 
chemical kinetics [9]. I believe it is still the only 
ion-molecule reaction measured as a function of vibra- 
tional state of the neutral reactant, if one neglects the 
somewhat qualitative study of the reactions of He+ 
and Ne+ with Ha(v) [lo], carried out in Chuck 
DePuy’s laboratory, which verifted the huge rate con- 
stant enhancement for v > 0, predicted by Preston et 
al. [ll]. [A project undertaken because of my (un- 
founded) skepticism that a change of one vibrational 
quantum could give a one hundredfold change in rate 
constant.] It is a simple matter to vibrationally excite 
N2 with a microwave cavity discharge in the N, reac- 
tant inlet line, achieving vibrational temperatures as 
high as - 6000 K. The real trick was in measuring the 
resulting T,, which was done spectroscopically utiliz- 
ing our discovery that the Penning ionization of N, to 
the radiating N:(B) state is approximately vertical, 
i.e, Franck-Condon. Thus, to a good approximation 
the population of N: (8, v), as deduced from the mea- 
sured NT(B, v) --* N$(X, v) intensity (B + X being 
again an almost vertical transition), reflected the pop- 

ulation of neutral N,(X, v) attained in the microwave 
discharge. The efficiency of N, vibrational excitation is 
due to the existence of the short-lived N; resonance 
near - 2 eV. This procedure does not work for 02, of 
course, where the potential curves are extremely non- 
vertical and therefore no measurements exist of ion 
reactions with 0, as a function of the vibrational state 
of the 0,. 

With regard to neutrals, it was possible to intro- 
duce into the FA unstable neutrals, such as 0, N, H 
atoms and OH radicals using “titration” techniques 
developed for neutral atmospheric kinetic studies. 
Harold Schiff, from York University in Toronto, col- 
laborated with us on these studies. For example, the 
major loss process of N2+ ions in the ionosphere is the 
reaction 

N;+O+NO++N (1) 

which had been predicted on theoretical grounds to 
be slow, but which from atmospheric ion profiles 
appeared to be very fast. We resolved this conflict 
with a measurement showing the rate constant to be 
about one-half the Langevin collision rate constant 

PI. 
Nitrogen gas, diluted in He carrier gas, was intro- 

duced in the reactant port side tube and subjected to a 
microwave discharge that dissociated a few percent of 
the N,. The stream of N atoms so produced could 
then be used for reaction studies as, e.g., the reaction 

0: +N-tNO++O (2) 

also an important ionospheric reaction. To produce 0 
atoms, NO, in measured flows, was added to the 
discharged nitrogen and the fast reaction 

N+NO+N,+O (3) 

quantitatively exchanged N for 0. The titration end- 
point, i.e., the measured NO flow at which all of the 
N atoms are converted to 0 atoms, determines the 
absolute concentration of [0] for reactions like 1, or 
[N] for reactions like 2. The endpoint is indicated 
dramatically in the detected ion signals (and by visual 
inspection of the titration reaction in a darkened 
room!). 

Of course, the N, /N (and N, /O) ratios were very 
large and one could only measure reactions of ions 
that did not react with N, as, e.g., Nl or 0;. At least 
for N, this is not a limitation in the atmosphere 
because the N,/N ratio is also large there, and only 
the N atom reactions of ions that do not react with N, 
are of practical interest. 

Only relative values of ion concentrations are re- 
quired to obtain FA rate constants, but absolute con- 
centrations of the neutrals are required, working in 
the pseudo first order regime that usually prevailed, 
[Neutral reactant] 4 [Ion reactant], so that the neutral 
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which has a rate constant - l/3 k,, establishes that 
at least one thud of the 24 0; potential curves arising 
from O-(*P) + O(3S) must be attractive into the au- 
todetaching region, a fraction far in excess of the 
theoretically expected value at the time, which has 
subsequently been supported, however, by detailed 
quantum calculations by Harvey Michels. Reaction 25 
is very fast, k - k,, establishing that the single HF- 
potential curve must be attractive, resolving a dispute 
between theoretical calculations then existing, two 
yielding attractive curves and two yielding repulsive 
curves! 

The ion chemistry of the ionosphere, the D-, E-, 
and F-regions above - 60 km, was fairly clear by the 
early 1970s. Efforts continued to refine this chemistry, 
improve rate constant accuracy, extend energy depen- 
dences, etc.; but the emphasis was on the study of 
the lower atmosphere chemistry, the subionospheric 
stratosphere and troposphere. This involved both 
positive-ion and negative-ion reactions and both bi- 
nary and three-body reactions. It also involved mea- 
surement of the reactions of negative ions with HNO, 
and H,SO,, which are critical in the stratosphere. 

The only measurements of gas-phase sulfuric acid 
(by Frank Arnold, Heidelberg) utilize the laboratory 
reaction studies [28] in conjunction with his balloon- 
borne measurements of HSO; ions. 

Detailed studies of sodium ion chemistry [29] al- 
lowed the later deduction [30] that there were no 
gas-phase sodium compounds below 60 km; any gas- 
phase sodium compounds present would react with 
the ambient proton hydrates to yield protonated 
NaOH clusters (or equivalently hydrated Na+ clus- 
ters). 

A novel and interesting experiment was carried out 
at JILA and CU in Boulder by Veronica Bierbaum, 
Barney Ellison, Jean Futrell, and Steve Leone [31] in 
which they made the hrst ion-molecule infrared 
chemiluminescence measurements using an FA with 
sensitive detection of infrared emission from the reac- 
tion products. Specihcally, they observed 4.3 p emis- 
sion of the antisymmetric stretch of CO, produced in 
reaction 19. It follows from the generally very fast 
process of exothermic autodetachment that associa- 
tive-detachment neutral product molecules will usu- 
ally be highly vibrationally excited. The electron de- 
parts the negative-ion product initially produced in 
the collision very promptly, following the negative 
ion-neutral curve crossing so that a large fraction of 
the reaction exothermicity is left in product vibrational 
modes. Subsequently, results from this program in- 
cluded a measurement of the vibrational population 
of NO’(X’C+,v) from v = 1-14, produced in the 
reaction of Nt with O2 [32]. This important iono- 
spheric reaction showed a marked bimodal product 
vibrational distribution. Studies involving FA-visible 
chemiluminescence in Leone’s lab allowed measure- 
ment of the O(“P), O(‘D), and 0(‘S) product branch- 
ing ratio for the N++ 0, + 0 + NO reaction [33], 

again an important atmospheric process. It is clear 
that such experimental extensions and sophistications 
of the FA technique will contribute greatly to both 
practical and mechanistic understanding of ion-mole- 
cule reactions. 

From time to time we made astrophysically rele- 
vant ion-molecule reaction rate measurements, usu- 
ally prompted by a phone call from Alex Dalgarno. 
One of the earliest was reaction 21 discussed above. 
Another was the reaction 

O++H+H++O (26) 

of great importance both geophysically and astrophys- 
ically [ 341. 

The intense interest generated in interstellar 
molecule formation by the rapidly increasing discov- 
ery of their existence by radio astronomers led to a 
strong motivation for laboratory ion-molecule reaction 
rates because it was quickly recognized that ion-mole- 
cule chemistry must be a dominant contributor to 
molecule formation in the low-temperature, low-pres- 
sure environment. 

Astrophysics was not in our mission, however, 
and the overwhelming contribution to this field was 
made by Nigel Adams and David Smith in Birming- 
ham. This has been a source of satisfaction to us 
because Nigel was one of our earliest Post-Does, and 
certainly one of our most productive; and David has 
been a friend from the earliest days of our program 
and subsequently a frequent collaborator of mine. 
David and Nigel introduced the powerful SIFT 
(selected ion flow tube) technique in 1976, in which 
single ions from a low pressure ion source could be 
injected into the flow tube by means of an aspirator 
[35]. This vastly increased the versatility of the FA 
and has been a standard feature for some time. 

Tropospheric ion chemistry has been held back by 
the horrendous technical problem of sampling and 
mass analyzing - lo3 ions/cc in a background of 
- 1019 neutrals/cc. Only recently has success been 
achieved in this endeavor by Fred Eisele and his 
colleagues at Georgia Tech [36, 371. The neutral 
molecules involved (caprolactam, methyl sulfonic acid, 
methylquinoline, isoxazole, sarcosine) are such as to 
support the wisdom of a simple physicist in having 
abandoned the field of atmospheric ion chemistry at 
the stratospheric level. 

In the later years of ion chemistry in NOAA, we 
utilized the FA technique to make the hrst systematic 
measurements of diatomic ion vibrational quenching 
[38, 391, work subsequently continued in Werner 
Lindinger’s lab in Innsbruck [40-431, in Norman 
Twiddy’s lab in Aberystwyth [44], and in John 
Paulsons’s lab at AFGL in Boston (451. The only 
experiment involving quenching by an electronically 
excited neutral (NO+(v) + O,(‘Ag)) wascarried out in 
Chuck DePuy’s lab at CIJ 1461. The critical factor for 
these studies was the use of a “monitor ion” to 
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determine the vibrational state of the ions. This in- 
volved addition of a neutral reactant into the flow 
tube just ahead of the mass spectrometer sampling 
whose reactivity depended on the ion vibrational state, 
as a consequence of the reaction energetics. Ar reacts 
only with vibrationally excited N$, N2 only with 
vibrationally excited HCl+, SO, only with vibra- 
tionally excited 0: , etc. This was the technique used 
much earlier to measure reactions with electronically 
excited ions such as O:(a4ru) [471. 

One of the most satisfying research results from 
the later years was a comprehensive study of the 
reaction 

0; + CH, -+ H,COOH++ H (27) 

carried out in the Aeronomy Lab [48], Meudon and 
Birmingham [49], and Colorado University [50, 511, 
culminating in perhaps the most detailed understand- 
ing of the reaction mechanism for any ion-molecule 
reaction of such complexity, e.g., more than - 5 
atoms. 

The Boulder Aeronomy Lab Flowing Afterglow 
story terminated in 1984 with the ion vibrational relax- 
ation studies and the 0: + U-I, studies carried out 
by our last visitors, Marie Durup-Ferguson from Or- 
say and Hans B&ringer from Heidelberg. The Aeron- 
omy Lab scientists, Art Schmeltekopf, Fred Fehsen- 
feld, Dan Albritton, and David Fahey, were by then 
ail busily (and productively) engaged in the challeng- 
ing (and relevant) problems of neutral atmospheric 
chemistry. 

The ion chemistry laboratory had been undergoing 
a transition for several years to a chemical kinetics 
laboratory for the study of neutral atmospheric reac- 
tions under the able direction of Carl Howard. This 
laboratory has continued a record of outstanding pro- 
ductivity and was subsequently bolstered even fur- 
ther by the addition of Akkihebbal Ravishankara. The 
old FA tubes are on occasion being used as “chemical 
ionization detectors” for free radicals to measure im- 
portant neutral reaction rate constants and reaction 
products. 

The Boulder Flowing Afterglow story has contin- 
ued full-tilt, however, in the laboratory of Chuck 
DePuy and Veronica Bierbaum in the Chemistry De- 
partment of CU. We assisted the introduction of the 
FA technology into Professor DePuy’s lab in 1973 and 
the outstanding success of that new direction in or- 
ganic chemistry has been a continuing source of satis- 
faction to me for many years. 

My own FA ion chemistry research did not end 
with the termination of the Aeronomy Lab program. 
Being less versatile and less adaptable (and older!) 
than my colleagues, I was not successful in adapting 
to a new held as they were and instead maintained 
research in ion-molecule chemistry. For this I relied 
on the friendship and generosity of many friends and 
former colleagues, particularly Aeronomy Lab alumni 

Werner Lindinger at Innsbruck, Nigel Adams (and 
David Smith) at Birmingham, and Al Viggiano (and 
John Paulson) at AFGL; also colleagues and long-time 
friends, Norman Twiddy at Aberystwyth, Will Castle- 
man at Penn State, and, most recently, Murray Mc- 
Ewan at Christchurch. Castleman and his group have 
built upon the FA technology, especially the mod& 
cations of David Fahey et al. [8], and have success- 
fully implemented the poor-man SIFT technique to 
the production of quite large cluster ions. Their pro- 
lific studies are serving to bridge the gap between the 
gaseous and condensed state in terms of understand- 
ing solvation effects on reactivity. 

Many of these friends and colleagues honored me 
with a Festschrift issue of the International Journal of 
Mnss Spectrometery and Ion Processes [52], which gave 
an eloquent testimony to the continuing vigor of the 
field. It has truly been an exciting period for me, and 
ion chemistry continues to be an exciting and produc- 
tive held for many old friends and young scientists 
that I have not had the good fortune to interact with. 

The pleasure of working and associating with out- 
standing students, Post-Dots, and colleagues, as well 
as with the broader ion-molecule community, over 
these many years has equaled the satisfaction and 
excitement of the scientific results and leaves me with 
a deep reservoir of fond memories. 

During the year 1983-1984 and between the years 
1986-1990, I was privileged to work in the Laboratoire 
de Physico-Chimie des Rayonnements, Universit6 
Paris-Sud, during which time I enjoyed a stimulating 
and profitable interaction with Rose Marx and Gerard 
Mauclaire of that lab and also with Bertrand Rowe (an 
Aeronomy Lab alumnus) at nearby Meudon. 
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